用频谱分析仪测量通信信号

合集下载

信号完整性常用的三种测试方法

信号完整性常用的三种测试方法

信号完整性常用的三种测试方法信号完整性是指在传输过程中信号能够保持原始形态和准确性的程度。

在现代高速通信和数字系统中,信号完整性测试是非常重要的工作,它能够帮助工程师评估信号的稳定性、确定系统的极限速率并发现信号失真的原因。

下面将介绍三种常用的信号完整性测试方法。

一、时域方法时域方法是信号完整性测试中最常见和最直观的方法之一、它通过观察信号在时间轴上的波形变化来评估信号的完整性。

时域方法可以检测和分析许多类型的信号失真,如峰值抖动、时钟漂移、时钟分布、幅度失真等。

时域方法的测试设备通常包括示波器和时域反射仪。

示波器可以显示信号的波形和振幅,通过观察波形的形状和幅度变化来判断信号完整性。

时域反射仪可以测量信号在传输线上的反射程度,从而评估传输线的特性阻抗和匹配度。

二、频域方法频域方法是另一种常用的信号完整性测试方法。

它通过将信号转换为频域表示,分析信号的频谱分布和频率响应来评估信号完整性。

频域方法可以检测和分析信号的频谱泄漏、频谱扩展、频率失真等。

频域方法的测试设备通常包括频谱分析仪和网络分析仪。

频谱分析仪可以显示信号的频谱图和功率谱密度,通过观察频谱的形状和峰值来评估信号完整性。

网络分析仪可以测量信号在不同频率下的响应和传输损耗,从而评估传输线的频率响应和衰减特性。

三、眼图方法眼图方法是一种特殊的信号完整性测试方法,它通过综合时域和频域信息来评估信号的完整性。

眼图是一种二维显示,用于观察信号在传输过程中的失真情况。

眼图可以提供信号的时钟抖动、峰值抖动、眼宽、眼深、眼高等指标。

眼图方法的测试设备通常包括高速数字示波器和信号发生器。

高速数字示波器可以捕捉信号的多个周期,并将其叠加在一起形成眼图。

通过观察眼图的形状和特征,工程师可以评估信号的稳定性和传输质量。

总结起来,时域方法、频域方法和眼图方法是常用的信号完整性测试方法。

它们各自具有独特的优势和适用范围,可以互相协作来全面评估信号的完整性。

在实际应用中,根据具体需求和测试对象的特点,选择合适的测试方法是非常重要的。

频谱分析仪使用攻略

频谱分析仪使用攻略

国内频谱分析仪市场频谱分析仪简称频谱仪,是用来显示频域信号幅度的仪器,在射频领域有“射频万用表”的美称。

在射频领域,传统的万用表已经不能有效测量信号的幅度,示波器测量频率很高的信号也比较困难,而这正是频谱分析仪的强项。

频谱仪与示波器属于两种类型的仪器,示波器主要显示时域信号幅度的变化,而频谱仪显示的是频域信号幅度的变化。

对于研究射频的工程师和爱好者,频谱仪是工作的好帮手,它可以形象地展示一定频率范围内信号的幅度,可以据此发现信号的存在和不同类型信号的特征。

随着科技的发展,频谱仪也从传统的模拟线路进化到数字化频谱仪,被赋予更多的功能,以适应不断出现的复杂信号。

应用与意义频谱分析仪在射频领域应用非常广泛。

频谱仪最基本的作用就是发现和测量信号的幅度。

频谱仪可以以图示化的方式显示设定频率范围内的射频信号,信号越强,频谱仪显示的幅度也越大。

通过这种特性,频谱仪被用来搜索和发现一定频段内的射频信号,广泛应用在监测电磁环境、无线电频谱监测、电子产品电磁兼容测量、无线电发射机发射特性、信号源输出信号品质、反无线窃听器等领域。

频谱仪可以测量射频信号的多种特征参数,包括频率、选频功率、带宽、邻道功率、调制波形、场强等。

在射频信号的频率测量方面,虽然频率计是专业的设备,但遇到时分多址的信号(GSM移动电话、IDEN、TETRA的信号)、跳频的信号、宽带的信号,普通频率计无法准确计数,功率计无法及时测量,而频谱仪由于基于高速的信号捕捉,则可以有机会测量这些信号。

针对这些常见的不稳定信号,很多中高档频谱仪还在测量软件上做了优化,提供专用的自动测量工具。

由于频谱仪具有图示化射频信号的能力,频谱图可以帮助我们了解信号的特性和类型,有助于最终了解信号的调制方式和发射机的类型。

在军事领域,频谱仪在电子对抗和频谱监测中被广泛应用,不同类型的雷达信号、通信电台信号、应答机信号、“敌我”识别器信号都有各自不同特征的频谱图。

在民用无线电管理领域,通过频谱图,我们可以及时发现非法使用的频率,这比传统扫描监听的效率要高得多。

频谱分析仪检测电路信号质量

频谱分析仪检测电路信号质量

频谱分析仪检测电路信号质量频谱分析仪有许多功能,能察觉元件在电路中的变化,分析其频率响应来说明电路特性;也能测量信号强度,对信号失真有帮助;也能测量频率占有率,防范邻近信号干扰;并且是兼具计频器与功率计的仪器。

日常生活里充斥频谱(Spectrum)的概念,各种不同频率信号以机率分配方式存在。

在一般时域分析(Time-domain Analysis)中,很容易从时间轴上观察到任何信号波形变化事件,只要用示波器测量,就能看出任何具有时间函数的电子信号事件的瞬间物理量。

频谱分析仪的发展起源,从早期通信系统上频率测量开始,为实现以频率为基准点,在频域上检测信号而研发的仪器,广泛用于测量通信系统的各种重要参数,如平均噪声位准(Average Noise Level)、动态范围(Dynamic Range)、频率范围(Frequency Range)等。

此外还可用在时域测量,如测量传输输出功率等。

从功能面看,一般计频器只能测量信号频率,功率计能测量信号功率,频谱分析仪可视为兼具计频器与功率计的测量仪器(表1,*:指模拟解调)。

频谱分析与时域分析相辅相成如要理清信号特性,除使用示波器从时域(Time Domain)观察信号外,需从频率的角度,简称频域(Frequency Domain)去分析信号。

用示波器观察信号无法一窥全貌,只能看到组成后的波形。

法国数学家傅立叶(Jean-Baptiste-Joseph Fourier)认为,任何时域上的电子信号现象,皆由多组适当的频率、振幅与相位的弦波信号(Sine Wave)组成。

