七年级数学测试题-(前三章)(含答案)
北师大版七年级上册数学第三章测试卷及答案
北师大版七年级上册数学第三章测试卷及答案考生作答时要沉着冷静,规范书写,确保字迹清楚、卷面整洁。
按照要求在指定位置正确填写信息、在与题号相对应的答题区域内答题一、选择题1.“x与y两数的平方差”可以用代数式表示为( )A. x²-y²B. x-y²C. (x-y)²D. x²-y2. 不一定相等的一组是( )A. a+b与b+aB. 3a与a+a+aC. a³与a·a·aD. 3(a+b)与3a+b3.下列代数式中多项式的个数有( )2a m−n63π+a5a−b2(x2−4).A. 2B. 3C. 4D. 54. 如果3aᵐ⁺³b⁴与a²b":是同类项,则mn的值为( )A. 4B. -4C. 8D. 125. 如图,长为4a的长方形,沿图中虚线裁剪成四个形状大小完全相同的小长方形,那么每个小长方形的周长为( )(用含a的式子表示)A. 4aB. 5aC. 6aD. 8a6. 已知a-2b=-1, 则代数式1-2a+4b的值是( )A. -3B. -1C. 2D. 37.某种商品进价为a元,在销售旺季,提价30%销售,旺季过后,商品以7折价格开展促销活动,这时一件商品的售价为( )A. aB. 0.7aC. 1.03aD.0.91a8. 下列说法正确的是( )A.1x +1是多项式B.3x+y3是单项式C. -mn⁵是五次单项式D. -x²y-2x³y是四次多项式9. 下列运算正确的是( )A. 2⁴=8B. 2x²-x²=2C. 2a+3b=5abD. 2x²y-x²y=x²y第1页共 10页10.如图,各网格中四个数之间都有相同的规律,则第7个网格中右下角的数为( )第1个第2个第3个A. 62B. 79C. 88D. 98二、填空题11. 有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为 .12. 如果a²+a=1,那么代数式3a²+3a+2的值为 .13. 多项式4x²y-3xy+1 的次数是 .14. 如果单项式−xyᵇ⁺¹与单项式12x a−2y3是同类项,那么代数式((a−b)²⁰²³=.三、计算题15. 计算:(1) -2⁴+(4-9)²-5×(-1)⁶;(2)(2a²b-ab²)-2(ab²+3a²b).四、解答题16.判断一个正整数能被3 整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的.17. 已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求(a+b+cd)x²-cd.18. 先化简, 再求值: (3a²+6a-1)-2(a²+2a-3). 其中a=-2.19. 观察下列三行数并按规律填空:-1, 2, -3, 4, -5, ▲ ,▲ , …;1,4,9, 16,25, ▲ , ▲ , …;0,3,8, 15, 24, ▲ ,▲ , …(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3) 取每行数的第10个数,计算这三个数的和.五、综合题20. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、 10元/本.(1)现购进a本甲种书和b本乙种书.请用含a, b的代数式表示,共付款元;第2页共 10页(2)若花费5×10⁴元购进甲种书、花费3×10³元购进乙种书,用科学记数法表示共花费元.21. 某商场计划投入一笔资金(即本金)采购一批商品,经过市场调查发现,有两种销售方式:方式A:若月末出售,可获利30%,但要支付仓储费用600元;方式B:若月初出售,可获利20%,并可用本金和利润再投资其他商品,到月末又可获利5%. 若商场投资本金x元.(1)分别用含x的最简代数式表示出按方式A,B出售所获得的利润;(2)若商场投资本金30000元,选择哪种销售方式获利较多?并求出此时获利金额.22. 已知x, y, z, m, n满足①5(x-y+3)²+2|m-2|=0;n³a²⁻ʸb⁵⁺ᶻ是一个关于a、b三次单项式且系数为-1:(1)求m, n的值;(2)求代数式(x−y)ᵐ⁺¹+(y−z)¹⁻ⁿ+(z−x)⁵的值.23.如图,用同样长的火柴棒按规律搭建图形,图①需要6根火柴棒,图②需要11根火柴棒,图③需要 16根火柴棒, ……(1)图⑥需要根火柴棒;(2)按照这个规律,图n需要火柴棒的根数为 .(用含a的式子表示)第3页共10页参考答案与解析1. 【答案】A【解析】【解答】解:“x与y两数的平方差”可以用代数式表示为:x²-y²,故A符合题意.故答案为: A.【分析】根据题意直接列出代数式即可。
七年级数学上册第1-3章复习检测题(含答案)
七年级数学上册第1-3章复习检测题(含答案)试卷,初二七年级答案,习题,模拟试卷(时间90分钟满分100分)班级姓名得分一、填空题(每题2分,共32分)1.-2的倒数是.2.4的平方根是.3.-27的立方根是4.32的相反数地,绝对值是.5.比较大小:-11.326.用计算器计算:(结果保留4个有效数字):31400=,0.618=,-30.0005432=.7.写出两个无理数,使它们的和为有理数;写出两个无理数,使它们的积为有理数.8.2007年我国外汇储备4275.34亿美元,结果保留三个有效数字,用科学记数法表示为亿美元.9.一个正数的算术平方根与立方根是同一个数,则这个数是.10.在数轴上,到原点距离为125个单位的点表示的数是11.不小于45的最小整数是.12.若n为自然数,那么(1)2n1222n1=.13.若实数a、b满足a2(b)0,则ab=.14.小红做了棱长为5cm的一个正方体盒子,小明说:“我做的盒子的体积比你的大218cm.”则小明的盒子的棱长为cm.15.a和b之间,a<3<b,那么a,b的值分别是16.罗马数字共有7个:I(表示1),V(表示5),某(表示10),L(表示50),C(表示100),D(表示500),M(表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如I某=10-1=9,VI=5+1=6,CD=500-100=400,则某L=某I=试卷,初二七年级答案,习题,模拟试卷二、解答题(每题2分,共32分)17.(8分)(1)判断下列各式是否正确.你认为成立的,请在括号内打“√”,不成立的打“某”.①234152322()②338524338()③44415()④55524()(2)你判断完以上各题之后,请猜测你发现的规律,用含n的式子将其规律表示出来,并注明n的取值范围:.18.(5分)在数轴上表示下列各数:2的相反数,绝对值是19.(8分)计算(1)-2(3)(-120.(5分)已知:某是|-3|的相反数,y是-2的绝对值,求2某2-y2的值.213)某32+23;(4)π+.(精确到0.01)32377311÷(-5)某;(2)(1--)÷(-1);481242511的数,-1的倒数.42试卷,初二七年级答案,习题,模拟试卷21.(5分)4-3的整数部分为a,小数部分为b,求ba3的值.(保留3个有效数字)22.(5分)利用4某4方格,作出面积为10平方厘米的正方形,然后在数轴上表示实数与-.23.(5分)一本书长是宽的1.6倍,面积为274平方厘米,则这本书的宽大约是多少?(精确到0.1cm)24.(5分)一个圆柱的体积是10cm3,且底面圆的直径与圆柱的高相等,求这个圆柱的底面半径是多少?(保留2个有效数字)25.(5分)已知长方形的长与宽为比3:2,面积为36cm2,求长方形的长与宽.(结果保留根号)试卷,初二七年级答案,习题,模拟试卷26.(5分)把一个长方形的长和宽分别扩大相同的倍数,使面积扩大40倍,求长和宽分别扩大的倍数.(结果保留根号)27.(5分)座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=2其中T表示周期(单位:秒)l表示摆长(单位:米)g=9.8米/秒2,假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?28.(7分)在第六册课本的阅读材料中,介绍了一个第七届国际数学教育大会的会徽.它的主题图案是由一连串如图所示的直角三角形演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=……=A8A9=1,请你先把图中其它8条线段的长计算出来,填在下面的表格中,然后再计算这8条线段的长的乘积.(结果精确到0.1)试卷,初二七年级答案,习题,模拟试卷一、填空题1.122.23.34.2325.<6.37.42,±0.7861,0.081597.23110.11.1012.013.18.4.28109.14.715.3,416.40,11二、解答题17.(1)4个全对;(2218.略19.(1)110;(2)16;(3)58;(4)4.2120.1421.122.略23.13.1cm24.1.17cm25.,26.27.约42次28.表格中依次填,积为200.8。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)一、单选题1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元2.下列方程中,一元一次方程一共有( )①9x+2;②12x =;③(1-x)(1+x)=3;④()1113352x x x -=- A .1个 B .2个 C .3个 D .4个3.(古代数学问题)今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?设有x 人,则根据题意列出方程正确的是( ) A .8x+3=7x ﹣4B .8x ﹣3=7x+4C .8x ﹣3=7x ﹣4D .8x+3=7x+44.下图是某超市中“飘柔”洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请帮忙第一算,该洗发水的原价是:( )A .22元B .23元C .24元D .25元5.若关于x 的方程321(32)x a x a ++=-+的解是0,则a 的值为( )A .15B .35C .15- D .356.下列方程:21126740.343492x x x x x x x +=-=+=-=①;②;③;④;0x =⑤;328x y -=⑥;112x =⑦;12x=⑧中是一元一次方程的个数是( ) A .6个 B .5个 C .4个 D .3个7.下列运用等式的性质,变形正确的是( )A .若x ﹣m =y +m ,则x =yB .若a =b ,则ac =bcC .若x =y ,则x ﹣m =y +mD .若ac =bc ,则a =b8. 下列方程中,属于一元一次方程的是( ).A .021=+xB .2y 432=+x C .22x 3x =+x D .x 31232=++x x9.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( ) A .24元 B .26元 C .28元 D .30元10.方程3x ﹣6=0的解是( )A .x =3B .x =﹣3C .x =2D .x =﹣2第II 卷(非选择题)二、填空题11.关于x 的方程a 2x+x=1的解是__.12.某学校组织八年级6个班参加足球比赛,如果采用单循环制,一共安排______场比赛 13.某商品进价为40元,若按标价的8折出售仍可获利20%,则按标价出售可获利______元.14.当x=4时,式子5(x+b )﹣10与bx+4x 的值相等,则b=_____.15.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯5人,共同分60个橘子,若后面的人总比前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个,依题意可列方程得_____.16.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.17.若293x +=2,且x y =94,则x =______,y =_______. 18.当a =____时,关于x 的方程314x -=-与方程562a x -=-的解相同.三、解答题19.解方程:x ﹣3=﹣12x ﹣4. 20.解方程:(1)5(x-1)+2=3-x(2)2121 1=63x x-+ -21.某纺织厂收购某种特色棉花,若直接转卖这种特色棉花,则每吨可获得的利润为500元.若经过B级加工再转卖,则每吨可获得的利润为1000元;若经过A级加工再转卖,则每吨可获得的利润为2000元.已知该纺织厂对棉花进行B级加工,每天可加工16吨;进行A级加工,每天可加工6吨,且这两种等级的加工不能同时进行.若该纺织厂收购了140吨这种特色棉花,决定15天内加工完,且有如下三种可行方案:方案一:将所收购的特色棉花直接转卖.方案二:将尽可能多的特色棉花进行A级加工,余下的部分直接转卖.方案三:一部分进行A级加工,另一部分进行B级加工,恰好15天完成.若你是该纺织厂负责人,想要获利最多,你决定使用哪套方案?请说明理由.22.一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇,甲、乙两城市间的铁路长多少千米?23.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点.例如,如图1,点A表示的数为-1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:(1)如图2,M,N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.①在点M和点N中间,数_______所表示的点是(M,N)的好点:②在数轴上,数________和数_________所表示的点都是(N,M)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止,当t为何值时,P,A和B中恰有一个点为其余两点的好点?24.某电影院某日某场电影的票价是:成人票30元,学生票15元,满40人可以购买团体票(不足40人可按40人计算,票价打9折).某班在4位老师带领下去电影院看电影,学生人数为x人.(1)若学生人数为31人,该班买票至少应付多少元?(2)若学生人数为32人,该班买票至少应付多少元?(3)请用含x的代数式表示该班买票至少应付多少元.25.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.26.一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?27.如图,已知A、B、C是数轴上的三点,点C表示的数为6,BC=4,AB=14,动点P、Q分别从A、C同时出发,点P以每秒3个单位的速度沿数轴向右匀速运动,点Q以每秒1个单位的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ=3CN.设运动的时间为t(t>0)秒.(1)写出点A表示的数,点B表示的数;(2)求MN的长(用含t的式子表示);(3)t为何值时,原点O恰为线段PQ的中点.参考答案1.C2.A3.B4.C5.D6.C7.B8.C9.D10.C11.211a.12.1513.2014.615.(x﹣6)+(x﹣3)+x+(x+3)+(x+6)=60.16.45.17.-32218.-319.x=-2320.(1)x=1;(2)x=5621.选方案二.理由见解析22.500.23.①2,②0或-8;(2)10秒、15秒或20秒24.(1)585;(2)594;(3)若0<x≤31时,该班买票至少应付(120+15x)元;若32≤x≤36时,该班买票至少应付594元;若x>36时,该班买票至少应付(108+13.5x)元.25.(1)8;(2)答案见解析:(3)200000立方厘米26.1627.(1)A:-12,B:2;(2) 18−116t;。
