2018年初中数学新课标经典试题
安徽省2018年中考数学试题(附答案)
2018年安徽省初中学业水平考试数 学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。
2.试卷包括”试题卷“和“答题卷”两部分,“试题卷”共4页,“答题卷“共6页;3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的;4.考试结束后,请将”试题卷”和“答题卷”一井交回。
一、选择题(本大题共10小题,每小题4分,满分40分) 每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1.8-的绝对值是( )A.8-B.8C.8±D.81-2.2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( ) A.610352.6⨯ B.810352.6⨯ C.1010352.6⨯ D.8102.635⨯3.下列运算正确的是( ) A.()532a a = B.842a a a =∙ C. 236a a a =÷ D.()333b a ab =4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )5.下列分解因式正确的是( )A.)4(42+-=+-x x x x B.)(2y x x x xy x +=++ C.2)()()(y x x y y y x x -=-+- D.)2)(2(442-+=+-x x x x6.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( ) A.a b )2%1.221(⨯+= B.a b 2%)1.221(+= C.a b 2%)1.221(⨯+= D.a b 2%1.22⨯=7. 若关于x 的一元二次方程x (x +1)+ax =0有两个相等的实数根,则实数a 的值为( ) A. 1- B.1 C.22或- D.13或-8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是( )A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差9.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.BE=DFB.AE=CFC.AF//C ED.∠BAE =∠DCF10.如图,直线21l l 、都与直线l 垂直,垂足分别为M,N,MN =1正方形ABCD 的边长为3,对角线AC 在直线l 上,且点C 位于点M 处,将正方形ABCD 沿l 向右平移,直到点A 与点N 重合为止,记点C 平移的距离为x ,正方形ABCD 的边位于21l l 、之间分的长度和为y ,则y 关于x 的函数图象太致为( )二、填空题(本大共4小题,每小题5分,满分30分) 11. 不等式128>-x 的解集是 。
最新-常州市2018年初中毕业、升学统一考试数学试题 精品
常州市2018年初中毕业、升学统一考试数 学注意事项:1.全卷共8页,28题,满分120分,考试时间120分钟.2.答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上. 3.用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上.4.考生在答题过程中,可以使用CZ1218,HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π).一、填空题(本大题每个空格1分,共18分.把答案填在题中横线上) 1.2-的相反数是 ,13-的绝对值是 ,立方等于64-的数是 . 2.点(12)A -,关于x 轴对称的点的坐标是 ;点A 关于原点对称的点的坐标是 . 3.若30α=∠,则α∠的余角是 °,cos α= .4.在校园歌手大赛中,七位评委对某位歌手的打分如下:9.8,9.5,9.7,9.6,9.5,9.5,9.6,则这组数据的平均数是 ,极差是 . 5.已知扇形的半径为2cm ,面积是24cm 3π,则扇形的弧长是 cm ,扇形的圆心角为 °.6.已知一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,则b = ,k = . 7.如图,已知DE BC ∥,5AD =,3DB =,9.9BC =,50B =∠, 则ADE =∠ °,DE = ,ADEABCS S =△△ .8.二次函数2y ax bx c =++的部分对应值如下表:x … 3- 2- 0 1 3 5 … y…7 0 8- 9- 5- 7…二次函数2y ax bx c =++图象的对称轴为x = ,2x =对应的函数值y = . 二、选择题(下列各题都给出代号为A ,B ,C ,D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后( )内,每小题2分,共18分) 9.在下列实数中,无理数是( ) A .13B .πC .16D .22710.在函数12y x =-+中,自变量x 的取值范围是( ) A .2x ≠B .2x -≤C .2x ≠-D .2x -≥11.下列轴对称图形中,对称轴的条数最少的图形是( ) A .圆 B .正六边形 C .正方形 D .等边三角形(第7题)ABCD E12.袋中有3个红球,2个白球,若从袋中任意摸出1个球,则摸出白球的概率是( )A .15B .25 C .23D .1313.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误..的是( ) A .第3分时汽车的速度是40千米/时 B .第12分时汽车的速度是0千米/时 C .从第3分到第6分,汽车行驶了120千米 D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时 14.下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是( ) 15.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号 16.若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( ) A .2-B .2-C .1D .217.如图,在ABC △中,10AB =,8AC =,6BC =,经过点C 且与边AB 相切的动圆与CA CB ,分别相交于点P Q ,,则线段PQ 长度的最小值是( ) A .4.75B .4.8C .5D .42三、解答题(本大题共2小题,共18分.解答应写出演算步骤) 18.(本小题满分10分)化简: (1)02229-+-; (2)24142x x ---.(第13题) 速度/(千米/时)时间/分6040 20 O 3 6 9 12 E FP M NA .B .C .D .(第16题) yO A x (第17题) A B C QP19.(本小题满分8分)解方程: (1)341x x=-; (2)2220x x +-=.四、解答题(本大题共2小题,共12分.解答应写出证明过程) 20.(本小题满分5分)已知,如图,在ABCD 中,BAD ∠的平分线交BC 边于点E . 求证:BE CD =.21.(本小题满分7分) 已知,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接D E F ,,,得到DEF △为等边三角形.求证:(1)AEF CDE △≌△;(2)ABC △为等边三角形.五、解答题(本大题共2小题,共15分.解答应写出文字说明或演算步骤) 22.(本小题满分7分)图1是某市2018年2月5日至14日每天最低气温的折线统计图.(第20题)A B CDE (第21题) A B C D EF 图15 6 7 8 9 10 11 12 13 14 6 789 10 11 日期(日) 温度(℃) 图26 7 8 9 10 11 温度(℃) 1 2 3 天数 (第22题)(1)图2是该市2018年2月5日至14日每天最高气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;(2)在这10天中,最低气温的众数是 ,中位数是 ,方差是 . 23.(本小题满分8分)A 口袋中装有2个小球,它们分别标有数字1和2;B 口袋中装有3个小球,它们分别标有数字3,4和5.每个小球除数字外都相同.甲、乙两人玩游戏,从A B ,两个口袋中随机地各取出1个小球,若两个小球上的数字之和为偶数,则甲赢;若和为奇数,则乙赢.这个游戏对甲、乙双方公平吗?请说明理由.六、探究与画图(本大题共2小题,共13分) 24.(本小题满分6分)如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等. (1)设菱形相邻两个内角的度数分别为m 和n ,将菱形的“接近度”定义为m n -,于是,m n -越小,菱形越接近于正方形.①若菱形的一个内角为70,则该菱形的“接近度”等于 ;②当菱形的“接近度”等于 时,菱形是正方形.(2)设矩形相邻两条边长分别是a 和b (a b ≤),将矩形的“接近度”定义为a b -,于是a b -越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义. 25.(本小题满分7分) 已知1O 经过(42)A -,,(33)B -,,(11)C --,,(00)O ,四点,一次函数2y x =--的图象是直线l ,直线l 与y 轴交于点D .a bnm(1)在右边的平面直角坐标系中画出1O ,直线l 与1O 的交点坐标为 ; (2)若1O 上存在整点P (横坐标与纵坐标均为整数的点称为整点),使得APD △为等腰三角形,所有满足条件的点P 坐标为 ; (3)将1O 沿x 轴向右平移 个单位时,1O 与y 相切.七、解答题(本大题共3小题,共26分.解答应写出文字说明、证明过程或演算步骤) 26.(本小题满分7分)学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:一等奖 二等奖 三等奖 1盒福娃和1枚徽章1盒福娃1枚徽章用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息:(1)求一盒“福娃”和一枚徽章各多少元?(2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名? 27.(本小题满分9分)已知,如图,正方形ABCD 的边长为6,菱形EFGH 的三个顶点E G H ,,分别在正方形ABCD 边AB CD DA ,,上,2AH =,连接CF . (1)当2DG =时,求FCG △的面积;(2)设DG x =,用含x 的代数式表示FCG △的面积; (3)判断FCG △的面积能否等于1,并说明理由.O 11 xy(第27题)AB C D EF G H28.(本小题满分10分)已知(1)A m -,与(233)B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.常州市2018年初中毕业、升学统一考试数学试题参考答案及评分标准一、填空题(每个空格1分,共18分)1.2,13,4-;2.(12),,(12)-,; 3.60,32; 4.9.6,0.3;5.43π,120; 6.2-,2; 7.50,6.6,49; 8.1,8-.二、选择题(本大题共9小题,每小题2分,共18分) 题号 9 10 11 12 13 14 15 16 17 答案BCDBCCDDB三、解答题(本大题共2题,第18题10分,第19题8分,共18分.