机械设计基础-10. 4齿轮传动的计算载荷
机械设计-齿轮传动
二、齿轮传动的缺点 制造及安装精度要求高 成本高、价格较贵 三、齿轮传动的分类 按装臵形式的不同分:
§10-1 齿轮传动概述
不适宜于远距离传动。
开式
半开式 闭式 软齿面 硬齿面
按齿面硬度的不同分:
根据使用情况的不同:还有高速、低速;重载、轻载齿轮 传动等之分。
§10-2 齿轮传动的失效形式及设计准则
问题:σF1和σF2是否是作用力和反作用力的关系 σF1≠σF2 不是作用力和反作用力的关系,位臵不同,大小不 同。
标准直齿圆柱齿轮强度计算
三、齿面接触疲劳强度计算
基本公式──赫兹应力计算公式,即:
sH =
1 1 Fca ± ) ( r1 r 2 L 2 1 - m 12 1 - m 2 p( + ) E1 E
常用材料
三、齿轮材料选用的基本原则
齿轮材料必须满足工作条件的要求;
应考虑齿轮尺寸大小,毛坯成型方法及热处理和制造工艺;
钢制软齿面齿轮,配对两轮齿面的硬度差应保持在30~50HBS或更多。
§10-4 齿轮传动的计算载荷
在进行齿轮传动的强度计算时,为了方便计算,所用的载荷通 常取沿齿面接触线上单位长度所受的平均载荷作为计算依据,即: Fn p = 单位长度载荷 L Fn 为轮齿所受的公称法向载荷。 实际传动中,由于原动机、工作机性能以及齿轮的制造误差的影 响,法向载荷会有所增大,而且沿接触线分布不均匀。引入一个系数K。 修正后的接触线单位长度上载荷Pca——计算载荷为: KFn Pca = KP = L K为载荷系数,其值为:K=KA Kv Kα Kβ
§10-3齿轮的材料及其选择原则
一、对齿轮材料性能的要求 齿轮的齿根应有较高的抗折断能力,齿面应有较强的抗点蚀、 抗
2024年机械设计基础课件齿轮传动
机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。
齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。
本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。
2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。
齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。
齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。
3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。
直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。
斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。
直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。
蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。
4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。
齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。
强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。
精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。
5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。
在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。
在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。
在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。
齿轮传动
Kα取决于轮齿刚度、pb误差、修缘量等。
KHα——用于σH KFα ——用于σF
10-4 齿轮传动的计算载荷
26
4、齿向载荷分配系数Kβ 考虑使轮齿沿接触线产生载荷分布不均匀现象。 制造方面:齿向误差 影响因素 安装方面:轴线不平行等 使用方面:轴变形、轮齿变形、支承变形等
