初一 二元一次方程组及其解法(学生版)

合集下载

初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用

初一数学二元一次方程组的解法与应用二元一次方程组是初中数学中的重要内容,它涉及到两个未知数的方程组。

在本文中,我们将介绍二元一次方程组的解法以及它在实际生活中的应用。

一、解法1. 消元法消元法是求解二元一次方程组最常用的方法之一。

对于形如:a₁x + b₁y = c₁a₂x + b₂y = c₂的方程组,首先选择其中一个方程,通过系数的适当倍乘,使得其中一个未知数的系数相等。

然后将两个方程相减,消去该未知数,得到一个只含有另一个未知数的一元一次方程。

求解该方程后,代入到原方程得出另一未知数的值。

2. 代入法代入法是另一种常用的解二元一次方程组的方法。

首先选择其中一个方程,解出其中一个未知数,然后将该值代入到另一个方程中,求解得到另一个未知数的值。

二、应用1. 几何问题二元一次方程组可以应用于几何问题中。

例如,已知两条直线的方程,求解它们的交点坐标。

将两条直线的方程组成二元一次方程组,通过解方程组可以求得它们的交点坐标。

2. 商业问题二元一次方程组在商业问题中也有广泛的应用。

例如,某公司生产两种产品,已知这两种产品的生产成本和售价,求解生产和销售这两种产品的数量,以最大化利润。

通过建立二元一次方程组,并求解方程组可以得到最优解。

3. 等比数列问题等比数列问题中常常需要解二元一次方程组。

例如,已知等比数列的第一项和公比,求解前n项的和。

通过建立关于等比数列的二元一次方程组,并求解可以得到所需的结果。

总结:二元一次方程组的解法有消元法和代入法,根据问题的要求可以选择不同的方法进行求解。

而二元一次方程组在几何、商业和数列等领域都有广泛的应用,通过解方程组可以求解实际问题,提高解决问题的能力。

以上是关于初一数学二元一次方程组的解法与应用的内容论述。

通过消元法和代入法,我们可以解决二元一次方程组,并且这些方法在几何、商业和数列等领域都有广泛的应用。

希望本文对您理解和掌握二元一次方程组有所帮助。

初一二元一次方程组的解法

初一二元一次方程组的解法

二元一次方程组的解法考点名称:二元一次方程组的解法二元一次方程组的解:使二元一次方程组的两个方程都成立的一对未知数的值,叫做方程组的解,即其解是一对数。

二元一次方程组解的情况:一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

求方程组的解的过程,叫做解方程组。

一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有以下三种情况:1、有一组解。

如方程组:x+y=5①6x+13y=89②x=-24/7y=59/7 为方程组的解2、有无数组解。

如方程组:x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3、无解。

如方程组:x+y=4①2x+2y=10②,因为方程②化简后为x+y=5这与方程①相矛盾,所以此类方程组无解。

可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y的二元一次方程组:ax+by=cdx+ey=f当a/d≠b/e 时,该方程组有一组解。

当a/d=b/e=c/f 时,该方程组有无数组解。

当a/d=b/e≠c/f 时,该方程组无解。

二元一次方程组的解法:解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c>0)一、消元法1)代入消元法用代入消元法的一般步骤是:①选一个系数比较简单的方程进行变形,变成 y = ax +b 或x = ay + b的形式;②将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;③解这个一元一次方程,求出 x 或 y 值;④将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解。

例:解方程组:x+y=5①{6x+13y=89②解:由①得x=5-y③把③代入②,得6(5-y)+13y=89即 y=59/7把y=59/7代入③,得x=5-59/7即 x=-24/7∴ x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

第三讲 二元一次方程及方程组一元一次不等式及不等式组(学生)

第三讲 二元一次方程及方程组一元一次不等式及不等式组(学生)