解答应写出演算步骤)18.解:(1)原式1134=+- ············································································ 3分 74=-. ··············································································· 5分 (2)原式42(2)(2)(2)(2)x x x x x +=--+-+ ·························································· 2分42(2)(2)x x x --=-+ ··············································································· 3分(第28题)ABC xy1 1 1-1- O(2)(2)(2)x x x --=-+ ··············································································· 4分12x =-+. ····················································································· 5分 19.解:(1)去分母,得344x x =-. ······························································ 1分 解得,4x =. ······························································································· 2分 经检验,4x =是原方程的根. ∴原方程的根是4x =. ·················································································· 4分(2)2(1)3x +=, ························································································ 2分13x +=±. ······························································································· 3分113x ∴=-+,213x =--. ······································································ 4分 四、解答题(本大题共2小题,第20题5分,第21题7分,共12分.解答应写出证明过程)21.证明:四边形ABCD 是平行四边形,AD BC ∴∥,AB CD =.DAE BEA ∴=∠∠. ····················································································· 1分 AE 平分BAD ∠,BAE DAE ∴=∠∠. ························································ 2分 BAE BEA ∴=∠∠. ····················································································· 3分 AB BE ∴=. ······························································································· 4分 又AB CD =,BE CD ∴=. ········································································ 5分 21.证明:(1)BF AC =,AB AE =,FA EC ∴=. ····································· 1分DEF △是等边三角形,EF DE ∴=. ···························································· 2分 又AE CD =,AEF CDE ∴△≌△. ····························································· 4分 (2)由AEF CDE △≌△,得FEA EDC =∠∠,BCA EDC DEC FEA DEC DEF =+=+=∠∠∠∠∠∠,DEF △是等边三角形,60DEF ∴=∠,60BCA ∴=∠,同理可得60BAC =∠. ························································· 5分ABC ∴△中,AB BC =. ··············································································· 6分 ABC ∴△是等边三角形. ················································································ 7分 五、解答题(第22题7分,第23题8分,共15分)22.(1)画图正确. ······················································································· 2分 (2)7℃,7.5℃,2.49(℃)2(众数1分,中位数2分,方差2分). ······················ 7分 23.解:画树状图: 或列表:开始123 4 5 3 4 4 5 6 5 6 和··················································································································· 4分 数字之和共有6种可能情况,其中和为偶数的情况有3种,和为奇数的情况有3种.1()2P ∴=和为偶数,1()2P =和为奇数, ··························································· 6分 ∴游戏对甲、乙双方是公平的. ········································································ 8分六、探究与画图(第24题6分,第25题7分,共13分) 24.解:(1)①40. ······················································································· 2分 ②0. ·········································································································· 4分 (2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但a b -却不相等.合理定义方法不唯一,如定义为b a .b a 越小,矩形越接近于正方形;b a越大,矩形与正方形的形状差异越大;当1ba=时,矩形就变成了正方形. ················ 6分 25.解:(1)画图,(11)--,,(42)-,. ···························································· 3分 (2)(31)--,,(02),.·················································································· 5分 (3)25+. ······························································································ 7分 七、解答题(第26题7分,第27题9分,第28题10分,共26分) 26.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195.x y x y +=⎧⎨+=⎩,······························································································ 2分 解得15015.x y =⎧⎨=⎩, ······························································································· 3分答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10)m -名,216515015(10)1000216515015(10)1100.m m m m ⨯++-⎧⎨⨯++-⎩≥,≤································································ 5分 解得1041242727m ≤≤. ··················································································· 6分 m 是整数,4m ∴=,106m ∴-=. ····························································· 7分3 4 5 1(1,3) 和为4 (1,4) 和为5 (1,5)和为62(2,3) 和为5 (2,4) 和为6 (2,5)和为7B 袋 A 袋答:二等奖4名,三等奖6名. 27.解:(1)正方形ABCD 中,2AH =,4DH ∴=.又2DG =,因此25HG =,即菱形EFGH 的边长为25. 在AHE △和DGH △中,90A D ==∠∠,2AH DG ==,25EH HG ==,AHE DGH ∴△≌△.AHE DGH ∴=∠∠.90DGH DHG +=∠∠,90DHG AHE ∴+=∠∠, 90GHE ∴=∠,即菱形EFGH 是正方形.同理可以证明DGH CFG △≌△.因此90FCG =∠,即点F 在BC 边上,同时可得2CF =,从而14242FCG S =⨯⨯=△. ············································································ 2分 (2)作FM DC ⊥,M 为垂足,连结GE ,AB CD ∥,AEG MGE ∴=∠∠,HE GF ∥,HEG FGE ∴=∠∠. AEH MGF ∴=∠∠. 在AHE △和MFG △中,90A M ==∠∠,HE FG =,AHE MFG ∴△≌△.2FM HA ∴==,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2.