讨论:
a)轴承作非对称布置时, 弯曲变形对Kβ的影响。
10-2 齿轮传动的失效形式及设计准则 6
失效形式
齿轮的失效发生在轮齿,其它部分很少失效。
失效形式
轮齿折断 齿面损伤
齿面接触疲劳磨损(齿面点蚀) 齿面胶合 齿面磨粒磨损
齿面塑性流动 一、轮齿折断
常发生于闭式硬齿面或开式传动中。
现象:①局部折断 ②整体折断
10-2 齿轮传动的失效形式及设计准则 7
3、有良好的加工工艺性,便于齿轮加工。 1)大直径d>400 用ZG 2)大直径齿轮:齿面硬度不宜太高,HB<200,以免中途换刀
4、材料易得、价格合理。 举例:起重机减速器:小齿轮45钢调质 HB230~260 大齿轮45钢正火 HB180~210 机床主轴箱:小齿轮40Cr或40MnB 表淬 HRC50~55 大齿轮40Cr或40MnB 表淬 HRC45~50
第十章 齿 轮 传 动
§10-1 齿轮传动概述 §10-2 齿轮传动的失效形式及设计准则 §10-3 齿轮的材料及其选择原则 §10-4 齿轮传动的计算载荷 §10-5 标准直齿圆柱齿轮传动的强度计算 §10-6 齿轮传动设计参数、许用应力与精度选择 §10-7 标准斜齿圆柱齿轮传动的强度计算 §10-8 标准锥齿轮传动的强度计算 §10-9 齿轮的结构设计 §10-10 齿轮传动的润滑
动载系数
齿轮传动的作用力及计算
11-4直齿圆柱齿轮传动的作用力及计算载荷:一、齿轮上的作用力:为了计算齿轮的强度,设计轴和选用轴承,有必要分析轮齿上的作用力。
当不计齿面的摩擦力时,作用在主动轮齿上的总压力将垂直于齿面,(因为齿轮传动一般都加以润滑,齿轮在齿啮合时,摩擦系数很小,齿面所受的摩擦力相对载荷很小,所以不必考虑),即为P175图11-5b所示的F n(沿其啮合线方向),Fn可分解为两个分力:圆周力:Ft=2T1/d1 N径向力:Fr=Fttgα N而法向力:Fn=Ft/cosα NT1:小齿轮上的扭矩 T1=9550000p/n1 n·mmP:传递的功率(KW) d1:小齿轮分度圆直径 mmα:压力角 n1:小齿轮的转速(r·p·m)Ft1:与主动轮运动方向相反;Ft2与从动轮运动方向一致。
各力的方向 Fr:分别由作用点指向各轮轮心。
Fn:通过节点与基圆相切(由法切互为性质)。
根据作用力与反作用力的关系,主从动轮上各对的应力应大小相等,方向相反。
二、计算载荷:Fn是根据名义功率求得的法向力,称为名义载荷,理论上Fn沿齿宽均匀分布,但由于轴和轴承的变形,传动装置的制造安装误差等原因,载荷沿齿宽的分布并不均匀,即出现载荷集中现象(如P176图11-6所示,齿轮相对轴承不对称布置,由于轴的弯曲变形,齿轮将相互倾斜,这时,轮齿左端载荷增大,轴和轴承刚度越小,b越宽,载荷集中越严重。
此外,由于各种原动机和工作机的特性不同,齿轮制造误差以及轮齿变形等原因,还会引起附加动载荷。
精度越低,圆周速度V越大,附加载荷越大。
因此在计算强度时,通常以计算载荷K·Fn代替名义载荷Fn,以考虑上两因素的影响。
K—载荷系数表达式11-311-5 直齿圆柱齿轮的齿面接触强度计算:一、设计准则:齿轮强度计算是根据齿轮失效形式来决定的,在闭式传动中,轮齿的失效形式主要是齿面点蚀,开式传动中,是齿轮折断,在高速变截的齿轮传动中,还会出现胶合破坏,因胶合破坏的计算方法有待进一步验证和完善。
机械设计基础第10章
•
相信相信得力量。20.12.202020年12月 20日星 期日2时45分44秒20.12.20
谢谢大家!
•
踏实,奋斗,坚持,专业,努力成就 未来。20.12.2020.12.20Sunday, December 20, 2020
•
弄虚作假要不得,踏实肯干第一名。02:45:4402:45:4402:4512/20/2020 2:45:44 AM
(N / mm2 )
10
10
10
二、齿面接触疲劳强度计算
⒈计算依据 H HP
⒉齿面接触应力计算
H0
11
Fn 1 2
b 1 12 1 22
E1
E2
整理后,齿面接触疲劳的理论应力
H0 ZEZH
Ft u 1 bd1 u
10
10
小轮 大轮
H1 ZBZH ZEZ
2KT1 u 1
d d13 u
机械设计基础
第十章 齿 轮 传 动
第一节 齿轮传动的失效形式和计算准则 第二节 齿轮的材料及热处理 第三节 齿轮传动的精度 第四节 直齿圆柱齿轮传动的作用力及计算载荷 第五节 直齿圆柱齿轮传动的强度计算 第六节 斜齿圆柱齿轮传动的强度计算 第七节 直齿圆锥齿轮传动的强度计算 第八节 齿轮的结构 第九节 齿轮传动的润滑及效率 第十节 圆弧齿轮传动简介 第十一节 渐开线圆柱齿轮传动计算辅助设计简介