因此,任何有适当滤波功能的电子系统,必可将信号波形分解成多个分别不同的弦波或频率,不同弦波则由其所具有的振幅与相位来决定信号特性。

换言之,借由这种组成分析,可将弦波信号由时域转为频域。

对无线射频(RF)与微波信号而言,不加入分析要素时,保留相位信息往往会使转换过程变得复杂,因此要设法隔离相位信息。

通信技术中的射频干扰排查与处理方法

通信技术中的射频干扰排查与处理方法

通信技术中的射频干扰排查与处理方法射频干扰是指在通信技术中,由于不同设备之间的无线电频率相互干扰而导致的通信故障或性能下降的问题。

在日常的通信设备使用中,我们经常会遇到射频干扰的情况,这给正常的通信传输带来了困扰。

为了解决射频干扰问题,我们需要采取相应的排查和处理方法。

首先,进行射频干扰的排查,我们可以根据具体的情况采取以下几种方法。

第一种方法是使用频谱分析仪进行频谱扫描。

频谱分析仪可以检测到整个频谱范围内的干扰信号,并能够以图形化的方式展示出来。

通过观察频谱图,我们可以确定干扰的频率范围和信号强度,从而更好地定位干扰源。

第二种方法是使用信号跟踪仪进行实时跟踪。

信号跟踪仪可以根据信号强度和方向指示器的变化来确定干扰源的位置。

这种方法适用于移动干扰源的排查。

第三种方法是使用协同扫描系统进行干扰源的快速定位。

协同扫描系统可以通过多个扫描探头实时扫描无线电频谱,将扫描结果发送到中心控制台进行处理和分析,从而快速定位干扰源。

在排查到射频干扰源后,我们需要采取相应的处理方法来消除干扰。

首先,我们可以尝试调整受到干扰设备的位置和方向。

通过改变设备的位置和方向,可以减少干扰信号的传播路径和强度,从而减少干扰对正常通信的影响。

其次,我们可以采用屏蔽措施来减少干扰信号的干扰范围。

对于高频干扰源,可以使用屏蔽罩或金属隔离屏蔽材料来屏蔽干扰信号的传播。

对于低频干扰源,可以采用滤波器来屏蔽干扰信号。

此外,我们还可以对受到干扰的设备进行频率调整,将其调整到一个干扰较少的频段,从而避免干扰的影响。

最后,我们可以使用干扰源定位设备来对干扰源进行定位,并采取相应的干扰源处理措施,比如干扰源屏蔽或发出警报。

除了以上处理方法,我们还可以采取一些预防措施来减少射频干扰的发生。

首先,我们可以合理规划通信设备的位置和布局,避免不同设备之间的射频干扰。

其次,可以合理规划通信频段和频率,避免频谱拥挤和频率冲突。

此外,我们还可以使用抗干扰技术和设备,比如使用抗干扰的天线、滤波器和信号处理器等,提高通信设备的抗干扰能力。

无线电频谱分析仪的工作原理与应用

无线电频谱分析仪的工作原理与应用

无线电频谱分析仪的工作原理与应用无线电频谱分析仪是一种用于测量和分析无线电频谱的仪器。

它可以实时显示频谱,帮助工程师了解无线电信号的特征及其在各个频率范围内的分布情况。

本文将介绍无线电频谱分析仪的工作原理以及在不同领域的应用。

一、工作原理无线电频谱分析仪的工作原理可以简单概括为以下几个步骤:1. 信号接收:无线电频谱分析仪通过内置或外接天线接收到要分析的无线电信号。

2. 信号放大:接收到的信号经过前置放大电路进行信号放大,以提高信号的幅度和灵敏度。

3. 信号混频:经过放大后的信号和本地振荡器产生的中频信号进行混频操作,得到中频信号。

4. 信号滤波:对混频得到的中频信号进行滤波,去除不需要的频率成分,以便进行后续的频谱分析。

5. 信号解调:对滤波后的中频信号进行解调,恢复信号的原始调制方式,如调幅、调频等。

6. 信号转换:将解调后的信号转换为数字信号,以便进行数字信号处理和显示。

7. 数字信号处理:使用数字信号处理技术对信号进行频谱分析、频谱显示和信号参数计算等操作。

8. 频谱显示:将处理后的信号转换为频谱图形并显示在仪器的显示屏上,供用户查看和分析。

二、应用领域无线电频谱分析仪在多个领域有着广泛的应用,以下将介绍其中几个主要的应用领域。

1. 电信领域:无线电频谱分析仪在电信领域中被广泛应用于对无线电信号进行调制解调、频谱分析、调频定位、无线电干扰监测等工作。

它可以帮助工程师更好地分析和监测无线电信号的质量以及各种干扰情况,从而保证通信系统的正常运行。

2. 广播电视领域:广播电视频谱分析是保障广播电视信号质量的重要手段之一。

无线电频谱分析仪可以帮助广播电视工程师进行频谱监测、频谱规划以及无线电干扰分析等工作,从而提高广播电视信号的传输质量和覆盖范围。

3. 电子设备测试领域:在电子设备测试领域中,无线电频谱分析仪可以用于对设备的射频性能进行测试和分析。

通过对设备发出的无线电信号进行频谱分析,工程师可以了解到设备的发射功率、频率稳定性、谐波等参数,从而评估设备的性能和合格性。

频谱分析仪操作规程

频谱分析仪操作规程

频谱分析仪操作规程
《频谱分析仪操作规程》
一、设备准备
1. 确保频谱分析仪正常供电,连接到合适的电源插座。

2. 检查仪器连接线是否完好,无损坏或断裂。

3. 确认频谱分析仪所连接的天线或信号源是否准备就绪。

二、启动设备
1. 打开频谱分析仪电源开关,等待设备自检完成。

2. 根据需要调整仪器的时间和日期设置。

三、选择工作模式
1. 根据实际需求选择频谱分析仪的工作模式,如扫描模式、跟踪模式等。