第三讲 二元一次方程及方程组一元一次不等式及不等式组。

本讲课程目标知识与技能熟练掌握方程的解法,提高分析问题的能力及解题能力,着重训练实际问题的审题、找相等关系并正确地列出方程的能力。

过程与方法 系统复习初一下册、一元一次方程、二元一次方程组、一元一次不等式及不等式组等三章内容,讲练结合。

情感态度价值观本讲课程的重点1.一元一次方程的解法。

2.二元一次方程组的解法。

3.一元一次不等式及不等式组的解法本讲课程的难点1.应用一元一次方程解决实际问题。

2.二元一次方程组的消元技巧。

3.不等式的性质3的符号变换,不等式组的解集的分类。

教学方法建议精讲多练,讲练结合 选材程度及数量课堂精讲例题 搭配课堂训练题 课后作业 A 类( )道( )道( )道B 类 ( )道 ( )道 ( )道C 类( )道( )道( )道—、回顾上一讲知识一:有理数知识的复习★第一步:要点一知识规律或思维方法、解题方法梳理1.正数、负数、有理数、数轴、相反数、绝对值及倒数的概念。

2.有理数的加减法、乘除法、以及乘方的运算法则及运算律(交换律、结合律、分配律)。

3.科学记数法及近似数,以及有理数混合运算的运算顺序。

★第二步:要点一经典例题讲解1.(-61+43-125)⨯)12(-; ( 用分配律)2.B.⎥⎦⎤⎢⎣⎡-÷--⨯---3210)2(322)32(31(答案:0 )★第三步:要点一课堂巩固练习1.B.(-1)2009-(43-61-83)×24-(-2)2×3 (答案:-18 ) 2.B.20103)1(|52|)3(2)2(---+-⨯--。

(答案:0 )二、整式的加减★第一步:要点二知识规律或思维方法、解题方法梳理1.单项式、多项式的概念。

2.整式加减的去括号的方法。

3.合并同类项的方法。

★第二步:要点二经典例题讲解1.B.已知一个多项式与x x 932+的和等于1432-+x x ,则此多项式是 ( B )A .1562---x xB .15--xC .1562++-x x D .15+-x2. C. 已知5,4=-=+c b b a ,则代数式222222a b c ab bc +++-= 41 。

七年级初一数学 第八章 二元一次方程组(讲义及答案)附解析

七年级初一数学 第八章 二元一次方程组(讲义及答案)附解析

七年级初一数学 第八章 二元一次方程组(讲义及答案)附解析一、选择题1.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( ) A .1x y += B .1x y +=- C .9x y += D .9x y -=-2.方程组5213310x y x y +=⎧⎨-=⎩的解是( ) A .31x y =⎧⎨=-⎩ B .13x y =-⎧⎨=⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩3.在关于x 、y 的二元一次方程组321x y a x y +=⎧⎨-=⎩中,若232x y +=,则a 的值为( ) A .1 B .-3 C .3 D .44.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-45.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩ 6.已知10a b +=,6a b -=,则22a b -的值是( )A .12B .60C .60-D .12- 7.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 8.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③9.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( ) A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩10.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .0二、填空题11.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.12.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.13.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 14.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.15.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.19.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 20.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.三、解答题21.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?22.甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示);(2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示);乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少?23.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.24.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.25.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x x y -==-,(x 、y 为正整数)∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x 为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423x y =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: .(2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?26.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的54x y =⎧⎨=⎩,试计算a 2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可.【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=.故选C.【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.2.A解析:A【分析】利用代入消元法即可求解.【详解】解:5213310x y x y +=⎧⎨-=⎩①②, 由②得:310y x =-③,把③代入②可得:()5231013x x +-=,解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩, 故选:A .【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键. 3.C解析:C【解析】分析:上面方程减去下面方程得到2x +3y =a ﹣1,由2x +3y =2得出a ﹣1=2,即a =3.详解:3{21x y a x y +=-=①②,①﹣②,得:2x +3y =a ﹣1. ∵2x +3y =2,∴a ﹣1=2,解得:a =3.故选C .点睛:本题主要考查解二元一次方程组,观察到两方程的系数特点和等式的基本性质是解题的关键.4.B解析:B【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.5.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y-=⎧⎨+=⎩ 即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.6.B解析:B【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得. 【详解】由题意得:106a b a b +=⎧⎨-=⎩, 解得82a b =⎧⎨=⎩, 则22222864460a b -==-=-,故选:B .【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.7.C解析:C【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩故选:C .【点睛】本题考查了二元一次方程组及其应用,首先选取两个量作为未知数,再根据已知条件列出两个方程,再将两个二元一次方程组合起来便构成了二元一次方程组.8.C解析:C【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④.故选C .【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.9.B解析:B【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 10.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.二、填空题11.95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95.故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.12.13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解解析:13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解】解:设1克巴旦木成本价m 元,和1克黑加仑成本价n 元,根据题意得10(0.04 +m+n) ×(1+30%)=5.2解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x 袋,乙种干果有y 袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y 解得:1330x y = 故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.13.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.14.25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的56,利润是每袋甲利润49,可知每袋乙礼包的利润是:4.5x×49=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴19.54612515415610512100%25% 415610512x x x x x xx x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯,∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.15.5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.16.320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。