因此12(6)62FCG S x x =⨯⨯-=-△. ································································ 6分(3)若1FCG S =△,由6FCG S x =-△,得5x =,此时,在DGH △中,41HG =.相应地,在AHE △中,376AE =>,即点E 已经不在边AB 上.故不可能有1FCG S =△. ·················································································· 9分 另法:由于点G 在边DC 上,因此菱形的边长至少为4DH =,当菱形的边长为4时,点E 在AB 边上且满足23AE =,此时,当点E 逐渐向右运动至点B 时,HE 的长(即菱形的边长)将逐渐变大,最大值为210HE =. 此时,26DG =,故026x ≤≤. 而函数6FCG S x =-△的值随着x 的增大而减小, 因此,当26x =时,FCG S △取得最小值为626-.ABCDEFGH ABC D EF G HM又因为62662 6.251->-=,所以,FCG △的面积不可能等于1. ·················· 9分 28.解:(1)由(1)2(33)m m -=+,得23m =-,因此23k =. ·················· 2分 (2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,3BE =,23BC =,因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠.当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ································································································· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则13AF m =,12AD m =,由点(123)A --,,得点11(1323)D m m -+-+,.因此11(13)(23)23m m -+-+=, 解之得1733m =(10m =舍去),因此点363D ⎛⎫⎪ ⎪⎝⎭,. 此时1433AD =,与BC 的长度不等,故四边形ADBC 是梯形. ·························· 5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH m m =>,则23DH m =,22CD m =由点(10)C -,,得点22(13)D m m -+,, 图1ABC xyOFDE图2 ABC xyODH因此22(1)323m m -+=.解之得22m =(21m =-舍去),因此点(123)D ,. 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ······························ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(23)D --,,四边形ABCD 是梯形. ············································ 9分综上所述,函数23y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:363D ⎛⎫ ⎪ ⎪⎝⎭,或(123)D ,或(23)D --,. ·························· 10分图3 A B C x yO D。
(完整word版)2018年中考数学真题汇编三角形,推荐文档
2018年中考数学真题汇编:三角形(填空+选择=50题)、选择题1. (2018山东滨州)在直角三角形中,若勾为 3,股为4,则弦为() A. 5 B. 6 C. 7D. 8【答案】A2. (2018江苏宿迁)如图,点D 在△ABC 的边AB 的延长线上,DE //BC ,若Z A = 35 ° /C = 24 °则/D 的C. 60【答案】B3. 一艘在南北航线上的测量船,于 A 点处测得海岛B 在点A 的南偏东30。
方向,继续向南航行 30海里到达C 点时,测得海岛B 在C 点的北偏东15。
方向,那么海岛B 离此航线的最近距离是(结果保 留小数点后两位)(参考数据:汽m 少'•)( )A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里【答案】B4. 若实数m 、n 满足用_M+曲-斗",且m 、n 恰好是等腰△ ABC 的两条边的边长,则△ ABC 的周 长是()。
A. 12B. 10C. 8D. 6【答案】BB. 59D. 695. 在中,亠飞厂爭—沁,一』于,匚巨平分交于,则下列结论A.弓匚=三匚D. AE=EC【答案】C6. 将一副直角三角板按如图所示的位置放置,使含30。
角的三角板的一条直角边和含45。
角的三角板【答案】C条件的直线I的条数是()。
A.5B.4C.3D.2【答案】C8•如图,在平面直角坐标系中,-」五二的顶点在第一象限,点三,的坐标分别为、,一丘工=:'「,-二=工,直线交轴于点,若与关于点成中心对称,则点的坐标为()C. SC = BE的一条直角边放在同一条直线上,则/ a的度数是(C.75D.857.在平面直角坐标系中,过点(1,2)作直线I,若直线I与两坐标轴围成的三角形面积为4,则满足定成立的是()OA.45【答案】A9•如图,在 ABCD 中,CD=2AD , BE 丄AD 于点E , F 为DC 的中点,连结 EF 、BF ,下列结论:①/ABC=2 /ABF ;②EF=BF :③S 四边形DEBC =2S ZEFB :④Z CFE=3 ZDEF ,其中正确结论的个数共有()。
全国2018年中考数学真题汇总(含答案)
全国2018年中考数学真题汇总(含答案)图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。
2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。
3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。
5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。
初中数学新课程标准(2020年度版~)检查测试题-
初中数学新课程标准(2018版)测试题一、选择题(单项选择)多项选择)1、数学教学活动是师生积极参与,(C )的过程。
A、交往互动B、共同发展C、交往互动、共同发展2、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。
A、教教材B、用教材教3、“三维目标”是指知识与技能、(B )、情感态度与价值观。
A、数学思考B、过程与方法C、解决问题4、《数学课程标准》中使用了“经历、体验、探索”等表述(A )不同程度。
A、学习过程目标B、学习活动结果目标。
5、评价要关注学习的结果,也要关注学习的( C )A、成绩B、目的C、过程6、“综合与实践”的教学活动应当保证每学期至少( A )次。
A、一B、二C、三D、四7、在新课程背景下,评价的主要目的是( C )A、促进学生、教师、学校和课程的发展B、形成新的教育评价制度C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学8、学生是数学学习的主人,教师是数学学习的(C )。
A 组织者合作者B组织者引导者 C 组织者引导者合作者9、学生的数学学习活动应是一个( A )的过程。
A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性10、推理一般包括( C )。
A、逻辑推理和类比推理B、逻辑推理和演绎推理C、合情推理和演绎推理11、义务教育阶段的数学课程是培养公民素质的基础课程,它不具有(D )A、基础性B、普及性C、发展性D、连续性12、对于教学中应当注意的几个关系,下列说法中错误的是( D )A、面向全体学生与关注学生个体差异的关系。
B、“预设”与“生成”的关系。
C、合情推理与演绎推理的关系。
D、使用现代信息技术与教学思想多样化的关系。
13、(B)是对教材编写的基本要求。
A、直观性B、科学性C、教育性D、合理性14、( A )是考查学生课程目标达成状况的重要方式,合理地设计和实施它有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。
【真题】安徽省2018年中考数学试题含答案解析(Word版)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1。
的绝对值是()A。
B. 8 C. D。
【答案】B【详解】数轴上表示数—8的点到原点的距离是8,所以—8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635。
2亿科学记数法表示()A。
B。
C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635。
2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|〈10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C。
D。
【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得。
【详解】A. ,故A选项错误;B。
,故B选项错误;C。
,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键。
4。
一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得。
【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A。
山东泰安市2018年中考数学试题(含答案)
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:3538404244454547,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB 中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE 中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB 的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析. 【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
2018年人教版初中数学新《课程标准》测试题及答案
2018年人教版初中数学新《课程标准》测试题及答案2018年人教版初中数学新《课程标准》测试题一、选择题(每小题3分,共45分)1.新课程的核心理念是()A.联系生活学数学B.培养研究数学的爱好C.一切为了每一位学生的发展D.进行双基教学2.教学是数学活动的教学,是师生之间、学生之间()的过程。
A.交往互动B.共同发展C.交往互动与共同发展3.教师要积极利用各种教学资源,创造性地使用教材,学会()。
A.教教材B.用教材教C.教课标D.教课本4.根据《数学课程标准》的理念,解决问题的教学要贯穿于数学课程的全部内容中,不再单独出现()的教学。