1
3)比渐开线齿轮具有较高的抗疲劳点蚀能力。 4)有利于油膜形成,齿面磨损小,磨擦损失小,传动效率高。 5)无根切现象,小齿轮齿数可以很少,因此可减少齿轮尺寸。 6)加工主要为滚切,且只需一把滚刀。
二、双圆弧齿轮传动
10
10
第十一节 渐开线圆柱齿轮传动计算机辅助设计(CAD)简介
《机械设计基础》教学课件主题10 齿轮传动
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
1、轮齿折断 轮齿就好像一个悬臂梁,在外载荷作用下,在其轮齿根部产生的 弯曲应力最大。同时,在齿根部位过渡尺寸发生急剧变化,以及加工时 沿齿宽方向留下加工刀痕而造成应力集中的作用,当轮齿重复受载,在 脉动循环或对称循环应力作用下,弯曲应力超过弯曲疲劳极限时,在齿 轮根部会产生疲劳裂纹,如图(a)所示。随着裂纹的逐步扩展,最终 引起断裂,如图(b)所示。
轮齿折断都是其弯曲应力超过了材料相应的极限应力,是最危险 的一种失效形式。一旦发生断齿,传动立即失效。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
2、齿面点蚀 在润滑良好的闭式齿轮传动中,由于齿面材料在交变接触应力 作用下,因为接触疲劳产生贝壳形状凹坑(麻点)的破坏形式称为点 蚀。点蚀也是常见的一种齿面破坏形式。齿面上最初出现的点蚀随材 料不同而不同,一般出现在靠近节线的齿根面上,如图所示,最初为 细小的尖状麻点。当齿面硬度较低、材料塑性良好,齿面经跑合后, 接触应力趋于均匀,麻点不再继续扩展,这是一种收敛性点蚀,不会 导致传动失效。但当齿面硬度较高、材料塑性较差时,点蚀就会不断 扩大,这是一种破坏性点蚀,是一种危险的失效形式。
单元1 齿轮的失效形式和设计准则
一、轮齿常见的失效形式
3、齿面胶合 对于某些高速重载的齿轮传动(如航空发动机的主传动齿轮), 齿面间的压力大,瞬时温度高,油变稀而降低了润滑效果,导致摩擦增 大,齿面温度升高,将会使某些齿面上接触的点熔合,焊在一起,在两 齿面间相对滑动时,焊在一起的地方又被撕开。于是,在齿面上沿相对 滑动的方向形成伤痕,如图所示,这种现象称为胶合。
机械设计基础
主题10 齿轮传动
单元1 单元2 单元3 单元4 单元5 单元6
机械设计基础考试大纲
课程内容
9-1机械零件设计概述
9-2机械零件的强度
9-3机械零件的接触强度
9-4机械零件的耐磨性
9-5机械制造常用材料及选择
考核知识点和考核要求
1、 应力种类;许用应力、安全系数的概念;影响机械零件疲劳强度的主要因素
1、 棘轮机构的组成、工作原理和基本类型;主要特点和应用
2、 槽轮机构的组成、工作原理和基本类型;主要特点和应用
第7章 机械运转速度波动的调节
课程内容
7-1机械运转速度波动调节的目的和方法
7-2飞轮设计的近似方法
7-3飞轮主要尺寸的确定
考核知识点和考核要求
1、 周期性速度波动和非周期性速度波动的概念;平均角速度和不均匀系数的概念;周期性速度波动和非周期性速度波动的调节概念
第12章 蜗杆传动
课程内容
12-1蜗杆传动的特点和类型
12-2圆柱蜗杆传动的主要参数和几何尺寸
12-3蜗杆传动的失效形式、材料和结构
12-4圆柱蜗杆的受力分析
12-5圆柱蜗杆传动的强度计算
12-6圆柱蜗杆传动的效率、润滑和热平衡计算
考核知识点和考核要求
1、 蜗杆传动的特点和类型;普通圆柱蜗杆传动的中间平面的含义;蜗杆分度圆直径取标准值的意义;普通圆柱蜗杆传动的正确啮合条件、几何尺寸计算
第11章 齿轮传动
课程内容
11-1轮齿的失效形式
11-2齿轮材料及热处理
11-3齿轮传动的精度
11-4直齿圆柱齿轮传动的作用力及计算载荷
11-5直齿圆柱齿轮传动的齿面接触强度计算
11-6直齿圆柱齿轮传动的轮齿弯曲强度计算
齿轮传动的计算载荷
一、轮齿的受力分析 忽略摩擦力,法向力F 沿啮合线作用于节点处(将分布力简化为集中力) 忽略摩擦力,法向力 n沿啮合线作用于节点处(将分布力简化为集中力) Fn与过节点 的圆周切向成角度。Fn可分解为 t和Fr 与过节点P的圆周切向成角度 的圆周切向成角度。 可分解为F 1、力的大小 、 圆周力 Ft=2π/d1 径向力 Fr=Ft/tgα Ft1=-Ft2 Fr1=-Fr2 大小相等, 大小相等,方向相反
3 齿间载荷分配系数 α 考虑齿轮付双齿啮合时各 齿间载荷分配系数K
齿对载荷分配不均匀的影响 齿对载荷分配不均匀的影响 分配不均匀 影响因素:齿轮的精度、齿面硬度 均匀的影响 均匀的影响 影响因素:精度、齿面硬度 、齿宽、齿轮相对轴 承的位置