七年级数学测试题 (前三章)(含答案)
七年级数学测试题 (前三章)(含答案)一.选一选(本大题共12小题;每小题3分;共36分) 1.12-的绝对值是( ). A.12 B.12- C.2 D. -22.下列计算错误的是( )A.4÷(-错误!)=4×(-2)=-8B.(-2)×(-3)=2×3=6C.-(-32)=-(-9)=9D.-3-5=-3+(+5)=23.下列运算正确的是( )A.-(a -1)=-a -1 B .-2(a -1)=-2a +1C.a 3-a 2=a D .-5x 2+3x 2=-2x 24.下列判断正确的是( )A.3a 2bc 与bca 2不是同类项B.错误!和错误!都是单项式C.单项式-x 3y 2的次数是3;系数是-1D.3x 2-y +2xy 2是三次三项式5.已知p 与q 互为相反数;且p ≠0;那么下列关系式正确的是( ).A..1p q =B.1q p =C.0p q +=D.0p q -=6.方程5-3x=8的解是( )A.x=1 B.x=-1 C.x=133 D.x= -1337下列变形中; 不正确的是( ).A.a +(b +c -d)=a +b +c -dB.a -(b -c +d)=a -b +c -dC.a -b -(c -d)=a -b -c -dD.a +b -(-c -d)=a +b +c +d8.如果单项式错误!x a +b y 3与5x 2y b 的和仍是单项式;则|a -b |的值为( )A.4B.3C.2D.19.有理数a ;b 在数轴上的位置如图所示;则下列各式正确的是( )A.a +b >0B.|a |<|b |C.错误!<0D.|a -b |=a -b10.下列图案是用长度相同的火柴按一定规律拼搭而成;图案①需8根火柴;图案②需15根火柴;…;按此规律;图案○;n)需几根火柴棒( )A.2+7nB.8+7nC.4+7nD.7n +111.下列等式变形:①若a b =;则a b x x =;②若a b x x =;则a b =;③若47a b =;则74a b =;④若74a b =;则47a b =.其中一定正确的个数是( ).A.1个B.2个C.3个D.4个12.已知a 、b 互为相反数;c 、d 互为倒数;x 等于-4的2次方;则式子1()2cd a b x x ---的值为( ).A.2B.4C.-8D.8二.填一填(本大题共4小题; 每小题3分; 共12分)13.若m ;n 互为相反数;则3(m -n )-错误!(2m -10n )的值为___.14.定义一种新运算:a *b =b 2-ab ;如:1*2=22-1×2=2;则(-1*2)*3=____.15.若m 2+2mn =4;n 2+2mn =6;则m 2-n 2=____;m 2+4mn +n 2=____.16.小方利用计算机设计了一个计算程序;输入和输出的数据如下表:则当输入数据为8时;输出的数据为 .三.解一解(本大题共8小题;共52分)17.(6分)计算(1)13(1)(48)64-+⨯- (2)4)2(2)1(310÷-+⨯- 解: 解:18.(8分)解方程(1)37322x x +=- (2)111326x x -=-解: 解:19.(4分)有理数a ;b ;c 在数轴上的位置如图所示;且|a |=|c |.(1)若|a +c |+|b |=2;求b 的值;(2)用“>”从大到小把a ;b ;-b ;c 连接起来.20.(7分)已知A =2a 2-a ;B =-5a +1.(1)化简:3A -2B +2; (2)当a =-错误!时;求3A -2B +2的值.21.(本题10分)关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(6分)(2)求这两个方程的解.(4分)解:22.(10分)如图;一个长方形运动场被分隔成A;B;A;B;C共5个区;A区是边长为a m的正方形;C区是边长为c m的正方形.(1)列式表示每个B区长方形场地的周长;并将式子化简;(2)列式表示整个长方形运动场的周长;并将式子化简;23.(7分)统计数据显示;在我国的664座城市中;按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中;暂不缺水城市数比严重缺水城市数的3倍多52座;一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?解:参考答案一、选一选1.A2.C3.D4.B5.C6.B7.C8.A9.A 10.B 11.B 12.D二、填一填13.-1等 14. 350 15.200 16. 865三、解一解17.(1)解: 13(1)(48)64-+⨯-= -48+8-36=-76(2)解: 4)2(2)1(310÷-+⨯-=1×2 +(-8)÷4=2-2=018.(1)解:37322x x +=-3x+2x=32-75x=25x=5(2) 解:111326x x -=-113126x x -+=- 13x -=2x=-619. 解: (1)7-(-10)=17(2) (-1+3-2+4+7-5-10 )+100×7=69620.解:(1)因为|a|=|c|;且a ;c 分别在原点的两旁;所以a ;c 互为相反数;即a +c =0.因为|a +c|+|b|=2;所以|b|=2;所以b =±2;因为b 在原点左侧;所以b =-2 (2)a >-b >b >c21.解:(1)3A -2B +2=3(2a 2-a )-2(-5a +1)+2=6a 2+7a (2)当a =-错误!时;3A -2B +2=6×(-错误!)2+7×(-错误!)=错误!-错误!=-222.(1)设一个月内本地通话t 分钟时;两种通讯方式的费用相同.依题意有:50+0.4t=0.6t解得t=250(2)若某人预计一个月内使用本地通话费180元;则使用全球通有:50+0.4t=180 ∴1t =325若某人预计一个月内使用本地通话费180元;则使用神州行有:0.6t=180 ∴2t =300∴使用全球通的通讯方式较合算.23.解:(1) 由234x m x -=-+得:x=112m + 依题意有:112m ++2-m=0解得:m=6(2)由m=6;解得方程234x m x -=-+的解为x=4解得方程2m x -=的解为x=-424. 解:(1)2[(a +c )+(a -c )]=2(a +c +a -c )=4a (m )(2)2[(a +a +c )+(a +a -c )]=2(a +a +c +a +a -c )=8a (m )(3)当a =40;c =10时;长=2a +c =90(m );宽=2a -c =70(m );所以面积=90×70=6300(m 2)。
人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)
人教版七年级数学上册第三章《一元一次方程》单元练习题(含答案)一、单选题1.若使方程(2)1m x +=是关于x 的一元一次方程,则m 的值是( ) A .2m ≠-B .0m ≠C .2m ≠D .2m >-2.已知下列方程:①22x x -=;②0.31x =;③512xx =+;④243x x -=;⑤6x =;⑥20.x y +=其中一元一次方程的个数是( ) A .2B .3C .4D .53.一个长方形的周长为28cm ,若把它的长减少1cm ,宽增加3cm ,就变成一个正方形,则这个长方形的面积是( ) A .482cmB .452cmC .402cmD .332cm4.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的25,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1916元,求其他两个年级的捐款数若设七年级捐款数为x 元,则可列方程为( )A .65191652x x x ++=B .21191653x x x ++=C .2191635x x x ++= D .25191652x x x ++= 5.若关于x 的方程()5221x m x -=-+的解是2x =-,则m 的值为( ) A .-3 B .-5C .-13D .56.小明解方程12123x x +--=的步骤如下: 解:方程两边同乘6,得()()31122x x +-=-① 去括号,得33122x x +-=-② 移项,得32231x x -=--+③ 合并同类项,得4x =-④以上解题步骤中,开始出错的一步是( ) A .①B .②C .③D .④7.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .28.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车:若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,可列方程( ) A .2932x x+=- B .9232x x -+=C .9232x x +-=D .2932x x-=+ 9.甲在乙后12千米处,甲的速度为7千米/小时,乙的速度为5千米/小时,现两人同向同时出发,那么甲从出发到刚好追上乙所需要时间是( ) A .5小时B .1小时C .6小时D .2.4小时10.下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=-11.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( ) A .60100100x x =-B .60100100x x =+C .10010060x x =+ D .10010060x x =- 12.在做科学实验时,老师将第一个量筒中的水全部倒入第二个量筒中,如图所示,根据图中给出的信息,得到的正确方程是( ).A .π×(92)2×x =π×(52)2×(x+4)B .π×92×x =π×92×(x+4)C .π×(92)2×x =π×(52)2×(x-4)D .π×92×x =π×92×(x-4)二、填空题(共0分)13.有一个一元一次方程:11623x x -=-■,其中“■”表示一个被污染的常数.答案注明方程的解是32x =-,于是这个被污染的常数是______.14.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算4671⨯,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果记入相应的方格中,最后沿斜线方向相加,得3266.如图2,用“格子乘法”计算两个两位数相乘,则k =______.15.数轴上的三个点,若其中一个点与其它两个点的距离满足2倍关系,则称该点是其它两个点的“友好点”,这三点满足“友好关系”.已知点A 、B 表示的数分别为﹣2、1,点C 为数轴上一动点.(1)当点C 在线段AB 上,点A 是B 、C 两点的“友好点”时,点C 表示的数为_______; (2)若点C 从点B 出发,沿BA 方向运动到点M ,在运动过程中有4个时刻使A 、B 、C 三点满足“友好关系”,设点M 表示的数为m ,则m 的范围是_______.16.关于x 的一元一次方程230x kx --=的解是正整数,整数k 的值是____________. 17.一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人. 18.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk的解总是x =2,则ab =_________.三、解答题19.解方程 (1)324x -= (2)2141168x x --=+20.已知关于x 的一元一次方程320192019xx m +=+的解为2x =,那么关于y 的一元一次方程12019(1)32019yy m -+-=-的解y =______.21.以下是圆圆解方程1323+--x x =1的解答过程. 解:去分母,得3(x +1)﹣2(x ﹣3)=1. 去括号,得3x +1﹣2x +3=1. 移项,合并同类项,得x =﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.22.根据市场调查,某厂某种消毒液的大瓶装(500g) 和小瓶装(250g) 两种产品的销售数量(按瓶计算)比为2:5.该厂每天生产这种消毒液22.5吨,这些消毒液应分装大、小瓶两种产品各多少瓶?23.为积极响应“创建文明城”的号召,某校七年级学生组建了一支“创建文明城”志愿者服务队.其中30%的同学去做“文明劝导、礼让他人”的志愿服务,40%的同学去做“清洁庭院、美化家园”的志愿服务,剩下的150名同学去做“传播文明、奉献爱心”的志愿服务.该校七年级共有多少名同学参加了这次活动?24.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.新冠疫情肆虐春城期间,全市有大批志愿者不畏艰险加入到抗疫队伍中来.“大白”们的出现,给封控小区居民带来了信心,为他们的生活提供了保障.已知某社区在甲小区原有志愿者23名,在乙小区原有志愿者17名.现有来自延边州支援该社区的志愿者20名,分别去往甲小区和乙小区支援,结果在甲小区的志愿者人数比乙小区志愿者人数的三分之二还多5名,求延边州志愿者去往甲小区的人数.26.接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每人每小时生产疫苗500剂,但受某些因素影响,某车间有10名工人不能按时到厂.为了应对疫情,该车间其余工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天能完成预定任务.(1)求该车间当前参加生产的工人有多少人;(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该车间共780万剂的生产任务,问该车间还需要多少天才能完成任务.27.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n秒,得到点P',称这样的操作为点P的“m速移”点P'称为点P的“m速移”点.(1)点A 、B 在数轴上对应的数分别是a 、b ,且()25150a b ++-=. ①若点A 向右平移n 秒的“5速移”点A '与点B 重合,求n ;②若点A 向右平移n 秒的“2速移”点A '与点B 向右平移n 秒的“1速移”点B '重合,求n ; (2)数轴上点M 表示的数为1,点C 向右平移3秒的“2速移”点为点C ',如果C 、M 、C '三点中有一点是另外两点连线的中点,求点C 表示的数;(3)数轴上E ,F 两点间的距高为3,且点E 在点F 的左侧,点E 向右平移2秒的“x 速移”点为点E ',点F 向右平移2秒的“y 速移”点为点F ',如果3E F EF ''=,请直接用等式表示x ,y 的数量关系。
