高分子材料冲击强度的测定
环氧树脂主要性能指标的检测方法
环氧树脂主要性能指标的检测方法环氧树脂是一种常用的聚合物材料,具有优良的性能。
为了确保环氧树脂产品的质量,需要进行性能指标的检测。
下面将介绍环氧树脂的主要性能指标以及相应的检测方法。
1.物理性能指标1.1密度检测环氧树脂的密度是其质量与体积比值。
可使用比重瓶法或密度计进行测定。
1.2硬度检测硬度是环氧树脂固化后的表面硬度,常用方法有巴氏硬度法和杜氏硬度法。
1.3耐磨损性检测可使用砂轮磨耗试验机进行环氧树脂的耐磨性检测。
1.4耐冲击性检测可使用冲击试验机进行环氧树脂的耐冲击性检测。
1.5耐热性检测可使用热重分析仪进行环氧树脂的热稳定性检测。
2.力学性能指标2.1抗张强度检测抗张强度是材料抵抗拉伸破裂的能力,可使用拉力试验机进行测定。
2.2弯曲强度检测弯曲强度是材料抵抗弯曲破裂的能力,可使用弯曲试验机进行测定。
2.3压缩强度检测压缩强度是材料抵抗压缩破裂的能力,可使用压力试验机进行测定。
2.4剪切强度检测剪切强度是材料抵抗剪切破裂的能力,可使用剪切试验机进行测定。
2.5冲击强度检测冲击强度是材料抵抗冲击破裂的能力,可使用冲击试验机进行测定。
3.热性能指标3.1玻璃化转变温度检测玻璃化转变温度是环氧树脂在固化过程中从玻璃态转变为高分子态的温度,可使用差示扫描量热法(DSC)进行测定。
3.2热膨胀系数检测热膨胀系数是材料在温度变化过程中的膨胀程度,可使用热膨胀仪进行测定。
3.3热导率检测热导率是材料传导热量的能力,可使用热导率测定仪进行测定。
4.电气性能指标4.1介电常数检测介电常数是材料对电场的响应能力,可使用介电常数测试仪进行测定。
4.2介电强度检测介电强度是材料抵抗漏电和绝缘破裂的能力,可使用介电强度测试仪进行测定。
4.3体积电阻率检测体积电阻率是材料导电的难易程度,可使用体积电阻率测试仪进行测定。
5.化学性能指标5.1耐酸碱性检测可使用酸碱溶液对环氧树脂进行浸泡测试,观察其变化情况。
5.2耐溶剂性检测可使用溶剂对环氧树脂进行浸泡测试,观察其溶胀情况。
冲击性能
1 Zi (M i M a ) M
i
为落锤质量等级顺序号; ni为落锤质量为 Mi 破坏或不
破坏的试样数; Zi为从 M0 开始质量增加的次数。
例 题
固定试验高度H= 1.5m ,落锤质量改变△M=0.2Kg,对20个试样 进行冲击试验,结果如图示:
计算A、N等值如表
i 1 2 3 4(=k) 锤的质量 Kg 1.6 1.4 1.2 1.0 ni (0) 0 2 6 3 11 (n0) ni, (X) 1 5 3 0 9 (nx) ni 1 5 3 0 9 (N=nx) zi 3 2 1 0 nizi 3 10 3 0 16 (A)
使用范围
拉伸剪切都适用于胶接材料;
单面和双面压缩剪切适用于层压材料和取向材料; 短梁剪切适用于各种纤维材料和层压材料;
一、概念及原理
(一)测试原理
试样在受剪切力作用时,作用在试样两侧面上外力的合力大 小相等,方向相反,作用线相隔较远,并将各自推着所作用 的试样部分沿着与合力作用线平行的受剪面发生位移,直至
试样制备
试样可以模塑成型或机械加工制备。
各向异性的板材试样,纵横各特征方向切割样条;
1型板材试样
厚度大于10.2mm,单面加工成(10.0±0.2)
mm;
2型板材试样
厚度小于12.9mm时,取原厚度试验; 厚度大于12.9时,单面加工成(12.7±0.2)mm。
试验时加工面背向冲锤。
h——试样的厚度,mm
b——试样宽度或缺口试样的剩余宽度,mm
(四)影响因素
(1)冲击过程的能量消耗
当能量达到产生裂纹和裂纹扩展所需要的能量时,试样便开始破裂直到完
塑料冲击强度测试标准
塑料冲击强度测试标准塑料制品在日常生活和工业生产中广泛应用,其冲击强度是一个重要的性能指标。
塑料冲击强度测试标准旨在确保塑料制品在使用过程中能够承受一定的冲击力而不会破裂或变形,从而保障其安全可靠性。
本文将介绍塑料冲击强度测试的标准及相关内容。
首先,塑料冲击强度测试标准包括了测试方法、设备要求、试样制备、试验过程、数据处理等内容。
测试方法通常采用冲击试验机进行,根据不同的塑料类型和应用领域,可以选择不同的测试方法,如缺口冲击试验、冲击弯曲试验等。
设备要求包括冲击试验机的选择和校准,确保测试结果的准确性和可靠性。
试样制备是测试的前提,要求试样的制备符合标准规定,以保证测试结果的可比性和代表性。
试验过程包括试样安装、试验条件设定、冲击试验等环节,要求操作规范,确保测试结果的可靠性和重复性。
数据处理是测试的最后一步,要对测试数据进行准确的处理和分析,得出准确的冲击强度值。
其次,塑料冲击强度测试标准的制定和执行对于塑料制品的生产和应用具有重要意义。
通过遵循相关的测试标准,可以确保塑料制品的质量稳定和可靠,提高其在使用过程中的安全性和耐久性。
同时,对于塑料制品的生产企业和用户来说,也能够提供准确可靠的性能指标,为产品设计和选型提供参考依据。
此外,塑料冲击强度测试标准的制定还能够促进行业间的技术交流和经验分享,推动塑料制品行业的发展和进步。
最后,塑料冲击强度测试标准的执行和监督是保障塑料制品质量和安全的重要手段。
生产企业应当严格按照相关的测试标准进行产品质量控制和检测,确保产品符合国家和行业标准的要求。
监管部门和第三方检测机构应当加强对塑料制品的质量监督和抽检,对不符合标准要求的产品进行处置和追溯,维护市场秩序和消费者权益。
综上所述,塑料冲击强度测试标准对于塑料制品的质量控制和安全保障具有重要意义。
相关部门和企业应当重视塑料冲击强度测试标准的制定和执行,共同推动塑料制品行业的健康发展和进步。