4 齿向载荷分布系数 β 考虑轮齿沿齿宽载荷分布不 齿向载荷分布系数K 考虑轮齿沿齿宽载荷分布不
计算载荷: 计算载荷: Fnc = K Fn 载荷系数: 载荷系数: 1 使用系数 A 使用系数K K=KAKVKαKβ
Fn
考虑外部因素引起的附加动载荷影响 影响因素:原动机、工作机的机械特性
2 动载荷系数 V 考虑齿轮付本身因误差、变形带来 动载荷系数K 考虑齿轮付本身因误差、
冲击而引起的附加动载荷影响 影响因素:齿轮的精度n1=-Fn2 T1——小齿轮上传递的扭矩(N.mm) 小齿轮上传递的扭矩( 小齿轮上传递的扭矩 ) α=20° ° 2、力的方向 、 Ft——“主反从同”,Fr——指向轴线 外齿轮 主反从同” 指向轴线—外齿轮 主反从同 指向轴线 背向轴线—内齿轮 背向轴线 内齿轮 d1——小齿轮上的直径(mm), 小齿轮上的直径( 小齿轮上的直径 )
机械设计 齿轮传动
第十章齿轮传动本章主要内容⏹齿轮传动类型和特点;⏹齿轮传动的受力分析、计算载荷、各种载荷系数的物理意义及其影响因素;⏹齿轮传动的失效形式及其机理、特点、预防措施;⏹齿轮材料的基本要求、常用的热处理方法及材料的选用原则;⏹直齿圆柱齿轮承载能力计算,斜齿圆柱齿轮和直齿圆锥齿轮承载能力计算特点;⏹齿轮的结构设计;⏹齿轮传动的润滑。
重点难点⏹齿轮传动的受力分析、计算载荷、各种载荷系数的物理意义及其影响因素;⏹齿轮传动的失效形式及其机理、特点、预防措施;⏹直齿圆柱齿轮承载能力计算。
第一节概述一、齿轮传动的特点、类型和基本问题齿轮传动是机械传动中最重要的传动之一,其应用范围十分广泛,型式多样,传递功率从很小到很大(可高达近十万千瓦)。
1、齿轮传动的主要特点:◆效率高可达99%。
在常用的机械传动中,齿轮传动的效率为最高;◆结构紧凑与带传动、链传动相比,在同样的使用条件下,齿轮传动所需的空间一般较小;◆工作可靠,寿命长与各类传动相比◆传动比稳定无论是平均值还是瞬时值。
这也是齿轮传动获得广泛应用的原因之一;◆成本高,不适于远距离传动与带传动、链传动相比,齿轮的制造及安装精度要求高。
2、齿轮传动的分类按齿轮类型分:直齿圆柱齿轮传动斜齿圆柱齿轮传动人字齿轮传动锥齿轮传动按装置形式分:开式传动、半开式传动、闭式传动。
按使用情况分:动力齿轮─以动力传输为主,常为高速重载或低速重载传动。
传动齿轮─以运动准确为主,一般为轻载高精度传动。
按齿面硬度分:软齿面齿轮(齿面硬度≤350HBS)硬齿面齿轮(齿面硬度>350HBS)3、两个基本问题:(1)传动平稳就是要保证瞬时传动比恒定,从而尽可能减小齿轮啮合中的冲击、振动和噪声。
(2)足够的承载能力就是要在尺寸、质量较小的前提下.保证齿轮的强度、耐磨性等方面的要求。
保证在预定的使用期限内不发生失效。
二、精度选择齿轮精度等级应根据传动的用途,使用条件、传动功率和圆周速度等确定。
表10—8给出了各类机器所用齿轮的精度等级。
第十章 齿轮传动
本章学习要求
• 熟悉齿轮传动的特点及应用 掌握不同条件下齿轮传动的失效形式与设计准则 掌握齿轮常用材料及热处理方法的选择 掌握齿轮传动的载荷计算及各类齿轮传动的受力分析 掌握齿轮设计原理及强度计算方法 掌握不同类型、不同尺寸齿轮的结构设计 •了解齿轮传动的精度与润滑设计
10-1 概述 10特点 缺点 工作 应用
为避免轮齿折断
确定产生最大弯曲应力的力的作用点 1. 确定产生最大弯曲应力的力的作用点
理论上:发生在单对齿啮合区小轮上的最高点b
原因:单对齿工作,小轮,悬臂较长 εapb pb B1 b p c B2
单对齿啮合区
实际上:对常用的7、8、9级精度的齿轮传动用简化方法
取较安全的齿顶 齿顶作为产生最大弯曲应力的力的作用点 齿顶
一、齿轮的失效形式
轮齿折断
原因
• 疲劳断裂: 轮齿根部弯曲应力最大,且有应力集中 疲劳断裂: 变载荷 产生裂纹 裂纹扩大 疲劳断裂
斜齿轮传动因制造安装不良 • 局部折断: 局部折断: 轮齿局部受载 • 突然过载折断; 突然过载折断;
齿轮轴弯曲变形
局部折断
• 磨损过度折断
预防措施
• 增大齿根过度圆角半径,消除加工刀痕以减小应力集中 减小应力集中 •增大支撑刚度使轮齿在接触线上受载均匀 受载均匀 •采用合适的热处理增强齿芯韧性 增强齿芯韧性 • 对齿面进行强化处理,如喷丸、滚压等,提高齿面硬度 提高齿面硬度
再考虑齿根圆角引起的应力集中对齿根弯曲应力的影响 引入应力校正系数Ysa 则:
KFt σ F = σ F 0 • Ysa = YFaYsa bm
2T1 2T1 Ft = = d1 mz1
式中:
b = φd d1 = φd mz1