A.概念B.计算C.应用题D.定义5.“三维目标”是指知识与技能、()、情感态度与价值观。
A.理解与掌握B.过程与方法C.科学与探究D.继承与发展6.《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的()的动词。
A.过程性目标B.知识技能目标7.建立成长记录是学生开展()的一个重要方式,它能够反映出学生发展与进步的历程。
A.自我评价B.相互评价C.多样评价D.小组评价8.学生的数学研究活动应是一个()的过程。
A.生动活泼的、主动的和富有个性B.主动和被动的生动活泼的C.生动活泼的被动的富于个性9.“用数学”的含义是()A.用数学研究B.用所学数学知识解决问题C.了解生活数学D.掌握生活数学10.《新课程标准》对“基本理念”进行了很大的修改,过去的基本理念说:“人人学有价值的数学,人人获得必须的数学,不同人在数学上得到不同的发展。
”,现在的《新课标》改为:A.人人都能获得良好的数学教育,不同的人在数学上得到不同的发展B.人人都获得教育,人人获得良好的教育C.人人学有用的数学,人人获得有价值的教育D.人人获得良好的数学教育11.《新课标》强调“从双基到四基”的转变,四基是指:A.基础知识、基本技能、基本方法和基本过程B.基础知识、基本经验、基本过程和基本方法C.基础知识、基本技能、基本思想和基本活动经验D.基础知识、基本经验、基本思想和基本过程12.《新课标》强调“从两能到四能”的转变,“四能”是指:A.分析问题、解决问题的能力;发现问题和讨论问题的能力。
2018年度山东临沂中考数学试卷(规范标准答案解析版)
2018年山东临沂中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2018•临沂)在实数﹣3,﹣1,0,1中,最小的数是( ) A .﹣3 B .﹣1 C .0D .12.(3分)(2018•临沂)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )A .1.1×103人B .1.1×107人C .1.1×108人D .11×106人3.(3分)(2018•临沂)如图,AB ∥CD ,∠D=42°,∠CBA=64°,则∠CBD 的度数是( )A .42°B .64°C .74°D .106°4.(3分)(2018•临沂)一元二次方程y 2﹣y ﹣34=0配方后可化为( )A .(y +12)2=1B .(y ﹣12)2=1C .(y +12)2=34D .(y ﹣12)2=345.(3分)(2018•临沂)不等式组{1−2x <3x+12≤2的正整数解的个数是( )A .5B .4C .3D .26.(3分)(2018•临沂)如图.利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2m ,测得AB=1.6m .BC=12.4m .则建筑物CD 的高是( )A .9.3mB .10.5mC .12.4mD .14m7.(3分)(2018•临沂)如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .12cm 2B .(12+π)cm 2C .6πcm 2D .8πcm 28.(3分)(2018•临沂)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A .13B .14C .16D .199.(3分)(2018•临沂)如表是某公司员工月收入的资料. 月收入/元 45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是( ) A .平均数和众数 B .平均数和中位数 C .中位数和众数 D .平均数和方差10.(3分)(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .5000x+1=5000(1−20%)xB .5000x+1=5000(1+20%)xC .5000x−1=5000(1−20%)xD .5000x−1=5000(1+20%)x11.(3分)(2018•临沂)如图,∠ACB=90°,AC=BC .AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .32B .2C .2√2D .√1012.(3分)(2018•临沂)如图,正比例函y 1=k 1x 与反比例函数y 2=k 2x的图象相交于A 、B 两点,其中点A 的横坐标为1.当y 1<y 2时,x 的取值范围是( )A .x <﹣1或x >1B .﹣1<x <0或x >1C .﹣1<x <0或0<x <1D .x <﹣1或0<x <l13.(3分)(2018•临沂)如图,点E 、F 、G 、H 分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法: ①若AC=BD ,则四边形EFGH 为矩形; ②若AC ⊥BD ,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分; ④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等. 其中正确的个数是( )A .1B .2C .3D .414.(3分)(2018•临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大二、填空题(本大题共5小题,每小题3分,共15分) 15.(3分)(2018•襄阳)计算:|1﹣√2|= .16.(3分)(2018•临沂)已知m +n=mn ,则(m ﹣1)(n ﹣1)= . 17.(3分)(2018•临沂)如图,在▱ABCD 中,AB=10,AD=6,AC ⊥BC .则BD= .18.(3分)(2018•临沂)如图.在△ABC 中,∠A=60°,BC=5cm .能够将△ABC 完全覆盖的最小圆形纸片的直径是 cm .19.(3分)(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7⋅为例进行说明:设0.7⋅=x ,由0.7⋅=0.7777…可知,l0x=7.7777…,所以l0x ﹣x=7,解方程,得x=79,于是.得0.7⋅=79.将0.36⋅⋅写成分数的形式是 .三、解答题(本大题共7小题,共63分)20.(7分)(2018•临沂)计算:(x+2x2−2x﹣x−1x2−4x+4)÷x−4x.21.(7分)(2018•临沂)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17317≤x<2222≤x<2727≤x<322(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.22.(7分)(2018•临沂)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(√3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m 的圆形门?23.(9分)(2018•临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=√3,BE=1.求阴影部分的面积.24.(9分)(2018•临沂)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.25.(11分)(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.26.(13分)(2018•临沂)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE .①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.2018年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
【7A版】2018初中数学课程标准测试题(含答案)精华版
一、判断题新课标提倡关注知识获得的过程,不提倡关注获得知识结果。
(G)2、要创造性地使用教材,积极开发、利用各种教学资源为学生提供丰富多彩的学习素材。
(V)不管这法那法只要能提高学生考试成绩就是好法。
(G)《基础教育课程改革纲要》指出:课程标准是教材编写、教学、评估和考试命题的依据,是国家管理和评价课程的基础。
(V)5、《纲要》提出要使学生“具有良好的心理素质”这一培养目标很有必要,不仅应该在心理健康教育课中培养,在数学课上也应该关注和培养学生的心理素质。
(V)6、教师即课程。
(G)7、教学是教师的教与学生的学的统一,这种统一的实质是交往。
(V)8、教学过程是忠实而有效地传递课程的过程,而不应当对课程做出任何变革。
(G)9、教师无权更动课程,也无须思考问题,教师的任务是教学。
(G)10、从横向角度看,情感、态度、价值观这三个要素具有层次递进性。
(V)11、从纵向角度看,情感、态度、价值观这三个要素具有相对贸易独立性。
(V)12、从推进素质教育的角度说,转变学习方式要以培养创新精神和实践能力为主要目的。
(V)13、课程改革核心环节是课程实施,而课程实施的基本途径是教学。
(V)14、对于求知的学生来说,教师就是知识宝库,是活的教科书,是有学问的人,没有教师对知识的传授,学生就无法学到知识。
(G)15..课程改革的焦点是协调国家发展需要和学生发展需要二者间的关系.(V)16.素质教育就是把灌输式与启发式的教学策略相辅相成.(G)17.全面推进素质教育的基础是基本普及九年义务教育.(G)18.现代信息技术的应用能使师生致力于改变教与学的方式,有更多的精力投入现实的探索性的数学活动中去.(V)19.新课程评价只是一种手段而不是目的,旨在促进学生全面发展.(V)二、选择题(每小题3分,共24分)1、新课程的核心理念是【为了每一位学生的发展】2、教学的三维目标是【知识与技能、过程与方法、情感态度价值观】3、初中数学课程为课标中规定的第几学段【第三】4、《基础教育课程改革纲要》为本次课程改革明确了方向,基础教育课程改革的具体目标中共强调了几个改变【6个】5、课标中要求“会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程”。
2018年中考数学试卷含答案(精选4套真题)40
初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.与-2的乘积为1的数是()A.2 B.-2 C.12D.12-2.函数1y x=-中自变量x的取值范围是( ) A.x>1B.x≥1C.x<1D.x≤1 3.下列运算正确的是( ) A.2233x x-=B.33a a a?C.632a a a?D.236()a a=4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是()(第4题)DCBA5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )A B C D6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 5 2 2 1 则这12名队员年龄的众数、中位数分别是 ( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( )A .M <NB .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
〖中考零距离-新课标〗2018年福建省初中毕业生学业质量测查数学试题及答案解析
