024.北师大版八年级数学上册2.7 第1课时 二次根式及其化简(教案)

合集下载

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计一. 教材分析《二次根式》是北师大版八年级数学上册第2.7节的内容,本节主要介绍二次根式的概念、性质和运算。

二次根式是中学数学中的重要内容,它不仅出现在代数、几何等领域,还是学习高中数学的基础。

本节内容为学生提供了理解二次根式的基础知识,为后续学习二次根式的运算和应用打下基础。

二. 学情分析八年级的学生已经学习了实数、有理数、无理数等基础知识,对数学概念和运算有一定的理解。

但二次根式作为一种新的数学对象,其概念和性质与已有知识有很大的不同,需要学生进行一定的适应和理解。

同时,学生需要掌握二次根式的运算方法,这需要他们在课堂上进行充分的练习和思考。

三. 教学目标1.理解二次根式的概念和性质;2.掌握二次根式的运算方法;3.能够应用二次根式解决实际问题。

四. 教学重难点1.二次根式的概念和性质;2.二次根式的运算方法;3.二次根式在实际问题中的应用。

五. 教学方法采用讲授法、案例教学法、练习法、小组合作学习法等。

通过具体的例子和练习,让学生理解和掌握二次根式的概念、性质和运算方法。

六. 教学准备1.PPT课件;2.练习题;3.小组讨论工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,例如:“一个正方形的对角线长为8cm,求正方形的面积。

”让学生思考如何解决这个问题,引出二次根式的概念。

2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT课件展示二次根式的图形和性质,让学生理解和掌握二次根式的基本概念和性质。

3.操练(10分钟)让学生进行二次根式的运算练习,提供一些练习题,让学生独立完成,然后进行讲解和解析。

4.巩固(10分钟)通过一些综合性的练习题,让学生应用二次根式的概念和运算方法,巩固所学知识。

5.拓展(5分钟)讲解二次根式在实际问题中的应用,提供一些实际问题,让学生思考如何运用二次根式解决这些问题。

6.小结(5分钟)对本节课的内容进行小结,让学生回顾和巩固所学知识。

北师大版初中数学八年级(上)第二章实数2-7二次根式(第1课时)教学详案

北师大版初中数学八年级(上)第二章实数2-7二次根式(第1课时)教学详案

第二章 实 数7 二次根式第1课时 二次根式及其化简教学目标1.会区分二次根式与最简二次根式;2.能运用算术平方根的性质,进行二次根式的化简;3.经历二次根式的基本性质,运算法则的探究过程,培养学生从具体到抽象、从特殊到一般的概括能力,体验归纳、猜想的思想方法.教学重难点重点:运用算术平方根的性质,进行二次根式的化简;难点:会利用积与商的算术平方根的性质化简二次根式.教学过程导入新课1.做一做:√169= 13 ,√42= 4 ,(√4)2= 4 ,√a 2= |a | , (√a )2=a.2.观察下列代数式:(1)√5 ; (2)√11 ; (3)√7.2 ; (4)√49121;(5)√a 2+1 ; (6)√(c +b )(c −b)(其中b =24,c =25).这些式子有什么共同特征?(1)形式上含有根号;(2)根指数都为2;(3)被开方数为正数. 探究新知一般地,形如√a (a ≥0)的式子叫做二次根式,其中a 是被开方数.判断一个数式是不是二次根式必须同时满足:①根指数都为2;②被开方数为非负数.【例1】 说一说下列各式哪些是二次根式.(1) √32; (2)6; (3) √−12;(4) √−m (m ≤0); (5) √xy ; (6)√53.【解】(1)(4).(2)没有开方运算;(3)被开方数是负数;(5)xy 可能是负数;(6)根指数不是2活动:探究二次根式的性质计算下列各式,你能发现什么?(1)√4×√9= 6, √4×9=6 ;√16×√25= 20, √16×25=20;√4√9=23,√49=23;√16√25=45,√1625=45. (2)用计算器计算:√6×√7 ≈6.481 , √6×7≈6.481;√6√7≈0.925 8 , √67≈0.925 8. 即:√4×√9= √4×9;√16×√25=√16×25;√6×√7=√6×7; √4√9=√49; √16√25=√1625; √6√7=√67. 积的算术平方根等于积中各因式的算术平方根的积;√ab =√a ·√b (a ≥0,b ≥0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根. √a b =√a √b(a ≥0,b >0).【例2】化简:(1)√81×64;(2)√25×6;(3)√59. 观察:化简以后结果中的被开方数又有什么特征?【解】(1)√81×64=√81×√64=9×8=72;(2)√25×6=√25×√6=5×√6=5√6; (3)√59=√5√9=√53. 被开方数中都不含分母,也不含能开得尽方的因数.一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.最简二次根式的特点:①被开方数不含分母;②被开方数不含能开得尽方的因数或因式;③分母不含根号.【例3】化简:(1)√50;(2)√27; (3)√3. 【解】(1)√50=√25×2=√25×√2=5×√2=5√2; (2)√27=√2√7=√2×√7√7×√7=√147; (3)√3=√3√3×√3=√33. 注:化简时,要求最终结果是最简二次根式.课堂练习 1.下列根式中,不是最简二次根式的是( )A .√7B .√3C .√12D .√22.若x 为任意数,则下列各式中一定成立的是( )A.24x x =B.24x x -=C.x x =2D.x x -=23.下列各式中正确的是( )A.416±=B.()222-=-C.24-=-D.3327=4.化简()225-⨯,结果是( ) A.-52 B.52 C.-10 D.10 5.要使式子√a+2a 有意义,a 的取值范围是( )A. a ≠ 0B. a >-2且a ≠ 0C. a >-2或a ≠ 0D. a ≥-2且a ≠ 0参考答案1.C2.A3.D4.B5.D课堂小结1.判断一个数式是不是二次根式必须同时满足:①根指数都为2;②被开方数为非负数.2.二次根式的性质: √ab =√a ·√b (a ≥0,b ≥0);√a b =√a√b (a ≥0,b >0).3.最简二次根式满足的条件:①二次根式的被开方数不含开得尽方的因数(或因式);②二次根式的被开方数不含分母(即根号内不能是分数);③分母不能含有根号. 布置作业习题2.9第1,2,3题板书设计7 二次根式第1课时 二次根式及其化简 1.二次根式的定义及其判断依据;2.二次根式的性质:√ab =√a ·√b (a ≥0,b ≥0);√a b =√a √b (a ≥0,b >0).3.最简二次根式的定义及其判断依据.。