七年级数学解二元一次方程组

七年级数学解二元一次方程组

课堂作业:
课本第112页习题11.3第1,2 题
课堂检测:
用代入法解下列方程组: y x, (1) y 4 x 15
x 2 y 4 (2) 2 x 3 y 1
x 7 y 0 (3) x 9 y 8 0
x y 3 (4) x y 5
由于方程组中相同的字母表示同一个未知数, 所以方程②中的y也等于5-x,可以用5-x代替方 程②中的y。这样就有4x+3(5-x)=18 ④
解所得的一元一次方程④ ,得x=3
再把x=3代入③, x+y=5 的解 4x+3y=18 得y=2
这样,我们就得到二元一次方程组
x=3 y=2
因此,李明和妈妈共买了 苹果3千克,梨2千克。
2.一个长方形的长是宽的3倍,如 果长减少3 cm ,宽增加4cm ,这个 长方形就变成了一个正方形.求这 个长方形的长和宽.
教后记:
想来学生在未学之前就有相当一部分 同学对此很感兴趣并进行了研究,注意本 节课的解二元一次方程组的解题思想为 “代入消元”,它的适用范围也很清楚: 最好是某个未知数的前面的系数的绝对值 为1,否则尽量避免使用这种方法。再者 注意变形的等价性,代入要细心,计算后 要检验。课件的容量过大时,分组进行板 演,注意准确率的同时要加快解题速度。
y=12-x . ③
将③代入②,得2x+12-x=20
12-x.
解这个一元一次方程,得
x=8 将x=8代入③,得
x 8 所以原方程组的解是 y 4
y=4 .
x+y=12 例2 解方程组 2x+y=20
本题能否通过消去x解这个方程组吗?

初一数学复习题二元一次方程组的解法

初一数学复习题二元一次方程组的解法

初一数学复习题二元一次方程组的解法初一数学复习题:二元一次方程组的解法在初中数学中,我们学习了许多数学概念和解题方法。

本文将介绍二元一次方程组的解法,帮助同学们复习这一知识点。

二元一次方程组是由两个含有两个未知数的方程组成的。

一般形式为:```a₁x + b₁y = c₁a₂x + b₂y = c₂```其中,a₁、b₁、c₁、a₂、b₂和c₂为已知系数,x和y为未知数。

下面,我们将介绍两种常用的解方程组的方法:代入法和消元法。

一、代入法代入法的基本思想是用一个方程的解,代入到另一个方程中,从而得到只含一个未知数的方程,进而求解。

步骤如下:1. 选取一个方程,将其转化为只含一个未知数的方程。

例如,选取第一个方程a₁x + b₁y = c₁,将其转化为只含有x的方程x = (c₁ - b₁y) / a₁。

2. 将得到的方程代入另一个方程,得到只含有一个未知数的方程。

例如,将x = (c₁ - b₁y) / a₁代入第二个方程a₂x + b₂y = c₂,得到a₂((c₁ - b₁y) / a₁) + b₂y = c₂。

3. 解得含有一个未知数的方程,得到该未知数的值。

例如,解得y = (a₂c₁ - a₁c₂) / (a₁b₂ - a₂b₁)。

4. 将求得的未知数的值代入到之前选取的方程中,求得另一个未知数的值。

例如,将y = (a₂c₁ - a₁c₂) / (a₁b₂ - a₂b₁)代入第一个方程a₁x + b₁y = c₁,解得x = (c₁ - b₁((a₂c₁ - a₁c₂) / (a₁b₂ - a₂b₁))) / a₁。