2018年福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±22.下列计算错误..的是( ) A .6a + 2a =8a B .a – (a – 3) =3 C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 则该班学生捐款金额的中位数是( )A .13B .12C .10D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136E B D O CA (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是 度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22= . 11.分解因式:xy 2 – 9x = .12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 .13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE = . 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+-(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式y x yyx xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标; (2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2= ;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG 与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C 二、填空题(每小题4分,共40分)8. 20; 9. 46.810⨯; 10. 1; 11. (3)(y 3)x y +-; 12. 54°; 13. 1:3;14. 2; 15. 3π; 16. 12; 17.(1)(3,0); (2)303k -≤<. 三、解答题(共89分) 18.(本小题9分)解:原式23431=--+- ……………………(8分) 3=- ……………………(9分)19.(本小题9分)解:原式=2x 2+2x +x 2﹣2x +1,……………………(6分)=3x 2+1……………………(7分)当x =2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD 是菱形, ∴AD =CD ;∠A =∠C ,……………………(6分) 又∵DE ⊥AB 于E ,DF ⊥BC 于F,∴∠AED =∠CFD =90°; ……………………(8分) 在△ADE 和△CDF 中,∠A =∠C ,∠AED =∠CFD , AD =CD ; ∴△ADE ≌△CDF .……………………(9分) 21.(本小题9分) 解:(1)200,36.……………………(4分) 画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元)答:开展本次活动共需9608元经费. ……………………(9分)22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分) ∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵ -2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分)(2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分) 连结AB ,则∠ABC =∠BCD =135 º,且AB =2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BCAB CD =∙;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1), 在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD =2HD =21(m )-∴22=2×21(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)(解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,(图2)可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BFAC AG = ∴2213BD +=21 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4, 解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) =-11120x 2+75x +240……………………8分 (图3)∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分) 25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==- 在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分)∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠ ∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得: AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD += ; 在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分)整理得:32216320,a a a ---= ∴ (2)(4)(4)0a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4 解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.……………………(1分)∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.……………………(2分)∴四边形EFCG是矩形.……………………(3分)(2)由(1)知四边形EFCG是矩形.∴CF∥EG,∴∠CEG=∠ECF,∵∠ECF=∠EDF,∴∠CEG=∠EDF,……………………(4分)在Rt△ABD中,AB=3,AD=4,∴tan34ABBDAAD∠==,……………………(5分)∴tan∠CEG= 34;……………………(6分)(3)∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∴tan∠FCE=tan∠CEG=3 4∵∠CFE=90°,∴EF=34CF, ……………………(7分)∴S矩形EFCG=234CF;……………………(8分)连结OD,如图2①,∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°……………………(9分)(Ⅰ)当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.……………(10分)(Ⅱ)当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.……………(11分)(Ⅲ)当CF⊥BD时,CF最小,如图2③所示.S△BCD=12BC×CD=12BD×CF,∴4×3=5×CF∴CF=125.……………(12分)∴125≤CF≤4.……………(13分)∵S矩形EFCG=234CF,∴34×(125)2≤S矩形EFCG≤34×42.∴10825≤S矩形EFCG≤12.……………(14分)。
2018年初中数学新课标经典试题
《数学课程标准》考核试卷参考答案一、填空(每空 1 分,共30 分)1、数学是研究(数量关系)和(空间形式)的科学。
2、数学是人类文化的重要组成部分,(数学素养)是现代社会每一个公民所必备的基本素养。
3、数学课程能使学生掌握必备的基础知识和基本技能,培养学生的(抽象思维和推理能力),培养学生的(创新意识和实践能力),促进学生在情感、态度与价值观等方面的发展。
4、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个体发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展。
)5、《数学课程标准》明确了义务教育阶段数学课程的总目标,并从知识技能、(数学思考)、(问题解决)和情感态度四方面具体阐述。
力求通过数学学习,学生能获得适应社会生活和进一步发展所必须的数学的(基本知识、基本技能、基本思想、基本活动经验)。
体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用(数学的思维方式)进行思考,增强(发现和提出问题)的能力、(分析和解决问题)的能力。
6、教学活动是师生(积极参与)、(交往互动)、共同发展的过程。
有效的数学教学活动是教师教与学生学的统一,应体现(“以人为本”)的理念,促进学生的全面发展。
7、《数学课程标准》中所说的“数学的基本思想”主要指:数学(抽象)的思想、数学(推理)的思想、数学建模的思想。
学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。
8、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己(发现和提出问题)是创新的基础;(独立思考、学会思考)是创新的核心;归纳概括得到(猜想和规律),并加以验证,是创新的重要方法。
9、统计与概率主要研究现实生活中的(数据)和客观世界中的(随机现象)。
10、数学教学过程中恰当的使用(数学课程资源),将在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量。
[参考实用]初中数学新课程标准(2018版)测试题
初中数学新课程标准(2018版)测试题一、选择题(单项选择)多项选择)1、数学教学活动是师生积极参与,(C)的过程。
A、交往互动B、共同发展C、交往互动、共同发展2、教师要积极利用各种教学资源,创造性地使用教材,学会(B)。
A、教教材B、用教材教3、“三维目标”是指知识与技能、(B)、情感态度与价值观。
A、数学思考B、过程与方法C、解决问题4、《数学课程标准》中使用了“经历、体验、探索”等表述(A)不同程度。
A、学习过程目标B、学习活动结果目标。
5、评价要关注学习的结果,也要关注学习的(C)A、成绩B、目的C、过程6、“综合与实践”的教学活动应当保证每学期至少(A)次。
A、一B、二C、三D、四7、在新课程背景下,评价的主要目的是(C)A、促进学生、教师、学校和课程的发展B、形成新的教育评价制度C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学8、学生是数学学习的主人,教师是数学学习的(C)。
A组织者合作者B组织者引导者C组织者引导者合作者9、学生的数学学习活动应是一个(A)的过程。
A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性10、推理一般包括(C)。