北师大版八年级上册数学教案:2.7二次根式

北师大版八年级上册数学教案:2.7二次根式
此外,在学生小组讨论环节,我尝试以引导者的身份参与其中,发现学生在探讨二次根式应用问题时,思维非常活跃,能够从不同角度分析问题。但我也意识到,有些学生在分享成果时表达不够清晰,这可能影响他们对知识的理解和掌握。为此,我计划在课后加强学生的口头表达能力训练,让他们在课堂上更自信地展示自己的思考。
最后,总结回顾环节,我试图帮助学生巩固今天所学的知识点,并鼓励他们提出疑问。但我也发现,部分学生可能因为害羞或担心被批评,不愿意主动提问。为了解决这个问题,我将在课堂上创造一个更加轻松、包容的氛围,让学生感受到提问是值得鼓励的行为,而不是暴露自己不足的表现。
在教学过程中,教师应针对以上难点重点进行讲解和强调,通过实例演示、练习巩固和反馈指导,帮助学生透彻理解二次根式的核心知识,并突破学习难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算非整数的平方根的情况?”比如,我们想要知道一个正方形的对角线长度,但只知道边长。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的定义及其性质。二次根式是指根号下含有变量的表达式,如√x,它是表示非负数的平方根的数学工具。它在解决几何问题、计算面积和体积等方面有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设一个正方形的边长为a,我们如何计算它的对角线长度?通过使用二次根式√2a,我们可以轻松得到答案。
2.能够运用二次根式解决实际问题,提高学生的数学建模与数学应用能力;
3.通过对二次根式的化简与运算,培养学生直观想象与数学运算的核心素养;

北师大版八年级数学上册:2.7《二次根式》教案2

北师大版八年级数学上册:2.7《二次根式》教案2

北师大版八年级数学上册:2.7《二次根式》教案2一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节课的主要目的是让学生理解二次根式的概念,掌握二次根式的性质和运算方法。

教材通过引入二次根式,让学生在已有的一次根式知识基础上,进一步拓展对根式的认识。

本节课的内容对于学生来说是一个新的知识点,也是后续学习更高阶根式的基础。

二. 学情分析学生在学习本节课之前,已经学习过一次根式的相关知识,对根式的概念和运算方法有一定的了解。

但二次根式与一次根式在概念和运算上有很大的区别,学生可能需要一定的时间来消化和理解。

此外,学生可能对二次根式的实际应用场景还不够了解,需要在课堂上进行引导和拓展。

三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。

2.学会二次根式的运算方法,能够进行二次根式的化简和计算。

3.能够运用二次根式解决实际问题,提高解决问题的能力。

四. 教学重难点1.二次根式的概念和性质。

2.二次根式的运算方法。

3.二次根式在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题引导学生思考,通过案例让学生理解二次根式的应用,通过小组合作学习法让学生在讨论中巩固知识。