北师版七年级数学上册第三章综合测试卷含答案
北师版七年级数学上册第三章综合测试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列各式中,是单项式的是( )A . x 2-1B . a 2bC .πa +b D . x -y 32.下列各式书写规范的是( )A .112aB . x -y 2C . x ÷(x -y )D . a -b m3.对于多项式2x 2-3x -5,下列说法错误的是( )A .它是二次三项式B .最高次项的系数是2C .2x 2和-3x 是同类项D .各项分别是2x 2,-3x ,-54.[教材P89习题T1变式 2024 泰州姜堰区月考]下列计算正确的是( )A .3ab +2ab =5abB .5y 2-2y 2=3C .7a +a =7a 2D . m 2n -2mn 2=-mn 25.下列各式中,去括号不正确的是( )A . x +2(y -1)=x +2y -2B . x +2(y +1)=x +2y +2C . x -2(y +1)=x -2y -2D . x -2(y -1)=x -2y -26.已知a -b =1,则式子-3a +3b -11的值是( )A .-14B .1C .-8D .57. x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .28.[教材P 106复习题T 12变式]某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的结果为xy -2yz +3xz ,则正确的结果是( )A .2xy -5yz +xzB .3xy -8yz -xzC . yz +5xzD .3xy -8yz +xz9.[2024石家庄裕华区期末]将四张边长各不相同的正方形纸片①,②,③,④按如图方式放入长方形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示,若要求出两个阴影部分周长的差,只要知道下列哪个图形的边长( )(第9题)A .①B .②C .③D .④10.[新视角 规律探究题 2023 重庆]用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……按此规律排列下去,则第⑧个图案用的木棍根数是()(第10题)A.39 B.44 C.49 D.54二、填空题(每题3分,共24分)11.单项式-π3a3b2的系数是,次数是.12.[新视角结论开放题]对代数式“5x+2y”,请你结合生活实际,给出“5x+2y”一个合理解释:.13.[教材P78随堂练习T2变式]一个三位数,百位数字是3,十位数字和个位数字组成的两位数是b,用式子表示这个三位数是.14.如果单项式3x m y与-5x3y n是同类项,那么m-n=.15.若多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m等于.16.[2024太原五中月考]运动展风采,筑梦向未来.为迎接体育节的到来,学校计划将原来的长方形跳远沙坑扩大,使其长、宽分别增加0.5米.若原跳远沙坑的宽为a米,长是宽的3倍,则扩大后沙坑的周长为米.17.已知a-2b=3,2b-c=-5,c-d=10,则(a-c)+(2b-d)-(2b-c)的值为.18.[新视角规律探究题2024济宁兖州区期末]找出以下图形变化的规律,则第2 024个图形中黑色正方形的个数是.三、解答题(19,21,23题每题10分,其余每题12分,共66分)19.(1)化简:9m2-4(2m2-3mn+n2)+4n2;(2)先化简多项式,再求值:5ab-2[3ab-(4ab2+12ab)]-5ab2,其中a=-1,b=12.20.某木工师傅制作如图所示的一个工件(阴影部分).(1)用含a,b的式子表示工件的面积;(2)当a=8厘米,b=12厘米时,工件的面积是多少?(结果用含π的式子表示)21.[教材P106复习题T12变式]某同学做一道题:已知两个多项式A,B,求A-2B的值.他误将“A-2B”看成“A+2B”,经过正确计算得到的结果是x2+14x-6.已知A=-2x2+5x-1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A-2B的值.22.[2024深圳坪山区月考]已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)求值:a+b=;(2)分别判断以下式子的符号(填“>”“<”或“=”):b+c0;a-c0;ac0;(3)化简:-|2c|+|-b|+|c-a|+|b-c|.23.[情境题方案策略型]近期,某生态园喜获丰收,猕猴桃总产量为32 000千克.为了更好地销售,生态园决定将这批猕猴桃分为三部分,分别采取三种不同的销售方案出售完这批猕猴桃.方案一:将其中的16 000千克猕猴桃直接运往市区销售.若运往市区销售,每千克售价为x元,平均每天售出800千克,需要请6名工人,每人每天付工资600元.农用车运费及其他各项税费平均每天400元.方案二:将其中10 000千克猕猴桃交给某直播团队直播带货,猕猴桃每千克的售价比方案一中每千克售价x元的1.2倍再降8元,并用销售额的10%作为整个直播团队的费用和其他各项支出费用.方案三:将剩下的猕猴桃由市民亲自到生态园采摘,采摘购买的猕猴桃每千克售价比方案一中的售价少2元.(1)若采用方案一,将16 000千克猕猴桃全部运往市区销售,需要天;(2)请用含x的式子表示生态园出售完这批猕猴桃的总收入;(3)当x=20时,请计算出售完这批猕猴桃的总收入.24.[新考法材料阅读题2024广州越秀区期中]【阅读理解】请你阅读下列内容回答问题:商品条形码在生活中随处可见,它是商品的身份证.条形码是由13位数字组成的,前12位数字表示“国家代码、厂商代码和产品代码”相关信息,第13位数字为“校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性,它的编制是按照特定算法得来的,具体算法如下(以图①为例):步骤1:计算前12位数字中偶数位数字的和p,即p=9+5+4+2+4+2=26;步骤2:计算前12位数字中奇数位数字的和q,即q=6+0+3+9+1+6=25;步骤3:计算3p与q的和m,即m=3×26+25=103;步骤4:取大于或等于m且为10的整数倍的最小数n,即n=110;步骤5:计算n与m的差就是校验码X,即X=110-103=7.【知识运用】请回答下列问题:(1)若某数学辅导资料的条形码为582917455013Y,则校验码Y的值是;(2)如图②,某条形码中的一位数字被墨水污染了,请求出这个数字是多少;(3)如图③,某条形码中被污染的两个数字的和为13,请直接写出该商品完整的条形码.参考答案一、1. B 2. B 3. C 4. A 5. D 6. A 7. A 8. B 9. C10. B二、11.-π3;5 12.每张成人票x 元,每张儿童票y 元,5个成人和2个儿童买票共需花费(5x +2y )元(答案不唯一)13. 300+b 14.2 15.416.(8a +2) 17.818.3 036 点拨:观察前几个图形可知,第1个图形中黑色正方形的个数是2,第2个图形中黑色正方形的个数是3,第3个图形中黑色正方形的个数是5,第4个图形中黑色正方形的个数是6,第5个图形中黑色正方形的个数是8……进而得出规律:当n 为偶数时,第n 个图形中黑色正方形的个数是(n 2+n);当n 为奇数时,第n 个图形中黑色正方形的个数是(n+12+n). 所以第 2 024 个图形中黑色正方形的个数是2 0242+2 024=3 036.三、19.解:(1)原式=9m 2-8m 2+12mn -4n 2+4n 2=m 2+12mn .(2)原式=5ab -2(3ab -4ab 2-12ab)-5ab 2=5ab -6ab +8ab 2+ab -5ab 2=3ab 2. 当a =-1,b =12时,原式=3×(-1)×(12)2 =-34. 20.解:(1)ab -πa 24.(2)当a =8厘米,b =12厘米时,ab -πa 24=8×12-π×824=(96-16π)(平方厘米).所以工件的面积是(96-16π)平方厘米.21.解:(1)由题意,得2B =x 2+14x -6-(-2x 2+5x -1)=3x 2+9x -5,所以A -2B =-2x 2+5x -1-(3x 2+9x -5)=-5x 2-4x +4.(2)因为x 是最大的负整数,所以x =-1.所以A -2B =-5×(-1)2-4×(-1)+4 =3.22.解:(1)0(2)<;>;<(3)-|2c|+|-b|+|c-a|+|b-c|=-(-2c)-b+a-c+b-c=2c-b +a-c+b-c=a.23.解:(1)20(2)方案一的收入为16 000x-20×6×600-20×400=(16 000x-80 000)(元),方案二的收入为10 000×(1.2x-8)×(1-10%)=(10 800x-72 000)(元),方案三的收入为(32 000-16 000-10 000)×(x-2)=(6 000x-12 000)(元),则总收入为16 000x-80 000+10 800x-72 000+6 000x-12 000=(32 800x-164 000)(元).所以生态园出售完这批猕猴桃的总收入为(32 800x-164 000)元.(3)32 800×20-164 000=492 000(元).所以出售完这批猕猴桃的总收入为492 000元.24.解:(1)6(2)设这个数字是a,步骤1:p=7+0+2+a+1+6=16+a;步骤2:q=9+1+4+7+3+2=26;步骤3:m=3p+q=3(16+a)+26=3a+74;步骤4:n≥3a+74且为10的整数倍的最小数;步骤5:n-m=n-3a-74=2.所以n=3a+76.因为a(0≤a≤9)为自然数,所以只有当a=8时,n=100为10的整数倍.所以这个数字是8.(3)该商品完整的条形码为3624183293157或3629183243157.点拨:设被污染的两个数字中的前一个数字为b,则被污染的两个数字中的后一个数字为13-b;步骤1:p=6+b+8+2+3+5=b+24;步骤2:q=3+2+1+3+(13-b)+1=23-b;步骤3:m=3p+q=3(b+24)+23-b=2b+95;步骤4:n≥2b+95且为10的整数倍的最小数;步骤5:n-m=n-2b-95=7.所以n=2b+102.因为b(0≤b≤9)为自然数,所以当b=4时,n=110为10的整数倍,此时13-b=9;当b=9时,n=120为10的整数倍,此时13-b=4.综上,该商品完整的条形码为3624183293157或3629183243157.。
北师大版数学七年级上册第三章《整式及其加减》综合检测卷(含答案)
北师大版数学七年级上册第三章《整式及其加减》综合检测卷 班级 座号 姓名 成绩一、选择题(本大题8小题,每小题3分,共24分.)在每小题列出的四个选项中,只有一个是正确的.1.下列代数式 a ,-2ab ,x +y ,x 2+y 2,-1,2312ab c 中,单项式共有( ) A .6个 B .5 个 C .4 个 D .3个2.下列各式,符合代数式书写格式的是( )A .(a +b )÷cB .a -b cmC .113x D .43x 3.现有四种说法:①-a 表示负数;②若|x |=-x ,则x <0;③绝对值最小的有理数是0;④3×102x 2y 是5次单项式.其中正确的是( )A .①B .②C .③D .④4.计算-a 2+3a 2的结果为( )A .2a 2B .-2a 2C .4a 2D .-4a 25.下列各式中,去括号正确的是( )A .x 2-(2y -x +z )=x 2-2y -x +zB .2a +(-6x +4y -2)=2a -6x +4y -2C .3a -[6a -(4a -1)]=3a -6a -4a +1D .-(2x 2-y )+(z -1)=-2x 2-y -z -16.若-x 3y m 与x n y 是同类项,则m +n 的值为( )A .1B .2C .3D .47.如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如如4如如如如如如4如如如如如如如如如如如如如如如如如如如如如如如如如如 如A .17段B .32段C .33段D .34段8.已知有理数a ,b ,c 在数轴上所对应点的位置如图所示,化简代数式a a b c a b c +++---的结果是( )A .-3aB .2c -aC .2a -2bD .b 二、填空题(本大题7小题,每小题4分,共28分.)请将下列各题的正确答案填在该题的横线上. 第8题图 第7题图9.单项式225xy -的系数是 ,次数是 . 10.买单价a 元/支的体温计n 支,付费b 元,则应找回的钱数是 .11.若x +y =4,a ,b 互为倒数,则12(x +y )+5ab 的值是 . 12.若A +(a +b 2-c )=a +c ,则A 为 .13.若合并多项式3x 2-2x +m -x -mx +1中的同类项后,得到的多项式中不含x 的一次项,则m 的值为________.14.对于有理数a ,b ,定义a *b =3a +2b ,化简:(x+y )*(x -y )= .15.一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为________.三、解答题(本大题4小题,16、17题每小题10分,18、19题每小题14分,共48分.)解答过程应写出文字说明、推理过程及演算步骤.16.先化简,再求值:(6a 2-6ab -12b 2)-3(2a 2-4b 2),其中a =-12,b =-8.17.已知A =x -2y ,B =-x -4y +1.(1)求2(A +B )-(2A -B )的值(结果用含x ,y 的代数式表示);(2)当12x +与y 2互为相反数时,求(1)中代数式的值.18.