同时,消费者也应当关注产品的质量标准,选择符合标准要求的塑料制品,保障自身的安全和权益。
高分子材料测试方法
定义下列概念标准:对重复性事物和概念所做的统一规定即为标准标准化:为在一定的范围内获得最佳秩序,对实际的或潜在的问题制定共同的和重复使用的规则的活动,称为标准化。
它包括制定、发布及实施标准的过程。
拉伸应力:试样在计量标距范围内,单位初始横截面上承受的拉伸负荷。
剪切应力:试验过程中任一时刻施加于试样的剪切负荷除以受剪面积的值。
压缩应力:压缩试验中,试样单位原始横截面上承受的压缩负荷,MPa。
弯曲应力:试样跨度中心外表面的正应力,MPa。
冲击强度试验速度:蠕变:指材料在恒负载(外界给予的外力不变)的条件下,变形随时间增加的现象。
应力松弛:试样在恒定形变下,物体的应力随时间而逐渐衰减的现象。
裤形撕裂强度:用平行于割口平面的外力作用于规定的裤形试样上,将试样撕断所需的力除以试样厚度,并按GB/T12833计算得到的中位数。
无割口直角撕裂强度:用与试样长度方向一致的外力作用于规定的直角试样,将试样撕断所需的最大力除以试样厚度。
割口直角或新月形撕裂强度:垂直于割口平面的外力作用于规定的直角或新月形试样,拉伸试样撕断割口所需的最大力除以试样的厚度。
硬度:指材料抵抗其它较硬物体压入其表面的能力熔点:熔点就是物质受热后,由固态变为液态的温度,高聚物通常没有明显的熔点。
线膨胀系数:指温度每变化1℃,试样长度变化值与其原始长度值之比。
表示物质在某一温度区间的线膨胀特性的,称平均线膨胀系数。
热导率:是表明物体热传导能力的重要参数,即单位面积、单位厚度试样的温差为1 ℃时,单位时间内所通过的热量,单位是W/(m·K)。
冲击脆化温度:是常温下为软质的塑料在试验条件下,以冲击的方法使试样在低温下受到冲击弯曲,求出试样破坏概率为50%时的温度。
玻璃化温度:非结晶高聚物由玻璃态转变为高弹态的转变温度称为玻璃转变化温度,简称玻璃化温度Tg。
失强温度:标准试样在恒定重力作用下,发生断裂的温度。
列出5个标准组织,并给出其标准的代号ISO:国际标准,ANSI:美国标准,ASTM:美国材料试验协会标准,BS:英国标准,CSA:加拿大标准,DIN:德国标准,JIS:日本工业标准,GB:中国标准,NF:法国标准,EC:国际电工委员会标准,UL:美国保险商试验室标准弯曲试验有哪两种常见的试验方法,他们的区别在哪里?弯曲试验有两种加载方法,一种为三点式加载方法,另一种为四点式加载方法。
华理--高分子物理课后习题答案--高分子科学教程(第二版)--韩哲文
高分子科学教程(第二版)—高分子物理部分第7章 聚合物的结构 P2371.试述聚合物的结构特点2.简述聚合物的结构层次答:高分子结构的内容可分为链结构与聚集态结构两个组成部分。
链结构又分为近程结构和远程结构。
近程结构包括构造与构型,构造是指链中原子的种类和排列、取代基和端基的种类、单体单元的排列顺序、支链的类型和长度等。
构型是指某一原子的取代基在空间的排列。
近程结构属于化学结构,又称一级结构。
远程结构包括分子的大小与形态、链的柔顺性及分子在各种环境中所采取的构象。
远程结构又称二级结构。
聚集态结构是指高分子材料整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构以及织态结构。
前四者是描述高分子聚集体中的分子之间是如何堆砌的,又称三级结构。
织态结构则属于更高级的结构。
3.写出聚异戊二稀的各种可能的构型和名称(只考虑头-尾键接方式)。
解:(1)1,2-聚合:全同立构1,2-聚异戊二稀;间同立构1,2-聚异戊二稀;无规立构1,2-聚异戊二稀。
(2)3,4-聚合:全同(间同,无规)立构-聚3,4-聚异戊二稀。
(3)1,4聚合:顺式(反式)1,4-聚异戊二稀。
注意:一般来说,顺式、反式聚合都是在特定的催化剂下进行的,当催化剂一定时,产物结构就一定,所以不存在无规的几何异构体。
4.已知聚乙烯试样的聚合度为4105⨯,C-C 键长为0.154nm ,键角为109.5︒,试求:(1)若把聚乙烯看作自由旋转链时的聚乙烯试样的均方末端距;(2)若聚乙烯的末端距符合高斯分布时聚乙烯试样的平均末端距和最可几末端距。
解:54101052=⨯⨯=n ;nm l 154.0=; 5.109=θ(1)22522222.4743)154.0(10225.109cos 15.109cos 1cos 1cos 1nm nl nl nl r =⨯⨯==+-⋅=+-⋅=θθ (2)由于聚乙烯的末端距符合高斯分布,因此它应该是自由结合链)(87.44154.014159.33108385nm l n r =⨯⨯⨯=⋅=π)(76.39154.03102325nm l n r =⨯⨯=⋅=*注意:末端距复合高斯分布的链为高斯链,自由结合链和等效自由结合链都是高斯链。
高分子材料的测试方法、测试手段的区别
高分子材料的测试方法、测试手段的区别高分子材料的测试方法和测试手段涉及多个方面,下面将详细解释它们之间的区别:
测试方法:
定义:测试方法是一种系统的、有条理的程序,用于评估高分子材料的性能、质量或其他特性。
例子:拉伸试验、冲击试验、热分析、扫描电子显微镜(SEM)等都可以作为测试方法。
测试手段:
定义:测试手段是指实施测试方法的具体设备、仪器或工具,用于测量和记录高分子材料的性能参数。
例子:万能试验机用于拉伸试验、冲击试验机用于冲击试验、热分析仪器用于热分析等都可以被称为测试手段。
关系:
测试方法是更为宏观和抽象的概念,它描述了评估高分子材料性能的步骤和原理。