六. 教学准备1.PPT课件。

2.相关案例和练习题。

3.小组合作学习的相关材料。

七. 教学过程导入(5分钟)通过一个实际问题引入二次根式的概念:某立方体体积为8立方厘米,求该立方体的棱长。

解决这个问题需要用到二次根式,从而引出本节课的主题。

呈现(15分钟)1.介绍二次根式的概念,讲解二次根式的性质。

2.通过PPT展示二次根式的各种形式,让学生对二次根式有一个直观的认识。

3.通过案例讲解二次根式的运算方法,让学生学会如何进行二次根式的化简和计算。

操练(10分钟)1.让学生进行一些二次根式的化简和计算练习,巩固所学知识。

2.引导学生发现二次根式运算的规律,提高运算速度和准确性。

巩固(5分钟)通过一些实际问题,让学生运用二次根式进行解决问题,巩固二次根式的应用。

北师大版八年级数学上册《二次根式》第1课时示范课教学设计

北师大版八年级数学上册《二次根式》第1课时示范课教学设计

第二章实数7 二次根式第1课时一、教学目标1.了解二次根式和最简二次根式的概念,能将二次根式(根号下仅限于数)化简为最简二次根式.2.通过对二次根式的性质的探究,提高数学探究能力和归纳表达能力.3.经历在具体情境中发现二次根式的过程,体会引入二次根式的必要性.4.经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体现发现的快乐,并提高应用的意识.二、教学重难点重点:了解二次根式和最简二次根式的概念,能将二次根式化简为最简二次根式.难点:对二次根式的性质的探究.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计(1)如图①的画框为正方形,若面积为8 dm2,则边长为____dm;若面积为S m2,则边长为_____m.(2)如图②长方形的土地,若宽是长的35,面积为13 m2,则它的长为_____m.预设答案:(1)8;s;(2)65 3.教师活动:注意:a 可以是数,也可以是式. 二次根式的两个必备特征: ①外貌特征:含有“”;②内在特征:被开方数a ≥0. 【做一做】1.下列各式中,哪些是二次根式?哪些不是二次根式?()()23(1)18(2)9(3)0.2(4)0(5)(6)1(7)7.m m xy x y x --+异号;;;≤;,;;分析:答案:解:(1)(4)(6)均是二次根式,其中x 2+1属于“非负数+正数”的形式一定大于零.(3)(5)(7)均不是二次根式.2.(1) 使二次根式2m - 在实数范围内有意义的m 的取值范围是__________.解:由m -2≥0,得m ≥2.当m ≥2时,2m - 在实数范围内有意义. 答案:m ≥2.总结:要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等式求解即可.(2) 使式子12-a 在实数范围内有意义的a的取值范围是_______.解:由 a -1≥0,得a ≥1.又∵1a - 为分母,10a -≠ ∴ ∵ a -1≠0 ,即 a ≠1a b=a ba a=b b根据上面的猜想,估计下面每组两个式子是否相等,借助计算器验证一下吧a b=a b(a≥教师强调:a,b必须都是非负数!商的算术平方根,等于算术平方根的商a a(a≥0,b>=b b14中,根号内是整数,且不含有能开得尽7方的因数,分母中又不含根号,所以是最简二次根式.【归纳】将二次根式化成最简二次根式的方法:【课堂练习】a b⨯3)32=-⨯。