机械设计基础齿轮传动的计算载荷
第四节 齿轮传动的计算载荷齿轮传动强度计算中所用的载荷,通常取沿齿面接触线单位长度上所受的载荷进行计算。
沿齿面接触线单位长度上的平均载荷p(单位为N/mm)为,即:F n 为轮齿所受的公称法向载荷。
实际传动中由于原动机、工作机性能的影响以及制造误差的影响,载荷会有所增大,且沿接触线分布不均匀。
接触线单位长度上的最大载荷为:K 为载荷系数,其值为:K =K A K v K αK β式中:K A ─使用系数 K α─齿间载荷分配系数 K v ─动载系数 K β─齿向载荷分布系数1、KA--使用系数使用系数KA 是考虑齿轮啮合时外部因素引起的附加动载荷影响的系数。
这种动载荷取决于原动机和工作机的特性,质量比,联轴器类型以及运行状态等。
KA 的使用值应针对设计对象,通过实践确定。
表10-22、Kv--动载系数动载系数Kv 是考虑齿轮副本身的啮合误差(基节误差、齿形误差、轮齿受载变形等)所引起的啮入、啮出冲击和振动而产生内部附加动载荷影响的系数。
影响动载系数Kv 的主要因素:1)基节误差和齿形误差由于制造及装配的误差,轮齿受载后弹性变形的影响,使啮合轮齿的法向齿距Pb1与Pb2不相等,因而轮齿就不能正确的啮合传动,瞬时传动比就不是定值,从动齿轮在运转中就会产生角加速度,于是引起了动载荷或冲击。
LF p n =LKF Kp p n ca ==2)轮齿变形和刚度大小的变化对于直齿轮传动,轮齿在啮合过程中,不论是由双对齿啮合过渡到单对齿啮合,或是由单对齿啮合过渡到双对齿啮合的期间,由于啮合齿对的刚度变化,也要引起动载荷。
为了计及动载荷的影响,引入了动载系数Kv。
3)齿轮转速的高低及变化齿轮的制造精度及圆周速度对轮齿啮合过程中产生动载荷的大小影响很大。
减小动载荷的措施:1)提高制造精度,以减小基节误差和齿形误差,减小齿轮直径以降低圆周速度;2)对轮齿进行修缘,以减小轮齿的啮入、啮出冲击;对轮齿进行齿顶修缘,即把齿顶的小部分齿廓曲线(分度圆压力角α=20°的渐开线)修正成α>20°的渐开线。
齿轮传动的计算载荷
KA与原动机和工作机种类有关。表6-3
表 使用系数KA 原
载 荷 状态动源自蒸汽机、燃 气轮机、液 压装置机
多 缸 内 燃 机 单缸 内燃 机
工 作 机 器
发电机、均匀传送的带式输送机或 板式输送机、螺旋输送机、轻型升降 机、包装机、机床进给机构、通风机、 均匀密度材料搅拌机等 不均匀传送的带式输送机或板式输 送机、机床的主传动机构、重型升降 机、工业与矿用风机、重型离心机、 变密度材料搅拌机等 橡胶挤压机、间断工作的橡胶或 塑料搅拌机、轻型球磨机、木工机械、 钢坯、初轧机、提升装置、单缸活塞 泵等 挖掘机、重型球磨机、橡胶揉合 机、破碎机、重型给水泵、旋转式钻 探装置、压砖机、带材冷轧机、压坯 机等
电动机、均 匀运转的蒸 汽机、燃气 轮机
均匀 平稳 轻微 冲击
1.00 1.25
1.10 1.35
1.25 1.50
1.50 1.75 2.0 1.75 2.0 2.25
或更 大
中等 冲击
严重 冲击
1.50
1.75
1.60
1.85
2、动载荷系数Kv
K K A KV K K
考虑齿轮制造误差、运转速度对齿轮内部附加 动载荷影响的系数。
8级精度直接查表; 高于8级,降低5%~10%;低于8级,增加5%~10%
4、齿间载荷分配系数 K
K K A KV K K
考虑同时啮合的各对轮齿间载荷分配 不均匀的系数。
K与齿轮精度和重合度有关。表中接触强度重合度系数由图6-13查。
表 6-4
齿轮精度等级 经表面硬化的直齿轮 经表面硬化的斜齿轮 未经表面硬化的直齿轮 未经表面硬化的斜齿轮
齿间载荷分配系数 K
5 1.0
齿轮ppt
d ↑ →齿宽 b ↑ → 有利于提高强度,但 d 过大将导致 Kβ↑
在齿轮的设计计算中,要注意参数的处理 模数和压力角必须是标准值;齿宽必须圆整;中心距 应尽可能取整;分度圆直径计算时要足够精确。
参数设计、许用应力与 精度选择
§10-3 齿轮的材料及其选择
对齿轮材料性能的要求:齿面硬、芯部韧。
§10-3 齿轮的材料及其选 择
一、常用的齿轮材料
钢: 碳钢 (见表10-1) 最常用; 合金钢 铸铁:(见表10-1) 用于低速、轻载、不太重要的场合;
常用材料
非金属材料:如尼龙、塑料等。适用于高速、轻载、精度要求不高、 且要求降低噪音的场合。
§10-1概述1
§10-1 概 述
一、齿轮传动的特点
1)效率高 2)功率大
优点
3)寿命长
4)传动比稳定 5)工作平稳、可靠
6)结构紧凑
缺点 1)制造及安装精度要求高
2)中心距较小