2. 设置频率范围和分辨率带宽,以适应需要分析的信号类型和频率范围。

四、信号捕获
1. 确定信号源的输出频率范围,并将频谱分析仪的中心频率设置为相应范围内的中心频率。

2. 调整仪器的参考电平和分辨率带宽,保证信号的清晰度和稳定性。

五、数据分析
1. 根据需要选择相应的数据处理方法,如峰值搜索、信噪比分析等。

2. 通过频谱分析仪显示屏或连接到电脑上的软件进行数据分析和结果查看。

六、设备关闭
1. 结束使用频谱分析仪后,先关闭信号源或天线连接,然后关闭频谱分析仪电源开关。

2. 将设备连接线插头从电源插座上拔出。

七、设备维护
1. 定期对频谱分析仪进行清洁和保养,保持设备的外观整洁和内部通风畅通。

2. 注意防潮、防尘和防震,避免设备受到不必要的损坏。

以上就是频谱分析仪的基本操作规程,希望用户在实际使用中能够按照规程要求正确操作设备,确保数据采集和分析的准确性和可靠性。

频谱分析仪操作流程

频谱分析仪操作流程

频谱分析仪操作流程频谱分析仪是一种用于测量和分析信号频谱特性的仪器。

它能够帮助工程师们深入了解信号的频域特性,从而在电子通信、音频处理、无线电、无线电频段研究等领域中发挥重要作用。

本文将介绍频谱分析仪的基本操作流程,帮助读者快速上手。

1. 连接设备首先,确保频谱分析仪和待测信号源正确连接。

通过信号源输出端口与频谱分析仪的输入端口相连接,使用合适的连接线缆确保稳定可靠的信号传输。

同时,检查电源线是否连接正常。

2. 打开频谱分析仪通过按下电源按钮开启频谱分析仪。

在启动过程中,仪器会进行自检,并显示相关启动信息。

确保仪器运行正常后,等待进入工作状态。

3. 设置参数根据实际需求,设置频谱分析仪的参数。

这些参数可能包括中心频率、带宽、时钟速率、分析窗口类型等。

根据待测信号的特点,调整参数以获取所需的测试结果。

4. 选择测量模式在频谱分析仪的菜单系统中选择合适的测量模式。

常见的测量模式包括实时模式和扫描模式。

实时模式能够提供连续的频谱显示,适用于对动态信号进行实时观测。

扫描模式则能够根据特定的扫描范围获取更详细的频谱信息。

5. 开始测量确定测量模式后,点击“开始”按钮或按下相应的测量快捷键,开始进行频谱分析。

频谱分析仪会对输入信号进行采样和处理,并显示频谱结果。

根据实际需要可能需要等待一些时间来获取准确的测量数据。

6. 数据解读分析仪显示的频谱图将提供信号的频域信息。

读取并分析频谱图上的曲线、峰值、幅度等信息,对信号特征进行辨识和理解。

理解频谱图可以帮助识别信号中的峰值、杂散、干扰等。

7. 归档和报告将所测得的频谱数据归档并生成报告。

可以将数据保存到电脑硬盘或其他存储介质中,以备后续分析和复查。

同时,根据实际需要,可以生成图表、图像或报告,用于数据展示和共享。

8. 断开连接和关闭仪器在测量结束后,先断开频谱分析仪与信号源之间的连接,然后关闭仪器。

注意遵循正确的操作顺序,避免损坏设备。

以上即为频谱分析仪的基本操作流程。

(工作分析)频谱分析仪工作原理和应用

(工作分析)频谱分析仪工作原理和应用

(工作分析)频谱分析仪工作原理和应用频谱分析仪工作原理和应用《频谱分析仪工作原理和应用》原始文档本章除了说明频谱分析仪工作原理、操作使用说明之外,也将其应用领域范围作详细的介绍,尤其应用于天线特性的量测技术将有完整说明。

本章的内容包括:本章要点1-1概论1-2频谱分析仪的工作原理1-3频谱分析仪的应用领域实习一频谱分析仪1-1概论就量测信号的技术观之,时域方面,示波器为一项极为重要且有效的量测仪器,它能直接显示信号波幅、频率、周期、波形与相位之响应变化,目前,一般的示波器至少为双轨迹输出显示装置,同时也具有与绘图仪连接的 IEEE-488、IEEE-1394 或 RS-232 接口功能,能将屏幕上量测显示的信息绘出,作为研究比较的依据,但它仅局限于低频的信号,高频信号则有其实际的困难。

频谱分析仪乃能弥补此项缺失,同时将一含有许多频率的信号用频域方式来呈现,以识别在各个频率的功率装置,以显示信号在频域里的特性。

图 1.1 说明方波在时域与频域的关系,此立体坐标轴分别代表时间、频率与振幅。

由傅立叶级数(Fourier Series)可知方波包含有基本波(Fundamental Wave)及若干谐波(Harmonics),信号的组合成份由此立体坐标中对应显示出来。

低频时,双轨迹模拟与数字示波器为目前信号时域的主要量测设备,模拟示波器可量测的输入信号频率可达 100 MHz,数字示波器有 100 MHz 与 400(或 500)MHz 等多种。

屏幕上显示信号的意义为横轴代表时间,纵轴代表信号电压的振幅,用示波器量测可得到信号时间的相位及信号与时间的关系,但无法获知信号失真的数据,亦即无法获知信号谐波分量的分布情况,同时量测微波领域(如 UHF 以上的频带)信号时,基于设备电子组件功能的限制、输入端杂散电容等因素,量测的结果无可避免地将产生信号失真及衰减,为解决量测高频信号上述的问题,频谱分析仪为一适当而必备的量测仪器,频谱分析仪的主要功能是量测信号的频率响应,横轴代表频率,纵轴代表信号功率或电压的数值,可用线性或对数刻度显示量测的结果。