如图,一个点从数轴上的原点开始,先向左移动 2 cm 到达A 点,再向左移动3 cm 到达B 点,然后向右移动9 cm 到达C 点.(1)用1个单位长度表示1 cm ,请你在数轴上表示出A ,B ,C 三点的位置;(2)把点C 到点A 的距离记作CA ,则CA = cm ;(3)若点B以每秒2 cm的速度向左移动,同时A,C点分别以每秒1 cm,4 cm的速度向右移动,设移动时间为t秒,试探索CA-AB的值是否会随着t的变化而改变.请说明理由.19.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.参考答案一、选择题:1.C 2.D 3.C 4.A 5.B 6.D 7.A 8.A二、填空题:9.25-,3 10.(b -na )元 11.7 12.2c -b 2 13.-3 14.5x +y 15.-13x 8三、解答题:16.原式=6a 2-6ab -12b 2-6a 2+12b 2=-6ab ,当a =-12,b =-8时,原式=-6×1()2-×(-8)=-24 17.(1)原式=2A +2B -2A +B =3B =3(-x -4y +1)=-3x -12y +3;(2)∵12x +与y 2互为相反数, ∴12x ++y 2=0, ∴x +12=0,y 2=0, ∴x =-12,y =0, ∴2(A +B )-(2A -B )=-3×1()2--12×0+3=92 18.(1)图略;(2)CA =4-(-2)=4+2=6(cm);(3)不变.理由: 当移动t 秒时,点A ,B ,C 分别表示的数为-2+t ,-5-2t ,4+4t , 则CA =(4+4t )-(-2+t )=6+3t ,AB =(-2+t )-(-5-2t )=3+3t ,∵CA -AB =(6+3t )-(3+3t )=3, ∴CA -AB 的值不会随着t 的变化而改变 19.(1)平行四边形框内的九个数之和是中间的数的9倍;(2)规律仍然成立.设框中间的数为n ,这九个数按大小顺序依次为:(n -18),(n -16),(n -14),(n -2),n ,(n +2),(n+14),(n +16),(n +18),和为9n ;(3)这九个数之和不能为1998.若和为1998,则9n =1998,n =222,是偶数,则不在数阵中.这九个数之和也不能为2005,因为2005不能被9整除;若和为1017,则中间数可能为113,最小的数为113-16-2=95.。
人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(含答案解析)(1)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±82.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数3.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣74.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 7.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣48.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上9.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 310.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍11.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n14.如图,阴影部分的面积用整式表示为_________.15.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.16.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____. 19.已知5a b -=,3c d +=,则()()b c a d +--的值等于______. 20.“a 的3倍与b 的34的和”用代数式表示为______. 三、解答题21.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值. 22.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.23.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完. ①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 24.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c . (1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗? 25.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)26.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求: (1)展板的面积是 .(用含a ,b 的代数式表示) (2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.C解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.A解析:A 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.4.A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.5.D解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.7.A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.C解析:C 【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案. 【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B , ∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误; B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误; C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误; D 、系数相加字母及指数不变,故D 正确; 故选:D . 【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.10.B解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.11.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a元.故选A.【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.12.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.14.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.15.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2+-234m m【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.16.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.17.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n-解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子,然后代入求值即可.【详解】()()()()532+--=+-+=-++=-+=-.b c a d b c a d b a c d故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键.20.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列 解析:334a b 【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写. 三、解答题21.见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.22.-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m=3226m m .当m =2时,原式= 322226 =14-.【点睛】 本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.23.(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 24.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.25.乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.。
北师大版七年级数学上册第三章测试题(含答案)精选全文完整版
可编辑修改精选全文完整版北师大版七年级数学上册第三章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -1;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分) 7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 . 11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1,当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a 3b n +2+ab 3+6是一个六次多项式,单项式x 3n y 7-m 的次数与该多项式相同,求m ,n 的值.解:因为a 3b n +2+ab 3+6是一个六次多项式, 所以3+n +2=6, 解得n =1,所以3n +7-m =6, 即3+7-m =6, 所以m =4,即m ,n 的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2合并同类项后不含x 3,x 2项,求2a +3b 的值.解:原式=x 4+(ax 3+5x 3)+(3x 2-7x 2-bx 2)+6x -2 =x 4+(a +5)x 3+(-4-b)x 2+6x -2. 由题意,得a +5=0,-4-b =0, 解得a =-5,b =-4,所以2a +3b =2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆. (1)求花坛的周长l ; (2)求花坛的面积S ;(3)若a =8 m ,r =5 m ,求此时花坛的周长及面积(π取3.14).解:(1)l =2πr +2a. (2)S =πr 2+2ar.(3)当a =8 m ,r =5 m 时,l =2π×5+2×8=10π+16≈47.4 m ,S =π×52+2×8×5=25π+80≈158.5 m 2.20.已知A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,当a =1,b =2时,求A -2B +3C 的值.解:∵A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,∴A -2B +3C =(5a +3b)-2(3a 2-2a 2b)+3(a 2+7a 2b -2)=5a+3b-6a2+4a2b+3a2+21a2b-6=-3a2+25a2b+5a+3b-6.当a=1,b=2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分) 23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________. (2)其中某一行最后一个数字可能是2 017吗?若不可能,请说明理由;若可能,请求出是第几行?解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3.所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 017,因为由3n -2=2 017, 解得n =2 0193=673,∴最后一个数字可能是2 017,是第673行.。
人教版七年级数学上册第三章测试卷(附答案解析)