【教案】2.7_二次根式北师大版八年级数学上册

【教案】2.7_二次根式北师大版八年级数学上册

7 二次根式第 1 课时二次根式的概念和性质教学目标【知识与技能】1. 了解二次根式及最简二次根式的概念.2. 会化简二次根式.3. 理解并掌握二次根式的性质.【过程与方法】经历观察、分析、讨论、归纳二次根式及最简二次根式的过程,发展学生的归纳概括能力和语言表达能力.【情感、态度与价值观】积极参与数学活动,感受数学活动充满了探索性和创造性,体会到数学学习的乐趣.教学重难点【重点】理解并掌握二次根式及最简二次根式的概念,化简二次根式.【难点】化简二次根式.教学过程一、知识回顾,引入新课师:同学们还记得平方根的概念吗?生:记得.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根.师:什么叫做算术平方根呢?生:正数的正的平方根以及零的平方根,统称算术平方根.师:很好!非负数a的算术平方根用(a>0)表示.一般地,例如(a X))的式子,我们叫做二次根式. 这就是今天这节课我们要学习的内容.二、讲授新课师:请同学们观察下列代数式,你能发现它们有什么共同特征吗?,,,,(其中b=24,c=25).生:它们都含有开方运算,并且被开方数都是非负数•师:很好! 一般地,例如(a》0)的式子,叫做二次根式,a叫做被开方数.那么二次根式具有什么性质呢?下面我们一起来探究一下•请同学们完成以下填空:= _______ ,x = ________ ;= _______ ,x = ________ ;= _____ ,x = ______ ;学生独立完成填空,然后集体订正•并根据上面的猜想,估计下列式子是否相等,再借助计算器验证•师:请同学们比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?学生分组讨论交流,然后由小组代表发言,教师予以补充完善•师:通过刚才的探究,我们可以发现积的算术平方根的性质和商的算术平方根性质•即:(1) 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积(各因式必须是非负数),即=(a >0,b>0);(2) 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根•(被除式必须是非负数,除式必须是正数),即=(a丸,b>0).师:知道了二次根式的这些性质,下面我们来看几个例题,加深理解•三、例题讲解【例1】化简:(1) ;(2);(3)・【答案】(1) = X =9 X 8=72;(2) =X =5;(3) ==.例1的化简结果5,中,被开方数中都不含分母,也不含能开得尽方的因数.一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.化简时,通常要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式.【例2】化简:(1) ;(2);(3) .【答案】(1)==X =5;(2) ===;(3) ==.判断最简二次根式的方法:通常将不含分母的被开方数分解因数或因式后,不含能开得尽方的因数或因式,即为最简二次根式.【例3】先化简,再求出下面算式的近似值(精确到0. 01).(1);(2);(3).(合理应用二次根式的性质,可以帮助我们简化实数的运算.)【答案】(1)=== =12^20. 78;(2)===~1. 01;(3)===X =10-2X =o. 01 X ~o. 02.四、巩固练习1. 化简:;(2);(3);(4)【答案】(1)165 (2)4 (3) (4)2. 化简:-答案】原式=-=.3. 若b>0,x<0,化简:-.【答案】原式=-=-=-=.五、课堂小结师: 通过这节课的学习,同学们有什么收获?能与大家分享一下吗学生发言,教师予以点评.第 2 课时二次根式的运算(1)教学目标【知识与技能】1. 了解二次根式的运算法则是由二次根式的性质得到的.2. 会进行简单的二次根式乘除以及加减运算.3. 会进行二次根式的四则混合运算.【过程与方法】让学生进一步了解数学知识之间是相互联系的.【情感、态度与价值观】培养学生努力探索事物之间内在联系的学习习惯.教学重难点【重点】二次根式的乘除以及加减运算.【难点】熟练地进行二次根式的四则混合运算.教学过程一、复习归纳1. 二次根式的性质:(1)()2=a(a>0)(2)= (3=)(a »,b ») (4)=(a »,b>0)2. 想一想:你能计算吗?(1)x ;(2)x ;(3)x师:先计算每组数中的左边的式子,再计算右边的式子•它们相等吗?你发现了什么?学生先独立完成,然后分组讨论交流,再集体订正•3. 提出问题.(1) 两列火车分别运煤2x吨和3x吨,问这两列火车共运煤多少吨? _______(2) 两列火车分别运煤2x吨和3y吨,问这两列火车共运煤多少吨? _______这是以前学过的多项式加减法,同类项可以合并,想一想在计算二次根式加减法的时候能运用此类方法吗?请尝试计算以下几题•(1) 3+4;(2)+; (3)++4.、讲授新课1. 在学生进行练习后进行总结•①二次根式的乘除运算法则•=(a》0,b $0)=(a>0,b>0)即将二次根式的性质等式左右两边对换,就得到二次根式的乘法法则和除法法则②二次根式的加减运算法则•师:与合并同类项类似,我们可以把相同二次根式的项合并•下列计算结果哪些正确,哪些不正确?+=;a+=a;-=;a+b=(a+b);-=-=0.学生回答,教师予以订正•③二次根式的四则混合运算•二次根式即可以进行乘除运算,也可以进行加减运算•以前学习的实数的运算法则、运算律仍然适用•说说下列算式的运算顺序,并计算出结果(+) •X +x2. 例题学习.【例1】计算.(1) X ; (2); (3).(归纳二次根式的乘除运算的一般步骤:(1)运用法则,化归为根号内的实数运算;(2)完成根号内乘除运算;(3)化简二次根式.)【答案】(1)X ===;(2) ==;(3) ====.【例2】计算:(1) 3X 2;(2) X - 5;(3)(+1)2;(4) (+3)(- 3);(5)- X ;(6)【答案】(1)3X 2=3X 2X =6;(2) X - 5=-5=-5=6-5=1;(3) (+1)2=()2+2+1=5+2+1=6+2;(4) (+3)(- 3)=()2-32=13-9=4;(5) (-)X =X - X =-=6- 1=5;(6) =+=+=2+3=5.【例3】计算:(1) +;(2)- ;(3)( +) X .【答案】(1)+3=+=X +=4+=5;(3) (+) X =+=+=2+3=5.三、课堂小结师:本节课我们学习了哪些知识?还有什么疑惑的地方吗? 师生共同总结.第 3 课时二次根式的运算(2)教学目标【知识与技能】1. 巩固对二次根式的四则混合运算的掌握.2. 进一步学会应用整式的运算法则进行二次根式的运算.【过程与方法】引导学生从特殊到一般,用总结归纳的方法以及类比的方法解决数学问题.【情感、态度与价值观】体验并掌握迁移、转化等数学思想与方法.教学重难点【重点】进一步应用二次根式的运算法则进行二次根式的四则混合运算.【难点】熟练进行二次根式的四则混合运算.教学过程一、引入新课师:通过上节课的学习,同学们已经掌握了二次根式的相关运算法则,这节课我们进一步来学习二次根式的加减乘除混合运算.二、例题讲解【例1】先化简,再求出近似值(精确到0. 01).(二次根式加减运算的一般步骤是:先化简,再合并. )【答案】原式=--=2--= (2-- )=^1.73.例2】计算.(1) -3x ;(2) (- 3) •(3) (-)十.(说明:(1)二次根式混合运算的运算次序是:先乘除,后加减;(2)整式运算的运算法则和运算律对二次根式同样适用;(3)二次根式的运算结果能化简的必须化简. )【答案】(1)原式=3-6=-3;(2) 原式=--3- =-3=-9;(3) 原式=+ -十=-=4- 3=1.【例3】计算:(1)-;(2)-8+;(3) (-)=(4)+-.【答案】(1)-=-J(2)-+=-+=3- 2+=;(3) (-)十=*- *(4) +-=+-=+- 3=-+.在上面第( 4)题中,很容易看出,化成最简二次根式后与,化简后的被开方数不可能相同此,结,因果中可以保留,不必将它化成最简二次根式.三、课堂小结师:本堂课我们学到了什么新知识学生发言,教师予以补充.。

