化工原理终极总结

合集下载

化工原理总结

化工原理总结

化工原理总结1,单元操作:流体的输送与压缩、沉降、过滤、传热、蒸发、结晶、冷冻、吸收、蒸馏、萃取、干燥等基本物理过程。

2,单元操作遵循的规律①,动量传递过程流体的输送与压缩、沉降过滤②,热量传递过程传热蒸发结晶③,质量传递过程吸收蒸馏萃取干燥④,热力学过程冷冻深度冷冻3,柏努力方程(1)理想不可压缩流体Z1+u1²/2g+P1/ρg=Z2+u2²/2g+P2/ρgZ:流体的位压头 u/2g:动压头 P/ρg:静压头(2)实际不可压缩流体He+Z1+u1²/2g+P1/ρg=Z2+u2²/2g+P2/ρg+HfHe:外加有效压头 Hf:管路消耗能量,也称压头损失4,汽蚀:大量气体随液体进入高压区后,便被周围液体压碎,并重新凝集成液体,气泡所在空间形成真空,周围液体的质点就会以极大的速度冲向汽泡中心,从而在这些气泡的冲击点上产生很高的局部压力,不断打击着叶轮或泵壳的表面使其出现麻点、小的裂缝、长时间操作下去、会使叶轮或泵壳呈海绵状,这种现象称“汽蚀”。

汽蚀发生时,泵体震动,并发出噪音,泵的流量、扬程也明显下降防止汽蚀现象发生:泵入口压强P1大于液体的饱和蒸汽压Pv5,气缚:泵启动时,泵体内是空气,而被输送的是液体,则启动后泵产生的压头虽为定值,但因空气密度太小,产生的压差或泵吸入口的真空度很小而不能将液体吸入泵内,此种现象成为“气缚”。

防止气缚的发生:离心泵启动时需先使泵内充满液体。

6,离心泵的性能曲线离心泵工作是的扬程、功率和效率等主要性能参数不是固定的,而是随着流量的变化而变化的。

生产中把He—V、N轴—V、η—V的变化关系画在同一坐标纸上,得出一组曲线,称为离心泵的工作性能曲线。

(1)He—V线扬程与流量的关系表明离心泵的扬程随流量的增大而下降(2)N轴—V线轴功率与流量的关系表明离心泵的轴功率随流量的增大而上升,流量为零时的轴功率最小。

(3)η—V线效率与流量的关系表明,当V=0时,η=0;开始时随着流量的增大效率上升,并达到最大值;然后,随流量的增大,效率下降。

化工原理公式总结

化工原理公式总结

化工原理公式总结
化工原理公式总结如下:
1. 质量平衡公式:
输入质量 = 输出质量 + 累积质量
2. 物质平衡公式:
输入组分质量流率 = 输出组分质量流率 + 生成/消耗组分质量流率 + 储存组分质量流率
3. 能量平衡公式:
输入能量 = 输出能量 + 生成/消耗能量 + 储存能量
4. 平均温度计算公式:
平均温度= ∫(T*dA) / ∫dA,其中 T 为温度,dA 为面积微元
5. 理想气体状态方程:
PV = nRT,其中 P 为压力,V 为容积,n 为物质的摩尔数,R 为气体常数,T 为温度
6. 液体体积膨胀公式:
V2 = V1 * (1 + β * ΔT),其中 V1 为初始体积,V2 为最终体积,β 为膨胀系数,ΔT 为温度变化
7. 理想混合气体摩尔分数公式:
Xi = ni / n,其中 Xi 表示组分 i 的摩尔分数,ni 表示组分 i 的摩尔数,n 表示总摩尔数
8. 溶液浓度计算公式:
质量分数 = 溶质质量 / 总溶液质量
摩尔分数 = 溶质摩尔数 / 总溶液摩尔数
体积分数 = 溶质体积 / 总溶液体积
9. 反应速率公式:
反应速率 = k * [A]^m * [B]^n,其中 k 为速率常数,[A] 和[B] 表示反应物 A 和 B 的浓度,m 和 n 为反应级数
10. 溶解度公式(亨利定律):
P = K * C,其中 P 为气体的分压,K 为溶解度常数,C 为溶质的浓度。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。

- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。

- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。

2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。

- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。

- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。

- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。

3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。

- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。

- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。

- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。

4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。

- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。

- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。

- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。

5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。

- 质量传递原理:质量守恒、质量传递微分方程、边界条件。

- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。

- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。

6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。

- 控制器设计:PID控制器、串级控制系统、比值控制系统。

- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。

- 先进控制策略:模糊控制、自适应控制、预测控制。

7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。

- 热力学第二定律:熵的概念、熵增原理、卡诺循环。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理终极总结

化工原理终极总结

第一章流体与输送机械1、基本研究方法:实验研究法、数学模型法2、牛顿粘性定理:应用条件:3、阻力平方区:管内阻力与流速平方成正比的流动区域;原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。

4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。

流动边界层分离的弊端:增加流动阻力。

优点:增加湍动程度。

5、流体黏性是造成管内流动机械能损失的原因。

6、压差计:文丘里孔板转子7、离心泵工作原理:离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能量,使叶轮外缘的液体静压强提高。

液体离开叶轮进入泵壳后,部分动能转变成为静压能。

当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。

8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。

气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。

9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。

10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能)11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。