人教版七年级数学上册第三章测试卷第三章 一元一次方程一、选择题(每小题3分,共30分)分) 1.下列方程是一元一次方程的是(下列方程是一元一次方程的是( )A.x -2=3 B.1+5=6 C.x 2+x =1 D.x -3y =0 2.方程2x +3=7的解是(的解是( )A.x =5 B.x =4 C.x =3.5 D.x =2 3.下列等式变形正确的是(下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d4.把方程3x +2x -13=3-x +12去分母正确的是(去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1)B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)5.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是(是一元一次方程,则这个方程的解是( )A.-5 B.-3 C.-1 D.5 6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×2×106 106 C.518-x =2(106+x )D.518+x =2(106-x )7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是(,请问这个被污染的常数是( )A.1 B.2 C.3 D.4 8.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为(现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是(后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,灰相间的长方形纸片,灰相间的长方形纸片,如图②所示如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为(,则图①纸片的面积为( )A.2314B.3638C.42 D.44 二、填空题(每小题3分,共24分)分)11.方程3x -3=0的解是的解是 . 12.若-x n +1与2x 2n -1是同类项,则n = . 13.已知多项式9a +20与4a -10的差等于5,则a 的值为的值为 . 14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×2×11+3×3×55=13,则方程x ⊕4=0的解为的解为 . 16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有那么该班有 名学生. 17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是元,那么这款大衣每件的标价是 元. 18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是倍,则它的体积是 cm 3. 三、解答题(共66分)分)19.(15分)解下列方程:分)解下列方程:(1)4x -3(12-x )=6x -2(8-x );(2)2x -13-2x -34=1;(3)12x +2èæøö54x +1=8+x . 20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值. 21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?甲、乙两种票各买了多少张?22.(10分)分)如图是一根可伸缩的鱼竿,如图是一根可伸缩的鱼竿,如图是一根可伸缩的鱼竿,鱼竿是用鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm. (1)请直接写出第5节套管的长度;节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求x 的值. 套以上 购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元从大到小依次是 ,,;从大到小依次是11.x =1 12.2 13.-5 14.72 15.x =6 16.30 17.1500 18.1000 19.解:(1)x =-20.(5分)(2)x =72.(10分) (3)x =3.(15分) 20.解:由题意,得3+a 2+ëéûù-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分) 答:甲种票买了20张,乙种票买了15张.(9分) 22.解:(1)第5节套管的长度为50-4×4×(5(5-1)=34(cm).(2分) (2)第10节套管的长度为50-4×4×(10(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分) 答:每相邻两节套管间重叠的长度为1cm.(10分) 23.解:(1)由题意,得5020-92×92×4040=1340(元).(4分) 答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分) (2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分) 答:甲班有50名同学,乙班有42名同学.(12分) 24.解:(1)x +8 x +7 x +1(3分) (2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分) (3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分) 。
人教版数学七年级上册 第3章同步测试题含答案
人教版数学七年级上册第3章同步测试题含答案3.1从算式到方程一.选择题1.下列方程中是一元一次方程的是()A.x+3=0B.x2﹣3x=2C.x+2y=7D.2.下列变形中正确的是()A.若x+3=5﹣3x,则x+3x=5+3B.若x=y,则C.若a=b,则a+c=b﹣cD.若m=n,则am=an3.下列变形中,正确的是()A.由﹣x+2=0 变形得x=﹣2B.由﹣2(x+2)=3 变形得﹣2x﹣4=3C.由x=3变形得x=D.由﹣+1=0变形得﹣(2x﹣1)+1=04.若x=﹣1是关于x的方程3x+6=t的解,则t的值为()A.3B.﹣3C.9D.﹣95.如果方程3x﹣2m=10的解是2,那么m的值是()A.2B.﹣2C.4D.﹣46.若关于x的方程(k﹣2019)x﹣2017=7﹣2019(x+1)的解是整数,则整数k的取值个数是()A.2B.3C.4D.67.有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现两个同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.下列说法中,正确是()A.2.40万精确到百位B.﹣系数是﹣2,次数是3C.多项式﹣2x2y+xy﹣1是五次三项式D.若ax=ay,则x=y9.如图,三个天平的托盘中形状相同的物体质量相等.图(1)、(2)所示的两个天天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()A.3个球B.4个球C.5个球D.7个球10.在方程①3x+y=4,②2x﹣=5,③3y+2=2﹣y,④2x2﹣5x+6=2(x2+3x)中,是一元一次方程的个数为()A.1个B.2个C.3个D.4个二.填空题11.已知方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,则m的值为.12.如果关于x的一元一次方程ax+2=0的解是,那么a=.13.已知a、b互为倒数,x、y互为相反数,m是方程﹣3(y+1)=9的解的绝对值.则2ab+3x+3y﹣m=.14.若关于x的方程,无论k为何值,它的解总是x=1,则代数式2a+b=.15.下列说法:①若m=n,则am=an;②若m=n,则;③若mx+5=nx+5,则m=n;④若m+n=1,则关于x的方程mx+n=1的解为x=1;⑤若m+n+s =1,则x=1是关于x的方程mx+n+s=1的解;⑥若mn=6,则关于x的方程mx+m=6的解为x=n﹣1.其中错误的是.求m的值;(2)求这两个方程的解.18.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.19.【定义】若关于x的一元一次方程ax=b的解满足x=b+a,则称该方程为“友好方程”,例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.【运用】(1)①﹣2x=,②x=﹣1两个方程中为“友好方程”的是(填写序号);(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=mn+n(n≠0)是“友好方程”,且它的解为x=n,则m=,n=.参考答案与试题解析一.选择题1.【解答】解:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式.故选:A.2.【解答】解:A、错误.若x+3=5﹣3x,则x+3x=5﹣3;B、错误.m=﹣1时,不成立;C、错误.一边加,一边减,不成立;D、正确.故选:D.3.【解答】解:A、由﹣x+2=0 变形得x=2,故不符合题意;B、由﹣2(x+2)=3 变形得﹣2x﹣4=3,故符合题意;C、由x=3变形得x=6,故不符合题意;D、由﹣+1=0变形得﹣(2x﹣1)+6=0,故不符合题意.故选:B.4.【解答】解:把x=﹣1代入方程得:﹣3+6=t,解得:t=3,故选:A.5.【解答】解:把x=2代入方程得:6﹣2m=10,解得:m=﹣2,故选:B.6.【解答】解:方程(k﹣2019)x﹣2017=7﹣2019(x+1)整理化简,可得kx=5,即x=,∵该方程的解是整数,k为整数,∴x=1或﹣1或5或﹣5,即=1或﹣1或5或﹣5,解得:k=5或﹣5或1或﹣1,∴整数k的取值个数是4个,故选:C.7.【解答】解:设“”的质量为x,“”的质量为y,“”的质量为:a,假设A正确,则x=2y,此时B选项中是x=1.5y,C、D选项中都是x=2y,故只有选项B一组左右质量不相等,符合题意.故选:B.8.【解答】解:A、2.40万=24000,2.40万精确到百位,原说法正确,故此选项符合题意;B、﹣系数是﹣,次数是3,原说法错误,故此选项不符合题意;C、多项式﹣2x2y+xy﹣1是三次三项式,原说法错误,故此选项不符合题意;D、如果a=0,那么两边都除以a是错误的,原说法错误,故此选项不符合题意;故选:A.9.【解答】解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:,解得:,第三图中左边是:3x+2y+z=7x,因而需在它的右盘中放置7个球.故选:D.10.【解答】解:①3x+y=4中含有2个未知数,属于二元一次方程,不符合题意,②2x﹣=5是分式方程,不符合题意;③3y+2=2﹣y符合一元一次方程的定义,符合题意;④由2x2﹣5x+6=2(x2+3x)得到:﹣11x+6=0符合一元一次方程的定义,符合题意;故选:B.二.填空题(共5小题)11.【解答】解:∵方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,∴m﹣1≠0且|m|=1,解得:m=﹣1,故答案为:﹣1.12.【解答】解:将x=代入+2=0,∴a=﹣4故答案为:﹣413.【解答】解:根据题意得:ab=1,x+y=0,方程﹣3(y+1)=9,去括号得:﹣3y﹣3=9,移项合并得:﹣3y=12,解得:y=﹣4,即m=|﹣4|=4,则原式=2ab+3(x+y)﹣m=2+0﹣4=﹣2,故答案为:﹣214.【解答】解:将x=1代入方程,可得:(4﹣b)k=5﹣2a,由题意可知:4﹣b=0,5﹣2a=0,可得:b=4,a=2.5,把b=4,a=2.5代入2a+b=5+4=9,故答案为:915.【解答】解:①若m=n,等式两边同时乘以a得:am=an,即①正确,②若m=n,a2+2≠0,等式两边同时除以a2+2得:=,即②正确,③若mx+5=nx+5,等式两边同时减去5得:mx=nx,若x=0,则m和n不一定相等,即③错误,④若m=0,n=1,则方程mx+n=1的解为任意实数,即④错误,⑤若m=0,可以是任意解,那x=1也是满足条件的,即⑤正确,⑥若mn=6,则m≠0,n≠0,n=,则方程mx+m=6的解为:x ==﹣1=n﹣1,即⑥正确,故答案为:③④⑤.三.解答题(共4小题)16.【解答】解:根据题意将x=﹣4代入方程ax﹣1=7可得:﹣4a ﹣1=7,解得:a=﹣2.17.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.18.【解答】解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.19.【解答】解:(1)①﹣2x=,解得:x=﹣,而﹣=﹣2+,是“友好方程”;②x=﹣1,解得:x=﹣2,﹣2≠﹣1+,不是“友好方程”;故答案是:①;(2)方程3x=b的解为x=.所以=3+b.解得b=﹣;x=n,3.2用合并同类项解一元一次方程一、选择题1、下列解方程移不符合题意的是()A.由3x﹣2=2x﹣1,得3x+2x=1+2B.由x﹣1=2x+2,得x﹣2x=2﹣1C.由2x﹣1=3x﹣2,得2x﹣3x=1﹣2D.由2x+1=3﹣x,得2x+x=3+12、解方程﹣3x+4=x﹣8,下列移项正确的是()A.﹣3x﹣x=﹣8﹣4 B.﹣3x﹣x=﹣8+4C.﹣3x+x=﹣8﹣4 D.﹣3x+x=﹣8+43、合并同类项-13a+14a+112a得()A.23a B.13a C.16a D.04、在解方程2314-=+xx时,下列移项正确的是()A.2134-=+xxB.1234--=-xxC.1234-=-xxD.1234--=+xx5、下列方程的变形正确的个数有()(1)由3+x=5,得x=5+3;(2)由7x=﹣4,得x=﹣;(3)由y=0得y=2;(4)由3=x﹣2得x=﹣2﹣3.A.1个B.2个C.3个D.4个6、某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是().A.20日B.21日C.22日D.23日7、已知1x=是方程20x x a-+=的解,则2a=()A.1 B.1-C.2 D.2-二、填空题8、合并下列式子,把结果写在横线上.(1)x-2x+4x=_________;(2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.9、4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是_________.10、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是___元.11、当x=________时,3x+4与﹣4x+6互为相反数.12.规定:a@b=2a ﹣b 若:x@5=8,则 x=________. 13.已知m 1=3y+1,m 2=5y+3,当y=________时,m 1=m 2 .14.小华同学在解方程5x ﹣1=( )x+3时,发现“括号”处的数字模糊不清,但察看答案可知解为x=2,则“括号”处的数字为________.15.多项式8x 2﹣3x+5与多项式3x 3+2mx 2﹣5x+7相加后,不含二次项,则常数m 的值是________.16、 如果方程3x +4=0与方程3x +4k =18的解相同,则k = .三、解答题17、解下列方程:(1)4﹣m=﹣m ;(2)56﹣8x=11+x ;(3)x+1=5+x ;(4)﹣5x+6+7x=1+2x ﹣3+8x .18、甲、乙两站相距360 km,一列慢车从甲站出发开往乙站,行驶1 h 后,一列快车从乙站开往甲站,经过2 h 两车相遇.已知慢车每小时行驶的路程与快车每小时行驶的路程之比为2∶3,快车与慢车的速度分别是多少?19、小王在解关于x 的方程2a ﹣2x=15时,误将﹣2x 看作+2x ,得方程的解x=3,求原方程的解.20、先观察,再解答.3029282726252423222120191817161514131211109876543211()2图3-2-2如图3-2-2(1)是生活中常见的月历,你对它了解吗?(1)图3-2-2(2)是另一个月的月历,a 表示该月中某一天,b 、c 、d 是该月中其它3天,b 、c 、d 与a 有什么关系?b=____;c=____;d=____.(用含a 的式子填空).(2)用一个长方形框圈出月历中的三个数字(如图3-2-2 (2)中的阴影),如果这三个数字之和等于51,这三个数字各是多少?(3)这样圈出的三个数字的和可能是64吗?为什么?3.3 解一元一次方程(二)去括号与去分母一、选择题1、方程5174732+-=--x x 去分母得( )。