信号频谱实验报告

信号频谱实验报告

信号频谱实验报告信号频谱实验报告引言:信号频谱是无线通信中的重要概念,它描述了信号在频率上的分布情况。

本次实验旨在通过实际测量和分析,探索不同信号的频谱特性,并深入了解信号频谱在通信系统中的应用。

实验一:连续波信号的频谱分析在实验一中,我们使用了频谱分析仪对连续波信号进行了频谱分析。

首先,我们选取了一个频率为1kHz的正弦波信号作为输入信号。

通过观察频谱分析仪的显示,我们发现该信号在频率为1kHz附近有一个峰值,并且在其他频率上几乎没有能量分布。

这说明了正弦波信号在频谱上呈现出单一的频率分布特性。

接下来,我们改变了输入信号的频率,分别选取了10kHz、100kHz和1MHz的正弦波信号进行频谱分析。

结果显示,随着频率的增加,信号的频谱分布范围也随之增大。

这说明高频信号具有更广泛的频谱分布特性。

实验二:脉冲信号的频谱分析在实验二中,我们对脉冲信号进行了频谱分析。

我们首先选取了一个周期为1ms的方波信号作为输入信号。

通过频谱分析仪的显示,我们观察到该信号在频谱上有一系列的谐波分量,其频率为基波频率及其整数倍。

这是因为方波信号可以分解为多个正弦波信号的叠加,每个正弦波信号对应一个谐波分量。

接下来,我们改变了方波信号的周期,分别选取了100μs、10μs和1μs的方波信号进行频谱分析。

结果显示,随着方波信号周期的减小,谐波分量的频率也相应增加。

这说明方波信号的频谱分布与其周期密切相关。

实验三:调制信号的频谱分析在实验三中,我们对调制信号进行了频谱分析。

我们选取了一个频率为1kHz 的正弦波信号作为载波信号,通过调制信号对其进行调制。

我们分别使用了幅度调制(AM)和频率调制(FM)两种调制方式。

通过频谱分析仪的显示,我们观察到幅度调制信号在频谱上出现了两个峰值,分别对应了载波信号和调制信号的频率。

而频率调制信号在频谱上呈现出一系列的频率偏移。

这说明调制信号的频谱特性与调制方式密切相关。

结论:通过本次实验,我们深入了解了信号频谱的特性和应用。

频谱分析仪的作用

频谱分析仪的作用

频谱分析仪的作用频谱分析仪是一种用于分析信号频谱的仪器。

它可以将信号的能量分布按频率进行可视化,从而帮助工程师和研究人员在各种领域中进行频谱分析和信号处理。

频谱分析仪在通信、音频、无线电、医学、科学研究等领域中都有广泛的应用。

本文将介绍频谱分析仪的作用及其在各领域中的应用。

一、频谱分析仪的作用:1. 信号频谱分析:频谱分析仪可以帮助工程师和研究人员对不同信号的频率和能量进行准确分析。

它可以显示信号在不同频率范围内的能量分布情况,从而帮助进行信号处理和优化。

2. 故障诊断:频谱分析仪可以用于故障诊断和故障定位。

通过分析故障信号的频谱特征,可以确定信号中存在的问题,并找出故障源。

这对于维修和调试电子设备非常有帮助。

3. 无线通信:频谱分析仪在无线通信领域中起着重要作用。

它可以用于无线信号的频率分析和频谱监测。

通过监测无线信号的频谱,可以检测到干扰信号、频率碰撞和频带占用等问题,从而提高无线通信的可靠性和效果。

4. 音频分析:频谱分析仪也广泛应用于音频领域。

它可以帮助工程师和音频专业人员对音频信号进行分析和处理。

通过频谱分析仪,可以了解音频信号的频谱特征,包括声音的频率分布和能量变化等,以及发现和修复音频信号中存在的问题。

二、频谱分析仪在各领域中的应用:1. 通信领域:在通信领域中,频谱分析仪用于无线信号的频谱监测和干扰检测。

它可以帮助监测无线信号的频率分布、信号强度和频带占用情况,从而提高通信系统的性能和可靠性。

2. 音频领域:频谱分析仪在音频领域中被广泛应用于音频信号的分析和处理。

它可以帮助音频工程师对声音的频率特征和能量分布进行准确的分析,从而实现音频信号的优化和增强。

3. 无线电领域:在无线电领域中,频谱分析仪用于无线电信号的频谱分析和监测。

通过分析无线电信号的频谱特征,可以了解信号的频率分布和能量变化,从而提高无线电通信的质量和性能。

4. 医学领域:频谱分析仪在医学领域中也有应用。

它可以用于心电图和脑电图等生物信号的频谱分析,从而帮助医生对患者的生理状态进行准确诊断和监测。

频谱分析仪U3741

频谱分析仪U3741

频谱分析仪U3741频谱分析仪(spectrum analyzer)是一种仪器,用于测量电信号在频率域中的特性,可以检测出信号的频率、幅度、失真和杂波等信息。

U3741是一种综合性能优异的频谱分析仪,下面对其进行详细介绍。

一、U3741的主要优势U3741的主要优势包括:•超宽带宽覆盖范围:9 kHz~3.6 GHz。

•高灵敏度和高精度测量。

•便携式设计,易于携带和移动。

•可选的频率范围扩展模块,可拓展到26.5 GHz。

综合这些特点,U3741非常适合在电信、无线通信、电子设备测试等领域中使用。

二、U3741的功能特点U3741主要具备以下功能特点:1. 频谱分析U3741的主要功能是对频率的信号进行分析,可用于测量、监测和分析信号的频谱,频谱密度以及信号相关的参数,如带宽、中心频率、谷值和峰值等等。

同时,U3741还可以对多个信号进行同时分析和显示,极大地提高了工作效率。

2. 频段扫描U3741可以利用扫频功能扫描各种频段,用于寻找潜在的问题和干扰源以及对频段内的信号进行生动的观察和分析。

通过扫描功能,可以对任何特定的频率和频带进行测量和分析,方便用户提前进行预测和分析。

3. 向量信号分析U3741具备测量向量信号的功能,可以测量各种模拟信号的向量分量,方便用户了解各信号部分的具体频率分配和频域范围分布。

4. 带宽测量U3741还可以进行带宽测量,包括信号的峰值、中央值、谷值,还可以测量各个频段的带宽,从而帮助用户确定信号带宽,精确地确定信号的频率和分配。

5. 自动测量U3741具有自动测量功能,不需要手动干预,可以自动测量信号和参数,极大地提高了操作效率。

同时,自动测量还可以控制测量频率和参数,便于使用者进行精确的测量和分析。

三、U3741的应用领域U3741的应用领域非常广泛,主要包括:•电信行业:用于测量和分析通信系统的信号特性。

•无线通信:用于测量和分析无线电、微波和无线电频率的信号特性。

频谱分析仪N9010A

频谱分析仪N9010A

频谱分析仪N9010A频谱分析仪是一种电子测量设备,用于测量电子设备的频谱特性和频率响应。

它能够将电信号的频谱信息转换为可视化的图形,帮助工程师更好地了解电路和系统的性能和特性。

N9010A是一款高功率、高性能的频谱分析仪,由美国Agilent Technologies公司设计和生产,应用广泛。

基本功能N9010A频谱分析仪具有很多基本功能,主要包括以下几个方面:1. 频谱分析频谱分析是频谱分析仪最基本的功能。

它能够将电信号转换为频谱图,图中显示出信号的频率分布和强度分布。

这个功能尤其适用于无线通讯领域,可以用来分析无线信号的频率和功率等特征。

2. 模拟信号分析除了数字信号,N9010A频谱分析仪也可以分析模拟信号,比如声音。

它可以将模拟信号转换为数字信号并显示在频谱图上,帮助工程师分析模拟信号的特征和性能。

3. 波形分析波形分析是N9010A频谱分析仪的另一个重要功能。

它可以对任意信号进行波形采集和分析,包括时域和频域分析,有助于了解信号的波形和频率特征。

技术参数除了基本的功能,N9010A频谱分析仪还有很多其他的技术参数和性能指标,如下:1. 频率范围N9010A频谱分析仪的频率范围非常广,可以覆盖从9kHz到26.5GHz的频率范围,适用于各种不同的应用场合。

2. 分辨率带宽分辨率带宽是N9010A频谱分析仪的一个关键性能指标,它影响仪器对信号的分辨率和精度。

N9010A的分辨率带宽可以从1Hz到10MHz进行设置,可以根据实际需要进行调整。

3. 动态范围动态范围是指仪器在测量过程中可以准确检测的信号强度范围。

N9010A频谱分析仪的动态范围为165dB,可以适应各种信号强度的变化。

4. 输入阻抗N9010A频谱分析仪的输入阻抗可以选择50Ω或1MΩ,用于适应不同的测量环境和需求。

应用场景N9010A频谱分析仪广泛应用于各种不同的场景,比如:1. 通讯领域N9010A频谱分析仪在通讯领域应用广泛。

频谱分析仪的原理操作应用pdf

频谱分析仪的原理操作应用pdf

频谱分析仪的原理操作应用1. 介绍频谱分析仪是一种常用的电子测试仪器,用于分析信号的频谱特征。

本文将介绍频谱分析仪的原理、操作和应用。

2. 频谱分析仪的原理频谱分析仪基于傅里叶变换原理,将信号从时域转换为频域,通过显示信号在不同频率下的幅度和相位信息,实现对信号频谱特性的分析。

2.1 傅里叶变换傅里叶变换是将一个信号从时域转换为频域的数学工具。

它将一个连续或离散的时域信号分解成不同频率分量的叠加,得到信号在频域上的表示。

2.2 快速傅里叶变换快速傅里叶变换(FFT)是一种快速计算离散傅里叶变换(DFT)的算法。

它通过降低计算复杂度,提高计算速度,广泛应用于频谱分析仪中。

3. 频谱分析仪的操作频谱分析仪的操作步骤如下:1.连接信号源:将待分析的信号源与频谱分析仪进行连接,确保接口连接正确。

2.设置参数:根据需要设置频谱分析仪的参数,包括采样率、带宽、中心频率等。

3.选择窗函数:窗函数用于减小信号频谱泄露和谱线扩展的影响,根据需要选择合适的窗函数。

4.启动分析:启动频谱分析仪,开始对信号进行频谱分析。

5.分析结果显示:频谱分析仪会将信号的频谱特征以图表的形式显示出来,包括幅度谱、相位谱等。

4. 频谱分析仪的应用频谱分析仪在各个领域都有广泛的应用,以下是几个常见的应用场景:4.1 通信领域在通信领域,频谱分析仪用于对通信信号进行分析和测试,包括调制解调、频谱占用等方面的研究。