测试手段是实现测试方法的具体工具,通过测量、记录和分析数据来揭示高分子材料的性能特征。
拉伸试验为例:
测试方法:拉伸试验是一种测试方法,用于测量高分子材料在拉伸过程中的强度、延展性等性能。
测试手段:万能试验机是执行拉伸试验的具体测试手段,通过施加力并记录变形情况来评估材料的拉伸性能。
冲击试验为例:
测试方法:冲击试验是一种测试方法,用于测量高分子材料
在受到冲击时的韧性和抗冲击性。
测试手段:冲击试验机是执行冲击试验的具体测试手段,通过施加冲击载荷并记录断裂情况来评估材料的抗冲击性。
总体而言,测试方法是更为广义的术语,描述了测试的整体过程和目的,而测试手段则是实现具体测试方法的工具或设备。
在研究和质量控制中,了解这两者之间的区别对于正确选择合适的测试策略和设备至关重要。
材料冲击实验报告
材料冲击实验报告1. 引言材料的抗冲击性能是评估其在受到外界冲击载荷时能否保持完整性和功能性的重要指标。
为了研究材料的冲击性能,本实验通过对不同材料的冲击实验,评估材料的抗冲击能力,并分析材料的破坏机制。
本实验选取了三种常见的材料进行了冲击测试,包括金属材料 (铝合金),塑料材料 (聚丙烯)和弹性材料 (聚氨酯)。
2. 实验目的•评估不同材料的抗冲击性能;•分析不同材料的破坏机制;•探讨材料冲击性能与材料特性的关系。
3. 实验装置和材料3.1 实验装置本实验使用的实验装置包括:•冲击试验机:用于提供冲击载荷;•冲击台:固定试样并接受冲击载荷;•冲击传感器:用于测量冲击过程中的载荷;•计算机数据采集系统:用于记录和分析实验数据。
3.2 实验材料本实验选取的材料包括:1.铝合金:作为典型的金属材料,具有很高的强度和硬度。
2.聚丙烯:作为典型的塑料材料,具有良好的韧性和耐冲击性。
3.聚氨酯:作为典型的弹性材料,具有很高的延展性和回弹性。
4. 实验方法4.1 样品制备首先,将铝合金、聚丙烯和聚氨酯分别加工为具有一定尺寸的试样,保证每个试样的尺寸和几何形状一致。
4.2 实验步骤1.将制备好的铝合金试样固定在冲击台上,调整冲击试验机的参数 (如冲击速度、冲击角度等)。
2.使用计算机数据采集系统连接冲击传感器,并调试传感器使其正常工作。
3.进行铝合金试样的冲击实验。
记录冲击过程中的载荷变化,并实时通过计算机数据采集系统保存数据。
4.重复上述步骤,分别对聚丙烯和聚氨酯试样进行冲击实验。
5.对实验得到的数据进行处理和分析,评估不同材料的抗冲击性能。
5. 实验结果和讨论经过冲击实验,得到了铝合金、聚丙烯和聚氨酯试样在不同冲击载荷下的载荷变化曲线。
根据实验数据,可以得到以下结论:1.铝合金在冲击载荷下承受能力较高,其载荷变化曲线较为平缓,说明其具有较好的抗冲击性能。
2.聚丙烯在冲击载荷下表现出较好的韧性,载荷变化曲线相对平缓,但其承受能力相对铝合金较低。
塑料的冲击性能和塑料的韧性
塑料的冲击性能和塑料的韧性Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998塑料的冲击性能和塑料的韧性在某些塑料中,冲击强度低是一个很大的弱点,例如PVC、PS、PP等。
尤其是PVC性脆,在光照下降解,加工温度下发生热降解,几乎成为一种无用的材料。
但是,在PVC中加入改性剂,就可变成为可以接受的材料。
通过在PVC中加入大量的增塑剂就可以获得极广泛的用途。
随着科学技术的发展,出现了软质塑料和硬质塑料,当时的塑料要么柔而软,要么硬而脆。
软质塑料使用寿命短,由于增塑剂的挥发和材料在大气中老化降解而变脆成为硬质塑料。
而硬质塑料因为缺乏足够的韧性给塑料工业带来毁灭性的威胁,塑料工业就要开始发展革新性的产品。
开发高分子量和低挥发量、或低抽取性的增塑剂挽救了软质和硬质塑料制品,主要是苯乙烯类的产品开发。
它们因开发在聚合物结构中引入橡胶组分的技术获新生。
塑料添加剂的开发,可改善塑料生产工艺和提高产品性能。
其中增塑剂、稳定剂、冲击改性剂是有利于塑料冲击性能的改善。
以下就材料的韧性和刚性及反映材料韧性的冲击性能的测试作一些叙述。
1.韧性和刚性韧性和刚性是对立的概念。
在力学中有刚度和柔度两个物理量。
“刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。
可以看出, “刚度”越大的物体,越不容易发生变形(表现在伸长率很小); “柔度”越大的物体越容易发生变形(表现在伸长率较大)。
一种理想状态,物体的刚度趋近于无穷大(或者物体受力作用其变形小到可以忽略的程度),我们就称该物体为刚体。
在力学分析时,可以不考虑其自身形变。
因此,刚性是反映物体形变难易程度的一个属性。
韧性的材料比较柔软,它的拉伸断裂伸长率、抗冲击强度较大;硬度、拉伸强度和拉伸弹性模量相对较小。
而刚性材料它的硬度、拉伸强度较大;断裂伸长率和冲击强度就可能低一些;拉伸弹性模量就较大。
拉伸强度与断裂伸长率 冲击强度
试样编号 截面积 mm2 1 40 上屈服应力 下屈服应力 最大负荷点 最大负荷 N Mpa Mpa 强度 Mpa 33.603 最大负荷 点伸长率 断裂负荷 N 拉伸强度 Mpa 断裂负荷 点伸长率
3 4 5 6 平均值
40.000 40.000 40.000 40.000 40.000
最大负荷 点伸长率 % 15.541
断裂负荷 N
拉伸强度 Mpa
16.240 13.411 14.493 13.753 12.667 14.351
972.120 591.585 604.956 492.611 490.887 369.794 586.992
24.303 14.790 15.124 12.315 12.272 9.245 14.675