A、逻辑推理和类比推理B、逻辑推理和演绎推理C、合情推理和演绎推理11、义务教育阶段的数学课程是培养公民素质的基础课程,它不具有(D)A、基础性B、普及性C、发展性D、连续性12、对于教学中应当注意的几个关系,下列说法中错误的是( D )A、面向全体学生与关注学生个体差异的关系。
B、“预设”与“生成”的关系。
C、合情推理与演绎推理的关系。
D、使用现代信息技术与教学思想多样化的关系。
13、( B )是对教材编写的基本要求。
A、直观性B、科学性C、教育性D、合理性14、(A)是考查学生课程目标达成状况的重要方式,合理地设计和实施它有助于全面考查学生的数学学业成就,及时反馈教学成效,不断提高教学质量。
A、书面测验B、教师观察C、学具制作D、学生作业15、评价不仅要关注学生的(A),更要关注学生在学习过程中的发展和变化。
2018年江苏省徐州市中考数学试题及参考答案案
徐州市2018年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2018江苏徐州中考,1,3分,★☆☆)4的相反数是()A.14B.-14C.4 D.-42.(2018江苏徐州中考,2,3分,★☆☆)下列计算正确的是()A.2a2-a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a63.(2018江苏徐州中考,3,3分,★☆☆)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(2018江苏徐州中考,4,3分,★☆☆)如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.(2018江苏徐州中考,5,3分,★☆☆)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率()A.小于12B.等于12C.大于12D.无法确定6.(2018江苏徐州中考,6,3分,★★☆)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13 35 29 23关于这组数据,下列说法正确的是()A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册7.(2018江苏徐州中考,7,3分,★★☆)如图,在平面直角坐标系中,函数y=kx与y=-2x的图像交于A,B两点,过A作y轴的垂线,交函数y=4x的图像于点C,连接BC,则△ABC的面积为()A.2 B.4 C.6 D.88.(2018江苏徐州中考,8,3分)若函数y=kx+b的图像如图所示,则关于x的不等式kx+2b <0的解集为()A.x<3 B.x>3 C.x<6 D.x>6二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(2018江苏徐州中考,9,3分,★☆☆)五边形的内角和是__________°.10.(2018江苏徐州中考,10,3分,★☆☆)我国自主研发的某型号手机处理器采用10nm 工艺,已知1nm=0.000 000 001m,则10nm用科学记数法可表示为____________m.11.(2018江苏徐州中考,11,3分,★☆☆)化简:32|=__________.12.(2018江苏徐州中考,12,32x-x的取值范围是___________.13.(2018江苏徐州中考,13,3分,★★☆)若2m+n=4,则代数式6-2m-n的值为_________.14.(2018江苏徐州中考,14,3分,★☆☆)若菱形两条对角线的长分别是6cm和8cm,则其面积为___________cm2.15.(2018江苏徐州中考,15,3分,★★☆)如图,Rt△ABC中,∠ABC=90°,D为AC 的中点,若∠C=55°,则∠ABD=__________°.16.(2018江苏徐州中考,16,3分,★★☆)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为__________.17.(2018江苏徐州中考,17,3分,★★★)如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多___________个.(用含n的代数式表示)18.(2018江苏徐州中考,18,3分,★★★)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为___________.三、解答题(本大题共有10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(2018江苏徐州中考,19,10分,★★☆)计算:(1)-12+20180-(12)-138;(2)22a ba b--÷22a ba b+-.20.(2018江苏徐州中考,20,10分,★★☆)(1)解方程:2x2-x-1=0;(2)解不等式组:428,11.36x xx x-⎧⎪-+⎨≤⎪⎩>21.(2018江苏徐州中考,21,7分,★★☆)不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于_________;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)22.(2018江苏徐州中考,22,7分,★★☆)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表A 0≤m≤2520B 26≤m≤100 aC 101≤m≤20050D m≥20166根据以上信息,解答下列问题:(1)该调查的样本容量为_________,a=__________;(2)在扇形统计图中,“A”对应扇形的圆心角为_________°;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.23.(2018江苏徐州中考,23,8分,★★☆)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?24.(2018江苏徐州中考,24,8分,★★☆)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A 车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(2018江苏徐州中考,25,8分,★★☆)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎样的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.26.(2018江苏徐州中考,26,8分,★★☆)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)27.(2018江苏徐州中考,27,10分,★★★)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)求点P,C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标;若不存在,请说明理由.28.(2018江苏徐州中考,28,10分,★★★)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B 在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.徐州市2018年初中学业水平考试数学试题答案全解全析1.答案:D解析:4与-4只有符号不同,故4的相反数是-4.故选D.考查内容:相反数.命题意图:本题考查学生对相反数的识记,难度较小.2.答案:D解析:2a2-a2=(2-1)a2=a2≠1,故A错误;(ab)2=a2b2≠ab2,故B错误;a2与a3不是同类项,不能合并,故C错误;(a2)3=a2×3=a6,故D正确.故选D.考查内容:整式的加减;幂的乘方;积的乘方.命题意图:本题考查学生对整式运算的掌握,难度较小.3.答案:A解析:A既是轴对称图形,又是中心对称图形;B不是轴对称图形,是中心对称图形;C是轴对称图形,不是中心对称图形;D是轴对称图形,不是中心对称图形.故选A.考查内容:中心对称图形;轴对称图形.命题意图:本题考查学生对中心对称图形与轴对称图形的识记,难度较小.4.答案:A解析:从左边看底层有2个小正方形,最上面的一层左边有1个小正方形.故选A.考查内容:三视图.命题意图:本题考查学生对三视图的掌握,难度较小.5.答案:B解析:每次抛掷硬币都有两种可能:正面向上、反面向上,正面向上的概率是12.故选B.考查内容:概率的简单应用与计算.命题意图:此题主要考查学生对概率计算的掌握,难度较小.6.答案:B解析:在这组数据中,1出现了35次,故其众数是1册;将这组数据按从小到大排列后,第50、51个数的平均数是2,故其中位数是2册;这组数据的极差:3-0=3册;这组数据的平均数是(0×13+1×35+2×29+3×23)÷100=1.62册.故选B.考查内容:极差;众数;中位数;平均数.命题意图:本题考查学生对统计数据的计算,难度中等.7.答案:C解析:∵正比例函数y=kx与反比例函数y=-2x的交点关于原点对称,∴设A点坐标为(x,-2x),则B点坐标为(-x,2x),C(-2x,-2x),∴S△ABC=12×(-2x-x)•(-2x-2x)=12×(-3x)•(-4x)=6.故选C.一题多解:连接OC.由y=kx与y=-2x的图像都是中心对称图形可知,点A和点B关于原点对称,∴OA=OB.∵点A在反比例函数y=-2x的图像上,点C在反比例函数y=4x的图像上,且AC⊥y轴,∴S△AOC=12×2+12×4=3,∴S△ABC=2S△AOC=6.故选C.考查内容:反比例函数;正比例函数;轴对称的性质;全等三角形的性质与判定.命题意图:本题主要考查学生对函数图像对称的掌握,难度中等.8.答案:D解析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=-3k,∴不等式为kx-6k<0,解得x>6.故选D.考查内容:一次函数;一元一次不等式.命题意图:本题主要考查学生掌握一次函数的图像与性质及解一元一次不等式的能力,难度中等.9.答案:540解析:(5-2)•180°=540°.考查内容:多边形的内角和.命题意图:本题考查学生多边形的内角和的掌握,难度较小.10.答案:1×10-8(或10-8)解析:10nm=10×0.000 000 001m=1×101×10-9m=1×10-8m.考查内容:科学记数法.命题意图:本题考查学生对科学记数法的掌握,难度较小.11.答案:23解析:32<0,∴32|=23.考查内容:绝对值;实数的大小比较.命题意图:本题主要考查学生对绝对值的掌握,难度较小.12.答案:x≥2解析:由题意,得x-2≥0,解得x≥2.考查内容:二次根式有意义的条件.命题意图:本题主要考查学生对二次根式有意义的条件的理解,难度较小.13.答案:2解析:∵2m+n=4,∴6-2m-n=6-(2m+n)=6-4=2.考查内容:代数式求值;整体代入.命题意图:本题主要考查学生代数式求值的能力,难度中等.14.答案:24解析:12×6×8=24(cm2).考查内容:菱形面积.命题意图:本题主要考查学生对菱形的性质及面积计算方法的掌握,难度较小.15.答案:35解析:在Rt△ABC中,∠ABC=90°,D为AC的中点,∴BD是中线,∴AD=BD=CD,∴∠DBC=∠C=55°,∴∠ABD=90°-55°=35°.考查内容:直角三角形的性质;等腰三角形的性质;三角形内角和定理.