4.2 音频领域在音频领域,频谱分析仪用于音频信号的分析和处理,可以用于音乐制作、音频调试等方面。

4.3 无线电领域在无线电领域,频谱分析仪用于无线电信号的分析和监测,可以用于无线电频段的占用情况、频率干扰等方面的研究。

4.4 电力领域在电力领域,频谱分析仪用于电力系统的故障检测和干扰分析,可以帮助发现电力设备的故障和电磁干扰源。

5. 总结本文介绍了频谱分析仪的原理、操作和应用。

频谱分析仪通过傅里叶变换将信号从时域转换为频域,并显示信号在不同频率下的幅度和相位信息,实现对信号频谱特性的分析。

频谱分析仪实验报告

频谱分析仪实验报告

频谱分析仪实验报告1. 引言频谱分析仪是一种能够将信号的频域信息可视化的仪器,广泛应用于电子通信、无线电频谱监测、音频处理等领域。

本实验旨在通过使用频谱分析仪,了解其基本原理和操作方法,并通过实验验证其性能。

2. 实验目的1.了解频谱分析仪的基本原理和工作原理;2.学习频谱分析仪的操作方法;3.验证频谱分析仪的性能和精确度。

3. 实验器材•频谱分析仪•信号发生器•连接线•扬声器4. 实验步骤第一步:准备工作1.将频谱分析仪与信号发生器和扬声器连接,确保连接正确并牢固。

2.打开频谱分析仪和信号发生器,等待其启动。

第二步:调节信号发生器1.设置信号发生器的频率为1000 Hz,并调整输出信号的幅度适中。

2.确保信号发生器的输出阻抗与频谱分析仪输入端的阻抗匹配。

第三步:启动频谱分析仪1.打开频谱分析仪的电源,并等待其启动完成。

2.在频谱分析仪上选择合适的操作模式,如峰值保持模式或实时模式。

第四步:观察频谱图1.调节频谱分析仪的中心频率和带宽,以便观察到所需的频谱范围。

2.观察频谱图中的频谱峰值和谱线,分析其特征和变化。

第五步:改变信号发生器的频率1.逐步改变信号发生器的频率,观察频谱图中的变化。

2.分析频谱图中不同频率下的信号特征和峰值。

第六步:改变信号发生器的幅度1.调节信号发生器的输出幅度,观察频谱图中的变化。

2.分析频谱图中不同幅度下的信号特征和峰值。

5. 实验结果与分析通过以上实验步骤,我们成功观察到了频谱分析仪的性能和精确度。

在不同频率和幅度下,频谱图中的信号特征和峰值发生相应的变化。

通过分析这些变化,我们可以得出频谱分析仪对不同信号的频域信息提取的准确性和可靠性。

6. 实验总结频谱分析仪是一种非常有用的仪器,它能够将信号的频域信息可视化,帮助我们更好地理解信号的特性。

通过本次实验,我们了解了频谱分析仪的基本原理和操作方法,并通过实验验证了其性能和精确度。

在实际应用中,频谱分析仪在电子通信、无线电频谱监测、音频处理等领域发挥着重要作用。

频谱分析仪使用方法说明书

频谱分析仪使用方法说明书

频谱分析仪使用方法说明书一、引言频谱分析仪是一种用于分析信号频谱的仪器,广泛应用于无线通信、电子设备测试、音频视频处理等领域。

本说明书旨在详细介绍频谱分析仪的使用方法,帮助用户正确操作并快速掌握相关知识。

二、仪器概述频谱分析仪由主机和附件组成,主机包含显示屏、控制按钮和接口等。

附件包括电源适配器、电缆和天线等。

在使用前,请确保已正确连接各部分,并确认仪器处于正常工作状态。

三、基本操作1. 打开仪器电源:将电源适配器插入电源插座,然后将电源线与仪器连接。

按下电源按钮,等待仪器启动完成。

2. 调整显示参数:通过屏幕上的触控按钮或旋钮,设置显示模式、分辨率、屏幕亮度等参数,以满足实际需求。

3. 设置信号源:将待测信号源通过电缆连接至仪器的输入接口。

根据信号源的特性,设置输入衰减、频率范围等参数。

4. 进行测量:点击仪器界面上的测量按钮开始频谱分析。

在分析过程中,可以通过调整参数、切换模式等进行实时监测和分析。

5. 结果保存:测量完成后,可以将结果保存至仪器内部存储器或外部存储设备中。

按照仪器的操作指南,选择存储路径和文件名,并确认保存。

四、高级功能1. 信号捕获与回放:频谱分析仪具备信号捕获和回放功能,可以捕获待测信号并进行离线分析,或回放已保存的信号数据进行再次分析。

2. 频谱监测与报警:设置仪器的频谱监测功能,即可实时监测特定频段内的信号活动,并设置相应的报警条件和方式,以便及时发现异常情况。

3. 扩展功能:根据具体型号和配置,频谱分析仪还可提供其他扩展功能,例如无线通信协议解码、频率校准等。

请参照相关文档和操作指南,了解和使用这些功能。

五、常见问题与解决方法1. 仪器无法启动:检查电源适配器和电源线是否接触良好,确认电源插座是否正常工作。

2. 仪器无法检测到信号:检查信号源的连接是否正确,确认输入接口的设置是否符合信号源的要求。

3. 测量结果不准确:可能是由于环境干扰、输入参数设置错误等原因导致。

射频实验报告

射频实验报告

射频实验报告射频实验报告引言射频(Radio Frequency,简称RF)技术在现代通信领域中扮演着重要的角色。

本篇文章将介绍一次射频实验的设计、过程和结果,以及对射频技术的一些思考。

实验设计本次实验旨在研究射频信号的传输和接收过程,以及信号的强度和频率对传输质量的影响。

实验所需的设备包括信号发生器、功率放大器、天线和频谱分析仪。

实验过程首先,我们设置信号发生器产生一个特定频率的射频信号。

然后,通过功率放大器将信号放大到适当的强度。

接下来,将天线连接到功率放大器的输出端,并将其放置在合适的位置。