33.602 21.379 22.170 21.263 21.176 22.099 23.615
1409.202 883.498 934.196 872.155 924.505 920.098 99.355 21.084 23.113 23.002 24.645
22.305 21.359 21.120 22.109 23.647
33.602 21.379 22.170 21.263 21.176 22.099 23.615
1409.202 883.498 934.196 872.155 924.505 920.098 990.609
35.230 22.087 23.355 21.084 23.113 23.002 24.645
断裂负荷 点伸长率 % 320.996
251.890 393.789 262.837 251.822 186.894 278.038
高分子材料分析及测试期末复习及答案
期末复习作业一、名词解释1.透湿量透湿量即指水蒸气透过量。
薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时所透过的蒸汽量(用θ表示)v2.吸水性吸水性是指材料吸收水分的能力。
通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。
3.表观密度对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用η表示)a对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用ρ表示)a4、拉伸强度在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用σ表示)t5、弯曲强度试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用σ表示)f6、压缩强度指在压缩试验中试样所承受的最大压缩应力。
它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用σ表示)e7、屈服点应力—应变曲线上应力不随应变增加的初始点。
8、细长比指试样的高度与试样横截面积的最小回转半径之比(用λ表示)9、断裂伸长率断裂时伸长的长度与原始长度之比的百分数(用ε表示)t10、弯曲弹性模量表示)比例极限应力与应变比值(用Ef11、压缩模量指在应力—应变曲线的线性围压缩应力与压缩应变的比值。
由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E表示)e12、弹性模量在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示)13、压缩变形指试样在压缩负荷左右下高度的改变量(用∆h表示)14、压缩应变指试样的压缩变形除以试样的原始高度(用ε表示)15、断纹剪切强度指沿垂直于板面的方向剪断的剪切强度。
16、剪切应力试验过程中任一时刻试样在单位面积上所承受的剪切负荷。
17、压缩应力指在压缩试验过程中的任何时刻,单位试样的原始横截面积上所承受的压缩负荷(用σ表示)18、拉伸应力为试样在外作用力下在计量标距围,单位初始横截面上所承受的拉伸力(用σ表示)19、热性能高聚物的热性能是其与热或温度有关的性能的总称。
4-2-1结合本校的办学定位、人才培养目标和生源情况,说明本课程在
冲击状态下的韧性或对断裂的抵抗能力,因此冲击强度也称冲击韧性。 实验 3 高分子材料抗拉伸强度测定实验(3 学时)
本实验要求掌握塑料拉伸实验的原理、塑料拉伸强度和相对伸长率的测定方法, 抗张强度的影响因素,结晶与非晶高分子材料的拉伸过程的差异,并绘制应力-应 变曲线。 实验 4 高分子材料抗静弯曲强度测定实验(2 学时)
本章要求掌握不同聚合物的溶解过程及溶解能力的判定依据,高分子稀溶液及 浓溶液的区别和实际用途。 第四章 聚合物的分子量和分子量分布(8 学时) 第一节 聚合物分子量的统计意义 1.聚合物分子量的多分散性;2.统计平均分子 量;3.分子量分布宽度;4.聚合物的分子量分布函数。 第二节 聚合物分子量的测定方法 端基分析、沸点升高和冰点降低、气相渗透法、 渗透压法、光散射法、黏度法。 第三节 聚合物分子量分布的测定方法 1.沉淀与溶解分级;2.凝胶渗透色谱(GPC)。
本章要求掌握不同聚合物的应力-应变曲线及表达的意义,细颈、银纹的概念, 脆性断裂和韧性断裂的区别及影响因素。
章节 绪论 第一章 第二章 第三章 第四章 第五章 第七章 第八章
内
容
学时
基本概念
2
高分子链的结构(高分子链的组成、构型、柔顺性)
12
聚合物的凝聚态结构(晶态、非晶态、液晶态及取向结构) 12
的逻辑关系决定。 《高分子物理》(课堂教学):64 学时
绪论(2 学时) 基本概念 第一章 高分子链的结构(8 学时) 第一节 组成和构造 1.结构单元的化学组成;2.高分子链的构型;3.分子构造;4. 共聚物的序列结构。 第二节 构象 1.高分子链的内旋转构象;2.高分子链的柔顺性;3.高分子链的构象 统计;4.晶体和溶液中的构象。
高分子材料专业实验-高分子材料性能测试