12、大型泵的效率通常高于小型泵是由于:容积效率大。

13、叶轮后弯的优缺点优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。

缺点:产生同样的理论压头所需泵的体积大。

14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关;b 压头仅取决于管路特性。

(耐压强度)c 不能在关死点运转。

d 很好的自吸能力15、真空泵的性能:极限真空和抽吸时间16、无限大平板液膜厚a ,其水力当量直径为4a第二章机械分离与固体流化态1、过滤推动力:重力压差离心力2、气体净制:重力沉降、离心沉降、过滤(膜)。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)
管截面速度大小分布:
无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:

心泵的的启动流程:


吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能


排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是

(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结

(完整版)化工原理各章节知识点总结第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u 、压强p 不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原则的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反应。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

化工原理重点总结归纳,考试绝对有用

化工原理重点总结归纳,考试绝对有用

化⼯原理重点总结归纳,考试绝对有⽤1.伯努⼒⽅程:2211221222u p u pgz gz ρρ++=++(J / kg ),即1kg 不可压缩理想流体做稳定流动时机械能恒算。

2.雷诺数Re =du ρµ, Re ≤ 2000为层流;Re ≥4000为湍流;2000<R e <4000时可能是层流,也可能是湍流;雷诺数=表征惯性⼒/黏性⼒。

3.层流时的阻⼒损失:Δp f =2432lu 128lVs=d dµµπ(Pa ),即哈根-泊谡叶公式,是计算沿程阻⼒损失的公式。

4.单位质量流体的沿程损失:wf =22l u d λ= 232lugd µρ(J/kg );单位体积流体的沿程损失Δpf =ρwf ;单位重量流体的沿程损失hf fw =g。

这三式称为范宁公式,是沿程损失的计算通式,对层流和湍流均适⽤。

层流时64=Re λ,湍流粗糙管时0.250.3164=Reλ,近年得出的新的公式0.2368=0.100(+)Redελ,阻⼒平⽅区时dε。

完全湍流区,沿程损失wf ∝u 2.过渡区湍流区λ与Re 和ε/d 均有关,完全湍流区λ仅与ε/d 有关。

5.当量直径e 4d =流通截⾯积润湿周边长;6.突然扩⼤阻⼒系数122=1-)A A ζ(;突然缩⼩当A1/A2=0时,ζ=0.5;A1/A2=1时,ζ=0。

7.管内流动总阻⼒损失=沿程损失+局部损失,即Σwf=22 =(+)=()22e l l l u u d d λζλ+∑∑(J/kg ).测速管流速:。

转⼦流量计的特点:恒压差、恒流速、变截⾯。

8.对于任⼀管路输送系统,所需压头为he =2f z+++h 2p u g gρ∑。

9.离⼼泵压头测量公式:H ≈()c b c b p p p p g gρρ'-+=真空 10. 若离⼼泵转速由n 变为n ',且变化幅度不⼤,则23,(),()Q n H n N n Q n H n N n''''''===;叶轮直径由D 变为D ',可视为泵的效率不变,则23,(),()Q D H D N D Q D H D N D''''''===。

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。

一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。

祝你取得好成绩!。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、 流动阻力、复杂管路、流量计一、流体静力学:●压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压 大气压力、绝对压力、表压力(或真空度)之间的关系 ●流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=-倾斜液柱压差计 微差压差计二、流体动力学●流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ● 连续性方程及重要引论:●一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;m S =GA=π/4d 2GV S =uA=π/4d 2u3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:●流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 化工原理简介:化工原理是研究化学反应过程及其工艺条件、能量传递和物料传递等基本规律的学科,为化学工艺的设计、改进和优化提供理论基础。

