《一元一次方程》全章复习与巩固(提高)知识讲解

合集下载

《一元一次方程》全章复习与巩固(提高)知识讲解

《一元一次方程》全章复习与巩固(提高)知识讲解

乐博思
《一元一次方程》全章复习与巩固(提高)知识讲解
责编:张强
【学习目标】
1.经历建立方程模型、解方程和运用方程解决实际问题的过程,体会模型思想;
2.了解一元一次方程、方程的解等基本概念,会解数字系数的一元一次方程,感受转化思想;
3.能运用一元一次方程解决实际问题,能根据实际意义检验方程的解的合理性.
【知识网络】
【要点梳理】
要点一、一元一次方程的概念
1.方程:含有未知数的等式叫做方程.
2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.
要点诠释:
(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.
(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;
②未知数所在的式子是整式,即分母中不含未知数.
3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.
4.解方程:求方程的解的过程叫做解方程.。

人教版八年级数学上第三章一元一次方程知识点总结

人教版八年级数学上第三章一元一次方程知识点总结

人教版八年级数学上第三章一元一次方程知识点总结本文档总结了人教版八年级数学上第三章一元一次方程的知识点。

一元一次方程是初中数学的重要内容之一,它是一种只含有一个未知数的方程,其最简形式为ax+b=0。

下面是一些重要的知识点概述:1. 一元一次方程的定义一元一次方程是指只含有一个未知数的方程,且未知数的最高次数为1。

一元一次方程的一般形式为ax+b=0,其中a和b是已知数,a ≠ 0。

2. 一元一次方程的解法解一元一次方程的主要方法是移项和合并同类项,将方程化简成形如x=c的形式,其中c是已知数。

解方程的过程主要是通过逆运算的方法求得未知数x的值。

3. 一元一次方程的解集表示一元一次方程的解集是指使方程成立的所有解的集合。

解集的形式通常为{x | x = c},表示解集中的元素x满足x=c。

4. 解一元一次方程的步骤解一元一次方程的一般步骤如下:- 将方程的各项按照变量的次数从高到低排列。

- 利用移项和合并同类项的方法,将方程化简。

- 再利用逆运算的方法,求得未知数x的值。

- 最后,确定解集并写出解集的表示形式。

5. 一元一次方程的应用一元一次方程在实际问题中有广泛的应用。

通过建立方程与实际问题进行联系,可以解决许多实际生活中的数学问题。

例如,求某物品的价格、求两车相遇的地点等等。

以上是人教版八年级数学上第三章一元一次方程的知识点总结。

掌握这些知识点,可以帮助我们更好地理解和解决一元一次方程相关的问题。

参考资料:- 人教版八年级数学上第三章教材。

人教版数学七年级上册第三章《一元一次方程》小结与复习课件

人教版数学七年级上册第三章《一元一次方程》小结与复习课件
根据题意,得x+50=2[(450-x)-50], 解得x=250,则450-x=200. 答:甲商城本来有该品牌服装250件,乙商城本来有该品牌服装 200件.
10. 为鼓励居民勤俭用电,某地对居民用户用电收费标 准作如下规定:每户每月用电如果不超过 100 度, 那么每度按 0.50 元收费;如果超过 100 度不超过 200 度,那么超过的部分每度按 0.65 元收费;如果 超过200度,那么超过的部分每度按 0.75 元收费.
(二)等式的性质
1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结果仍相 等.如果 a=b,那么 a± c =b±c. 2. 等式的性质2:等式两边乘同一个数,或除以同一个不为 0 的数, 结果仍相等.如果 a=b,那么 ac= _b_c_;如果 a = b (c≠0),那么
a =__b__. cc
合并同类项,得 7x = 9.
系数化为1,得 x 9 . 7
9. “十一”期间,甲、乙两商场有某品牌服装共450件,由于甲 商场销量上升,需从乙商场调运该服装50件,调运后甲商场该服 装的数量是乙商场的2倍,求甲、乙两商场本来各自有该品牌服 装的数量.
解:设甲商城本来有该品牌服装x件,则乙商城本来有该品牌服 装(450-x)件,
审题是基础,找等量关 系是关键.
验:检验方程的解是否符合题意.
答:写出答案 (包括单位).
解题过程要书写出来的步骤是设、列、解、答。
2. 常见的几种方程类型及等量关系: (1) 行程问题中基本量之间关系: 路程=速度×时间. ① 相遇问题: 全路程=甲走的路程+乙走的路程; ② 追及问题: 甲为快者,被追路程=甲走路程-乙走路程; ③ 流水行船问题: v顺=v静+v水,v逆=v静-v水.