命题意图:本题主要考查学生对直角三角形性质的掌握,难度中等.16.答案:2解析:扇形的弧长=1206180π⨯=4π,∴圆锥的底面半径为4π÷2π=2.考查内容:扇形的弧长公式;圆锥的侧面展开图;圆的周长公式.命题意图:本题主要考查学生对圆锥的有关运算的掌握,难度中等.17.答案:4n+3解析:第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个,第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个,第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个,……,第n个图形黑、白两色正方形共3×(2n+1)个,其中黑色n个,白色3×(2n+1)-n个,即白色正方形5n+3个,黑色正方形n个,故第n个图案中白色正方形比黑色正方形多4n+3个.考查内容:几何图形的变化规律.命题意图:本题考查学生几何图形变化规律的掌握,难度较大.18.答案:4解析:如图1,连接AQ ,AP .∵AB 是直径,∴∠APB=90°.∵BP•BQ=AB 2,∴BP AB =ABBQ.又∵∠ABP=∠QBA ,∴△ABP ∽△QBA ,∴∠QAB=∠APB=90°,∴QA 始终与AB 垂直.如图2,连接OC .∵C 为半圆AB 的中点,∴OC 是△ABQ 的中位线,∴AQ=2OC=4,∴点Q 运动路径长为4.图1 图2考查内容:相似三角形的判定和性质;三角形中位线的性质定理;圆的性质. 命题意图:本题主要考查学生对相似三角形的判定和性质的掌握,难度较大. 19.解析:(1)原式=-1+1-2+2=0; (2)原式=()()a b a b a b+--·2()a b a b-+=2a -2b .考查内容:有理数的乘方;0次幂;立方根;分式的化简.命题意图:本题考查学生对有理数的运算法则和及分式运算的灵活应用,难度中等. 20.解析:(1)这里a=2,b=-1,c=-1, ∴b²-4ac=1-4×2×(-1)=9>0, ∴x=194=134±, ∴x 1=-12,x 2=1. (2)∵解不等式428x x ->,得x >-4. 解不等式1136x x -+≤,得x≤3. ∴不等式组的解集为-4<x≤3.考查内容:解一元二次方程;解一元一次不等式组.命题意图:本题考查学生解一元二次方程和解一元一次不等式组的能力,难度中等. 21.解析:(1)13.(2)画树状图:或列表如下:红球白球1 白球2 红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2∴共有6种等可能的结果数,含有红球的有4种情况,∴P(摸到红球)=46=23.答:从中同时摸出2个球,摸到红球的概率是23.考查内容:列举法求概率.命题意图:本题考查用列表法与画树状图求概率,难度中等.22.解析:(1)200 64解法提示:∵“C”有50人,占样本的25%,∴样本=50÷25%=200(人).∵“B”占样本的32%,∴a=200×32%=64(人).(2)36°解法提示:“A”对应的扇形的圆心角=20200×360°=36°.(3)∵D类66人,总共200人,∴全校学生中家庭藏书200本以上的人数为:2000×66200=660(人).答:全校学生中家庭藏书200本以上的人数为660人.考查内容:统计表;扇形统计图.命题意图:本题考查统计表和扇形统计图的综合运用.难度中等.23.解析:(1)证明:∵四边形CEFG是正方形,∴CE=EF ,∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°, ∴∠FEH=∠DCE . 在△FEH 和△ECD 中,,,,EF CE FEH DCE FHE D =⎧⎪∠=∠⎨⎪∠=∠⎩∴△FEH ≌△ECD (AAS ), ∴FH=ED .(2)设AE=a ,则ED=FH=4-a , ∴S △AEF =12AE•FH=12a (4-a )=-12(a -2)2+2, ∴当AE=2时,△AEF 的面积最大.考查内容:正方形的性质;矩形的性质;全等三角形的判定和性质;三角形的面积. 命题意图:本题考查学生对正方形、矩形、全等三角形等知识的掌握,难度中等. 24.解析:设B 车行驶的时间为t 小时,则A 车行驶的时间为1.4t 小时,根据题意,得700t -7001.4t=80, 解这个方程,得t=2.5.经检验,t=2.5是原方程的解,且符合题意, ∴1.4t=3.5.答:A 车行驶的时间为2.5小时,B 车行驶的时间为3.5小时. 考查内容:分式方程的应用.命题意图:本题考查分式方程的应用,难度中等. 25.解析:(1)相切.理由如下: 连接OD .∵BD 是∠ABC 的平分线, ∴∠CBD=∠ABD . 又∵OD=OB , ∴∠ODB=∠ABD , ∴∠ODB=∠CBD ,∴OD∥CB,∴∠ODC=∠C=90°,∴CD与⊙O相切.(2)若∠CDB=60°,可得∠ODB=30°,∴∠AOD=60°,又∵AB=6,∴AO=3,∴AD的长为:603 180π⨯⨯=π.考查内容:圆的切线的判定;等腰三角形的性质;圆周角定理.命题意图:本题主要考查与圆的切线的判定,难度中等偏上.26.解析:(1)如图,过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°.由题意可知,设AB=x,在Rt△PCE中,tan32.3°=PEx,∴PE=x•tan32.3°.同理可得:在Rt△PDF中,tan55.7°=PFx,∴PF=x•tan55.7°,由PF-PE=EF=CD=42,可得x•tan55.7°-x•tan32.3°=42,解得:x=50,∴楼间距AB=50m.(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90-31.5=58.5m,由于2号楼每层3m,可知点C位于20层.归纳总结:锐角三角函数的实际问题,有图的要先将题干中的已知量在图中表示出来,再根据以下方法和步骤解决:根据题目中的已知条件,将实际问题抽象为解直角三角形的数学问题,画出平面几何图形,弄清已知条件中各量之间的关系;若三角形是直角三角形,根据边角关系进行计算,若三角形不是直角三角形,可通过添加辅助线构造直角三角形来解决.解直角三角形的实际应用问题关键是要根据实际情况建立数学模型,正确画出图形找准三角形.考查内容:解直角三角形的应用.命题意图:本题考查学生解直角三角形的应用能力,难度中等偏上.27.解析:(1)∵y=-x2+6x-5=-(x-3)2+4,∴顶点P(3,4),令x=0得到y=-5,∴C(0,-5).(2)令y=0,x2-6x+5=0,解得x=1或5,∴A(1,0),B(5,0).设直线PC的解析式为y=kx+b,则有5, 34,bk b=-⎧⎨+=⎩解得3,5. kb=⎧⎨=-⎩∴直线PC的解析式为y=3x-5.设直线PC与x轴相交于点D,可求得D(53,0).设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0).直线PE的解析式为y=-6x+22,∴Q(92,-5),直线PE′的解析式为y=-65x+385,∴Q′(212,-5).综上所述,满足条件的点Q(92,-5),Q′(212,-5).归纳总结:存在性问题是指在一定条件下探索发现某种数学关系是否存在的一类问题,解决此类问题的方法是:(1)对问题的结论作出肯定存在性的假设;(2)按题设条件和数学定理、性质等进行推理、计算;(3)若推出合理的结论,则说明假设成立,若推出不合理的结论或与已知、已证明的结论相矛盾,则假设不成立.考查内容:二次函数的性质;待定系数法;转化的思想;分类讨论.命题意图:本题是一道关于二次函数的综合题,主要考查学生应用二次函数解答问题的能力,难度较大.28.解析:(1)由题意可知BF=FM,则CF+FM=4,设CF=x,FM=4-x.在Rt△CFM中,CM=2,由勾股定理可得FM2=CF2+CM2,即(4-x)2=x2+22,解得x=32,即CF=32.(2)①△PFM的形状是等腰直角三角形,不会发生变化.理由如下:设PC与FM相交于O点,由折叠的性质可得,∠PMF=∠B=45°,∵CD是中垂线,∴∠ACD=∠DCF=45°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC.由∠EMC=∠AEM+∠A可得∠AEM=∠CMF,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=45°,∴△MPC∽△OFC,∴MPOF=MCOC,由POPM=OMMC和MPOF=MCOC可得OMPO=OCOF.∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=45°,∴△PFM是等腰直角三角形.②由①知△PFM是等腰直角三角形,设FM=y,由勾股定理可得,PF=PM=22y,∴△PFM的周长为(1+2)y,∵2<y<4,∴△PFM的周长满足:2+22<(1+2)y<4+42.考查内容:折叠的性质;等腰直角三角形的性质和判定;翻折变换;相似三角形的判定和性质;勾股定理.命题意图:本题是有关三角形综合题,主要考查学生综合应用三角形的相关知识解答问题的能力,难度较大.。
初中数学尺2018年规作图的步骤(已知、求作、作法)部审人教版经典题
尺规作图的步骤(已知、求作、作法)部审人教版经典题1、如果a,b互为相反数,x,y互为倒数,则的值是(; 答案C 解析2、若代数式2x2+3y+7的值为8,那么代数式4x2+6y-2的值是(答案B 解析3、把分式方程,的两边同时乘以x-2,约去分母,得(; 答案D 解析4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于A.11B.10C.9D.8 答案D 解析5、、实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是(答案C 解析6、二次函数的图象如图所示,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案D 解析7、下列物质露置在空气中一段时间后,质量会减轻的是()A.生石灰B.浓盐酸C 答案B。
提示:生石灰在空气中会吸收水蒸气和二氧化碳而质量增加,浓盐酸具有挥发性而质量减少,浓硫酸具有吸水性而质量增加,大理石在空气中没有变化而质量不变。
解析8、给出下列结论正确的有(;)①物体在阳光照射下,影子的方答案B 解析9、如图,正方形ABCD中,E是BC边上一点,以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则S四答案解析10、用黑色棋子摆出下列一组三角形,按此规律推断,第n个三角形所用的棋子总数为答案A 解析11、德州市2009年实现生产总值(GDP)1545.35亿元,用科学记数法表示应是(结果保留3个有效数字)答案D 解析12、某物体的三视图如图所示,那么该物体是(;)A.长方体B.圆锥体C.正方体D.圆柱体答案D 解析13、如果不等式ax+4lt;0的解集在数轴上表示如图,、那么a的值是(; 答案C 解析14、若一个数的算术平方根等于它的本身,则这个数是答案D 解析15、.下列计算中正确的是(;)A.B.C.D.答案B 解析16、使分式无意义的x的值是()A.答案B 解析17、某种商品的进价为元,商场按进价提高50%后标价,当销售旺季过后,又以7折(即按标价的70%)的价格开展促销活动,答案D 解析18、若点M(a-3,a+4)在轴上,则点M的坐标是(;)A 答案B 解析19、如图9,正方形ABCD的边长是3cm,一个边长为1cm的小正方形沿着正方形ABCD的边AB→BC→CD→DA→A 答案B 解析20、如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若表示△ADE的面积,表示四边形DBCE的面积答案B 解析21、(2014?台湾)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则答案A 解析试题分析:根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.解:如图所示:故选:A.点评:此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.22、在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学课程标准》考核试卷参考答案一、填空(每空 1 分,共30 分)1、数学是研究(数量关系)和(空间形式)的科学。