2. 化学反应动力学:研究化学反应速率与反应物浓度、温度、压力等因素的关系。

常用动力学模型有零级、一级和二级反应动力学模型。

3. 热力学:研究物质在不同条件下的热力学性质,如焓、熵、自由能等。

常用的热力学模型有理想气体模型、理想溶液模型等。

4. 质量守恒:化工过程中,物料的质量总量在任何情况下都是保持不变的。

质量守恒方程可以用来描述物料在化工过程中的流动和转化。

5. 能量守恒:能量守恒是指在化工过程中能量的总量保持不变。

能量守恒方程可以用来描述能量的传递和转化。

6. 流体力学:研究流体的性质和流动规律。

常用的流体力学方程有连续性方程、动量方程和能量方程。

7. 反应器设计:根据反应动力学和热力学的知识,设计和选择适当的反应器,以实现期望的反应效果。

8. 分离工艺:将化工过程中的混合物分离成纯净的组分。

常用的分离方法包括蒸馏、萃取、吸附、结晶、膜分离等。

9. 催化剂:催化剂能够加速化学反应速率,同时不参与反应本身。

催化剂通常提供合适的活化能降低剂量。

10. 传热:研究热量在物体之间传导、对流和辐射的过程。

传热过程是化工过程中能量交换的重要方面。

11. 反应平衡:当化学反应达到一种稳定状态时,正向反应与反向反应的速率相等。

反应平衡可以根据平衡常数来描述。

12. 操作过程安全:化工过程中需要注意操作过程的安全,如避免爆炸、毒性物质的泄露等。

合理设计和控制工艺参数是保证操作过程安全的关键。

13. 环境保护:化工过程中需要注意减少对环境的污染和危害。

合理的废物处理和资源利用是环境保护的重要内容。

14. 化工装置:化工装置是指用来进行化工过程的设备和设施,例如反应器、分离设备、传热设备等。

15. 工艺流程图:用图形和符号表示化工过程的流程、设备和物料流动方式,便于理解和分析工艺过程。

化工原理的知识点总结

化工原理的知识点总结

化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。

在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。

常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。

2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。

反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。

通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。

3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。

反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。

通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。

二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。

传热原理主要包括热传导、对流传热和辐射传热三种方式。

热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。

2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。

传质原理主要包括扩散、对流传质和表面传质。

扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。

三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。

在化工过程中,流体的性质对设备设计和流体流动有重要影响。

流体的主要性质包括黏度、密度、表观黏度、流变性等。

2. 流体流动流体流动是指流体在管道或设备内部的运动过程。

流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强;表压强力=绝对压强力-大气压强力 真空度=大气压强-绝对压 大气压力、绝对压力、表压力或真空度之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等;此方程式只适用于静止的连通着的同一种连续的流体; 应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s平均流速 u m/s G=u ρ ● 连续性方程及重要引论:● 一实际流体的柏努利方程及应用例题作业题 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =运算效率进行简单数学变换应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配;三、流体流动现象:● 流体流动类型及雷诺准数:1层流区 Re<2000 2过渡区 2000< Re<4000 3湍流区 Re>4000 本质区别:质点运动及能量损失区别层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别;流体在管内作层流流动时,其质点沿管轴作有规则的平行运动,各质点互不碰撞,互不混合 