人教版七年级上册第三章一元一次方程全章小结复习说课稿

人教版七年级上册第三章一元一次方程全章小结复习说课稿
3.引发思考:通过提问和引导学生思考,激发他们对一元一次方程的兴趣,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.理论讲解:以简明扼要的语言讲解一元一次方程的定义、一般形式,让学生明确学习目标。
2.案例分析:通过具体实例,演示一元一次方程的解法,让学生在实际操作中理解并掌握解法步骤。
2.生生互动:通过小组合作学习,学生之间将进行讨论、交流和分工合作,共同解决实际问题。在小组活动中,我会设置明确的任务和评价标准,确保每个学生都能参与到互动中来。
3.课堂讨论:组织全班范围的讨论,让学生分享各自小组的解题过程和答案,鼓励他们相互提问、质疑和补充,以提高课堂氛围和学生思维的深度。
四、教学过程设计
2.情境教学法:将一元一次方程的知识点融入到生活情境中,让学生在具体情境中感受数学的应用价值。这种方法的理论依据是情境学习理论,认为知识需要在真实情境中通过活动和实践来获得。
3.分组合作学习法:将学生分成小组,鼓励他们在小组内进行讨论、交流和合作解决问题。这种教学方法基于社会建构主义理论,强调学习是一个社会互动的过程。
3.教师评价:针对学生的表现,给予积极的评价和鼓励,同时指出需要改进的地方,并提供具体的建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些基础的一元一次方程题目,目的是巩固课堂所学知识,提高解题技能。
2.提高作业:设计一些综合性的题目,让学生运用所学知识解决实际问题,培养他们的应用能力和创新思维。
4.游戏化学习:设计一些与一元一次方程相关的数学游戏,让学生在轻松愉快的氛围中学习,提高他们的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用问题驱动法、情境教学法和分组合作学习法为主要教学方法。

一元一次方程单元复习与巩固

一元一次方程单元复习与巩固

一元一次方程单元复习与巩固知识点一:一元一次方程及其解的概念只含有个未知数,并且未知数的次数都是的方程叫做一元一次方程。

一元一次方程的标准形式是:。

使方程左右两边的值相等的未知数的值叫做方程的。

请你注意:(一)一元一次方程必须满足的3个条件:(1);(2);(3);三者缺一不可。

(二)判断一个数是否是某方程的解:将其代入方程两边,看两边是否。

知识点二:方程变形——解方程的重要依据(一)等式的基本性质(也叫做方程的同解原理)等式的性质1:。

即:。

等式的性质2:。

即:。

(二)分数的基本的性质:分数的分子、分母同时的数,分数的值不变。

即:(其中m≠0)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为,如方程:5.03x-2.04x=1.6,将其化为:- =1.6。

方程的右边没有变化,这要与“去分母”区别开。

知识点三:解一元一次方程的一般步骤:(一)解一元一次方程的基本思路:通过对方程变形,把含有的项归到方程的一边,把归到方程的另一边,最终把方程“转化”成的形式。

(二)解一元一次方程的一般步骤是:变形名称具体做法变形依据去分母在方程两边都乘以各分母的最小公倍数去括号先去小括号,再去中括号,最后去大括号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住:移项要变号)合并同类项把方程化成ax=b(a≠0)的形式系数化成 1 在方程两边都除以未知数的系数a,得到方程的解x=ab(三)理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解;(2)a=0,b=0时,方程有;(3)a=0,b≠0时,方程。

知识点四:列一元一次方程解应用题的一般步骤:(一)列一元一次方程解应用题的一般步骤:(1),分析题中已知什么,未知什么,明确各量之间的关系,寻找等量关系.(2),一般求什么就设什么为x,但有时也可以间接设未知数.(3),把相等关系左右两边的量用含有未知数的代数式表示出来,列出方程.。

七年级上册数学期末知识点巩固:《一元一次方程》知识点总结

七年级上册数学期末知识点巩固:《一元一次方程》知识点总结

七年级上册数学期末知识点巩固:《一元一次方程》知识点总

知识点对朋友们的学习非常重要,大家一定要认真掌握,为大家整理了七年级上册数学期末知识点巩固:《一元一次方程》,让我们一起学习,一起进步吧!
1.等式:用“=”号连接而成的式子叫等式.
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:a_+b=0(_是未知数,a、b是已知数,且a≠0).
8.一元一次方程解法的一般步骤:
化简方程----------分数基本性质
去分母----------同乘(不漏乘)最简公分母
去括号----------注意符号变化
移项----------变号(留下靠前)
合并同类项--------合并后符号
系数化为1---------除前面。