5. 检验求得的解是否满足原方程组。

将求得的x和y代入原方程组,验证两个方程是否成立。

二、消元法消元法的基本思想是通过变换原方程组,将两个方程中的一个未知数消去,转化为只含一个未知数的方程。

步骤如下:1. 通过变换两个方程,将其中一个未知数的系数相同或系数的比值为常数。

可以通过将其中一个方程乘以适当的系数,使得两个方程的x或y的系数相同或系数的比值为常数。

【研】初一数学 第10讲 应用二元一次方程组(2)-学生版

【研】初一数学 第10讲 应用二元一次方程组(2)-学生版

个性化教学辅导教案课 题 二元一次方程组应用(2) 教学目标重点:针对实际问题列式.难点:注意到实际问题中的限制条件.教学过程 教师活动学生活动1.李勇购买80分与100分的邮票共16枚,花了14元6角,设购买80分与100分的邮票的枚数分别是( ) A .6,10B .7,9C .8,8D .9,72.若⎩⎨⎧==b y a x 是方程02=+y x 的解,则=++236b a3.已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+1232y x ky x 的解互为相反数,则k 的值是 .4.王阿姨每天晨练的路径是一段平路和一段下坡路,然后顺原路返回.假设她始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,王阿姨走平路和下坡路需10分钟,顺着原路返回需要15分钟,请问王阿姨每天晨练走多远?5.如图,周长为68的长方形ABCD被分成7个形状大小一样的小长方形,求长方形ABCD的面积.1.某人用24000元买进甲,乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问该人买进的甲,乙两种股票各是多少元?2.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某市东坡中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台。

请你设计出几种不同的购买方案供该校选择,并说明理由。

1.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg ,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元?2.(选择最优方案)在一次春游中,小明、小亮等同学随家人一同到江郎山旅游,下面是购买门票时,小明与他爸爸的对话(如图所示).(1)小明他们一共去了几个成人?几个学生?(2)请你帮助小明算一算,用哪种方式买票更省钱?并说明理由.大人门票每张40元,学生门票对折优惠,我们共有11个人,需360元.票价成人:40元/张 学生:按成人票五折优惠. 团体票(14人以上,含14人);按成人票6折优惠.爸爸,等一下,让我算一算,换一种方式买票是否可以更省钱.【查漏补缺】1.某商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售工艺品8件时,与将标价降低35元销售该工艺品12件所获得的利润相等。

初一数学知识点:二元一次方程(组)及其解法

初一数学知识点:二元一次方程(组)及其解法

初一数学知识点:二元一次方程(组)及其解法二元一次方程组[ 初一数学]题型:解答题a为何值时,方程组3x-5y=2a. 2x+7y=a-18的解的值为相反数,并求他的值.问题症结:找不到突破口,请老师帮我理一下思路考查知识点:利用消元法解二元一次方程组难度:难解析过程:规律方法:理解清楚题意,建立三元一次方程组,解出a的数值.七年级下册数学二元一次方程[ 初二数学]题型:解答题若关于xy的方程组x+y-a=0,x-2y=5,的解满足x>1,y≤1,则满足条件的整数a有多少个问题症结:对于这个问题,找不到突破口,请老师帮我梳理思路,详细解答一下考查知识点:利用消元法解二元一次方程组难度:中解析过程:解:x+y-a=0 ①x-2y=5 ②①-②得,3y=a-5,∴y=(a-5)/3代入②得,x-2×(a-5)/3=5,∴x=(2a+5)/3∵x>1,y≤1,∴(2a+5)/3>1,(a-5)/3≤1∴a>-1, a≤8∴-1< a≤8规律方法:解方程组,用a表示x,y再列不等式组求出a知识点:二元一次方程(组)及其解法所属知识点:[二元一次方程(组)]包含次级知识点:利用消元法解二元一次方程组、二元一次方程的概念知识点总结一.二元一次方程(组)的相关概念1.二元一次方程:含有两个未知数并且未知项的次数是1的方程叫做二元一次方程。