高分子材料性能测试拉伸实验实验目的①熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作②了解测试条件对测定结果的影响实验原理将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力~应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力~应变曲线上屈服点处的应力(拉伸屈服应力)、应力~应变曲线偏离直线性达规定应变百分数(偏置)时的应力(偏置屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率。
以百分率表示)。
实验步骤①试样的状态调节和实验环境按GB2918规定进行。
②测试样件中间平行部分的宽度和厚度,精确到0.01㎜.Ⅱ型试样中间平行部分的宽度,精确至0.05㎜。
每个试样测量三点,取算数平均值。
③在试样中间平行部分做标线示明标距,此标线对测试结果不应有影响.。
④夹持试样,夹具夹持试样时,要是试样纵轴与上、下夹具中间连线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内。
⑤选定试验速度,进行实验。
⑥记录屈服时的负荷,或断裂负荷及标距间伸长。
若试验断裂在中间平行部分之外时,此试样作废,另取试样补做。
实验试样本实验采用的是PS(燕山石化666D)实验设备实验机:数字化电子万能试验机型号3010 深圳瑞格尔公司实验数据I思考题1.分析试样断裂在先的外在原因。
答:试样断裂在先的外在原因有:①试样本身存在缺陷,产生了气泡,试样内杂质的分布也不不均匀;②安装的误差,浇口位置处造成断裂.。
2.拉伸速度对测试结果有何影响?答:拉伸速度过快,冲击强度变大,断裂会较早发生;拉伸速度过慢,分子发生取向,断裂将较晚发生。
3.同样是PS材料,为什么测定的拉伸性能(强度、断裂伸长率、模量)有差异?答:因为PS材料本身品质不同,多多少少存在缺陷,各材料的内部杂质分布不均匀,材料内部有起泡等方面也就有所不同。
高分子材料测试
高分子材料测试高分子材料是一类具有特殊结构和性能的材料,广泛应用于塑料、橡胶、纤维等领域。
在实际应用中,为了保证高分子材料的质量和性能,需要进行各种测试。
本文将介绍高分子材料测试的相关内容,包括测试方法、测试项目和测试标准等。
首先,高分子材料的测试方法主要包括物理性能测试、化学性能测试和机械性能测试。
物理性能测试包括密度测试、熔融指数测试、热变形温度测试等,用于评估材料的物理性能。
化学性能测试包括耐候性测试、耐热性测试、耐腐蚀性测试等,用于评估材料的化学稳定性。
机械性能测试包括拉伸性能测试、弯曲性能测试、冲击性能测试等,用于评估材料的机械性能。
其次,高分子材料的测试项目主要包括外观质量、尺寸精度、力学性能、热学性能、电学性能、光学性能等。
外观质量测试主要包括表面光泽、色泽一致性、无色差等项目。
尺寸精度测试主要包括尺寸精度、壁厚一致性、尺寸稳定性等项目。
力学性能测试主要包括拉伸强度、弯曲强度、冲击强度等项目。
热学性能测试主要包括热变形温度、热膨胀系数、热传导率等项目。
电学性能测试主要包括介电常数、介电损耗、体积电阻率等项目。
光学性能测试主要包括透光率、发光性能、折射率等项目。
最后,高分子材料的测试标准主要包括国际标准、行业标准和企业标准。
国际标准主要由ISO、ASTM等国际标准化组织发布,适用于全球范围内的高分子材料测试。
行业标准主要由相关行业协会或组织发布,适用于特定行业的高分子材料测试。
企业标准主要由企业自行制定,适用于企业内部的高分子材料测试。
综上所述,高分子材料测试是保证高分子材料质量和性能的重要手段,通过各种测试方法、测试项目和测试标准,可以全面评估高分子材料的质量和性能,为高分子材料的应用提供可靠的保障。
希望本文对高分子材料测试有所帮助,谢谢阅读。
高分子材料冲击试验
七、高分子材料冲击试验7.1 实验目的(1)熟悉高分子材料冲击性能测试的原理、方法、操作及其实验结果处理;(2)了解测试条件对测定结果的影响。
7.2 实验原理对硬质高分子材料试样施加一次冲击负荷使试样破坏,记录下试样破坏时或过程中单位试样截面积所吸收的能量,即冲击强度,来衡量材料冲击韧性。
根据实验中试样受力形式和冲击物的几何形状,板、条试样的冲击实验方法可分为:简支梁冲击实验(GB1093)、悬臂梁冲击实验(GB1043)和落锤式冲击实验(GB11548-89)。
所有冲击实验均应按GB2918规定,在(23±2℃)、常湿下进行试样环境调节,调节时间不少于4h。
7.3 简支梁冲击实验(1)原材料试样①注塑标准试样试样表面应平整、无气泡、裂纹、分层和明显杂志。
缺口试样缺口处应无毛刺。
试样类型和尺寸以及相对应的支撑线间的距离见表7-1。
试样的缺口类型和缺口尺寸见表7-2。
试样的优选类型为I型。
优选的缺口类型为A型。
表7-1 试样类型和尺寸以及相对应的支撑线间的距离(mm)表7-2 缺口类型和缺口尺寸(mm)注:A型、B型、C型缺口的形状和尺寸分别见图7-1~图7-3。
图7-1 A型缺口试样图7-2 B型缺口试样图7-3 C型缺口试样②板材试样板材试样厚度的3~13mm之间时取原厚。
大于13mm时应从两面均匀地进行机械加工到10±0.5mm。
4型试样厚度须加工到13mm。
当使用非标准厚度试样时,缺口深度与试样厚度尺寸之比也应分别满足表7-2的要求。
当厚度小于3mm的试样不做冲击实验。
(2)试样制备①模塑料或挤出料按受试材料的产品标准规定制备试样。
若产品标准没有规定,可按GB5471和GB9352制备试样。
I型试样可以从标准多用途试样上切取。
②板材板材试样是将板材进行机械加工制备。
试样缺口可在铣床、刨床或专用缺口加工机上加工。
加工刀具应无倾角,工作后角为15°~20°。
医用高分子材料的检测项目有哪些?有哪些标准?