2、数学是人类文化的重要组成部分,(数学素养)是现代社会每一个公民所必备的基本素养。
3、数学课程能使学生掌握必备的基础知识和基本技能,培养学生的(抽象思维和推理能力),培养学生的(创新意识和实践能力),促进学生在情感、态度与价值观等方面的发展。
4、数学课程应致力于实现义务教育阶段的培养目标,面向全体学生,适应学生个体发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展。
)5、《数学课程标准》明确了义务教育阶段数学课程的总目标,并从知识技能、(数学思考)、(问题解决)和情感态度四方面具体阐述。
力求通过数学学习,学生能获得适应社会生活和进一步发展所必须的数学的(基本知识、基本技能、基本思想、基本活动经验)。
体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用(数学的思维方式)进行思考,增强(发现和提出问题)的能力、(分析和解决问题)的能力。
6、教学活动是师生(积极参与)、(交往互动)、共同发展的过程。
有效的数学教学活动是教师教与学生学的统一,应体现(“以人为本”)的理念,促进学生的全面发展。
7、《数学课程标准》中所说的“数学的基本思想”主要指:数学(抽象)的思想、数学(推理)的思想、数学建模的思想。
学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。
8、创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己(发现和提出问题)是创新的基础;(独立思考、学会思考)是创新的核心;归纳概括得到(猜想和规律),并加以验证,是创新的重要方法。
9、统计与概率主要研究现实生活中的(数据)和客观世界中的(随机现象)。
10、数学教学过程中恰当的使用(数学课程资源),将在很大程度上提高学生从事数学活动的水平和教师从事教学活动的质量。
11、学习评价的主要目的是为了全面了解学生数学学习的(过程和结果),激励学生学习和改进教师教学。
在实施评价时,可以对部分学生采取(延迟评价)的方式,提供再次评价的机会,使他们看到自己的进步,树立学好数学的信心。
第二学段可以采用(描述性)评价和(等级评价)评价相结合的方式。
12、“综合与实践”内容设置的目的在于培养学生综合运用有关的(知识与方法)解决实际问题,培养学生的(问题)意识、应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。
一、填空1、新课程的“三维”课程目标是指(知识与技能),(过程与方法)、(情感态度与价值观)。
2、学生的数学学习内容应当是(现实)的、(有意义)的、(富有挑战性)的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
3.数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。
学生是数学学习的主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
4、义务教育阶段的数学课程是培养公民素质的基础课程,具有(基础性)、(普及性)和(发展性)。
5、义务教育阶段的数学课程,其基本出发点是促进学生(全面)、(持续)、(和谐)地发展。
6、有效的数学学习活动不能单纯地依赖模仿与记忆,(动手实践)、(自主探索)与(合作交流)是学生学习数学的重要方式。
7、学生是数学学习的评价主人,教师是数学学习的(组织者)、(引导者)与(合作者)。
8、义务教育阶段数学课程的总目标,从(知识与技能)、(数学思路)、(解决问题)和(情感态度)等四个方面作出了阐述。
9、《数学课程标准》安排了(数与代数)、(空间与图形)、(统计与概率)、(实践与综合应用)等四个学习领域。
10、学生的数学学习内容应当是(现实的)、(有意义的)、(富有挑战的),这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
二、填空题。
(45%)1、数学是研究数量关系和空间形式的科学。
2、有效的数学教学活动是教师教与学生学的统一,应体现“以人为本”的理念,促进学生的全面发展。
3、义务教育阶段数学课程的总体目标,从以下四个方面作出了阐述:知识技能、数学思考、问题解决、情感态度。
4、在各学段中,《标准》安排了四个方面的课程内容:数与代数、图形与几何、统计与概率、综合与实践。
5、学生学习应当是一个生动活泼的、主动和富有个性的过程。
除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
6、在“图形与几何”的教学中,应帮助学生建立空间观念,注重培养学生的几何直观与推理能力。
7、在“统计与概率”的教学中,应帮助学生逐渐建立起来数据分析观念,了解随机现象。
8、“综合实践”是一类以问题为载体、师生共同参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。
9、《标准》中所提出的“四基”是指:基础知识、基本技能、基本思想、基本活动经验。
10、《标准》中所提出的“四能”是指:发现和提出问题的能力、分析和解决问题的能力。
11、教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。
12、义务教育阶段的数学课程具有公共基础的地位,要着眼于学生整体素质的提高,促进学生全面、持续、和谐发展。
二、选择题(每小题 2 分,共20 分)1、教师教学应该面向全体学生,注重(C),提供充分的数学活动的机会。
A、探究式B、自主式C、启发式D、合作式2、《数学课程标准》安排了数与代数、(B)(统计与概率)、(综合与实践)等四个方面的内容。
A、空间图形B、图形与几何C、几何与直观D、图形与直观3、推理一般包括(C )。
A、逻辑推理和类比推理B、逻辑推理和演绎推理C、合情推理和演绎推理D、合情推理和逻辑推理4、“综合与实践”的教学活动应当保证每学期至少(A )次。
A、一B、二C、三D、四5、在第一学段计算技能评价要求中,两位数乘两位数笔算的速度要求(B)A、3-4 题/分B、1-2 题/分C、2-3 题/分D、8-10 题/分6、在第二学段知识技能方面要求体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义;了解(C)的意义。
A、分数B、小数C、负数D、万以上的数7、在第二学段情感态度目标中要求学生初步养成(D)、勇于质疑、言必有据等良好品质。
A、克服困难B、解决问题C、相信自己D、乐于思考8、(B)的含义是从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象。
A、理解B、了解C、掌握D、经历9、在设计一些新知识的学习活动时,教材可以展现(C)的过程。
A、“问题情境——建立模型——求解验证”B、“经历收集数据——查阅资料——独立思考”C、“知识背景——知识形成——揭示联系”D、“合作交流——实践检验——推理论证”10、(D)能向学生提供并展示多种类型的资料,包括文字、声音、图像等,并能灵活选择与呈现。
A、文本资源B、社会教育资源C、生成性资源D、信息技术二、选择(1-10题为单选题,11-15题为多选题)1、新课程的核心理念是(C )A. 联系生活学数学B. 培养学习数学的兴趣C. 一切为了每一位学生的发展]2、新课程强调在教学中要达到和谐发展的三维目标是( B )A. 知识与技能B. 过程与方法C. 教师成长D. 情感、态度、价值观3、下列对“教学”的描述正确的是( D )A. 教学即传道、授业、解惑B. 教学就是引导学生“试误”C. 教学是教师的教和学生的学两个独立的过程D. 教学的本质是交往互动4、数学教学是数学活动的教学,是师生之间、学生之间(C)过程。
A. 交往互动B. 共同发展C. 交往互动与共同发展]5、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。
A. 教教材B. 用教材教6、《数学课程标准》中使用了“经历(感受)、体验(体会)、探索”等刻画数学活动水平的(A)的动词。
A. 过程性目标B. 知识技能目标7、各科新教材中最一致、最突出的一个特点就是( C )A. 强调探究性学习B. 强调合作学习C. 内容密切联系生活D. 强调STS课程设计思想8、新课程倡导的学生观不包括( B )A. 学生是发展的人B. 学生是自主的人C. 学生是独特的人D. 学生是独立的人9、在学习活动中最稳定、最可靠、最持久的推动力是(A )A. 认知内驱力B. 学习动机C. 自我提高内驱力D. 附属内驱力10、遗忘的规律是先快后慢,所以学习后应该( A )A. 及时复习B. 及时休息C. 过度复习D. 分数复习11、学生的数学学习活动应是一个(A,B,C )的过程。
A. 生动活泼的B.主动的C.富于个性D.被动的12、数学活动必须建立在学生的(A,B )之上。
A. 认知发展水平B. 已有的知识经验基础13、义务教育阶段的数学课程标准应突出体现基础性、普及性和发展性,使数学教学面向全体学生,实现(A,B,C)。
A. 人人学有价值的数学B. 都能获得必需的数学,C. 不同的人在数学上得到不同的发展。
14、评价的主要目的是(A,B)。
A. 为了全面了解学生的数学学习历程B. 激励学生的学习和改进教师的教学15、课程内容的学习,强调学生的数学活动,发展学生的(A,B,C,D,E)。
A. 数感B. 符号感C. 空间观念D. 统计观念E. 应用意识及推理能力一、选择题(1-10单项选择,11-15多项选择)(30%)1、数学教学活动是师生积极参与,(C )的过程。
A、交往互动B、共同发展C、交往互动、共同发展2、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。
A、教教材B、用教材教3、“三维目标”是指知识与技能、(B )、情感态度与价值观。
A、数学思考B、过程与方法C、解决问题4、《数学课程标准》中使用了“经历、体验、探索”等表述(A )不同程度。
A、学习过程目标B、学习活动结果目标。
5、评价要关注学习的结果,也要关注学习的( C )A、成绩B、目的C、过程6、“综合与实践”的教学活动应当保证每学期至少( A )次。
A、一B、二C、三D、四7、在新课程背景下,评价的主要目的是( C )A、促进学生、教师、学校和课程的发展B、形成新的教育评价制度C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学8、学生是数学学习的主人,教师是数学学习的(C )。
A 组织者合作者B组织者引导者 C 组织者引导者合作者9、学生的数学学习活动应是一个( A )的过程。
A、生动活泼的主动的和富有个性B、主动和被动的生动活泼的C、生动活泼的被动的富于个性10、推理一般包括( C )。