2.二元一次方程组:二元一次方程组两个二元—次方程合在一起就组成了一个二元一次方程组。

3.二元一次方程的解集:(1)二元一次方程的解适合一个二元一次方程的每一对未知数的值.叫做这个二元一次方程的一个解。

(2)二元一次方程的解集对于任何一个二元一次方程,令其中一个未知数取任意二个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集。

4.二元一次方程组的解:二元一次方程组可化为使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解。

七年级数学二元一次方程组解法

七年级数学二元一次方程组解法
之间的函数关系式;
(2)若要使车间每天所获利润不低于24000元,你认
为至少要派多少名工人去制造乙种零件才合适?
课本P34 习题11.8 1,2
; 天臣娱乐,天臣娱乐官网,天臣娱乐开户,天臣娱乐注册 vgd69wjw
是好奇这是什么地方,心想会不会是还在做梦,于是捏了自己一把,发现是有痛觉的,但我又担心自己像盗梦空间那样,做梦 做得有真实的感受,于是开始抱着头摇来摇去的。小男孩见我不太正常,于是大喊着“玉儿姐姐”什么的。刚过没多久,门外 又进来一个人,是个女子,但在我眼中看来,年纪撑死就是个高中生。那女生穿着确实简朴,或者我从这木屋就该猜到,他们 并不是有钱人。我稍微从不可思议的穿越中(尽管我不确定是不是穿越)缓过一些神来,才开始有心思打量了一下这一男一女。 这小正太确实长得好可爱,又不缺乏秀气,长大之后肯定是高富帅;这女生长相略显平凡,但是也透漏出一种秀气,我想,大 概是她现在是素颜,没有任何打扮的模样吧。小男孩的衣服稍微比较鲜艳一点,也显得他比较活泼。他见他的姐姐来了,就跑 过去冲着她的耳朵说了些什么。这女生听后,把目光转向我,开口说道:“公子,身体可好了?”我这么一听,倒是听到了一 口流利的普通话,这让我有点小吃惊。这是,我略显慌张,抚了抚自己的喉咙,张口说道:“应该七七八八了吧?”“应该七 七八八?那是何解?”女子一脸疑惑的看着我。我又吃了一小惊,忙改口道:“就是说,我的身体好很多了。”“是这样啊。” 女子像完成了什么事情一样,说完舒了一口气。我一边纳闷这突如其来的改变,一边组织好想问的问题去问这女生。由于知道 我们语言并没什么阻碍,能正常交流,再加上我知道我的谈吐应该更文绉绉一点才会让她听懂,于是我便问道:“姑娘,能问 你几个问题吗?”“嗯。”我索性翻下床来,站到她身旁问起来,“你知道这是哪吗?这是什么年代?这是由皇帝来统治的 吗?”蓦地,又觉得自己问出一连串好夸张的问题,于是又感觉自己有点小失礼了。这时,这女生脸显现一片通红,我这才有 意识到,我刚才问问题的时候靠得她太近了。那也不能怪我,向来问别人问题,就应该靠近点好让对方挺清楚不是吗?“这是 南国,年代是吕王八年。”女子羞涩地回答道。我见状,先有礼貌的向这女生道个歉,说道:“姑娘,刚才失礼了,我只是还 没习惯说话却不靠近别人说啊。”话一讲完,又发现自己说了一些莫名其妙的话,这使我觉得,用这种方式谈吐,真突出一个 烦字啊。女子蓦地转过脸去,脸部抽搐了几下,想必是在偷笑吧。那也难怪,这样的言行是挺让这时代的人感到奇怪搞笑的 第001章 天不收地不留“我的妻,你在哪里?“恍惚间,一个磁性的男声不断在耳畔重复着如此