七年级上前三章数学测试卷含答案
七年级上前三章数学测试卷一、选择题(共10题,每小题4分)1、下列判断正确的是( )A 有理数就是正数和负数B 没有最小的有理数C 任何两个有理数一定可以进行加减乘除运算D 在|-2 |,- |+5|,-(-3),|-4|,- |0|,-(-2)2中,负数共有3个2、将695600保留两个有效数字的近似数是( )A 690000B 700000C 6.9×105 D7.0×105 3、下列各式中,单项式有( )个-3ab+2c ,-m 2,-23X 2Y ,1x, -3,p , -522()a b -,2(32)x y - A 3 B 4 C 5 D 64、下列各式中计算正确的是( )A 222234a b a b a b +=B 2242253x y x y x y -+=C 2223122ab a b a b -= D 220mx mx -+=5、下列方程中,一元一次方程的是( )A 21x =B ax b =(a ,b 是常数)C 0x =D 123x-= 6、数轴上和表示-7的点的距离等于3的点所表示的数是( )A -4B -10C -4或-10D 47、若式子4X 2-2X+5的值是7,则2X 2-X-+1的值等于( )A -2B 2C 3D 48、若方程3713x +=与6322x a +=的解相同,则a 的值是( ) A 3 B 10 C311 D 1039、对方程2152311364y y y -++-=-去分母时,正确的是( ) A 4(2y-1)-2x5y+2=3y+1-12 B 4(21)2(52)3(31)1y y y --+=+-C 4(21)2(52)3(31)12y y y -++=+-D 4(21)2(52)3(31)12y y y --+=+-10、一张试卷有25道选择题,做对一题得4分,做错一题扣1分,不做得0分,某学生做了全部试题,共得60分,设他做对x 题,则方程可列为( )A 4(25)60x x +-=B 4(25)60x x --=C 4(25)60x x -+=D 4(25)60x x --=二、填空题(共6题,每小题4分)11、如果3a =,b 与2互为相反数,则a b +的值为__________12、一个两位数的个位数字与十位数字之和为10,个位数字为x ,那么这个两位数是__________(结果要化为最简)13、当k=__________时,代数式221(33)83x xy kxy y +-++中不含有xy 项14、在有理数范围内定义一个运算“*”,其规则为*2a b a b +=,则方程1*(4*2)2x =的解为__________15、购买一本书,打八折比打九折少花2元,那么这本书的原价是__________元16、()23420111(1)(1)(1)......(1)-+-+-+-+-的值是__________三、解答题(共9题,8+8+8+10+8+10+10+12+12)17、计算: -(-2)2-2〔(- 21)2-3×43〕÷5118、解方程:20.312(1)5x x -=-19、计算:222(51)(421)a ab a ab -+--++20、已知:21(5)0a b -++=,求整式23(2)[15(2)]a a b a b -----的值21、已知有理数a ,b ,c 在数轴上的对应点如图所示,化简: a c c b b a ---+-22、(1)当11,23a b ==时,分别求代数式1222a ab b -+, 2()2a b -的值 (2)当5,3a b ==时,分别求代数式1222a ab b -+, 2()2a b -的值 (3)观察(1)(2)中代数式的值,222a ab b -+与()2a b-有何关系 (4)利用发现的规律求22135.72135.735.735.7-⨯⨯+的值c _0 b a23、小明买了一蓝梨,分给若干个小朋友,如果每个人分3个,则余3个;如果每人分4个,还差2个;那么小明一共买了多少个梨?(2)试求第几个图形中#的个数与*的个数相等25、某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?七年级前三章数学试卷答案一. 选择题.(每题4分,共40分)1.B2.D3.B4.D5.C6.C7.B8.D9.D 10.B二.填空题.(每题4分,共24分)11.5或1 12.100-9X 13.91 14.X=-2 15.20 16. -1三.解答题.17.(8分) 1618.(8分) X=219. (8分) 14a2-4ab+120.(10分) 321.(8分) -2a+2b22. (2分) (1) ①1/36 ②1/36(2分) (2) ①4 ②4(3分) (3) 相等(3分) (4) 1000023.(10分) 18个梨.24.(12分)(1)16,8n, 9, n2(2) 第八个图形25. (12分) (1) A型30盏,B型20盏.(2) 720元.。
人教版七年级上册数学第三章测试卷(附答案)
人教版七年级上册数学第三章测试卷(附答案)人教版七年级上册数学第三章测试卷(附答案)一、单选题(共12题;共36分)1.如果$x=0$是关于$x$的方程$3x-2m=4$的解,则$m$值为()A。
$2$ B。
$-2$ C。
$4$ D。
$-2$2.若$x=-3$是方程$2(x-m)=6$的解,则$m$的值是()A。
$6$ B。
$-6$ C。
$12$ D。
$-2$3.下列方程的变形中正确的是()A.由$x+5=6x-7$得$x-6x=7-5$B.由$-2(x-1)=3$得$-2x-2=3$C.由$2x=-1$得$x=-\frac{1}{2}$D.由$3x+5=12$得$x=2$4.某商品涨价$20\%$后欲恢复原价,则必须下降的百分数约为()A。
$17\%$ B。
$18\%$ C。
$19\%$ D。
$20\%$5.下列等式的变形中,不正确的是()A.若$x=y$,则$x+5=y+5$B.若$(a\neq 0)$,则$\frac{x}{a}=\frac{y}{a}$C.若$-3x=-3y$,则$x=y$D.若$mx=my$,则$x=y$6.解方程,去分母正确的是()A。
$2-(x-1)=1$ B。
$2-3(x-1)=6$ C。
$2-3(x-1)=1$ D。
$3-2(x-1)=6$7.包装厂有$42$名工人,每人平均每天可以生产圆形铁片$120$片或长方形铁片$80$片.为了每天生产的产品刚好制成一个个密封的圆桶,应该分配多少名工人生产圆形铁片,多少名工人生产长方形铁片?设应分配$x$名工人生产长方形铁片,$(42-x)$名工人生产圆形铁片,则下列所列方程正确的是()A。
$120x=2\times 80(42-x)$ B。
$80x=120(42-x)$C。
$2\times 80x=120(42-x)$ D。
$3\times 80x=2\times120(42-x)$8.有一种足球是由$32$块黑白相间的牛皮缝制而成的(如图),黑皮可看作正五边形,白皮可看作正六边形.设白皮有$x$块,则黑皮有$(32-x)$块,要求出黑皮、白皮的块数,列出的方程是()A。
人教版 七年级数学上册 第三章检测题(含答案)
3.1 从算式到方程一、选择题(本大题共12道小题)1. 充若关于x的一元一次方程2x a-2+m=4的解为x=1,则a+m的值为() A.9 B.8 C.5 D.42. 下列方程是一元一次方程的是()(多选)A.1xy=B.225 x+=C.0x=D.13ax+=E.235x+=F.2π 6.28R=3. 下列方程为一元一次方程的是()A.x+2y=3B.y=5C.x2=2xD.+y=24. 下列说法不正确的是()A.等式两边都加上一个数或一个等式,所得结果仍是等式.B.等式两边都乘以一个数,所得结果仍是等式.C.等式两边都除以一个数,所得结果仍是等式.D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.5. 把方程x=1变形为x=2,其方法是()A.等式两边同时乘B.等式两边同时除以C.等式两边同时减D.等式两边同时加6. 若关于x的方程(m-2)-x=3是一元一次方程,则m的值为 ()A.3B.2C.1D.2或17. 如图所示,两个天平都保持平衡,则与两个球体质量相等的正方体的个数为()A.5B.4C.3D.28. 下列方程的变形中,正确的是()A.由2-x=3得x=3-2B.由2x=3x+4得-4=3x-2xC.由3x=2得x=D.由x=0得x=39. 学校把一些图书分给某班学生阅读,若每人分4本,则剩余30本;若每人分5本,则还缺15本.设这个班有学生x人,根据题意可列方程为()A.4x-30=5x+15B.4x+30=5x-15C.4x-30=5x-15D.4x+30=5x+1510. 若2x=-,则8x的值为()A.-4B.-2C.-D.411. [2019·武汉期末]下列说法错误的是()A.若a=b,则ac=bcB.若ac=bc,则a=bC.若=,则a=bD.若a=b,则=12. 已知方程7x-1=6x,则根据等式的性质,下列变形正确的有()①-1=7x+6x;②x-=3x;③7x-6x-1=0;④7x+6x=1.A.1个B.2个C.3个D.4个二、填空题(本大题共6道小题)13. 下列方程中,解是x =5的是________.(填序号)① x +2015=2020;②x +63=3;③x +1=2(8-x );④x 2-x 3=56.14. 根据等式的性质填空.(1)4a b =-,则 a b =+;(2)359x -=,则39x =+ ;(3)683x y =+,则x = ;(4)122x y =+,则x = .15. 在1y =、2y =、3y =中,是方程104y y =-的解.16. 已知关于x 的方程3x-2m=4的解是x=m ,则m 的值是 .17. (1)填写下表:x 0 4 5x -3 7 6+2x12(2)根据上表直接写出方程5x -3=6+2x 的解为________.18. 在等式3a-5=2a+6的两边同时减去一个多项式可以得到等式a=11,那么这个多项式是 .三、解答题(本大题共3道小题)19. 说明下列等式变形的依据: (1)由a=b ,得a+3=b+3; (2)由a-1=b+1,得a=b+4.20. 一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少钱?设衬衫的成本为x 元. (1)填写下表:(用含x 的式子表示)成本(元)标价(元)售价(元)x ________________(2)根据相等关系列出方程.21. 先阅读下面一段文字,然后解答问题.已知:方程x-=2-的解是x=2或x=-;方程x-=3-的解是x=3或x=-;方程x-=4-的解是x=4或x=-;方程x-=5-的解是x=5或x=-.问题:观察上述方程及方程的解,猜想出方程x-=10的解,并进行检验.人教版七年级数学 3.1 从算式到方程课时训练-答案一、选择题(本大题共12道小题)1. 【答案】C[解析] 因为关于x的一元一次方程2x a-2+m=4的解为x=1,所以a-2=1,2+m=4,解得a=3,m=2.所以a+m=3+2=5.故选C.2. 【答案】C和F【解析】对于判定一个方程是不是一元一次方程,如果不是整式方程则不是一元一次方程,若是整式方程,则需要化简后再判断是否满足一元一次方程的概念.3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】D[解析] 由题意得:①|m-2|=1且m-2-1≠0,解得m=1.②m-2=0,解得m=2.综上可得,m=1或m=2.故选D.7. 【答案】A[解析] 由右图可知,两个正方体与两根小棒质量相等,由等式的性质可知一个正方体与一根小棒质量相等,由于两个球体与五根小棒质量相等,所以两个球体的质量与五个正方体的质量相等.8. 【答案】B9. 【答案】B[解析] 图书的数量=4本×人数+30本=5本×人数-15本,由题意,得4x+30=5x-15. 故选B .10. 【答案】B[解析] 8x 是2x 的4倍,因此由2x=-左右两边同时乘4可得8x=-×4=-2.11. 【答案】B12. 【答案】B二、填空题(本大题共6道小题)13. 【答案】①③④14. 【答案】(1)4;(2)5;(3)836y +;(4)24y +. 【解析】(1)4a b =+,在等式两端同时加上b ; (2)395x =+,在等式两端同时加上5;(3)836y +,在等式的两端同时乘以16;(4)24y +,在等式的两端同时乘以2.15. 【答案】2y =16. 【答案】4[解析] 把x=m 代入关于x 的方程,得3m-2m=4,解得m=4.17. 【答案】(1)填表如下:x 0 2 3 45x-3 -3 7 12 176+2x 6 10 12 14(2)x=318. 【答案】2a-5三、解答题(本大题共3道小题)19. 【答案】解:(1)由a=b,得a+3=b+3的依据是等式的性质1,在等式两边加3,结果仍相等.(2)由a-1=b+1,得a=b+4的依据是先根据等式的性质1,在等式两边加1,得a-1+1=b+1+1,即a=b+2,再根据等式的性质2,在等式两边乘2,得2×a=2×b+2×2,即a=b+4.20. 【答案】解:(1)x+6080%(x+60)(2)根据题意,可得80%(x+60)-x=24.21. 【答案】解:猜想:方程x-=10的解是x=11或x=-.检验:当x=11时,左边=11-=10=右边;当x=-时,左边=-+11=10=右边,所以x=11和x=-都是方程x-=10的解.3.2解一元一次方程合并同类项及移项一.选择题1.方程x+2=3的解是()A.3 B.﹣3 C.1 D.﹣12.下列变形属于移项的是()A.由=1,得x=5 B.由﹣7x=2,得x=﹣C.由﹣5x﹣2=0,得﹣2=5x D.由﹣3+2x=9,得2x﹣3=93.解方程4(2x+3)=8(1﹣x)﹣5(x﹣2)时,去括号正确的是()A.8x+12=8﹣x﹣5x+10 B.8x+3=8﹣8x﹣5x+10C.8x+12=﹣8x﹣5x﹣10 D.8x+12=8﹣8x﹣5x+104.下列解方程错误的是()A.由7x=6x﹣1得7x﹣6x=﹣1 B.由5x=10得x=2C.由3x=6﹣x得3x+x=6 D.由x=9得x=﹣35.方程11x+1=5(2x+1)的解是()A.0 B.﹣6 C.4 D.66.