北师大版八年级数学上册:2.7二次根式(教案)

北师大版八年级数学上册:2.7二次根式(教案)
举例说明:
(1)教学重点举例:
-对于二次根式的性质,可举例子:√9·√16=√(9·16)=√144=12,让学生理解乘法运算规律。
-在二次根式的化简方面,可以给出例子:√(50)=√(25·2)=√25·√2=5√2,让学生掌握化简方法。
(2)教学难点举例:
-在混合运算方面,可给出例子:(√3+√2)·(√3-√2)=3-2,让学生掌握平方差公式,并运用到实际运算中。
其次,在实践活动方面,我可以尝试设计更多贴近生活的实际问题,让学生们感受二次根式在实际生活中的应用。这样既能激发学生的学习兴趣,又能提高他们解决问题的能力。
此外,小组讨论环节也让我看到了学生们积极主动的一面,但同时也暴露出一些问题。部分学生在讨论过程中显得有些拘谨,不敢发表自己的观点。为了解决这个问题,我打算在以后的课堂中多鼓励学生,营造一个轻松、民主的讨论氛围,让他们敢于表达、勇于质疑。
-在二次根式的估算方面,可以指导学生使用逼近法,如求√13的近似值,可以判断其介于3和4之间,进一步估算出√13≈3.6。
在教学过程中,教师应针对这些重点和难点内容进行有针对性的讲解和强调,确保学生能够理解透彻并掌握相关知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估算长度或面积的情况?”(如估算树的直径、矩形的面积等)这个问题与我们将要学习的二次根式密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
在讲解重点和难点时,我发现有些学生对二次根式的估算方法还不够熟悉。因此,我计划在下一节课中,专门用一个课时来讲解和练习估算方法,让学生们能够更加熟练地运用到实际计算中。

八年级数学上册 2.7.1 二次根式教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

八年级数学上册 2.7.1 二次根式教案 (新版)北师大版-(新版)北师大版初中八年级上册数学教案

课题:二次根式教学目标:1.认识二次根式和最简二次根式的概念.积的算术平方根与商的算术平方根的性质.积的算术平方根和商的算术平方根的性质将二次根式化为最简二次根式.4.通过利用二次根式的性质进行计算,理解最简二次根式的含义.在探究中培养学生的思维能力和归纳概括的意识.教学重点与难点:重点:二次根式的概念、性质及二次根式的化简.难点:(a≥0,b≥0)=(a≥0, b>0).并用它们进行二次根式化简.教学过程:一、创设情境,导入新课活动内容:求下列各数,思考下面的两个问题:1.我校有两个正方形的花坛,一个面积为8平方米,一个面积为2平方米,大家说这两个正方形的边长是多少?2. 5的算术平方根是多少?3.一个正数的平方是,这个数多少?4.直角三角形的斜边长是c,一条直角边是b,那么另一条直角边的长为多少?问题1:它们的值有什么共同特点?问题2:它们的值是最简形式吗?处理方式:学生独立完成,然后同伴交流所提出的两个问题。

引入我们今天要学习的内容.设计意图:由生活中的数学引出新课要探究的数学问题,一是,使学生感知数学在生活中的应用,激发学生的求知欲,为下一环节奠定了良好的基础.二是加强前后知识间的联系,使学生认识到学习的必要性,从而增强学习的积极性.同时也顺利的引入了新课.二、探究学习,感悟新知活动内容1:(多媒体出示)观察下列各数并思考下面的问题:5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?处理方式:以小组为单位,让学生充分讨论后回答,只要学生回答的合情合理均给予肯定和鼓励,通过式子的特点介绍二次根式的概念. 一般地,式子)0(≥a a 叫做二次根式.a 叫做被开方数.强调条件:0≥a .设计意图:学生通过观察并与小组成员的讨论这些式子的共同点,使学生能够形成二次根式的概念,初步感知二次根式的形态.同时教会学生在探究中培养学生的思维能力和归纳概括的意识,使学生学会学习.练一练:1.下列式子,哪些是二次根式,哪些不是二次根式?2.当x X 围内有意义?3.m 能取得最小整数值是(). 参考答案:, 2. 13x ≥ 3. 1处理方式:学生独立完成后进行交流讨论,使学生对二次根式有一个较深刻、全面的认识.使学生认识到:看一个式子是否为二次根式,关键看是否满足)0(≥a a 的形式.即:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数.设计意图:通过练习,让学生加强对二次根式定义的认识. 第1题着眼于弄清二次根式的形式,巩固二次根式有意义的条件.第2题和第3题都是用不同的形式来考察学生对二次根式有意义的理解.让学生在练习中发现乐趣,掌握知识.1x活动内容2:(多媒体出示)计算下列各题,你发现了什么规律?(1). 计算下列各式,你能得到哪些猜想?94⨯=; 94⨯=,2516⨯=2516⨯=,;处理方式:让学生完成题目后交流,发现算式的特点及规律.设计意图:引导学生发现算式的特点及规律,并产生猜想, 增强学生的求知欲.(2). 猜猜76⨯=76⨯=,也有类似的关系吗?你还能举出类似的例子吗?并用计算器验证.设计意图:引导学生验证猜想,得出规律,使学生获得成功的喜悦.并且收获了研究数学问题的探究方法.问题1:你能用字母表示这个规律吗?问题2:能用语言描述这个结论的意义吗?处理方式:小组内交流展示,重点引导学生认识算式的特点及二次根式有意义的条件.小组总结出结论a b = ( a ≥0,b ≥0),这里应强调a ,b 的取值X 围.预设:如果不能得出a ,b 的取值X 围,教师应及时引导学生根据二次根式有意义的条件去发现。