浙教版七年级数学上《一元一次方程提高》专题复习讲义

浙教版七年级数学上《一元一次方程提高》专题复习讲义

一元一次方程提高重难点易错点辨析题一:若关于x的方程3x-2a=0和2x+3a-13=0的解相同,则a= .考点:“同解”方程题二:解关于x的方程:ax=b.考点:解的个数问题金题精讲题一:(1)当k为何值时,关于x的方程3+9x=7k+6x的解比2k+x=4x-3的解大6?(2)已知关于x的方程5x+3k=24的解是5x+3=2k的解的3倍,求k的值.考点:近似“同解”问题题二:若方程ax=2x+b有无数多个解,则()A.a≠0,b≠0 B.a≠2,b=0C.a=2,b=0 D.a=0,b=0考点:含参方程解的个数题三:已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a2-5+b的值是多少?考点:含参方程解的个数题四:关于x的一元一次方程(k-5)x+1=6-5x的解为整数,请求出整数k所有可能的值.考点:解为整数的含参方程题五:若以x为未知数的方程x-2a+4=0和3x+6= -2x-3a的解的乘积为0,则a的值是多少?考点:近似“同解”问题思维拓展题一:若关于x的方程|2x-2013|+m=0无解,|3x-2014|+n=0只有一个解,|4x-2015|+k=0有两个解.请用“<”将m、n、k由小到大排列.考点:用绝对值性质解决含参方程问题一元一次方程提高讲义参考答案重难点易错点辨析题一:3.题二:当a≠0时,x=b/a;当a=0,b=0时,无数个解;当a=0,b≠0时,无解.金题精讲题一:24/5;11/3.题二:C.题三: 10/3.题四:±1和±5.题五:±2.思维拓展题一:k<n<m.。

七年级上册数学人教版第三章 一元一次方程知识点梳理

七年级上册数学人教版第三章 一元一次方程知识点梳理

第三章一元一次方程1. 方程1.1. 方程:含有未知数的等式叫做方程1.2. 方程的解:使方程等号左右两边相等的未知数的值叫做方程的解1.3. 解方程:求方程解的过程叫做解方程1.4. 一元一次方程1.4.1. 定义1.4.1.1. 只含有1个未知数,未知数的次数都是1,等号两边都是等式,这样的方程叫做一元一次方程.1.4.2. 解法1.4.2.1. 解一元一次方程的一般步骤: (1) 去分母:方程两边都乘各分母的最小公倍数,别漏乘. (2) 去括号:注意括号前的系数与符号. (3) 移项:把含有未知数的项移到方程的左边,常数项移到方程右边,移项时注意要改变符号. (4) 合并同类项:把方程化成 ax=b (a ≠ 0) 的形式. (5) 系数化为1:方程两边同除以 x 的系数,得 x=m的形式.2. 等式的性质2.1. 等式的性质1:等式两边加 (或减) 同一个数 (或式子),结果仍相等.如果 a=b,那么 a±c= b±c.2.2. 等式的性质2:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等.如果 a=b,那么 ac=bc;如果 a = b (c ≠ 0),那么 a/c= b/c .3. 实际问题与一元一次方程3.1. 解题步骤(重点:等量关系)3.1.1. 审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x. 列:根据题意寻找等量关系列方程.解:解方程.验:检验方程的解是否符合题意.答:写出答案 (包括单位).3.2. 常见的几种方程类型及等量关系3.2.1. (1)行程问题中基本量之间关系:3.2.1.1. 路程=速度×时间.①相遇问题:全路程=甲走的路程+乙走的路程;②追及问题:甲为快者,被追路程=甲走路程-乙走路程;③流水行船问题: v顺=v静+v水,v逆=v静-v水.3.2.2. (2) 工程问题中基本量之间的关系:3.2.2.1. ①工作量 = 工作效率×工作时间;②合作的工作效率 = 工作效率之和;③工作总量 = 各部分工作量之和 = 合作的工作效率×工作时间;④在没有具体数值的情况下,通常把工作总量看作 1.3.2.3. (3) 销售问题中基本量之间的关系:3.2.3.1. ①商品利润 = 商品售价-商品进价。

初一年级巩固数学知识点之一元一次方程

初一年级巩固数学知识点之一元一次方程

初一年级巩固数学知识点之一元一次方程
2019年初一年级巩固数学知识点之一元一次方

完成了小学阶段的学习,进入紧张的初中阶段。

这篇2019年初一年级巩固数学知识点之一元一次方程,是查字典数学网特地为大家整理的,欢迎阅读~
一元一次方程
1.等式:用=号连接而成的式子叫等式.
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0).。