流体在管内作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的旋涡;由于质点碰撞而产生的附加阻力较自黏性所产生的阻力大得多,所以碰撞将使流体前进阻力急剧加大;管截面速度大小分布:无论是层流或揣流,在管道任意截面上,流体质点的速度均沿管径而变化,管壁处速度为零,离开管壁以后速度渐增,到管中心处速度最大;层流:1、呈抛物线分布;2、管中心最大速度为平均速度的2倍; 湍流:1、层流内层;2、过渡区或缓冲区;3、湍流主体湍流时管壁处的速度也等于零,靠近管壁的流体仍作层流流动,这-作层流流动的流体薄层称为层流内层或层流底层;自层流内层往管中心推移,速度逐渐增大,出现了既非层流流动亦非完全端流流动的区域,这区域称为缓冲层或过渡层,再往中心才是揣流主体;层流内层的厚度随Re 值的增加而减小; 层流时的速度分布 max 21u u =湍流时的速度分布 max 8.0u u ≈四、流动阻力、复杂管路、流量计:● 计算管道阻力的通式:伯努利方程损失能范宁公式的几种形式: 圆直管道 22u d l h f λ=非圆直管道 22u d l W p f f ρλρ==∆运算时,关键是找出λ值,一般题目会告诉,仅用于期末考试,考研需扩充 ● 非圆管当量直径:当量直径:e d e d =4H r 4倍水力半径 水力半径:H r =ΠA流体在通道里的流通截面积A 与润湿周边长Π之比●流量计概述:节流原理孔板流量计是利用流体流经孔板前后产生的压力差来实现流量测量; 孔板流量计的特点:恒截面、变压差,为差压式流量计; 文丘里流量计的能量损失远小于孔板流量计;转子流量计的特点:恒压差、恒环隙流速而变流通面积,属截面式流量计; ● 复杂管路:了解并联管路各支路的能量损失相等,主管的流量必等于各支管流量之和;第二章、流体输送机械一、离心泵的结构和工作原理二、特性参数与特性曲线 三、气蚀现象与安装高度四、工作点及流量调节离心泵:电动机静压能流体(动能)转化−−−−→−→ 一、离心泵的结构和工作原理:● 离心泵的主要部件: 离心泵的的启动流程:叶轮 吸液管泵,无自吸能力 泵壳 液体的汇集与能量的转换 转能 泵轴 排放 密封 填料密封 机械密封高级叶轮 其作用为将原动机的能量直接传给液体,以提高液体的静压能与动能主要为静压能; 泵壳 具有汇集液体和能量转化双重功能;轴封装置 其作用是防止泵壳内高压液体沿轴漏出或外界空气吸入泵的低压区;常用的轴封装置有填料密封和机械密封两种;气缚现象:离心泵启动前泵壳和吸入管路中没有充满液体,则泵壳内存有空气,而空气的密度又远小于液体的密度,故产生的离心力很小,因而叶轮中心处所形成的低压不足以将贮槽内液体吸入泵内,此时虽启动离心泵,也不能输送液体,此种现象称为气缚现象,表明离心泵无自吸能力;因此,离心泵在启动前必须灌泵;汽蚀现象:汽蚀现象是指当泵入口处压力等于或小于同温度下液体的饱和蒸汽压时,液体发生汽化,气泡在高压作用下,迅速凝聚或破裂产生压力极大、频率极高的冲击,泵体强烈振动并发出噪音,液体流量、压头出口压力及效率明显下降;这种现象称为离心泵的汽蚀;二、特性参数与特性曲线:流量Q :离心泵在单位时间内排送到管路系统的液体体积;压头扬程H :离心泵对单位重量1N 的液体所提供的有效能量;效率η:总效率η=ηv ηm ηh轴功率N :泵轴所需的功率ηeN N =η-Q 曲线对应的最高效率点为设计点,对应的Q 、H 、N 值称为最佳工况参数,铭牌所标出的参数就是此点的性能参数;会使用IS 水泵特性曲线表,书P117三、气蚀现象与安装高度:● 气蚀现象的危害:①离心泵的性能下降,泵的流量、压头和效率均降低;若生成大量的气泡,则可能出现气缚现象,且使离心泵停止工作;②产生噪声和振动,影响离心泵的正常运行和工作环境; ③泵壳和叶轮的材料遭受损坏,降低了泵的使用寿命; 解决方案:为避免发生气蚀,就应设法使叶片入口附近的压强高于输送温度下的液体饱和蒸气压;通常,根据泵的抗气蚀性能,合理地确定泵的安装高度,是防止发生气蚀现象的有效措施; ● 离心泵的汽蚀余量:为防止气蚀现象发生,在离心泵人口处液体的静压头 p 1/p g 与动压头 u 12/2 g 之和必须大于操作温度下液体的饱和蒸气压头 p v /p g 某一数值,此数值即为离心泵的气蚀余量;必须汽蚀余量:NPSH r● 离心泵的允许吸上真空度:● 离心泵的允许安装高度H g 低于此高度:关离心泵先关阀门,后关电机,开离心泵先关出口阀,再启动电机;四、工作点及流量调节:● 管路特性与离心泵的工作点:由两截面的伯努利方程所得全程化简;联解既得工作点;● 离心泵的流量调节:1、 改变阀门的开度改变管路特性曲线;2、 改变泵的转速改变泵的特性曲线;减小叶轮直径也可以改变泵的特性曲线,但一般不用;3、 泵串联压头大或并联流速大 ● 往复泵的流量调节: 1、 旁路调节;2、 改变活塞冲程和往复次数;第三章、非均相物系的分离密度不同一、重力沉降 二、离心沉降 三、过滤 一、重力沉降:● 沉降过程:先加速短,后匀速长沉降过程;● 流型及沉降速度计算:参考作业及例题层流区滞流区或斯托克斯定律区:10-4<Re t <1 K<过渡区或艾伦定律区:1<Re t <103<K<湍流区或牛顿定律区:103<Re t <2⨯105K>相应沉降速度计算式:公式不用记,掌握运算方法 ● 计算方法: 1、 试差法:即先假设沉降属于某一流型譬如层流区,则可直接选用与该流型相应的沉降速度公式计算t u ,然后按t u 检验Re t 值是否在原设的流型范围内;如果与原设一致,则求得的t u 有效;否则,按算出的Re t 值另选流型,并改用相应的公式求t u ;2、 摩擦数群法:书p1493、 K 值法: 