二、齿轮传动的分类
平行轴齿轮传动 按轴的布置分 相交轴齿轮传动 交错轴齿轮传动
概述2
概述
直齿轮传动 按齿向分: 斜齿轮传动 人字齿轮传动
rb
O
H ZE
p ca
详细说明
式中:ρ∑—啮合齿面上啮合点的综合曲率半径; ZE—弹性影响系数
直齿圆柱齿轮传动的强度计算
直齿圆柱齿轮传动的强度计算
通常按节点啮合进行计算
H ZE
pca
1
1
1
1
2
式中:
d1 1 N1P sin 2
2
1
d2 2 sin 2
锻造 齿轮的毛坯: 铸造 :适用于中、小尺寸的齿轮。 :适用于形状复杂、尺寸大的齿轮。
哈尔滨工程大学机械设计基础 第十一章 齿轮传动简答题
第十一章齿轮传动1.(1)闭式齿轮传动的主要失效形式及设计准则是什么?开式齿轮传动的主要失效形式及设计准则是什么?答:软齿面闭式齿轮传动的主要失效形式为齿面点蚀,故应先进行齿面接触疲劳强度校核,再进行齿根弯曲疲劳强度校核。
硬齿面闭式齿轮传动的主要失效形式是齿轮疲劳折断,故应先进行齿根弯曲疲劳强度校核,再进行齿面接触疲劳强度校核。
开式齿轮传动的主要失效形式是齿面磨损,一般只进行齿根弯曲疲劳强度校核,同时考虑磨损的影响将模数增加10%~15%。
(对于高速大功率的齿轮传动还要进行齿面抗胶合计算)2.(1)选择齿轮材料时,为何小齿轮的材料硬度要选得比大齿轮材料硬度高?答:因为小齿轮应力循环次数多,弯曲应力更大。
3.(1)提高轮齿的抗弯曲疲劳折断能力和齿面抗点蚀能力有哪些可能的措施?答:抗弯曲疲劳折断能力的措施:通过计算齿根弯曲疲劳强度来保证;增大齿根过渡圆角半径,消除加工刀痕,降低应力集中;增大轴和支承的刚度,减小局部载荷程度;使齿轮芯具有足够的韧性;在齿根处采取强化措施(喷丸或挤压)等。
齿面抗点蚀措施:通过计算齿面接触疲劳强度来保证;提高齿面硬度;减小齿面的粗糙度值;增加润滑油的粘度。
4.什么是硬齿面齿轮?什么是软齿面齿轮?各适用于什么场景?(此题略去)答:当齿面硬度大于350HBS时,称为硬齿面齿轮;当齿面硬度≤350HBS时,称为软齿面齿轮;硬齿面齿轮适用于高速、重载和精密仪器,而软齿面齿轮适用于对速度、载荷和精密度要求都不是很高的场合。
5.齿轮产生齿面磨损的主要原因是什么?它是哪一种齿轮传动的主要失效形式?防止磨损失效的最有效办法是什么?答:在齿轮传动时,当落入磨料性物质时,就会发生磨损,当齿轮表面比较粗糙时也会发生齿轮磨损;是开式齿轮传动的主要失效形式;最有效的方法就是改为闭式齿轮传动,其次是各种增大齿面硬度的方法。
6.齿面接触疲劳强度计算的计算点在何处?其计算的力学模型是什么?齿面接触疲劳强度针对何种失效形式?(此题略去)答:节点;两个半径为两齿轮接触点出曲率半径的圆柱之间的弹性接触;针对齿面点蚀失效形式。
齿轮传动参数计算
齿轮传动参数计算齿轮传动是一种常见的机械传动形式,广泛应用于各种机械设备中。
在设计齿轮传动时,需要进行一系列的参数计算,以确保齿轮传动的工作正常、可靠。
本文将介绍齿轮传动的参数计算方法及其相关知识,以帮助读者更好地了解和应用齿轮传动。
首先,需要计算齿轮的传动比。
传动比是指齿轮的转速之比,用于确定输入轴和输出轴的转速关系。
传动比的计算公式为:传动比=输出齿轮的齿数/输入齿轮的齿数传动比决定了输出齿轮的转速是输入齿轮转速的多少倍。
通常情况下,齿轮传动是通过调整齿数比例来实现所需的传动比。
接下来,需要计算齿轮的模数(module)。
齿轮的模数是指齿轮齿条上的齿距在径向方向上的投影长度。
模数的计算公式为:模数=齿轮的齿数/齿轮的直径模数决定了齿轮的尺寸和齿形,是齿轮传动设计的重要参数之一除了传动比和模数,还需要计算齿轮的径向力和轴向力。
径向力是齿轮齿条与齿轮轴线之间的力,用于计算齿轮的轴向受力情况。
轴向力是齿轮轴线方向的力,用于计算齿轮轴的强度和稳定性。
齿轮的径向力和轴向力的计算涉及到齿轮齿条的几何参数和受力分析。
在计算径向力时,需要考虑齿轮齿距、齿厚、齿顶宽度等参数。
在计算轴向力时,需要考虑齿轮齿条的齿形和齿距角等参数。
最后,还需要进行齿轮传动的强度计算。
齿轮传动的强度计算是指通过计算齿轮的受力情况和材料强度,来确定齿轮的承载能力和寿命。
强度计算通常涉及到齿轮的材料特性、齿数、载荷、接触比、接触应力等参数。
以上是齿轮传动参数计算的基本内容。
在实际的齿轮传动设计中,还需要考虑一系列的实际情况和使用要求,如齿轮材料的选择、润滑条件、噪声和振动等方面的要求。
因此,在进行参数计算时,还需要综合考虑这些因素,以确保齿轮传动的工作性能和可靠性。
总之,齿轮传动参数计算是齿轮传动设计中的基础工作,通过计算传动比、模数、径向力、轴向力和强度等参数,可以为设计者提供必要的数据和依据,以确保齿轮传动的性能和寿命。