小明解方程﹣1去分母时,方程右边的﹣1忘记乘6,因而求出的解为x=﹣2,那么原方程正确的解为()A.x=5 B.x=﹣7 C.x=﹣13 D.x=17.下列各方程,变形不正确的是()A.去分母化为2(x﹣3)﹣5(x+4)=10B.2(x﹣3)﹣5(x+4)=10去括号为:2x﹣3﹣5x+20=10C.2x﹣3﹣5x+20=10移项得:2x﹣5x=10﹣20+3D.2x﹣5x=10﹣20+3合并同类项得:﹣3x=﹣78.方程的解是()A.x=﹣B.x=C.x=﹣D.x=9.下列解方程过程中变形正确的是()A.由3x﹣2=2x+1,移项得3x+2x=2+1B.由﹣=﹣1,去分母得2(x﹣2)﹣3x﹣2=﹣4C.由2﹣3(x﹣1)=4,去括号得2﹣3x+3=4D.由2x+3﹣x=5,合并同类项得3x+3=5.10.x+2x+3x+4x+5x+…+97x+98x+99x+100x=5050,x的解是()A.0 B.1 C.﹣1 D.10二.填空题11.将方程4(2x﹣5)=3(x﹣3)﹣1变形为8x﹣20=3x﹣9﹣1的变形步骤是.12.当x=时,的值是1.13.对于数x,规定(x n)′=nx n﹣1(n是大于1的正整数),若(x2)′=﹣2,则x=.14.当x=时,代数式﹣2的值是﹣1.15.a,b互为相反数,c,d互为倒数,则关于x的方程(a+b)x2+3cd(x﹣1)﹣2x=0的解为x=.三.解答题16.解方程(1)4x+7.5=13;(2)x﹣0.6x=5.17.解方程(1)2.5m+10m﹣15=6m﹣21.5;(2)+y=3+8y.18.解比例:(1)3:18=5:x;(2)x:0.25=3.6:0.1;(3)x:10=:;(4)=.19.定义新运算“⊕”如下:当a≥b时,a⊕b=ab+b;当a<b时,a⊕b=ab ﹣a.解方程(2x﹣1)⊕(x+2)=0.参考答案与试题解析一.选择题1.【解答】解:方程x+2=3,解得:x=1,故选:C.2.【解答】解:A、由=1,系数化为1,得到x=5,不合题意;B、由﹣7x=2,系数化为1,得到x=﹣,不合题意;C、由﹣5x﹣2=0,移项得:﹣2=5x,符合题意;D、由﹣3+2x=9,得2x﹣3=9,不合题意.故选:C.3.【解答】解:方程去括号得:8x+12=8﹣8x﹣5x+10,故选:D.4.【解答】解:A、由7x=6x﹣1得7x﹣6x=﹣1,正确;B、由5x=10得x=2,正确;C、由3x=6﹣x得3x+x=6,正确;D、由x=9得x=27,错误,故选:D.5.【解答】解:11x+1=5(2x+1)11x+1=10x+511x﹣10x=5﹣1x=4,故选:C.6.【解答】解:﹣1去分母时,方程右边的﹣1忘记乘6,则所得的方程是2(2x﹣1)=3(x+a)﹣1,把x=﹣2代入方程得2(﹣4﹣1)=3(﹣2+a)﹣1,解得:a=﹣1.把a=﹣1代入方程,得.去分母,得2(2x﹣1)=3(x﹣1)﹣6,去括号,得4x﹣2=3x﹣3﹣6,移项,得4x﹣3x=﹣3﹣6+2,合并同类项,得x=﹣7.故选:B.7.【解答】解:A、﹣=1去分母化为:2(x﹣3)﹣5(x+4)=10,正确;B、2(x﹣3)﹣5(x+4)=10去括号为:2x﹣6﹣5x﹣20=10,错误;C、2x﹣3﹣5x+20=10移项得:2x﹣5x=10﹣20+3,正确;D、2x﹣5x=10﹣20+3合并同类项得:﹣3x=﹣7,正确,故选:B.8.【解答】解:方程整理得:﹣x=,去分母得:4(50x+200)﹣12x=3(3x+12),去括号得:200x+800﹣12x=9x+36,移项合并得:179x=﹣764,系数化为1得:x=﹣.故选:A.9.【解答】解:A、由3x﹣2=2x+1,移项得3x﹣2x=2+1,错误;B、由﹣=﹣1,去分母得2(x﹣2)﹣(3x﹣2)=﹣4,错误;C、由2﹣3(x﹣1)=4,去括号得2﹣3x+3=4,正确;D、由2x+3﹣x=5,合并同类项得x+3=5,错误.故选:C.10.【解答】解:x+2x+3x+4x+5x+…+97x+98x+99x+100x=5050 合并同类项得5050x=5050,系数化为1,得x=1.故选:B.二.填空题(共5小题)11.【解答】解:将方程4(2x﹣5)=3(x﹣3)﹣1变形为8x﹣20=3x﹣9﹣1的变形步骤是去括号,故答案为:去括号12.【解答】解:根据题意得:=1,去分母得:2x﹣1=2,解得:x=.故答案为:13.【解答】解:∵(x n)′=nx n﹣1(n是大于1的正整数),∴(x2)′=2x=﹣2,解得x=﹣1.故答案为:﹣1.14.【解答】解:根据题意得:﹣2=﹣1.去分母得;4x﹣5﹣6=﹣3移项得:4x=﹣3+5+6合并同类项得:4x=8,系数化为1得:x=2.所以当x=2时,代数式﹣2的值是﹣1.15.【解答】解:根据题意得:a+b=0,cd=1,代入方程得:3(x﹣1)﹣2x=0,去括号得:3x﹣3﹣2x=0,解得:x=3,故答案为:3三.解答题(共4小题)16.【解答】解:(1)4x+7.5=13,移项,得4x=13﹣7.5,合并同类项,得4x=5.5,系数化为1,得x=1.375;(2)x﹣0.6x=5,合并同类项,得0.4x=5,系数化为1,得x=.17.【解答】解:(1)2.5m+10m﹣15=6m﹣21.5,移项得:2.5m+10m﹣6m=﹣21.5+15,合并同类项得:6.5m=﹣6.5,系数化为1得:m=﹣1;(2),移项得:,合并同类项得:﹣2.5y=,系数化为1得:y=﹣.18.【解答】解:(1)3:18=5:x,3x=18×5,x=30;(2)x:0.25=3.6:0.1,0.1x=0.25×3.6,x=9;(3)x:10=:,,x=;(4)=,4.8x=4×3.6,x=3.19.【解答】解:当2x﹣1≥x+2即x≥3时,(2x﹣1)⊕(x+2)=(2x﹣1)(x+2)+x+2=0,解得:x=0或x=﹣2,∵x≥3,∴x=0或x=﹣2均舍去;2x﹣1≤x+2即x≤3时,(2x﹣1)⊕(x+2)=(2x﹣1)(x+2)﹣(2x﹣1)=0,解得:x=﹣1或x=.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x-2)-3(4x-1)=9的去括号的过程,其中正确的是( )A.2x-4-12x+3=9B.2x-4-12x-3=9C.2x-4-12x+1=9D.2x-2-12x+1=97.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( )A.-1B.1C.12D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x -2)=2-3x 的解与关于x 的方程6-2k =2(x +3)的解相同,求k 的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0; 解:去括号,得2x -2+1=0. 移项、合并同类项,得2x =1. 系数化为1,得x =12.(2)2x +5=3(x -1). 解:2x +5=3x -3, 2x -3x =-3-5, -x =-8, x =8.5.解:第一步错误.正确的解答过程如下: 去括号,得6-8x =1-6x +3. 移项,得-8x +6x =1+3-6. 合并同类项,得-2x =-2. 系数化为1,得x =1. 6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1; 解:去括号,得12x -8-2x -3=-1. 移项,得12x -2x =8+3-1. 合并同类项,得10x =10. 系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y. 移项、合并同类项,得-6y =-48. 系数化为1,得y =8. (3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x.移项、合并同类项,得2x =6. 系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89.把x =89代入方程6-2k =2(x +3),得6-2k =2×(89+3).解得k =-89.第2课时 利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得 40x +30(20-x)=650. 解得x =5. 则20-x =15.答:购买甲种奖品5件,乙种奖品15件. 3.解:设装运香菇的汽车需x 辆.根据题意,得 1.5x +2(6-x)=10.解得x =4. 所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x 篇,则八年级收到的征文有(118-x)篇,依题意,得 (x +2)×2=118-x ,解得x =38. 答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得 176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km. 6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得 2x +3(100-x)=270.解得x =30. 则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质)去分母,得3(3x +5)=2(2x -1).(等式的性质2) 去括号,得9x +15=4x -2.(去括号法则) (移项),得9x -4x =-15-2.(等式的性质1) 合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)5.(1)x +12=3+x -64;解:2(x +1)=12+(x -6). 2x +2=12+x -6.2x +2=x +6. x =4.(2)x -32-4x +15=1.解:去分母,得5x -15-8x -2=10, 移项合并,得-3x =27, 解得x =-9. 6.B7.解:设应先安排x 人工作, 根据题意,得4x 40+8(x +2)40=1.化简可得:x 10+x +25=1,即x +2(x +2)=10. 解得x =2.答:应先安排2人工作. 8.C 9.B 10.C 11. 1.12.(1)x -13-x +26=4-x2;解:去分母,得2(x -1)-(x +2)=3(4-x). 去括号,得2x -2-x -2=12-3x. 移项,得2x -x +3x =2+2+12. 合并同类项,得4x =16. 系数化为1,得x =4. (2)2x +13-5x -16=1;解:去分母,得2(2x +1)-(5x -1)=6. 去括号,得4x +2-5x +1=6. 移项、合并同类项,得-x =3. 系数化为1,得x =-3.(3)2x +14-1=x -10x +112;解:去分母,得6x +3-12=12x -10x -1, 移项合并,得4x =8, 解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1.去分母,得30x -7(17-20x)=21. 去括号,得30x -119+140x =21. 移项、合并同类项,得170x =140. 系数化为1,得x =1417.13.解:设A ,B 两地间的距离为x 千米,依题意,得 x 7.5+2.5+x +107.5-2.5=4,解得x =203.答:A ,B 两地间的距离为203千米.14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a.因为将求得的结果代入原方程,左边与右边相等, 所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)],整理,得4a =16. 解得a =4,故a 的值为4.3.4实际问题与一元一次方程一.选择题1.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得( )A .4325.2x +=B .3425.2x ⨯+=C .3(4)25.2x +=D .3(4)25.2x -=2.某件商品连续两次9折降价销售,降价后每件商品售价为a 元,则该商品每件原价为( )A.0.92aB.1.12aC.1.12aD.0.81a3.某商店以每件120元的价格卖出两双鞋,其中一件盈利20%,另一件亏损20%,那么商店卖出这两双鞋总的是( ) A .盈利10元 B .亏损10元 C .亏损16元 D .不赚不亏 4.初一(一)班举行了一次集邮展览,如果将展出的邮票分给每位同学,平均每人分3张还多余24张,平均每人分4张还差26张,这个班共展出邮票的张数是( )A.164B.178C.168D.174 5.有m 辆客车及n 个人.若每辆客车乘40人,则还有10人不能上车. 若每辆客车乘43人,则还有1人不能上车.下列所列方程:①4010431m m +=- ② 1014043n n --=③4010431m m +=+ ④1014043n n ++=其中正确的是 ( ) A.①②③ B. ②③④ C. ③④ D.②③ 6.某商品连续两次降价,其售价由原来的a 元降到了b 元.设平均每次降价的百分率为x ,则列出方程正确的是( )A .21()a x b +=B . 21()b x a += C .21()a x b -= D . 21()b x a -=7.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x 天,则所列方程为()A.B.C.D.8.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()。
七年级上册数学第三章测试卷【含答案】
七年级上册数学第三章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{5}{7}$C. $\frac{6}{8}$D. $\frac{7}{9}$5. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 36厘米B. 26厘米C. 46厘米D. 42厘米二、判断题(每题1分,共5分)6. 任何两个偶数相加的和都是偶数。
()7. 一个正方形的对角线把它分成两个相等的直角三角形。
()8. 任何一个合数都可以分解为几个质数的乘积。
()9. 如果两个角是对顶角,那么这两个角一定相等。
()10. 在三角形中,最长边所对的角一定是直角。
()三、填空题(每题1分,共5分)11. 一个数的因数是______和______。
12. 一个长方体的表面积是______。
13. 等边三角形的每个内角是______度。
14. 如果一个数是6的倍数,那么这个数最小可能是______。
15. 1千米等于______米。
四、简答题(每题2分,共10分)16. 请简述质数和合数的区别。
17. 什么是等腰三角形?它有什么特点?18. 请解释长方体的体积是如何计算的。