医⽤⾼分⼦材料的检测项⽬有哪些?有哪些标准?医⽤⾼分⼦是⽬前来说科技发展进步的产物,它是能够制造⼈体内脏、体外器官、药物剂型的聚合材料。
包括天然⽣物⾼分⼦和合成⽣物⾼分⼦材料。
关于医⽤⾼分⼦材料的检测项⽬也有很多,下⾯就位⼤家介绍⼀下。
检测周期:最快5个⼯作⽇。
检测标准:YY/T等。
医⽤⾼分⼦材料检测内容介绍:根据医⽤⾼分⼦检测的种类,检测的项⽬有:甲壳素检测、胶原蛋⽩检测、聚乳酸检测等服务。
根据医⽤⾼分⼦材料检测项⽬,提供包括:⼒学性能测试、热学性能测试、电学性能测试、光学性能测试、物理性能测试、助燃(防⽕)性能测试、耐化学性能测试、材料分析等全⾯的医⽤⾼分⼦材料检测服务。
医⽤⾼分⼦材料检测种类:医⽤⾼分⼦材料甲壳素检测:⼏丁质、聚⼄酰氨基葡糖、壳多糖、甲壳提取物、明⾓质、壳蛋⽩、壳多糖、聚⼄酰氨基葡糖、Β-1、4-聚N-⼄酰-D-葡萄糖胺等。
医⽤⾼分⼦材料胶原蛋⽩检测:纤维胶原、基底膜胶原、微纤维胶原、锚定胶原、六⾓⽹状胶原、⾮纤维胶原、跨膜胶原、间质胶原、基底膜胶原、细胞周围胶原等。
医⽤⾼分⼦材料聚乳酸检测:聚⼄醇酸、左旋聚乳酸、外销聚乳酸、右旋聚乳酸等。
医⽤⾼分⼦材料检测项⽬:⼒学性能测试拉伸强度及伸长率、拉伸弹性模量、弯曲强度、弯曲弹性模量、压缩强度、悬臂梁冲击强度、简⽀梁冲击强度、剪切强度、撕裂强度、剥离强度、戳穿性能、邵⽒硬度、洛⽒硬度、球压痕硬度、落锤冲击、耐环境应⼒开裂。
热学性能测试熔点、氧化诱导时间、熔体流动速率、热变形温度、维卡软化温度、线膨胀系数。
电学性能测试击穿电压强度、介电常数、介质损耗因数、体积电阻率、表⾯电阻率。
光学性能测试黄⾊指数、透光率、雾度、⽩度、光泽度。
物理性能测试密度、吸⽔性、⽔蒸⽓透过度、氧⽓透过性、交联度、冲击脆化温度、耐热应⼒开裂、灼烧残余(灰分)、炭⿊分散度、导热系数。
助燃(防⽕)性能测试氧指数、垂直燃烧、⽔平燃烧、烟密度。
耐化学性能测试耐酸、碱、盐溶液、耐丙酮、耐⼆氯甲烷等溶液、耐污染实验。
高分子材料性能测试
熔体流动速率仪
材料名 称 PA
PP PS AS ABS PC
数据
32 6 2 28 14 7
四,维卡软化温度
维卡软化温度(Vicat Softening Temperature)是将热塑性 塑料放于液体传热介质中,在一定的负荷和一定的等速升温条 件下,试样被1平方毫米的压针头压入1毫米时的温度,对应的 国标是GB1633-79(目前已被GB/T 1633-2000所代替);维 卡软化温度是评价材料耐热性能,反映制品在受热条件下物理 力学性能的指标之一。材料的维卡软化温度虽不能直接用于评 价材料的实际使用温度,但可以用来指导材料的质量控制。维 卡软化温度越高,表明材料受热时的尺寸稳定性越好,热变形 越小,即耐热变形能力越好,刚性越大,模量越高 。
马弗炉
测定灰分的意义非 常重要,灰分可能 是医疗器械中热原 的重要来源
六,硬度
表示材料抗穿透、耐磨和抗划痕等综合性能的一个尺度。根据测 试仪器不同分为邵氏硬度、洛氏硬度、巴氏硬度等。 邵氏硬度:测定弹性体和热塑性软塑料的穿透硬度。 洛氏硬度:按照不同的标度顺序号测定硬度,这些标度号与所用 的球形压针的大小相对应。 巴氏硬度: 以特定的压头在标准弹簧的压力作用下压入试样,以压 痕的深浅来表征式样的硬度,压痕深度为零时表头读数为100. 划痕硬度:可按莫斯(Mohs)标度测定,莫斯标度范围从云母的 1到金刚石的10,也可用一种特定硬度的笔进行划痕测定。
X射线衍射:鉴别聚合物是否结晶、结晶类别、结 晶度,聚合物鉴定;
拉曼光谱:用于研究聚合物的微结构,如碳-碳双 键的伸展震动。
热分析
➢ 原理:是通过定量检测热量变化来表征物质理 或化学性能变化过程的。
高分子材料拉伸强度及断裂伸长率、冲击强度测定
高分子材料拉伸强度及断裂伸长率、冲击强度测定实验1 高分子材料拉伸强度及断裂伸长率测定一、实验目的通过实验了解聚合物材料应力—应变曲线特点、试验速度对应力—应变曲线的影响、拉伸强度及断裂伸长率的意义,熟悉它们的测试方法;并通过测试应力—应变曲线来判断不同聚合物的力学性能。
二、实验原理为了评价聚合物材料的力学性能,通常用等速施力下所获得的应力—应变曲线来进行描述。
所谓应力是指拉伸力引起的在试样内部单位截面上产生的内力;而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。
不同种类聚合物有不同的应力—应变曲线。
等速条件下,无定形聚合物典型的应力—应变曲线如图1所示。
图中的α点为弹性极限,σ为弹性(比例)极限强度,ε为弹性极限伸长。