一元一次方程基础知识详解

一元一次方程基础知识详解

一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法基础知识讲解【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项(1)移项要变号(2)不要丢项要变号)合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解b x a=.不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,b x a=;(2)当a=0,b=0时,x 为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)基础知识讲解【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.要点三、常见列方程解应用题的几种类型5.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1217.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .8.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.《初中数学典型题思路分析》价格及说明四、实际问题与一元一次方程(二)基础知识讲解【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型1.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.五、《一元一次方程》全章复习与巩固【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.。

人教版数学七年级上册31《一元一次方程》全章复习与巩固(提高)知识讲解

人教版数学七年级上册31《一元一次方程》全章复习与巩固(提高)知识讲解

《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b(a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】 类型一、一元一次方程的相关概念1.已知方程(3m-4)x 2-(5-3m)x-4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m-4)x 2-(5-3m)x-4m =-2m 是关于x 的一元一次方程,所以3m-4=0且5-3m ≠0.由3m-4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m-4)x 2-(5-3m)x-4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m-4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】(2015•温州模拟)已知3x=4y,则= .【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.(2016春•淅川县期中)解方程﹣=.【思路点拨】方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【答案与解析】解:原方程可化为6x﹣=,两边同乘以6得36x﹣21x=5x﹣7,解得:x=﹣0.7.【总结升华】此题考查了解一元一次方程,注意第一步用到的是分数的基本性质:分子和分母扩大相同的倍数,分数的值不变.举一反三:【变式1】解方程26752254436z z z z z +---++=- 【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x-1-[3(2x-1)+3]}=5.【答案与解析】解:把2x-1看做一个整体.去括号,得:3(2x-1)-9(2x-1)-9=5.合并同类项,得-6(2x-1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x-1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x-1=a ,则原方程化为3[a-(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x-2|=3.【答案与解析】解:当x-2≥0时,原方程可化为x-2=3,得x=5.当x-2<0时,原方程可化为-(x-2)=3,得 x=-1.所以x=5和x=-1都是方程|x-2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x-2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x-2|=3的解为x=-1和x=5.举一反三:【变式1】若关于x的方程230x m-+=无解,340x n-+=只有一个解,450x k-+=有两个解,则,,m n k的大小关系为: ( )A. m n k>> B.n k m>> C.k m n>> D.m k n>>【答案】A【变式2】若9x=是方程123x m-=的解,则__m=;又若当1n=时,则方程123x n-=的解是.【答案】1; 9或3.类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y千米,则有:151530601860y y+=-,解得:452y=由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时).李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x千米/时, 则有:452271010116060yx===--(千米/时)答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8.(2015春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x折出售此商品,得:⨯=+40000.12000(120%),xx=解得: 6.答:售货员最低可以打六折出售此商品.。

初一数学一元一次方程知识梳理与练习巩固

初一数学一元一次方程知识梳理与练习巩固

初一数学一元一次方程知识梳理与练习巩固第二讲 一元一次方程✍知识网络1.定义:在一个方程中,如果只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。

(linear equation in one )一般形式:ax+b=0(a 、b 为常数,a ≠0)。

一元一次方程只有一个解。

一元一次方程的最终结果(方程的解)是x=a 的形式2.性质:一元一次方程的“等式的性质1”和“等式的性质2” 1).等式两边同时加或减一个相同数,等式两边相等。

(如果a=b ,那么a ±c=b ±c 。

)2).等式两边同时乘或除以一个相同数(0除外),或一个整式,等式两边相等。

(如果a=b ,那么ac=bc 。

如果a=b ,c ≠0,那么a/c=b/c 。

)解法是通过移项将未知数移到一边,再把常数移到一边(等式基本性质1,注意符号!),然后两边同时除以未知数系数(化系数为1,等式基本性质2),即可得到未知数的值。

3.一般解法:1)去分母 方程两边同时乘各分母的最小公倍数。

2)去括号 一般先去小括号,在去中括号,最后去大括号。

但顺序有时可依据情况而定使计算简便。

可根据乘法分配律。

3)移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。

4)合并同类项 将原方程化为ax=b(a ≠0)的形式。

5)系数化1 方程两边同时除以未知数的系数,得出方程的解。

✍例题精选例1.3 1.50.2x --0.20.10.03x -=2.5例2.解方程:312-x -12110+x =412+x -1例3.已知关于x 的方程3a-x=2x +3的解是4,则(-a )2-2a = 例4.当m= 时,方程5x+4=4x-3和方程2(x+1)-m=-2(m-2)的解相同;当n= 时,代数式4n+8与3n-10的值互为相反数。