最后,使用频谱分析仪来检测和分析接收到的射频信号。

实验结果通过实验,我们观察到以下几个结果:1. 强度对传输质量的影响:我们发现,信号强度越大,接收到的信号质量越好。

当信号强度过小时,信号可能会受到噪音的干扰,导致传输质量下降。

2. 频率对传输质量的影响:我们测试了不同频率的射频信号,并观察到在某些频率下,信号的传输质量更好。

这可能与信号在特定频率下的传输特性有关。

3. 天线位置的影响:我们尝试了不同的天线放置位置,并发现天线距离信号源的距离和天线的方向对接收到的信号强度和质量有明显影响。

合理选择天线位置可以优化信号的接收效果。

对射频技术的思考射频技术在无线通信、雷达、无线电广播等领域具有广泛应用。

通过本次实验,我们对射频信号的传输和接收过程有了更深入的了解。

然而,射频技术也存在一些挑战和限制。

1. 信号干扰:射频信号容易受到其他电子设备或环境中的干扰。

这种干扰可能导致信号质量下降,甚至使信号无法传输。

2. 频谱资源有限:射频信号的传输需要占用特定的频谱资源。

随着无线通信的普及和增长,频谱资源变得越来越紧张,如何合理利用频谱资源成为一个重要问题。

3. 安全性问题:射频技术在无线通信中广泛应用,但也容易受到黑客攻击和信息窃取的威胁。

保护射频通信的安全性是一个重要的研究方向。

结论通过本次射频实验,我们对射频信号的传输和接收过程有了更深入的了解。

dsa815

dsa815

DSA815DSA815是由Rigol Technologies开发的一款频谱分析仪,采用了先进的数字信号处理技术,以一种紧凑、高性能的方式提供了频谱分析和信号监测功能。

该设备适用于广泛的应用领域,包括无线通信、航空航天、军事、广播电视等。

主要特性高频率范围DSA815的频率范围为9 kHz至1.5 GHz,可以满足大部分应用场景下的需求。

无论是低频的经典通信信号,还是高频的无线局域网、蓝牙等协议,DSA815都能准确地进行频谱分析。

高分辨率显示DSA815的分辨率达到了1 Hz,能够清晰地显示频谱中的细节。

这对于频率间隔较小的信号分析尤为重要,可以帮助用户精确地观察和测量各种信号。

快速测量速度DSA815具备快速测量的能力,其每秒采样速率高达1 Gsample/s,在数据处理和分析方面表现出色。

这使得用户能够快速获得测试结果并作出相应的判断。

灵活的接口DSA815提供了多种接口选项,以便用户进行灵活的数据传输和控制。

其标准配置包括USB接口和LAN接口,支持远程控制和数据传输。

此外,还可以选配GPIB接口,以便与其他测试设备进行联动。

直观的用户界面DSA815的操作界面简洁直观,提供了丰富的功能菜单和图表,便于用户进行各种设置和操作。

用户可以通过前面板上的按键控制仪器,也可以通过PC上的软件进行远程操作。

同时,DSA815还支持多语言界面,满足全球用户的需求。

应用领域DSA815广泛应用于各个领域的频谱分析和信号监测任务。

以下是几个常见的应用领域:无线通信对于无线通信系统的测试和维护,DSA815是一种必不可少的工具。

它可以帮助用户分析无线信号的频谱分布、功率谱密度、调制指标等,从而更好地了解无线信号的质量和干扰情况。

航空航天航空航天领域对精确的频谱分析有较高的要求,DSA815可以对航空通信、雷达信号等进行准确的测量和分析,帮助工程师发现潜在的故障和问题。

军事军事领域需要对无线信号进行监测和干扰分析,DSA815可以提供一种简单而有效的解决方案。

频谱分析仪的工作原理

频谱分析仪的工作原理

频谱分析仪的工作原理
频谱分析仪是一种用于测量信号频谱特性的仪器,它可以将信号的频谱特性以图形的形式显示出来,从而帮助工程师分析和处理信号。

频谱分析仪的工作原理主要包括信号输入、信号处理和频谱显示三个部分。

首先,信号输入部分。

当被测信号进入频谱分析仪时,首先经过输入端口,然后经过放大器放大信号,接着进入混频器进行频率变换,将高频信号转换为中频信号,这样可以减小后续处理电路的带宽要求。

其次,信号处理部分。

经过混频器转换后的中频信号进入滤波器,滤波器可以滤除杂散信号,使得信号更加纯净。

接着,中频信号进入检波器,检波器可以将信号转换为直流信号,然后进入解调器,解调器可以对信号进行解调处理,最终得到被测信号的频谱特性数据。

最后,频谱显示部分。

经过信号处理后得到的频谱特性数据通过微处理器进行数字信号处理,然后送入显示器进行显示。

显示器可以将频谱特性以图形的形式直观地显示出来,包括频谱图、频谱密度图等,工程师可以通过观察这些图形来分析信号的频谱特性。

总的来说,频谱分析仪的工作原理是通过信号输入、信号处理和频谱显示三个部分相互配合,将被测信号的频谱特性以图形的形式显示出来,从而帮助工程师分析和处理信号。

通过频谱分析仪,工程师可以了解信号的频谱分布、频谱密度、谐波情况等重要特性,为信号处理和系统优化提供重要参考。

频谱分析仪R3261C

频谱分析仪R3261C

频谱分析仪R3261C频谱分析仪是一种测量电信号频率和强度的仪器。

R3261C是电子测量公司Anritsu推出的一款频谱分析仪。

本文将介绍R3261C的基本结构和主要功能特点。

基本结构R3261C主要由下面几个部分构成:前面板R3261C的前面板主要有以下几个部分:•显示屏:用于显示测量结果和各种设置参数,显示屏带有背光灯,可以在弱光环境下使用。