在α点前,应力—应变服从虎克定律:αασ=?ε式中σ——应力,MPa;ε——应变,%;Ε——弹性(杨氏)模量(曲线的斜率),MP 。
曲线斜率E反映材料的硬性。
Y称屈服点,对应的σ和ε称屈服强度和屈服伸长。
yy材料屈服后,可在t点处,也可在t′点处断裂。
因而视情况,材料断裂强度可大于或小于屈服强度。
ε(或ε)称断裂伸长率,反映材料的延伸性。
t′t从曲线的形状以及σ和ε的大小,可以看出材料的性能,并借以判断它的应用范围。
tt如从σ的大小,可以判断材料的强与弱;而从ε的大小,更正确地讲是从曲线下的面积大tt小,可判断材料的脆性与韧性。
从微观结构看,在外力的作用下,聚合物产生大分子链的运动,包括分子内的键长、键角变化,分子链段的运动,以及分子间的相对位移。
沿力方向的整体运动(伸长)是通过上述各种运动来达到的。
由键长、键角产生的形变较小(普弹形变),而链段运动和分子间的相对位移(塑性流动)产生的形变较大。
材料在拉伸到破坏时,链段运动或分子位移基本上仍不能发生,或只是很小,此时材料就脆。
若达到一定负荷,可以克服链段运动及分子位移所需要的能量,这些运动就能发生,形变就大,材料就韧。
实验五聚合物说明材料冲击强度的测定
实验五聚合物材料冲击强度的测定一、实验目的1.了解高分子材料的冲击性能;2.理解摆锤式抗冲击强度实验机的原理;3.掌握冲击强度的测试方式;二、实验原理冲击强度是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破坏的能力。
通常概念为试样受冲击载荷而折断时单位面所吸收的能量。
4∕(b∕1.)式中,°界为冲击强度;单位为j∕cm2;A为冲断试样所消耗的功;b为试样宽度;h为试样厚度。
冲击强度的测试方式很多,应用较广的有以下三种:(1)摆锤式冲击实验;(2)落球法冲击实验;(3)高速拉伸实验。
本实验采用摆锤式冲击实验法。
摆锤冲击实验,是将标准试样放在冲击机规定的位置上,然后让重锤自由落下冲击试样,测量摆锤冲断试样所消耗的功,按照上述公式计算试样的冲击强度。
摆锤冲击实验机的大体构造有3部份:机架部份、摆锤冲击部份和指示系统部份。
按照试样的按放方式,摆锤式冲击实验又分为简支梁型(CharPy法)和悬臂梁型。
前者试样两头固定,摆锤冲击试样的中部;后者试样一端固定,摆锤冲击自由端。
如图1所示。
图1摆锤冲击实验中试样的安放方式试样可采用带缺口和无缺口两种。
采用带缺面试样的目的是使缺口处试样的截面积大为减小,受冲击时,试样断裂必然发生在这一薄弱处,所有的冲击能量都能在这局部的地方被吸收,从而提高实验的准确性。
测按时的温度对冲击强度有很大影响。
温度越高,分子链运动的松弛进程进行越快,冲击强度越高。
相反,当温度低于脆化温度时,几乎所有的塑料都会失去抗冲击的能力。
固然,结构不同的各类聚合物,其冲击强度对温度的依赖性也各不相同。
湿度对有些塑料的冲击强度也有很大影响。
如尼龙类塑料,特别是尼龙6、尼龙66等在湿度较大时,其冲击强度更主要表现为韧性的大大增加,在绝干状态下几乎完全丧失冲击韧性。
这是因为水分在尼龙中起着增塑剂和润滑剂的作用。
试样尺寸和缺口的大小和形状对测试结果也有影响。
用同一种配方,同一种成型条件而厚度不同的塑料作冲击实验时,会发现不同厚度的试样在同一跨度上作冲击实验,和相同厚度在不同跨度上实验,其所得的冲击强度均不相同,且都不能进行比较和换算。
6.4 冲击性能测试
(四)试验设备
工作原理图
机架部分、 机架部分、摆锤部分和指示系统部分
14
试验时把摆锤抬高, 试验时把摆锤抬高,摆锤 杆的中心线与通过摆锤杆 轴中心的铅垂线成一角度 为α的扬角 的扬角 摆锤自由落下, 摆锤自由落下,试样断裂 成两部分, 成两部分,消耗了摆锤的 冲击能并使其大大减速 摆锤的剩余能量使摆锤又 升到某一高度,升角为β 升到某一高度,升角为β
17
摆锤冲击后回摆时,使摆锤停止摆动, 摆锤冲击后回摆时,使摆锤停止摆动,并 立即记下刻度盘上的指示值 试样被击断后,观察其断面, 试样被击断后,观察其断面,如因有缺陷 而被击穿的试样应作废 每个试样只能受一次冲击,如试样未断时, 每个试样只能受一次冲击,如试样未断时, 更换试样再用较大能量的摆锤重新进行 可更换试样再用较大能量的摆锤重新进行 试验
GB/T 1043-1993; 硬质塑料简支梁冲击试验方法 硬质塑料简支梁冲击试验方法; GB/T 13525-1992; 塑料拉伸冲击性能试验方法 塑料拉伸冲击性能试验方法; GB/T 1843-1996; 塑料悬臂梁冲击试验方法 GB/T 1697-2001; 硬质橡胶冲击强度的测定 GB/T 14153-1993; 硬质塑料落锤冲击试验方法 通则; 通则 GB/T 14152-2001; 热塑性塑料管材耐外冲击性能 时针旋转法; 试验方法 时针旋转法 GB/T 16420-1996; 塑料冲击性能小试样试验方法 GB 8809-1988; 塑料薄膜抗摆锤冲击试验方法