例5.已知关于x 的方程2a(x-1)=(5-a)x+3b 有无数多解,试求a 、b 的值。

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

人教版七年级上册数学:第三章《一元一次方程》全章复习与巩固(提高)知识讲解(含答案)

《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。

【初中数学】七年级上册数学期末知识点巩固:《一元一次方程》

【初中数学】七年级上册数学期末知识点巩固:《一元一次方程》

【初中数学】七年级上册数学期末知识点巩固:《一元一次方程》
知识点对朋友们的学习非常重要,大家一定要认真掌握,数学网为大家整理了七年级
上册数学期末知识点巩固:《一元一次方程》,让我们一起学习,一起进步吧!
1.方程式:与“=”相连的方程式称为方程式
2.等式的性质:
方程性质1:在方程两边加(或减)相同的数或相同的整数,结果仍然是一个方程;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程式:含有未知量的方程式称为方程式
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能
代入”!
5.术语移位:改变符号后,将方程的术语从一边移到另一边称为术语移位。

转移项的
基础是方程属性1
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系
数不是零的整式方程是一元一次方程.
7.一元线性方程的标准形式:ax+B=0(x为未知数,a和B为已知数,a≠ 0)
8.一元一次方程解法的一般步骤:
简化方程——分数的基本性质
去分母----------同乘(不漏乘)最简公分母
去掉括号-----------注意符号的变化
移项----------变号(留下靠前)
合并相似项----------合并后的符号
系数化为1---------除前面
以上是数学网编撰的七年级第一册《一元一次方程式》期末数学知识点的整理。

怎么样?你还满意吗?我希望它能对你的学习有所帮助。

同时,我也祝你学习进步,考试成功!。

《一元一次方程》全章复习与巩固(基础)讲解

《一元一次方程》全章复习与巩固(基础)讲解

一、选择题1.下列方程中,是一元一次方程的是( .A . B. C. D.x =02. 下列变形错误的是(A. 由x + 7= 5得x+7-7 = 5-7B. 由3x -2 =2x + 1得x= 3C. 由4-3x = 4x-3得4+3 = 4x+3xD. 由-2x= 3得x= -3.某书中一道方程题:,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是,那么□处应该是数字( . A .-2.5 B .2.5 C.5 D.74. 将(3x +2 -2(2x -1 去括号正确的是(A. 3x +2-2x +1B. 3x +2-4x +1C. 3x +2-4x -2D. 3x +2-4x +25. 当x=2时,代数式ax -2x 的值为4,当x=-2时,这个代数式的值为()A. -8B.-4C. -2D.86.解方程时,去分母正确的是( .A .3(x+1=1-5(2x-1B .3x+3=15-10x-5C .3(x+1=15-5(2x-1D .3x+1=15-10x+57.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( .A .4 B.5 C.6 D.78.某超市选用每千克28元的甲种糖3千克,每千克20元的乙种糖2千克,每千克12元的丙种糖5千克混合成杂拌糖后出售,在总销售额不变的情况下,这种杂拌糖平均每千克售价应是( .A .18元 B.18.4元 C.19.6元 D.20元二、填空题9.在0,-1,3中,______是方程3x -9=0的解.10.如果3x=-6是关于x 的一元一次方程,那么a =______,方程的解______.11.若x =-2是关于x 的方程的解,则a =______.12.由3x =2x +1变为3x -2x =1,是方程两边同时加上______.13.“代数式9-x 的值比代数式-1的值小6”用方程表示为______.14.当x =______时,代数式与互为相反数.15.有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水______升.16.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是______.三、解答题17.(1);(2).18.已知代数式的值为0,求代数式的值.19.居民生活用电的基本价格为每千瓦时0.40元,若每月的用电量超过a 千瓦时,那么超过部分按基本电价的70%收费.(1某户5月份用电84千瓦时,共交电费30.72元,求a 的值.(2若该户6月份的电费为平均每千瓦时0.36元,则该户6月份共用电多少千瓦时? 应交电费多少元?20.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一元一次方程》全章复习与巩固(提高)知识讲解撰稿:孙景艳审稿:赵炜【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程. 【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。

【总结升华】解答本题需从“公司职工正好坐满每辆车且总费用刚好为4920元”中挖掘两个等量关系构建方程求解。

举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员最低可以打x 折出售此商品,得:40002000(120%)x =+解得:0.6x =答:售货员最低可以打六折出售此商品.。

相关文档
最新文档