•操作面板:包括各种按钮和旋钮,用于设置测量参数和进行各种操作。

•输入输出接口:包括输入信号接口和输出信号接口,用户可以通过这些接口与R3261C进行数据交互。

后面板R3261C的后面板主要有以下几个部分:•电源接口:用于连接电源线,供电给R3261C。

•RS-232接口:用于与计算机进行通信,可以进行遥控操作。

•GPIB接口:与GP-IB通讯总线,可以实现多设备联网。

•DC IO接口:用于设置扫频起始频率、截止频率、步进。

内部结构R3261C的内部结构由以下几个模块组成:•混频器:将输入信号变频,转换成中频信号。

•IF放大器:放大中频信号。

•布拉格反射器:通过可变反射系数,将信号分成正频率和负频率矢量,通过矢量合成方式输出基带信号。

•混频器B:将基带信号与本振混频,获得高频信号。

•滤波器:将混频器输出的高频信号进行滤波,消除杂波和混频器带来的偏移信号。

•直流检测器:将滤波后的信号进行直流检测,输出测量值。

功能特点R3261C的主要功能特点如下:频率范围R3261C可以测量10Hz ~ 26.5GHz范围内的信号,可以满足多种需求场景的使用。

动态范围R3261C具有130dB的动态范围,具有优异的信噪比性能,可以满足各种信号测量需求。

带宽分辨率R3261C的带宽分辨率可以在1Hz~3MHz之间进行设置,具有很高的灵活性和可扩展性。

触发功能R3261C具有多种触发功能,包括单次、低噪声、外触发等,能够满足不同场景的需求。

数据存储和输出R3261C可以将测量数据存储到内部的存储器中,也可以通过RS-232接口和GPIB接口将数据输出给计算机进行处理。

仪器设备在通信技术中的应用

仪器设备在通信技术中的应用

仪器设备在通信技术中的应用通信技术的发展已经成为现代社会中不可或缺的一部分。

无论是人与人之间的交流,还是设备与设备之间的互联,都离不开高效可靠的通信手段。

而在通信技术的应用中,各种仪器设备的角色十分重要。

本文将探讨仪器设备在通信技术中的应用,并介绍一些常见的仪器设备。

一、频谱分析仪频谱分析仪是一种用于分析信号频谱和频谱特性的仪器设备。

在通信技术中,频谱分析仪被广泛应用于信号检测、频谱分析、故障诊断等方面。

它可以帮助工程师准确判断信号质量,分析信号频谱,快速发现和解决问题,提高通信系统的性能和可靠性。

二、网络分析仪网络分析仪是一种用于测试和分析网络性能的仪器设备。

在通信技术中,网络分析仪被广泛应用于网络调试、信号测试、线路优化等方面。

它可以测量信号传输的强弱、阻抗匹配、信号反射等指标,帮助工程师快速定位和解决网络故障,提高网络的稳定性和性能。

三、光谱分析仪光谱分析仪是一种用于分析光信号频谱和光谱特性的仪器设备。

在通信技术中,光谱分析仪被广泛应用于光通信、光纤传输、光信号处理等方面。

它可以帮助工程师分析光信号的频谱分布、光功率、光噪声等参数,优化光通信系统的设计和性能。

四、信号发生器信号发生器是一种用于产生各种信号波形的仪器设备。

在通信技术中,信号发生器被广泛应用于信号测试、通信设备调试、信号仿真等方面。

它可以产生各种调制方式的信号,模拟不同的通信环境和场景,提供参考信号用于性能测试和验证。

五、电磁场测试仪电磁场测试仪是一种用于测量和分析电磁场强度的仪器设备。

在通信技术中,电磁场测试仪被广泛应用于电磁辐射评估、无线信号检测等方面。

它可以帮助工程师测量电磁场强度、频率、功率等参数,判断通信设备的电磁兼容性和安全性。

总之,仪器设备在通信技术中的应用不可忽视。

频谱分析仪、网络分析仪、光谱分析仪、信号发生器和电磁场测试仪等仪器设备的应用,为通信技术的发展提供了坚实的支撑。

通过有效地使用这些仪器设备,我们可以更好地优化通信系统的性能,提高通信质量和稳定性,满足人们日益增长的通信需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用频谱分析仪测量通信信号一、GSM信号的测量现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。

典型的全球移动通信系统(GSM)的信号测量如图1所示,它清楚地标明了重要的控制参数设置和测量结果。

IFR2399型频谱分析仪利用彩色游标来加亮测量区域,此例中,被加亮的测量区域是占用信道和上下两个相邻信道的中心50kHz频带。

显示的水平轴(频率轴)中心频率为900MHz,扫频频宽为1MHz,而每一小格代表l00kHz。

顶部水平线表示0dBm,垂直方向每一格代表10dB。

信号已经被衰减了10dB,测量显示的功率电平已考虑了此衰减。

图1 GSM信道带宽显示和功率测量GSM是以两个25MHz带宽来传送的:从移动发射机到基站采用890MHz到915MHz,从基站到移动接收机采用935MHz到960MHz。

这个频带被细分为多个200kHz信道,而第50个移动发送信道的中心频率为900MHz,如图1所示。

该信号很明显是未调制载波,因为它的频谱很窄。

实际运用中,一个GSM脉冲串只占用200kHz稍多一点的信道带宽。

按照GSM标准,在发送单个信道脉冲串时,时隙持续0.58ms,而信道频率以每秒217次的变化速率进行慢跳变,再加上扫频仪1.3s的扫描时间,根据这些条件可以判定这是一个没有时间和频率跳变的静态测试,没有迹象表明900阳z的信号是间断信号。

为了保证良好的清晰度,选用1kHz的分辨带宽(RBW)滤波器。

较新的频谱分析仪中的模拟滤波器的形状系数(3dB:60dB)为11,意思是60dB时滤波器带宽(从峰值衰减60dB)是3dB时滤波器带宽(从峰值衰减3dB)的11倍,即11kHz比1kHz。

与此相比,数字滤波器的形状系数还不到5。

例如一个3dB带宽为50kHz的带通滤波器,其60dB带宽只有60kHz,这几乎是矩形通带。

它保证在计算平均功率时只含有50kHz以外区域很小一点的功率。

作为对比,如果分辨带宽RBW50kHz,使用前面提及的模拟滤波器而不是数字滤波器,其60dB带宽将为550kHz。

标记1处的信号电平是4.97dBm。

为了使噪声背景出现在屏幕上,显示轨迹线已向上偏移了10dB(在图中不易察觉),这是由于信号峰值被预先衰减10dB使其不超过顶部水平线,这也是信号峰值读数比参考电平高的原因。

图中,主信道功率(CHP)读数为7.55dBm,与峰值(标记1处)的读数4.978m不一致,其原因就是主信道功率是在50kHz测量带宽内计算的,而标记1的读数是峰值。

公式1定义了在整个带宽内计算主信道功率的方法。

其中,CHPwr:信道功率,单位dBmCHBW:信道带宽Kn:噪声带宽与分辨带宽之比N:信道内象素的数目Pi:以1mW为基准的电平分贝数(dBm)图1中,分辨带宽为1kHz,信道带宽为50kHz。

据式(1),先将在红色游标之间的每个像素功率电平(dBm)的对数值转化成线性功率电平毫瓦(mW)并求其平均值,然后按照测量带宽与分辨带宽之比来修正该值,以求得信道功率电平。

对于带有VGA显示的频谱分析仪来说,500个像素对应水平轴的10个刻度。

因此,在红色游标之间有25个像素,每个像素表示2kHz。

(1)式的第二表示50kHz测量带宽内线性功率电平的平均值。

假设900MHz处的峰值只有一个像素宽,其峰值功率3.14mW除以25(像素数),可得到功率平均值为0.126mW。

对于具有高斯响应的有4或5个极点的安捷伦滤波器而言,噪声功率带宽与分辨带宽之比为1.06,即Kn为1.06。

假设IFRRBW 滤波器与安捷伦RBW滤波器一样,那么(1)式第一部分变为50/1.06=47.2。

最后结果为7.73dBm。

上述计算结果接近7.55dBm。

在假设峰值只占有一个像素宽时,为什么刚才计算的功率比显示的功率大?这是因为峰值可能小于2kHz,即小于一个像素的宽度。

一些频谱分析仪可将像素细分以得到更大的测量精度。

这种情况下,很容易判断出连续波占用的宽度小于1个像素所示的2kHz,比如1.8kHz。

如果像素被细分为10等份,则平均功率为3.14×1.8/2/25=0.113mW。

此时,主信道功率(CHP)等于7.27dBm。

当然50kHz以外区域的测量带宽可提供一些功率,但是其单个像素宽的峰值被摊薄后,可下降达25dB,意思是该区域内两个或多个像素宽信号的功率将小于峰值功率1/300,所以不用加入总数里。