8
一、摆锤式冲击试验
(一)测试原理——简支梁冲击和悬臂梁冲击 测试原理 简支梁冲击和悬臂梁冲击 简支梁冲击试验是摆锤打击简支梁试样的中央 试样受到冲击而断裂, 试样受到冲击而断裂,试样断裂时单位面积或单位宽 度所消耗的冲击功即为冲击强度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十六 高分子材料冲击强度的测定
抗冲强度(冲击强度)是材料突然受到冲击而断裂时,每单位横截面上材料可吸收的能量的量度。
它反映材料抗冲击作用的能力,是一个衡量材料韧性的指标。
冲击强度小,材料较脆。
一、目的要求
1. 掌握XCJ-50型冲击试验机的使用。
2. 测定聚丙烯、聚氯乙烯型材的冲击强度。
二、实验原理
国内对塑料冲击强度的测定一般采用简支梁式摆锤冲击实验机进行。
试样可分为无缺口和有缺口两种。
有缺口的抗冲击测定是模拟材料在恶劣环境下受冲击的情况。
冲击实验时,摆锤从垂直位置挂于机架扬臂上,把扬臂提升一扬角α,摆锤就获得了一定的位能。
释放摆锤,让其自由落下,将放于支架上的样条冲断,向反向回升时,推动指针,从刻度盘读数读出冲断试样所消耗的功A ,就可计算出冲击强度:
A
bd σ= (公斤•厘米/厘米2)
b 、d 分别为试样宽及厚,对有缺口试样,d 为除去缺口部分所余的厚度。
从刻度盘上读出的数值,是冲击试样所消耗的功,这里面也包括了样品的"飞出功",以关系式表示为:
()()2
1
1cos 1cos 2W L W L A A A m V αβαβ-=-++++ W 为摆锤重,L 为摆锤摆长,α、β分别为摆锤冲击前后的扬角;A 为冲击试样所耗功;A α、A β分别为摆锤在α、β角度内克服空气阻力所消耗的功;2
12m V 为“飞出功”,一般认为后三项可以忽略不计,因而可以简写成:
()cos cos A WL βα=-
对于一固定仪器,α、W 、L 均为已知,因而可据β大小,绘制出读数盘,直接读出冲击试样所耗功。
实际上,飞出功部分因试样情况不同,试验仪器情况不同而有较大差别,有时甚至占读数A 的50%。
脆性材料,飞出功往往很大,厚样品的飞出功亦比薄样大。
因而测试情况不同时,数值往往难以定量比较,只适宜同一材料,同一测定条件下的比较。
试样断裂所吸收的能量部分,表面上似乎是面积现象,实际上它涉及到参加吸收冲击能的体积有多大,是一种体积现象。
若某种材料在某一负荷下(屈服强度)产生链段运动,因而使参与承受外力的链段数增加,即参加吸收冲击能的体积增加,
则它的冲击强度就大。
脆性材料一般多为劈面式断裂,而韧性材料多为不规整断裂,断口附近会发白,涉及的体积较大。
若冲击后韧性材料不断裂,但已破坏,则抗冲强度以“不断”表示。
因为测试在高速下进行,杂质、气泡、微小裂纹等影响极大,所以对测定前后试样情况须进行认真观察。
三、仪器与试样
XCJ-50型冲击试验机
聚丙烯、聚氯乙烯样条
(1)试样长120±2mm,宽15±0.2mm,厚10±0.2mm。
缺口试样:缺口深度为试样厚度的1/3,缺口宽度为2±0.2mm,缺口处不应有裂纹。
(2)每个样品样条数不少于5个。
(3)单面加工的试样,加工面朝冲锤,缺口试样,缺口背向冲锤,缺口位置应与冲锤对准。
(4)热固性材料在25±5℃,热塑性塑料在25±2℃,相对湿度为65±5%的条件下放置不少于16小时。
(5)凡试样不断或断裂处不在试样三等分中间部分或缺口部分,该试样作废,另补试样。
四、测试步骤
1.据材料及选定试验方法,装上适当的摆锤(50J、30J、15J、7J、5J)。
2.检查和调整被动指针的位置,使摆锤在铅垂位置时主动指针与被动指针靠紧,指针指示的位置与最大指标值相重合。
3.空击试验:以检查指针装配是否良好,空击值误差应在规定范围内。
4.根据实际需要,调整支承刀刃的距离为70mm或40mm。
5.检查零点,且每做一组试样校准一次。
6.放置样品。
试样放置在托板上,其侧面应与支承刀刃靠紧,若带缺口的试样,应用0.02mm的游标卡尺找正缺口在两支承刀刃的中心。
7.测量试样中间部位的宽和厚,准确至0.05mm,缺口试样测量缺口的剩余厚度。
8.冲击试验:上述完成后,可放摆试验,冲击后,从刻度盘上记录冲断功的数值。
五、结果处理
1.观察并记录材料断裂面情况。
2. 据冲断功计算冲击强度。
算出各试样的平均值进行试样间比较。