北师大八年级数学教案-二次根式及其化简

北师大八年级数学教案-二次根式及其化简

2.7二次根式第1課時二次根式及其化簡1.瞭解二次根式的定義及最簡二次根式;(重點)2.運用二次根式有意義的條件解決相關問題.(難點)一、情境導入問題:(1)如圖,在Rt△ABC中,AC=3,BC=2,∠C=90°,那麼AB邊的長是多少?(2)面積為S的正方形的邊長是多少?(3)要修建一個面積為6.28平方米的圓形水池,它的半徑是多少米?(π取3.14)上述結果有什麼共同特徵?二、合作探究探究點一:二次根式的相關概念【類型一】二次根式的定義下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x+y;(5)x+y(x≥0,y≥0);(6)3a2+8;(7)-x2-12.解:(1)(2)(5)(6)是;(3)(4)(7)不是.方法總結:在判斷一個代數式是不是二次根式時,應該在原始形式的基礎上進行判斷,不能先化簡再作判斷,如本題4=2,4是二次根式,但2不是二次根式.【類型二】二次根式有意義的條件當x________,x+3+1x+1在實數範圍內有意義.解析:要使x+3+1x+1在實數範圍內有意義,必須同時滿足被開方數x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.方法總結:使一個代數式有意義的未知數的取值範圍通常要考慮三種情況:一是分母不為零,二是偶次方根的被開方數是非負數,三是零次冪的底數不為零.探究點二:二次根式的性質及化簡化簡下列二次根式.(1)48;(2)8a3b(a≥0,b≥0);(3)(-36)×169×(-9).解析:本題主要考查運用ab=a·b(a≥0,b≥0)及a2=a(a≥0)進行化簡.解:(1)48=16×3=16×3=43;(2)8a3b=22·a2·2ab=(2a)2·2ab=2a2ab;(3)(-36)×169×(-9)=36×169×9=6×13×3=234.方法總結:(1)若被開方數中含有負因數,則應先化成正因數,如(3)題.(2)將二次根式儘量化簡,使被開方數(式)中不含能開得盡方的因數(因式),即化為最簡二次根式(後面學到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有() A.1個 B.2個C.3個 D.4個解析:8a中有因數4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結:只需檢驗被開方數是否還有分母,是否還有能開得盡方的因數或因式.三、板書設計二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本節經歷從具體實例到一般規律的探究過程,運用類比的方法,得出實數運算律和運算法則,使學生清楚新舊知識的區別和聯繫,加深學生對運算法則的理解,能否根據問題的特點,選擇合理、簡便的演算法,能否確認結果的合理性等等.。

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计一. 教材分析《二次根式》是北师大版八年级数学上册第2章第7节的内容,本节内容是在学生已经掌握了实数、有理数、无理数等知识的基础上进行学习的。

二次根式是数学中的重要概念,它不仅在日常生活中有广泛的应用,而且是学习高中数学的基础。

本节课的主要内容是让学生了解二次根式的概念,学会化简二次根式,并能够运用二次根式解决一些实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于实数、有理数、无理数等概念已经有了一定的了解。

但是,学生对于二次根式这一概念可能还比较陌生,需要通过具体例子和实际应用来理解和掌握。

此外,学生可能对于二次根式的化简和运算还有一定的困难,需要通过大量的练习和老师的引导来逐步掌握。

三. 教学目标1.让学生了解二次根式的概念,能够正确地识别和书写二次根式。

2.让学生学会化简二次根式,能够运用二次根式解决一些实际问题。

3.培养学生的逻辑思维能力和运算能力,提高学生的数学素养。

四. 教学重难点1.二次根式的概念和识别。

2.二次根式的化简和运算。

3.二次根式在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,让学生自主地学习和掌握二次根式的概念和化简方法。

2.通过具体的例子和实际应用,让学生了解二次根式在日常生活中的应用,提高学生的学习兴趣和动力。

3.采用分组讨论和合作学习的方式,让学生在交流和合作中学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.准备相关的教学PPT和教学素材,包括图片、实例等。

2.准备一些实际的例子和应用问题,用于引导学生学习和巩固二次根式的知识和技能。

3.准备一些练习题,用于巩固和检验学生的学习效果。

七. 教学过程1.导入(5分钟)通过展示一些实际的例子,如物体的高度、物体的速度等,让学生感受到二次根式在日常生活中的应用,激发学生的学习兴趣。

同时,引导学生思考和探索二次根式的概念和特点。

北师大版八年级数学上册2.7.1:二次根式及性质(教案)