在数字系统里,很窄的连续波(单音信号)的显示和相关测量是有问题的,根据定义,一条线不能小于1个像素的宽度,可是,实际信号可能很窄。

最后一个影响显示的参数是视频带宽(VBW),设为1kHz。

它与RBW不同,RBW决定到达检测器的信号能量,而VBW则处理被检测电平的显示。

如果RBW比较大,那么就有更多的噪声到达检测器。

选择一个比RBW、窄的VBW可以使显示平滑,但却增加了扫描时间。

对于某些信号的测量,快速扫描、宽的RBW、窄的VBW的组合是最适宜的。

选用比RBWW值小的VBW,则显示的频谱不能跟踪检测到的快速峰值,因而产生失真。

而当VBW值等于RBW时,可看到平滑噪声的功能降低,但减少的不是很多。

图1中,有意地减小了背景噪声,这对所做的测量来说不是很重要。

二、频谱分析仪指标对测量的影响:最好的频谱分析仪,也不是完美无缺的。

诸如因为输入到混频器的电平太大引起的信号压缩、仪器内部产生的热噪声、内部振荡器的相位噪声、二次谐波失真以及三次、四次交调失真等,都会产生误差。

例如,如果两个功率相同,但频率分别为f1和f2的信号,驱动一个完美的理想的线性放大器,那么就只有两个原始频率输出。

而现实的放大器是非线性的,会产生两个频率的多种组合,包括2f1—f2,2f2—f1,3f1—2f2,3f2—2f1...频谱分析仪有点象非线性放大器,它的响应可以用一个幕级数表示,V0=a1Vi十a2Vi2+a3Vi3+…+anVin,其中电压为rms(有效值),Vi对应混频器输入的电压,V0对应检测电压。

除了简单放大增益项a1以外,将产生多个高次项。

若要增大频谱分析仪的动态范围,处理好第三、第四阶交调失真(IMD)项尤为重要。

对于相对简单的测试,现代频谱分析仪提供了多种控制设置的组合,它们对测量精度的影响是不同的。

例如,安捷伦E4440A型的自动组合模式,包括RBW滤波器,VBW滤波器(不采用VBW=RBW),扫频宽度及扫描时间,且根据输入衰减设定了参考电平。

某文献中建议的测量步骤,保证频谱分析仪产生的交调失真(IMD)至少低于被测信号(DUT)本身18dB,意味着频谱分析仪引起的失真对测量(DUT)失真的影响少于1dB。

图2 CDMA信号偏移885kHz的动态范围图相邻信道功率比(ACPR)或低电平IMD的测量要更困难,更需要注意频谱分析仪的能力。

图2显示了频谱分析仪的热噪声、相位噪声和第三、第五阶交调失真与混频器电平的关系。

由于精确测量ACPR所需的动态范围接近或超出了很多频谱分析仪的性能极限,所以必须全面考虑之后才有把握进行正确测量。

三、CDMA信号的测量:CDMA信号类似噪声。

重要的是类噪声的信号在理论上只选择均值或有效值型的显示检测器。

正负峰值读数检测器会使在测量范围内的每个像素值发生偏差,而采样检测器只接收由像素表示的扫频范围内相应一组幅度的最后一个值。

均值和有效值型检测器的工作与信号统计特性无关,它能给出有良好重复性的结果。

因为要在测量范围里把所有像素的功率电平进行平均得出平均功率,所以如果有足够的像素的话,也可以用采样检测器,若要测量重复性达到队1dB,则需要1000个像素。

由采样或均值检测器产生的像素值的平均值不那么简单明了,因为数A、B、C的对数的平均不等于这些数的平均的对数。

而有效值检测器是比较常用的,因为它提供的线性值可以被简单地平均。

避免采用小数量值的VBW可能很重要。

这里用“可能”,因为某些品牌如安捷伦PSAE4440A频谱仪,VBW设置不影响有效值功率平均测量,对显示线也没有影响。

小数值的VBW意味着显示的频谱不能正确跟踪峰值。

如果滤掉实际的随机噪声,则小值VBW 就可以达到预想的平滑显示。

CDMA信号类似噪声,但与噪声的统计结构不同,所以它们不能被小值VBW平滑掉。

视频平均的方法能对显示的频谱成功地进行平均,是减小噪声的另一种方法。

可惜的是显示的频谱通常是对数刻度,我们还得回过头处理对数的平均。

分辨带宽(RBW)等于30kHz,信道带宽(CHBW)等于1.23MHz,Kn假设为1.06。

因为相邻信道功率比(ACPR)有严格限制,要求选择具有1%至P4%信道带宽的RBW滤波器,以使得信道有很陡的下降沿,此处30kHz/1.23MHz=2.4%。

因为调制信号功率散布于整个的测量带宽,可根据公式1来计算发射信道功率,可以认为在Co游标之间每个30kHzRBW频带内存在同样的功率。

CDMA是一种宽带技术,并且在整个频带里同时存在全部功率。

在这里使用CHBW/RBW的比值作为修正因子,似乎比在图1中对窄带信号的修正更加确切。

若CHBW等于1.23MHz,RBW等于30kHz,那么(1)式括号里的第一部分为38.70。

第二部分是显示功率的平均值,大约为18dBm 或0.0158mW,刚好是目测到的脉冲顶部的平均值。

该值乘以38.7并转化为dBm,所计算出的发射信道功率等于2.12dBm,这非常接近于发送信道功率1.65dBm,证明了上述观点。

作为验证,假设平均功率为17dBm,计算值对应为1.12dBm,所以最好还是用18dBm。

当R/R公司的FSU型频谱分析仪用户进行ACPR测量时,游标和控制参数自动设置。

例如,相邻信道和第一对备用信道的测量带宽只有30kHz,而不是发射信道和第二对备用信道的1.23MHz的测量带宽。

从发射信道的中心到相邻信道的边缘的距离为885kHz,它等于保护带宽270kHz与发射信道带宽1.23MHz的一半相加的和。

一般说来,各个CDMA电话可以同时工作,这意味着在基站中可以出现发射频谱的峰值,它是由各个用户编码信号的随机叠加引起的。

峰值与均值的比值可以大到12至14dB。

尽管其平均功率仍在线性区域内,而峰值可以使混频器进入压缩区。

因为在CDMA信号中有很多频率出现,所以对第三、第五阶失真要特别关注。

最后,还必须考虑相位噪声,它对于IS95CDMA 来说是个限制因素,但对于宽带CDMA(WCDMA)来说,因测量ACPR给予了很大偏移量,就没有那么重要。

四、结束语当选用频谱分析仪时,要根据测量项目来选择型号。

例如具有特殊的时域测量能力的零频宽操作适合于测量GSM和时分多址(TDMA)信号,还能进行时间门限和组合的上升/下降沿脉冲串测量。

相关文档
最新文档