除了上述介绍的内容,齿轮传动参数计算还涉及到齿轮的几何特征、材料力学性能、接触应力和齿轮失效分析等方面的知识。
10-04 齿轮传动的计算载荷
接触强度计算用齿向载荷分布系数KHβ
弯曲强度计算用齿向载荷分布系数KFβ
载荷状态
均匀平稳 轻微冲击 中等冲击 严重冲击
均匀平稳 1.00 1.25 1.50 1.75
严重冲击 1.50 1.75 2.00 >2.25
动载系数KV
制造及装配的误差,轮齿受载后还要产生弹性变形。导 致啮合两轮齿的法节不相等。 对于直齿轮传动,轮齿在啮合过程中,不论是由双对齿 啮合过渡到单对齿啮合,或是由单对齿啮合过渡到双对齿啮 合的期间,由于啮合齿对的刚度变化,也要引起动载荷。 为了在计算中考虑动载荷的影响,引入动载荷系数KV 。
计算轮齿强度时为了考虑齿面上载荷沿接触线分布不均现象一般引入齿向载荷分布系数k计算轮齿强度时为了考虑齿面上载荷沿接触线分布不均现象一般引入齿向载荷分布系数k当轴承相对于齿轮作不对称配置时
10-4 齿轮传动的计算载荷
沿齿面接触线单位长度上的平均载荷 p 为:
作用于齿面接触线上的法向载荷(公称 载荷),N;
沿齿面的接触线长,mm。
由于原动机、工作机性能的影响,齿轮制造、安装等中的 误差影响,载荷在接触线上不可能是均匀的。 计算载荷按下式计算:
载荷系数
载荷系数
计算齿轮强度时用的载荷系数K,包括: ●使用系数KA ●动载系数Kv ●齿间载荷分配系数Kα
●齿向载荷分布系数Kβ
使用系数KA
使用系数KA是考虑齿轮啮合时外部因素引起的附加动载 荷影响的系数。这种动载荷取决于原动机和工作机的特性、质 量比、联轴器类型以及运行的工况等。KA可参考下表: 工作机 原 动 机 轻微冲击 中等冲击 1.10 1.25 1.35 1.50 1.60 1.75 1.85 2.00
[经典]齿轮传动的载荷和应力
1. 齿轮传动的载荷计算(1) 直齿圆柱齿轮传动的受力分析圆周力:径向力:法向力:o d1——小齿轮的分度圆直径mmoα——分度圆压力角o T1——小齿轮传递的名义转矩(N.m)o P1为小齿轮所传递的功率(KW)o n1为小齿轮转速(rpm)作用在主动轮和从动轮上的力大小相等,方向相反。
主动轮上的圆周力是阻力,其方向与它的回转方向相反;从动轮上的圆周力是驱动力,其方向与它的回转方向相同;两轮所受的径向力分别指向各自的轮心。
齿面上的总法向力方向则为啮合点的法向方向,对于渐开线齿廓即为通过啮合点与基圆相切的啮合线方向。
(2) 斜齿圆柱齿轮传动的受力分析圆周力:径向力:轴向力:法向力:∙αt——端面分度圆压力角;∙αn——法向分度圆压力角;∙β——分度圆螺旋角;∙βt——基圆螺旋角。
(3) 直齿锥齿轮传动的受力分析法向力Fn集中作用在齿宽节线中点处,则Fn可分解为互相垂直的三个分力。
圆周力:径向力:轴向力:dm1——小齿轮齿宽中点分度圆直径mm;δ1——小锥齿轮分度圆锥角圆周力和径向力的方向判别与直齿圆柱齿轮判别方法相同,轴向力方向分别指向各自的大端。
由于锥齿轮传动两轴的空间交角为90°,因此存在以下关系:;。
负号表示方向相反。
(4) 齿轮传动的计算载荷齿轮承受载荷常表现为其传递的力矩或圆周力。
由上述力的分析计算所得出的圆周力为齿轮传动的名义圆周力。
实际工作中,由于各种因素的影响,齿轮实际承受的圆周力要大于名义圆周力。
考虑各种因素的影响,实际圆周力Ftc为:Ftc也称为计算载荷。
1)KA——使用系数。
2)KV——动载系数。
3) KHα和KFα——齿间载荷分配系数。
4) KHβ和KFβ——齿向载荷分布系数。
2. 齿轮传动应力分析齿轮传动工作过程中,相啮合的轮齿受到法向力Fn的作用,主要产生两种应力:齿面接触应力和齿根弯曲应力。
(1) 齿面接触应力σH齿轮传动工作中,渐开线齿面理论上为线接触,考虑齿轮的弹性变形,实际上为很小的面接触。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节 齿轮传动的计算载荷
齿轮传动强度计算中所用的载荷,通常取沿齿面接触线单位长度上所受的载荷进行计算。
沿齿面接触线单位长度上的平均载荷p(单位为N/mm)为,即:
F n 为轮齿所受的公称法向载荷。
实际传动中由于原动机、工作机性能的影响以及制造误差的影响,载荷会有所增大,且沿接触线分布不均匀。
接触线单位长度上的最大载荷为:
K 为载荷系数,其值为:K =K A K v K α K β
式中:K A ─使用系数 K α─齿间载荷分配系数 K v ─动载系数 K β─齿向载荷分布系数