书p150 ● 沉降设备:为满足除尘要求,气体在降尘室内的停留时间至少等于颗粒的沉降时间,所以: 单层降尘室生产能力:t s blu V ≤与高度H 无关,注意判断选择填空题多层降尘室:t s blu V )1n (+≤n+1为隔板数,n 层水平隔板,能力为单层的n+1倍 二、离心沉降:● 离心加速度:惯性离心力场强度Ru2T ;重力加速度:g● 离心沉降速度u r :R u T s 23)(d 4ρζρρ-;重力沉降速度u T :gs ρζρρ3)(d 4-● 离心分离因数K C : K C RUu T Trg u 2==离心沉降速度与重力沉降速度的比值,表征离心沉降是重力沉降的多少倍 ● 离心沉降设备:旋风分离器:利用惯性离心力的作用从气流中分离出尘粒的设备 性能指标:1、 临界粒径d c :理论上在旋风分离器中能被完全分离下来的最小颗粒直径;2、 分离效率:总效率η0;分效率ηp 粒级效率;3、 分割粒径d 50:d 50是粒级效率恰为50%的颗粒直径;4、 压力降△p :气体经过旋风分离器时,由于进气管和排气管及主体器壁所引起的摩擦阻力,流动时的局部阻力以及气体旋转运动所产生的动能损失等,造成气体的压力降;标准旋风标准旋风N e =5,ζ=;三、过滤:● 过滤方式:1、 饼层过滤:饼层过滤时,悬浮液置于过滤介质的一侧,固体物沉积于介质表面而形成滤饼层;过滤介质中微细孔道的直径可能大于悬浮液中部分颗位的直径,因而,过滤之初会有一些细小颗粒穿过介质而使滤液浑浊,但是颗粒会在孔道中迅速地发生“架桥”现象见图,使小子孔道直径的细小颗粒也能被截拦,故当滤饼开始形成,滤液即变清,此后过滤才能有效地进行;可见,在饼层过滤中,真正发挥截拦颗粒作用的主要是滤饼层而不是过滤介质;饼层过滤适用于处理固体含量较高的悬浮液;深床过滤:在深床过滤中,固体颗粒并不形成滤饼,而是沉积于较厚的粒状过滤介质床层内部;悬浮液中的颗粒尺寸小于床层孔道直径,当颗粒随流体在床层内的曲折孔道中流过时,便附在过滤介质上;这种过滤适用于生产能力大而悬浮液中颗粒小、含量甚微的场合;自来水厂饮水的净化及从合成纤维纺丝液中除去极细固体物质等均采用这种过滤方法; ● 助滤剂的使用及注意:为了减少可压缩滤饼的流动阻力,有时将某种质地坚硬而能形成疏松饼层的另一种固体颗粒混入悬浮液或预涂于过滤介质上,以形成疏松饼层,使滤液得以畅流;这种预混或预涂的粒状物质称为助滤剂;对助滤剂的基本要求如下:①应是能形成多孔饼层的刚性颗粒,使滤饼有良好的渗透性、较高的空隙率及较低的流动阻力;②应具有化学稳定性,不与悬浮液发生化学反应,也不溶于液相中; 应予注意,-般以获得清净滤液为目的时,采用助滤剂才是适宜的; ● 恒压过滤方程式:理解,书P175对于一定的悬浊液,若皆可视为常数,、及'、νμr 令νμ'1r k =,k ——表征过滤物料特性的常数,;恒压过滤时,压力差△p 不变,k 、A 、s 都是常数再令● 过滤常数的测定:书P179,包括压缩因子 ● 板框压力机:过滤时,悬浮液在指定的压强下经滤浆通道自滤框角端的暗孔进入框内,滤液分别穿过两侧滤布,再经邻板板面流至滤液出口排走,固体则被截留于框内,如图所示,待滤饼充满滤框后,即停止过滤;若滤饼需要洗涤,可将洗水压人洗水通道,经洗涤板角端的暗孔进入板面与滤布之间;第四章 传 热一、热传导、对流传热二、总传热三、换热器及强化传热途径 一、热传导、对流传热:● 传热基本方式:1、热传导宏观无位移:若物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导又称导热;热传导的条件是系统两部分之间存在温度差,此时热量将从高温部分传向低温部分,或从高温物体传向与它接触的低温物体,直至整个物体的各部分温度相等为止;2、热对流宏观有位移:流体各部分之间发生相对位移所引起的热传递过程称为热对流简称对流;热对流仅发生在流体中;在流体中产生对流的原因有二: 一是因流体中各处的温度不同而引起密度的差别,使轻者上浮,重者下沉,流体质点产生相对位移,这种对流称为自然对流;二是因泵风机或搅拌等外力所致的质点强制运动,这种对流称为强制对流;3、热辐射不需要介质:因热的原因而产生的电磁波在空间的传递,称为热辐射;所有物体包括固体、液体和气体都能将热能以电磁波形式发射出去,而不需要任何介质,也就是说它可以在真空中传播;4、对流传热:流体流过固体壁面流体温度与壁面温度不同时的传热过程称为对流传热;1流体无相变的对流传热 流体在传热过程中不发生相变化,依据流体流动原因不同,可分为两种情况;①强制对流传热,流体因外力作用而引起的流动;②自然对流传热,仅因温度差而产生流体内部密度差引起的流体对.. 流动; 2流体有相变的对流传热 流体在传热过程中发生相变化,它分为两种情况; ①蒸气冷凝,气体在传热过程中全部或部分冷凝为液体;②液体沸腾,液体在传热过程中沸腾汽化,部分液体转变为气体对流传热的温度分布情况对流传热是集热对流和热传导于一体的综合现象;对流传热的热阻主要集中在层流内层,因此,减薄层流内层的厚度是强化对流传热的主要途径; ● 传热过程中热、冷流体接触热交换方式:书p211 1、 直接接触式换热和混合式换热器; 2、 蓄热式换热和蓄热器;3、 典型的间壁式换热器:列管换热器,区分壳程、管程、单/多壳程、单/多管程特定的管壳式换热器传热面积:S=dL n π S ——传热面积;n ——管数;d ——管径,m ; L ——管长,m;● 传热速率和热通量:传热速率Q 又称热流量指单位时间内通过传热面积的热量; 传热速率=传热热阻传热推动力(温度差);Q=Rt∆ R ——整个传热面的热阻,W C /。