19. 什么是比例?请给出一个比例的例子。
20. 请解释什么是平行线,并给出一个例子。
五、应用题(每题2分,共10分)21. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。
22. 一个等边三角形的周长是24厘米,求这个三角形的边长。
七年级数学上全册练习题(含答案)
第一章 有理数测试1 正数和负数学习要求了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量.课堂学习检测一、判断题(正确的在括号内画“√”,错误的画“×”)( )1.某仓库运出30吨货记作-30吨,则运进20吨货记作+20吨. ( )2.节约4吨水与浪费4吨水是一对具有相反意义的量.( )3.身高增长1.2cm 和体重减轻1.2kg 是一对具有相反意义的量. ( )4.在小学学过的数前面添上“-”号,得到的就是负数. 二、填空题5.学校在大桥东面9千米处,那么大桥在学校______面-9千米处.6.如果以每月生产180个零件为准,超过的零件数记作正数,不足的零件数记作负数,那么1月生产160个零件记作______个,2月生产200个零件记作______个.7.甲冷库的温度为-6℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是______. 8.______既不是正数,也不是负数;它______整数,______有理数(填“是”或“不是”). 9.整数可以看作分母为1的______,有理数包括____________. 10.把下列各数填在相应的大括号内:74,6,0,14.3,5.0,432,14,5.8,51,27----正数集合{_______________________________________________________________…} 负数集合{_______________________________________________________________…} 非负数集合{_____________________________________________________________…} 有理数集合{_____________________________________________________________…}综合、运用、诊断一、填空题11.若把公元2008年记作+2008,那么-2008年表示______.12.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是-10米,+20米,则现在潜水艇在距水面______米的深处. 13.是正数而不是整数的有理数是____________________. 14.是整数而不是正数的有理数是____________________. 15.既不是正数,也不是负数的有理数是______________. 16.既不是真分数,也不是零的有理数是______________.17.在下列数中:,31- 11.11111,725.95 95.527,0,+2004,-2π,1.12122122212222,,111-非负有理数有__________________________________________. 二、判断题(正确的在括号里画“√”,错误的画“×”) ( )18.带有正号的数是正数,带有负号的数是负数. ( )19.有理数是正数和小数的统称.( )20.有最小的正整数,但没有最小的正有理数. ( )21.非负数一定是正数.( )22.311-是负分数. 三、解答题23.-3.782( ).(A)是负数,不是分数 (B)不是分数,是有理数 (C)是负数,也是分数 (D)是分数,不是有理数 24.下面说法中正确的是( ).(A)正整数和负整数统称整数 (B)分数不包括整数(C)正分数,负分数,负整数统称有理数 (D)正整数和正分数统称正有理数25.一种零件的长度在图纸上是(10±0.05)毫米,表示这种零件的标准尺寸是10毫米,加工要求最大不超过______毫米,最小不小于______毫米.拓展、探究、思考26.一批螺帽产品的内径要求可以有±0.02 mm 的误差,现抽查5个样品,超过规定的毫米值记为正数,不足值记为负数,检查结果如表.则合乎要求的产品数量为( ).(A)1个(B)2个(C)3个(D)5个测试2 相反数 数轴学习要求掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小.课堂学习检测一、填空题1.________________的两个数,叫做互为相反数;零的相反数是______.2.0.4与______互为相反数,______与-(-7)互为相反数,a 的相反数是______. 3.规定了______、______和______的______叫数轴. 4.所有的有理数都能用数轴上的______来表示.5.数轴上,表示-3的点到原点的距离是______个单位长,与原点距离为3个单位长的点表示的数是______。
七年级数学上册前三单元测试题
七年级数学上册前三单元测试题一、选择题(每题3分,共30分)1. -5的相反数是()- A. 5.- B. -5.- C. (1)/(5)- D. -(1)/(5)- 解析:相反数是指绝对值相等,正负号相反的两个数。
所以 -5的相反数是5,答案为A。
2. 下列式子中,结果为正数的是()- A. -(-3)- B. -3.- C. -3².- D. (-3)³.- 解析:- A. -(-3)=3,是正数。
- B. -3=-3,是负数。
- C. -3²=-9,是负数。
- D. (-3)³=-27,是负数。
所以答案为A。
3. 若数轴上表示 -2和3的两点分别是点A和点B,则点A和点B之间的距离是()- A. -5.- B. -1.- C. 1.- D. 5.- 解析:数轴上两点之间的距离等于右边的数减去左边的数,即3 - (-2)=3 + 2 = 5,答案为D。
4. 单项式-frac{3x^2y}{5}的系数和次数分别是()- A. -(3)/(5),3.- B. (3)/(5),3.- C. -(3)/(5),2.- D. (3)/(5),2.- 解析:单项式的系数是数字因数,所以单项式-frac{3x^2y}{5}的系数是-(3)/(5);次数是所有字母的指数和,x的指数是2,y的指数是1,所以次数是2+1 = 3,答案为A。
5. 化简:3a+2b - 5a - b等于()- A. -2a + b.- B. 2a + b.- C. -2a - b.- D. 2a - b.- 解析:3a+2b - 5a - b=(3a - 5a)+(2b - b)=-2a + b,答案为A。
6. 若x = 2是方程2x - m+1 = 0的解,则m的值是()- A. 3.- B. 4.- C. 5.- D. 6.- 解析:把x = 2代入方程2x - m + 1 = 0,得到2×2 - m+1 = 0,4 - m+1 = 0,5 - m = 0,m = 5,答案为C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填一填
13.-1 等 三、解一解
14. 350
15.200
8 16.
65
17.(1) 解 : (1 1
3 ) ( 48)
64
= -48+8-36
=-76
(2) 解 : ( 1)10 2 ( 2) 3 4
=1×2 +(-8) ÷4 =2-2=0
18.(1) 解 : 3x 7 32 2x
3x+2x=32-7
学习必备
欢迎下载
依题意有: 1 m 1+2-m=0 解得: m=6 2
(2)由 m=6,解得方程 x 2m 3x 4 的解为 x=4 解得方程 2 m x 的解为 x=-4
24. 解: (1)2[( a+ c) +(a-c)]= 2( a+ c+ a-c)= 4a(m) ( 2) 2[( a+ a+ c)+ (a+a- c)] = 2(a+a+ c+ a+ a-c)= 8a(m)
5. 已知 p 与 q 互为相反数,且 p≠ 0,那么下列关系式正确的是(
).
A. p.q 1 B.
q 1 C.
p
p q 0 D.
pq0
6. 方程 5-3x=8 的解是(
) A.x=1
7 下列变形中 , 不正确的是(
).
A.a +(b +c -d) = a+ b+ c-d B.a
C.a -b-(c -d) = a- b- c-d D.a
B.x=-1
C.x= 13 3
-(b -c+ d) = a- b+c -d +b-( - c-d) =a+b+ c+ d
8.如果单项式 12xa+ by3 与 5x2yb 的和仍是单项式 , 则|a-b|的值为 (
)
D.x= - 13
3
A.4
B.3
C.2
D.1
学习必备
欢迎下载
9.有理数 a,b 在数轴上的位置如图所示 , 则下列各式正确的是 ( )
1 13.若 m,n 互为相反数 , 则 3(m- n)- 2(2m-10n) 的值为 ___. 14.定义一种新运算: a* b=b2-ab, 如: 1*2 = 22- 1×2=2, 则 (- 1*2)*3 = ____. 15.若 m2+ 2mn= 4,n2+ 2mn=6, 则 m2- n2=____, m2+4mn+n2=____.
21.解: (1)3A-2B+2= 3(2a2- a)- 2(-5a+1)+2=6a2+ 7a
1 (2)当 a=- 2时 ,3A-2B+2= 6× (-
1 2)
2+
7×
(
-
1 2)
=
3 2-
7 2=-
2
22.(1) 设一个月内本地通话 t 分钟时,两种通讯方式的费用相同.
依题意有: 50+0.4t=0.6t
解得 t=250
( 2)若某人预计一个月内使用本地通话费 180 元,则使用全球通有:
50+0.4t=180 ∴ t1 =325
若某人预计一个月内使用本地通话费 180 元 ,则使用神州行有:
0.6t=180 ∴ t2 =300
∴使用全球通的通讯方式较合算.
23. 解: (1) 由 x 2m
3x 4 得: x= 1 m 1 2
16.小方利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入 … 1
2
3
4
5…
1 输出 …
2
2
3
4
5
…
5 10 17 26
则当输入数据为 8 时,输出的数据为
.
三 . 解一解 ( 本大题共 8 小题 ,共 52 分 )
学习必备
欢迎下载
17.(6 分 )计算( 1) (1 1 3 ) ( 48) 64
A. a+ b> 0
B.|a|< |b|
a C.b<0
D.|a- b|= a- b
10.下列图案是用长度相同的火柴按一定规律拼搭而成
,
图案①需 8 根火柴 , 图案②需 15 根火柴 ,… , 按此规
律 ,图案○ ,n)需几根火柴棒 ( )
A.2 + 7n
B.8+7n
C.4+7n
D.7 n+1
11. 下列等式变形:①若 a b ,则 a b ;②若 a b ,则 a b ;③若 4a 7b ,则 a 7 ;④若 a 7 ,
学习必备
欢迎下载
5x=25
x=5
(2) 解: 1 1 x 3 1 x
2
6Байду номын сангаас
11 x x 31
26
1 x =2
3
x=-6
19. 解: (1)7-(-10)=17
(2) (-1+3-2+4+7-5-10 )+100 × 7=696
20. 解: (1)因为 |a|= |c|,且 a, c 分别在原点的两旁 , 所以 a,c 互为相反数 , 即 a+c= 0.因为 |a+ c| + |b|=2, 所以 |b|= 2, 所以 b=± 2, 因为 b 在原点左侧 ,所以 b=- 2 (2)a>- b> b> c
23.(7 分)统计数据显示,在我国的 664 座城市中,按水资源情况可分为三类:暂不缺水城市、一
般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的
3 倍多 52 座,一
般缺水城市数是严重缺水城市数的 2 倍.求严重缺水城市有多少座?
解:
学习必备
欢迎下载
参考答案
一、选一选
1.A 2.C 3.D 4.B 5.C 6.B 7.C 8.A 9.A 10.B 11.B 12.D
( 3)当 a= 40, c= 10 时 ,长= 2a+c=90(m), 宽= 2a- c= 70(m), 所以面积= 90×70=6300(m2)
3.下列运算正确的是 ( )
A. - (a- 1)=- a- 1 C.a3-a2= a
B.- 2(a- 1)=- 2a+ 1 D.- 5x2+ 3x2=- 2x2
4.下列判断正确的是 ( )
2
A.3 a bc
与
2
bca
不是同类项
C.单项式- x3y2 的次数是 3, 系数是- 1
m2n a+ b B. 5 和 2 都是单项式 D.3x2-y+ 2xy2 是三次三项式
xx
xx
b4
b4
则 4a 7b . 其中一定正确的个数是(
).
A.1 个
B.2
个
C.3
个
D.4
个
12. 已知 a 、b 互为相反数, c 、d 互为倒数, x 等于 -4 的 2 次方,则式子 ( cd a b)x 1 x 的值为( ). 2
A.2
B.4
C.-8
D.8
二 . 填一填 ( 本大题共 4 小题 , 每小题 3 分 , 共 12 分 )
20.(7 分)已知 A= 2a2- a, B=- 5a+ 1. (1)化简: 3A- 2B+2;
1 (2)当 a=- 2时, 求 3A-2B+2 的值.
21.( 本题 10 分) 关于 x 的方程 x 2m 3x 4 与 2 m x 的解互为相反数. (1) 求 m的值;(6 分) (2) 求这两个方程的解. (4 分)
解:
学习必备
欢迎下载
22.(10 分)如图 , 一个长方形运动场被分隔成 A,B,A,B,C 共 5 个 区, A 区是边长为 a m 的正方形 ,C 区是边长为 c m 的正方形.
学习必备
欢迎下载
(1)列式表示每个 B 区长方形场地的周长 ,并将式子化简; (2)列式表示整个长方形运动场的周长 ,并将式子化简;
学习必备
欢迎下载
七年级数学期中预测试题
一 . 选一选 (本大题共 12 小题,每小题 3 分,共 36 分)
1. 1 的绝对值是(
).
2
1
1
A.
B.
C.2
2
2
2.下列计算错误的是 ( )
D. -2
1 A.4 ÷ (- 2) =4× (-2)=- 8 C.- (- 32)=- (- 9)= 9
B.( -2)×(- 3)=2× 3=6 D.- 3- 5=- 3+(+ 5)= 2
解:
(2) (
10
1)
2
3
( 2)
4
解:
18.(8 分 )解方程 (1) 3x 7 32 2x
解:
(2) 1 1 x 3 1 x
2
6
解:
19.(4 分 )有理数 a,b,c 在数轴上的位置如图所示 , 且|a|= |c|.
学习必备
欢迎下载
(1) 若|a+c|+|b|=2,求 b 的值; (2)用“>”从大到小把 a, b, -b, c 连接起来.