北师大版八年级数学上册2.7.1:二次根式及性质(教案)
(3)√(a/b) = √a / √b(a≥0,b>0);
(4)(√a)^2 = a(a≥0)。
3.二次根式的乘除法:掌握二次根式的乘除法法则,并能解决实际问题。
4.二次根式的化简:学会将复杂的二次根式化简为简单的形式。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生逻辑推理能力,通过二次根式的性质推导,让学生理解数学知识之间的内在联系,提高推理能力。
1.讨论主题:学生将围绕“二次根式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的定义、性质、乘除法则以及在实际中的应用。通过实践活动和小组讨论,我们加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我尝试了多种方法来帮助学生理解和掌握二次根式及其性质。从导入新课到实践活动,再到小组讨论,整个教学流程旨在让学生从不同角度认识二次根式的内涵和应用。但在教学过程中,我也注意到了一些问题,值得反思和改进。
北师大版八年级数学上册2.7.1:二次根式及性质(教案)
一、教学内容
本节课选自北师大版八年级数学上册2.7.1节,主要内容包括:
1.二次根式的定义:理解并掌握形如√a(a≥0)的二次根式的概念。

八年级数学上册第二章实数2.7二次根式第1课时二次根式及其化简学案(新版)北师大版

八年级数学上册第二章实数2.7二次根式第1课时二次根式及其化简学案(新版)北师大版

2.7 二次根式第1课时二次根式及其化简一、学习目标1、了解最简二次根式的意义,并能作出准确判断。

2、能熟练地把二次根式化为最简二次根式。

3、了解把二次根式化为最简二次根式在实际问题中的应用。

4、进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力。

5、通过多种方法化简二次根式,渗透事物间相互联系的辩证观点。

6、通过本节的学习,渗透转化的数学思想。

二、重点难点1、学习重点会把二次根式化简为最简二次根式2、学习难点准确运用化二次根式为最简二次根式的方法三、学习方法程序式学习四、课时安排二课时五、学习过程1、复习引入准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料。

【预备资料】⑴、二次根式的性质⑵、二次根式性质例题⑶、二次根式性质练习题【引入材料】看下面的问题:已知:=1.732,如何求出的近似值?解法1:解法2:比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便。

2、概念讲解与巩固【概念讲解材料】满足下列条件的二次根式,叫做最简二次根式:(1)、被开方数的因数是整数,因式是整式;(2)、被开方数中不含能开得尽方的因数或因式。

如:都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号。

又如也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如。

判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是。

【概念理解学习材料1】例1、下列二次根式中哪些是最简二次根式?哪些不是?为什么?分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是。

解:最简二次根式有,因为被开方数中含能开得尽方的因数9,所以它不是最简二次根式。

【教育资料】北师大版初中数学八年级上册 2.7.1二次根式 教案学习专用

【教育资料】北师大版初中数学八年级上册  2.7.1二次根式 教案学习专用

2.7二次根式(1)
一、学习目标
知识与技能:学会判断二次根式和最简二次根式。

过程与方法:探索二次根式的性质,学会利用二次根式的性质将二次根式化简 成最简二次根式。

情感态度与价值观:认识从特殊到一般的规律,大胆猜想,激发学习数学的兴
趣。

二、导学过程:
(一)明晰概念:(2分钟)
二次根式的特征:(1) 。

(2) 。

二次根式的定义: 叫做二次根式, 叫做
被开方数。

(二)探究合作交流:(3分钟)
下面我们来研究二次根式有哪些性质?观察下列四组算式,通过算术平方根的
运算,比较每组的计算结果,你发现了什么?
(1)94⨯= ,94⨯= ;
(2)2516⨯= ,2516⨯= ;
(3)
94= ,94= ;
(4)
2516= ,25
16= .
1.如果用b a 和表示上述式子中的两个被开方数,那么前两组算式的规律可以用字母b a 和怎么表达?后两组算式的规律如何表达?
(三)小试牛刀:(8分钟)
例1 化简(1)6481⨯ (2)625⨯ (3)1649
(4) 95
判断下列各式是否是最简二次根式,不是请化简。

(1)12 (2)7 (3)51 (4) 163
例2化简: (1)32 (2)72
(四)当堂检测:(5分钟)
1.下列各式中,属于二次根式的是( )
A -3
B 32
C 2a (a <0)
D a 2+1 2.下列式子为最简二次根式的是( ) A 3 B 4 C 8
D 12 3.化简: (1).202 (2).
48 (五)课堂小结(4分钟)
1.谈谈本节课你有哪些收获。