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。

(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。

化工原理终极总结

化工原理终极总结

化工原理终极总结第一章流体与输送机械1、基本研究方法:实验研究法、数学模型法2、牛顿粘性定理:应用条件:3、阻力平方区:管内阻力与流速平方成正比的流动区域;原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。

4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。

流动边界层分离的弊端:增加流动阻力。

优点:增加湍动程度。

5、流体黏性是造成管内流动机械能损失的原因。

6、压差计:文丘里孔板转子7、离心泵工作原理:离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能量,使叶轮外缘的液体静压强提高。

液体离开叶轮进入泵壳后,部分动能转变成为静压能。

当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。

8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。

气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。

9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。

10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能)11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。

12、大型泵的效率通常高于小型泵是由于:容积效率大。

13、叶轮后弯的优缺点优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。

缺点:产生同样的理论压头所需泵的体积大。

14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关;b 压头仅取决于管路特性。

(耐压强度)c 不能在关死点运转。

d 很好的自吸能力15、真空泵的性能:极限真空和抽吸时间16、无限大平板液膜厚a ,其水力当量直径为4a第二章机械分离与固体流化态1、过滤推动力:重力压差离心力2、气体净制:重力沉降、离心沉降、过滤(膜)。

化工原理总结

化工原理总结

N OG
②平均推动力
N OL
Y1 Y2 Ym X1 X 2 X m
③图解积分法:理论、严格
七、填料塔
颗粒型
拉西环
鲍尔环
阶梯环 鞍型
填料
填 料 塔 规整型
丝网波纹 板波纹
附属 装置
填料支承板
液体喷淋装置 液体再分布器
载点与泛点:
Δp/Z kPa/m
B点称为泛点
液泛;泛点气速
L3 > L2 >L1 液泛区 B 载液区
0
pA p0 yA A xA P P
v A pA / x A v B pB / x B
x y 1 ( 1) x
2. 物料衡算与热量衡算
F D W
FxF DxD WxW
V L D
DxD D 100% Fx F
L' V ' W
' ' L xm V ' y'm1 WxW
Vyn1 Lxn DxD
恒 摩 尔 流
R 1 yn1 xn xD R1 R1 L qF W ' ym 1 xm xW L qF W L qF W
q xF y xq -1 q -1
二、两个概念
1. 回流比 R = L/D
Rmin
x D - yq yq - xq
亨 利 定 律 适 用 时
各 系 数 之 间 的 关 系
1 1 1 K G HkL kG 1 H 1 K L kG k L
KG P KY (1 Y )(1 Y * ) K LC KX (1 X )(1 X * )
易溶体系

化工原理总结

化工原理总结
②过渡区: 2000<Re<4000,流动类型不稳定,为安全起 见,一般按湍流计算λ 。
③ 湍 流 区 : Re≥4000 及 虚 线 以 下 的 区 域 λ =f(Re,ε /d)。Re较小,λ 集中;Re较大,λ 分散
ε /d=const:Re↑,λ ↓ ; Re=const:ε /d↑,λ ↑ ④完全湍流区:λ 仅与ε /d有关,而与Re无关。 Re 一定时, λ 随 ε /d 增大而增大,阻力损失与速度
32 lu p f 2 d
64 Re
(重点)
层流时的哈根-波谡叶方程
(4)湍流时的摩擦系数
湍流时摩擦系数是通过因次分析(量纲分析)和实验
得到与Re和相对粗糙度的关系。并绘在图上,P44, 该图可分为四个区域:
①层流区:Re≤2000,λ 与Re为直线关系,而与ε /d无 关。阻力损失与速度的一次方成正比。λ 可计算,也可 以查图。 λ =64/Re λ =f(Re)
u2 d1 2 ( ) u1 d 2 (重点)
H 称为压头或扬程,其物理意义为单位重量流体流经
泵所获得的能量,单位为m 。
u1 p2 u 2 z1 g We z 2 g hf 2 2
(非常重要) 实际流体的柏努利方程式(单位质量) We为单位质量流体流经泵所获得的能量,也称为有 效功,单位为J/kg。 有效功率:单位时间输送设备所作的有效功。以Ne 表示:
x wn
n
x wB x wn ——液体混合物中各组分的质量分数
公式应用条件:混合前后体积不变,则1kg混合液的体积
等于各组分单独存在时的体积之和。
(3)气体密度的计算
气体的密度随温度和压强而变化
当气体的压强不太高、温度不太低时,气体密度可按
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章流体与输送机械1、基本研究方法:实验研究法、数学模型法2、牛顿粘性定理:应用条件:3、阻力平方区:管内阻力与流速平方成正比的流动区域;原因:流体质点与粗糙管壁上凸出的地方直接接触碰撞产生的惯性阻力在压倒地位。

4、流动边界层:紧贴壁面非常薄的一区域,该薄层内流体速度梯度非常大。

流动边界层分离的弊端:增加流动阻力。

优点:增加湍动程度。

5、流体黏性是造成管内流动机械能损失的原因。

6、压差计:文丘里孔板转子7、离心泵工作原理:离心泵工作时,液体在离心力的作用下从叶轮中心被抛向外缘并获得能量,使叶轮外缘的液体静压强提高。

液体离开叶轮进入泵壳后,部分动能转变成为静压能。

当液体从叶轮中心被抛向外缘时,在中心处形成低压区,在外界与泵吸入口的压差作用下,致使液体被吸进叶轮中心。

8、汽蚀现象:离心泵安装过高,泵进口处的压力降低至同温度下液体的饱和蒸汽压,使液体气化,产生气泡。

气泡随液体进入高压区后立即凝结消失,形成真空导致巨大的水力冲击,对泵造成损害。

9、气缚现象:离心泵启动时,若泵内存在空气,由于空气密度大大低于输送流体的密度,经离心力的作用产生的真空度小,没有足够的压差使液体进入泵内,从而吸不上液体。

10、泵壳作用:收集液体和能量转化(将流体部分动能转化为静压能)11、离心泵在设计流量下工作效率最高,是因为:此时水力损失小。

12、大型泵的效率通常高于小型泵是由于:容积效率大。

13、叶轮后弯的优缺点优点:叶片后弯使液体势能提高大于动能提高,动能在蜗壳中转化为势能的损失小,泵的效率高。

缺点:产生同样的理论压头所需泵的体积大。

14、正位移泵(往复泵)的特点:a流量与管路状况、流体温度、黏度无关;b 压头仅取决于管路特性。

(耐压强度)c 不能在关死点运转。

d 很好的自吸能力15、真空泵的性能:极限真空和抽吸时间16、无限大平板液膜厚a ,其水力当量直径为 4a第二章机械分离与固体流化态1、过滤推动力:重力压差离心力2、气体净制:重力沉降、离心沉降、过滤(膜)。