1、KA--使用系数
使用系数KA 是考虑齿轮啮合时外部因素引起的附加动载荷影响的系数。
这种动载荷取决于原动机和工作机的特性,质量比,联轴器类型以及运行状态等。
KA 的使用值应针对设计对象,通过实践确定。
表10-2
2、Kv--动载系数
动载系数Kv 是考虑齿轮副本身的啮合误差(基节误差、齿形误差、轮齿受载变形等)所引起的啮入、啮出冲击和振动而产生内部附加动载荷影响的系数。
影响动载系数Kv 的主要因素:
1)基节误差和齿形误差
由于制造及装配的误差,轮齿受载后弹性变形的影响,使啮合轮齿的法向齿距Pb1与Pb2不相等,因而轮齿就不能正确的啮合传动,瞬时传动比就不是定值,从动齿轮在运转中就会产生角加速度,于是引起了动载荷或冲击。
L
F p n =L
KF Kp p n ca ==
2)轮齿变形和刚度大小的变化
对于直齿轮传动,轮齿在啮合过程中,不论是由双对齿啮合过
渡到单对齿啮合,或是由单对齿啮合过渡到双对齿啮合的期间,由
于啮合齿对的刚度变化,也要引起动载荷。
为了计及动载荷的影响,
引入了动载系数Kv。
3)齿轮转速的高低及变化
齿轮的制造精度及圆周速度对轮齿啮合过程中产生动载荷的大小影响很大。
减小动载荷的措施:
1)提高制造精度,以减小基节误差和齿形误差,减小齿轮直径以
降低圆周速度;
2)对轮齿进行修缘,以减小轮齿的啮入、啮出冲击;
对轮齿进行齿顶修缘,即把齿顶的小部分齿廓曲线(分度圆压
力角α=20°的渐开线)修正成α>20°的渐开线。
因Pb2>Pb1,则
后一对轮齿在未进入啮合区时就开始接触,从而产生动载荷。
为此
将从动轮2进行齿顶修缘,图中从动轮2的虚线齿廓即为修缘后的齿廓,实线齿廓则为未经修缘的齿廓。
由图明显地看出,修缘后的轮齿齿顶处的法节P'b2<Pb1,因此当Pb2>Pb1时,对修缘了的轮齿,在开始啮合阶段(如图),相啮合的轮齿的法节差就
小一些,啮合时产生的动载荷也就小一些。
若Pb1>Pb2,则在后一对齿已进入啮合区时,其主动齿齿根与
从动齿齿顶还未啮合。
要待前一对齿离开正确啮合区一段距离以后,
后一对齿才能开始啮合,在此期间,仍不免要产生动载荷。
若将主
动轮1也进行齿顶修缘,即可减小这种载荷。
高速齿轮传动或齿面经硬化的齿轮,轮齿应进行修缘。
但应注意,若修缘量过大,不仅重合度减小过多,而且动载荷也不一定就相应减小,故轮齿的修缘量应定得适当。
3)增大轴和轴承的刚度,以减小系统的变形。
3、K --齿间载荷分配系数
齿间载荷分配系数Ka是考虑同时啮合的各对轮齿间载荷分配不均匀影响的系数。
影响Ka的主要因素:
1)齿轮在啮合线上不同啮合位置,轮齿的弹性变形及刚度大小变化的影响;
2)齿轮制造误差,特别是基节误差,使载荷在齿间分布不均匀;
一对相互啮合的斜齿圆柱齿轮,如果在啮合区中有两对齿同时工作时,则载荷应分配在这两对齿上。
两对齿同时啮合的接触线总长
L=PP'+QQ'。
但由于基节误差及弹性变形等原因,总载荷Fn
并不是按PP'/QQ'的比例分配在PP'及QQ'这两条接触线上。
一条接触线上的平均单位载荷可能会大于p,而另一条上的则
可能小于p。
进行强度计算时应按平均单位载荷大于p的值计算。
为此,引入齿间载荷分配系数Ka。
表10-3
4、Kβ--齿向载荷分布系数
齿向载荷分布系数Kβ是考虑沿齿宽方向载荷分布不均影响的系数。
影响Kβ的主要因素:
1)齿轮的制造与安装误差
当轴承相对于齿轮作不对称配置时,受载前,轴无弯曲变形,轮齿啮合正常,两个节柱恰好相切;受载后,轴产生弯曲变形,轴上的齿轮也就随之偏斜,这就使作用在齿面的载荷沿接触线分布不均匀。
2)轴的弯曲变形与扭转变形
轴的扭转变形,轴承、支座的变形也会使齿面上载荷分布不
均。
3)齿宽的大小选择不当。
这些因素都会引起齿向载荷分布不均(也称“偏载”)。
减小齿轮传动偏载的的措施:
1)提高轴及支承(轴承、箱体)的刚度,减小变形;
2)综合考虑弯曲变形与扭转变形的影响,齿轮在轴上尽可能对
称布置,并尽可能将齿轮布置在远离转矩输入端,以缓和载荷分布不均匀现象;
3)针对不同工况,恰当选择齿宽;
4)提高制造与安装精度;
5)对齿轮进行沿齿宽方向修形。
齿向载荷分布系数Kβ可分为KHβ和KFβ。
其中KHβ为按齿面接触疲劳强度计算时所用的系数,而KFβ为按齿根弯曲疲劳强度计算时所用的系数。
表10-4是用于圆柱齿轮(包括直齿及斜齿)的齿向载荷分布系数KHβ。
可根据齿轮在轴上的支承情况,齿轮的精度等级,齿宽b与齿宽系数φd从下表种查取。
齿轮的K Fβ可根据KHβ之值,齿宽b与齿高h之比值b/h从图10-13弯曲疲劳强度计算用齿向载荷分布系数KFβ查得。