北师大版八年级上册2.7 第1课时 二次根式及其化简1教案设计

北师大版八年级上册2.7  第1课时 二次根式及其化简1教案设计

北师大版八年级上册2.7 第1课时二次根式及其化简1教案设计2.7二次根式第1课时二次根式及其化简教学目标1.了解二次根式的定义及最简二次根式;(重点)2.运用二次根式有意义的条件解决相关问题.(难点)一、情境导入问题:(1)如图,在Rt△ABC中,AC=3,BC=2,∠C=90°,那么AB边的长是多少?(2)面积为S的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14)上述结果有什么共同特征?二、合作探究探究点一:二次根式的相关概念【类型一】二次根式的定义例1、下列式子中,哪些是二次根式,哪些不是二次根式?(1)2;(2)4;(3)33;(4)1x+y;(5)x+y(x≥0,y≥0);(6)3a2+8;(7)-x2-12.方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,【类型二】二次根式有意义的条件例2、当x________,x+3+1x+1在实数范围内有意义.方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.探究点二:二次根式的性质及化简例3、化简下列二次根式.(1)48;(2)8a3b(a≥0,b≥0);(3)(-36)×169×(-9).解析:本题主要考查运用ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简探究点三:最简二次根式例4、在二次根式8a,c9,a2+b2,a2中,最简二次根式共有( )A.1个 B.2个C.3个 D.4个方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、总结二次根式⎩⎨⎧定义⎩⎨⎧形如a (a≥0)的式子有意义的条件:a≥0性质:(a )2=a (a≥0),a 2=a (a≥0)最简二次根式 四、作业:课堂点睛:21页以及22页14题、16题教学反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7二次根式
第1课时二次根式及其化简
教学目标
1.了解二次根式的定义及最简二次根式;(重点)
2.运用二次根式有意义的条件解决相关问题.(难点)
教学过程
一、情境导入
问题:(1)如图,在Rt△ABC中,AC=3,BC=2,∠C=90°,那么AB边的长是多少?
(2)面积为S的正方形的边长是多少?(3)要修建一个面积为6.28平方米的圆形水池,它的半径是多少米?(π取3.14)
上述结果有什么共同特征?
二、合作探究
探究点一:二次根式的相关概念
【类型一】二次根式的定义
下列式子中,哪些是二次根式,哪些不是二次根式?
(1)2;(2)4;(3)3
3;(4)
1
x+y

(5)x+y(x≥0,y≥0);(6)3a2+8;
(7)-x2-12.
解:(1)(2)(5)(6)是;(3)(4)(7)不是.
方法总结:在判断一个代数式是不是二次根式时,应该在原始形式的基础上进行判断,不能先化简再作判断,如本题4=2,4是二次根式,但2不是二次根式.【类型二】二次根式有意义的条件
当x________,x+3+
1
x+1
在实数范围内有意义.
解析:要使x+3+1
x+1
在实数范围内有意义,必须同时满足被开方数x+3≥0和分母x+1≠0,解得x≥-3且x≠-1.
方法总结:使一个代数式有意义的未知数的取值范围通常要考虑三种情况:一是分母不为零,二是偶次方根的被开方数是非负数,三是零次幂的底数不为零.
探究点二:二次根式的性质及化简
化简下列二次根式.
(1)48;(2)8a3b(a≥0,b≥0);
(3)(-36)×169×(-9).
解析:本题主要考查运用ab=a·b(a≥0,b≥0)及a2=a(a≥0)进行化简.
解:(1)48=16×3=16×3=43;
(2)8a 3b =22·a 2·2ab =(2a )2·2ab =2a 2ab ;
(3)(-36)×169×(-9)=36×169×9=6×13×3=234.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到). 探究点三:最简二次根式 在二次根式8a ,
c 9
,a 2+b 2,a 2中,最简二次根式共有( ) A .1个 B .2个
C .3个
D .4个
解析:8a 中有因数4;c 9中有分母9;a 3中有因式a 2.故最简二次根式只有a 2+b 2.故选A.
方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.
三、板书设计
二次根式⎩⎪⎨⎪⎧定义⎩⎨⎧形如a (a ≥0)的式子有意义的条件:a ≥0性质:(a )2=a (a ≥0),a 2
=a (a ≥0)最简二次根式 教学反思
本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性,等等.
初中数学公式大全
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6直线外一点与直线上各点连接的所有线段中,垂线段最短
7平行公理经过直线外一点,有且只有一条直线与这条直线平行
8如果两条直线都和第三条直线平行,这两条直线也互相平行
9同位角相等,两直线平行
10内错角相等,两直线平行
11同旁内角互补,两直线平行
12两直线平行,同位角相等
13两直线平行,内错角相等
14两直线平行,同旁内角互补
15定理三角形两边的和大于第三边
16推论三角形两边的差小于第三边
17三角形内角和定理三角形三个内角的和等于180 °
18推论1直角三角形的两个锐角互余
19推论2三角形的一个外角等于和它不相邻的两个内角的和
20平行四边形判定定理1两组对角分别相等的四边形是平行四边形
21平行四边形判定定理2两组对边分别相等的四边形是平行四边形
22平行四边形判定定理3对角线互相平分的四边形是平行四边形
23平行四边形判定定理4一组对边平行相等的四边形是平行四
边形
24矩形性质定理1矩形的四个角都是直角
25矩形性质定理2矩形的对角线相等
26矩形判定定理1有三个角是直角的四边形是矩形
27矩形判定定理2对角线相等的平行四边形是矩形
28菱形性质定理1菱形的四条边都相等
29菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角
30菱形面积= 对角线乘积的一半,即S= (a×b )÷2
31菱形判定定理1四边都相等的四边形是菱形
32菱形判定定理2对角线互相垂直的平行四边形是菱形
33正方形性质定理1正方形的四个角都是直角,四条边都相等
34正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
35定理1关于中心对称的两个图形是全等的
36定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
37逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
38等腰梯形性质定理等腰梯形在同一底上的两个角相等。

相关文档
最新文档