3、架桥现象:随着过滤进行,细小的颗粒进入介质孔道内堵塞孔道的现象。

4、助滤剂作用:在滤饼中形成骨架,有助于改善滤饼的结构,增强其刚性,形成疏松的滤饼层,孔隙率增加,便于滤液通过。

5、实际过滤作用的:滤液固形物形成的滤饼层。

6、自由沉降:颗粒间不发生碰撞等相互影响的沉降过程。

7、粒子在整理沉降中收到的力:重力、浮力、流体黏性力8、重力沉降:9、离心沉降:三个力(离心力、浮力、曳力)10、旋风分离器的分离性能:粒级效率(每一种颗粒被分离的百分比)11、压降大小是评价旋风分离器性能好坏的重要指标。

阻力系数与设备形式和几何尺寸有关。

12、聚式流化(气固系统):腾涌(高径比过大,压降剧烈波动)和沟流(颗粒堆积不均匀,压降比正常值小)。

13、散式流化(液固系统)14、流化床压降不随气速增大而增大,因为:在流化床内,不管气速如何变化,颗粒与流体的相对速度不变,故流体通过床层的阻力不变。

15、固体流化态:大量固体颗粒悬浮于运动的流体中,从而使颗粒具有类似于流体的某些表观特征的一种状态。

压降表示16、除去某粒径颗粒时,若沉降高度增加一倍,沉降时间加倍;气流速度减半;生产能力不变。

第三章传热1、傅里叶定律:适用于:不适用于2、金属与液体导热系数随温度增高减小;气体导热系数随温度增高增大。

3、传热边界条件三类物体边界壁面的温度。

物体边界壁面的热通量值物理壁面处的对流传热条件4、保温层临界厚度:5、稳态热传导:通过平壁的热传导;通过圆筒壁的热传导;通过球壁的热传导6、非稳态热传导:集总参数法的简化分析;半无限大物体的非稳态热传导;有限厚度平板的非稳态热传导。

7、获得对流传热系数表达式的方法:分析法;实验法;类比法;数值法。

8、沸腾传热的四个典型传热区域:自然对流去、核态沸腾区、过渡沸腾区、膜态沸腾区。

条件:过度热和气化核心9、红外线和可见光统称为热射线。

10、黑体:投射到物体表面的辐射能可以被全部吸收的物体。

11、镜体:投射到物体表面的辐射能可以被全部反射的物体。

12、透热体:投射到物体表面的辐射能可以全部穿透物体。

13、灰体:能以相同的吸收率吸收所以波长范围的辐射能的物体。

14、黑度:灰体的辐射能力与同温度下黑体辐射能力之比。

(与外界环境无关)15、气体热辐射的特点:气体的辐射和吸收对波长具有强烈的选择性。

气体的辐射和吸收在整个容积内进行。

16、换热器:混合式、蓄热式和间壁式。

17、列管式换热器:固定管板式、U型管式、浮头式。

18、板式换热器优点:传热系数高,操作灵活,检修清洗方便。

缺点:允许操作压力和温度较低。

19、间壁式换热三步走:A 热流体以对流传热方式将热量传至固体界面。

B 热量通过热传导方式由间壁的热侧面传至冷侧面。

C 冷流体以对流传热方式将间壁传来的热量带走。

20、通常采用以间壁两侧流体的温度差作为推动力的总传热速率方程简称为传热速率方程。

21、传热单元数法:22、强化传热扩展传热面积;增大传热平均温差;提高传热系数。

23、增强对流传热系数改变流体的流动状况;改变流体物性;改变传热表面状况。

24、有相变的对流传热系数大于无相变生物对流传热系数。

原因:A 相变热远大于显热B 沸腾时液体在搅动,冷凝时液膜很薄。

25、短管传热膜系数大于长管的原因:短管有进口效应的影响。

26、平均温差法往往用于:设计性和核算型。

传热单元数法用于:核算型。

27、获取传热系数的途径:实验测定,公式计算,查手册。

28、确定换热器需要:流体进出口温度及流量。

29、雷诺类别和科尔本类别的重要应用:从摩擦系数来估算传热系数。

30、折流挡板优缺点:增大湍动强度,提高传热系数;阻力增大。

31、冷水进口温度根据当地气温条件确定。

出口温度根据经济衡算来确定。

32、弯管内:因离心力引起流体的二次环流,从而加剧了扰动,提高传热系数。

第四章蒸发33、蒸发中的温度差损失A 溶液蒸汽压降低引起的温度差损失B 由蒸发器中液柱静压引起的温度差损失C 由于管道阻力引起的温度差损失34、提高总传热系数:扩大膜状流动。

35、蒸发:管外冷凝,管内沸腾。

36、提高蒸发效率:多效蒸发;额外蒸汽的引出。

37、提高生产强度:提高蒸汽的有效温度差;提高沸腾侧对流传热系数。

38、多效蒸发的效数有限制。

是因为:多效蒸发中,各效都会引起温度差损失,当多效总温差损失大于或等于蒸汽温度与冷凝室压力下的沸点温度差时,平均温度差为零,起不到蒸发作用。

39、列文蒸发器:针对黏度大,易结垢、易结晶。

40、强制循环蒸发:延长操作周期,减少清洗次数。

传质1、质量传递方式:分子传质和对流传质。

2、扩散系数与涡流扩散系数的区别:扩散系数是系统性质;涡流扩散系数随流动状况和位置而变化。

3、漂流因子表达了:主体流动对传质的贡献。

4、单向扩散(吸收),等摩尔反向扩散(精馏)。

区别,单向扩散时的传质速率比等摩尔反向扩散多一个漂流因子(总是大于1)。

5、吸收原理:各组分在液体中溶解度的差异。

6、低浓吸收特点:气液相流量视为常量;吸收过程可视为等温吸收;传质系数可视为常数。

7、平均推动力法适用于:设计型;吸收因数法适用于操作型。

8、理论板:气液两相在该种塔板数上充分接触,离开时达到平衡。

9、脱吸:通入惰性气体;通入直接水蒸气;降低压力。

10、化学吸收对于液膜控制的优点明显。

11、传质单元高度取决于:气液流量、流体物性、填料性质。

12、新型传质设备要求:传质效率高、操作弹性大、生产能力大、塔板压降小。

13、浮阀塔的操作弹性最大(综合性能最好);筛板塔的压降最小。

14、填料塔是连续接触式设备,液体分散相;板式塔是逐级接触式设备,液体连续相。

15、低浓气体吸收中溶质气液平衡关系的表示方法:溶解度曲线;亨利定律公式16、吸收塔设计中,传质单元高度反映了设备效能的高低。

传质单元数反映了吸收过程的难易程度。

17、等板高度:气液两相达到平衡的填料的高度。

18、最大吸收效率与塔形式无关。

19、蒸馏分离依据:混合物中和组分的挥发度不同。

20、理想溶液:各组分在全浓度范围内都服从拉乌尔定律的溶液。

21、挥发度22、蒸馏方式:简单蒸馏平衡蒸馏23、跨越点加料所需塔板数最少:该处加料时料液浓度与塔内浓度最为接近,此时塔内的混合效应最小,平衡线与操作线之间的偏离程度最大,所画阶梯数最少。

24、最小回流比:所需要的理论塔板无穷大时对应的回流比。

(设计型)25、进料状况的选取(冷液利于精馏):随着q 减小,操作线与平衡线间的偏离程度越小,为完成分离任务所需的理论板数越多。

所以进料预热度越高,对分离越不利。

预热程度越高,再沸器的负荷减小,将导致精馏段与提馏段间气相负荷的差别过大,不利于塔的设计。

26、影响塔板效率的因素:物性参数、结构参数、操作参数27、水蒸气蒸馏:水一方面作为加热剂;另一方面作为夹带剂将易挥发组分从塔顶带出。

28、水蒸气蒸馏原理:互不相容的液体混合物的蒸汽压等于个纯组分的饱和蒸汽压之和。

29、间歇精馏没有提馏段,只有精馏段。

恒馏出液组成:回流比不断增大恒回流比:流出液组成不断下降。

30、恒沸精馏原理:在被分离的二元混合物中加入第三组分,该组分能与原溶液中的一个或两个组分形成最低恒沸物,从而形成“恒沸物—纯组分”精馏体系,恒沸物从塔顶蒸出,纯组分从塔底排出。

31、恒沸精馏与萃取精馏的异同相同点:处理对象都是恒沸液或相对挥发度接近于1的混合液;基本原理都是加入第三组分,以提高相对挥发度,在通过精馏方式实现分离。

不同点:A恒沸剂与被分离混合物组成形成恒沸物,而萃取剂无此要求B 恒沸剂从塔顶蒸出,萃取剂从塔底排出C 一定条件下,恒沸剂的使用量有特定要求,而萃取剂使用量较灵活D 萃取剂必须从塔顶上部不断加入,因此萃取精馏不适宜间歇精馏。

E 恒沸精馏温度较低,较适用于热敏性物质的精馏31、定常态精馏中,操作线方程反应了,上升气体组成与下降液体组成的关系。

32、板式塔影响液面落差的主要因素是:塔板结构、塔径、液体流量。

为减少落差可采用:双溢流和阶梯流;塔板向液体侧倾斜。

33、引起塔板效率不高的原因:雾沫夹带、漏液、气液分布不均、液泛。

34、塔顶温度低于塔底温度:一、塔顶操作压力小于塔底操作压力。

二、塔顶含易挥发组分浓度高。

35、板式塔压降:干板压降、通过液层引起的压降、表面张力。

36、溢流堰作用:保持板上一定液层,使气液充分接触;使液流均匀通过塔板。

37、捷算法萃取1、分配系数:萃取相与萃余相达到平衡后,萃取相中A组分的浓度与萃余相中A组分的浓度之比。

2、选择性系数:A、B两组分的分配系数之比。

3、三角形相图中的联结线:三角形相图中相互平衡两点的连线。

4、萃取设备:混合—澄清槽、填料塔、筛板塔。

5、双模理论解释萃取:溶质由萃余相主体传之萃余相侧液膜,再传质通过液液相界面,通过萃取相侧液膜传质至萃取相主体。

相关文档
最新文档