七年级数学二元一次方程组的解法

七年级数学二元一次方程组的解法

x+y=12
x+y=11 ⑶ x-y=7

x=9 y=2
⑷ x+2y=3
x=3 y=0
1
2、若方程5x 2m+n + 4y 3m-2n = 9是关于x、y的 二元一次方程,求m 、n 的值.
解: 根据已知条件可 列方程组: 2m + n = 1 ① 3m – 2n = 1 ② 由①得:n = 1 –2m ③ 把③代入②得: 3m – 2(1 – 2m)= 1 3m – 2 + 4m = 1 7m = 3
归 纳:
上面的解法,是由二元一次方程 组中一个方程,将一个未知数用含另 一个未知数的式子表示出来,再代 入另一个方程,实现消元,进而求 得这个二元一次方程组的解,这种 方法叫代入消元法,简称代入法
例1(在实践中学习)
用代入法解方程组
解: 由② ,得
2x+3y=16 ①
把③代入② 可以吗?试 试看
1
3 把m 代入③,得: 7
n
3 n 1 2 7 1
7
3 m 7
3 1 m的值为 ,n的值为 7 7
3、今有鸡兔同笼
上有三十五头 下有九十四足 问鸡兔各几何
解:如果设鸡有x只,兔有y只, 你能列出方程组吗?
x+y=35 2x+4y=94
今天的作业:
课本103页习 题8.2第2题
; /junxianshizhan/6849.html 5日均线
vgd14wjw
代,自由对于女子来说,那本身就是一个遥不可及的梦。“其实,我知道这些想法不可实现,所以我也希望自己活在仁 家,有一个温暖完整的家就行了。爹娘都在,弟弟长大之后能入仕为官,只是改朝换代之后,我们仁家是不可能再有一 丝光明的了。”说罢,仁玉又从刚才略显欢快的语气中回到一股悲痛之感中。听了这么多,我算是基本了解了仁玉这女 生的了。她是个有着一些很好的梦想的女孩,而且热爱家人,是个重亲情的人儿,只是社会的时代背景让她敢想不敢做, 最后与命运相碰,选择了结束生命这一条路。听了这么久的话,衣服也差不多甩干了,体力也恢复得差不多了。于是我 站起身来,走到仁玉身旁。仁玉觉得我走了过来,更是把身子往里缩了一缩。我见状,只是打趣说道,“半夜坐在湖边 湿着身子聊天很开心吧,但是千万别生病啊。”说罢,将自己已甩干的外套递给仁玉,又接着说,“来,把黑衣换下换 上这件。”仁玉听后,又是楞住了。蓦地我才发现,我该回避一下,不然她哪敢在一个男人面前换衣服。我识趣地往别 处走,也背对着仁玉,无意地说道:“人嘛,活在世上就是要经历各种不幸与苦难的,但是人都有自己的梦想。当梦想 是遥不可及的时候,就是告诉我们要去为之努力而接近它。假如实现梦想的唯一途径就是不懈的努力的话,我肯定会努 力到最后的。”说罢,我这时才发现仁玉已经换上衣服来到我身后。看着仁玉还是略显苍白的脸,也注意到她那有点吃 惊的表情,想必是我那番话刺激到了她,也不知道她是否理解我当中的思想,但是我能做的,就是鼓励她,给她那么一 点自信,抹去那么一点她心里想轻生的念头罢了。我已经觉得很累了,还是硬着头皮撑出一个微笑,对着仁玉说道: “走吧,回家吧。”仁玉害羞地点了点头,随着我的步伐,一起离开了湖边。此时只剩月亮,她还在我们前头,照亮着 我们回去的路。自仁玉从湖边回来,她像变了一个人似的。虽说言行举止还是那样的温文尔雅,但是之前蒙绕在脸上的 悲伤神情已经消散殆尽了。虽说在这破旧的仁家大宅里没什么新鲜玩意能消磨时间的,但是还是能看出仁玉这女生每天 都让自己充实起来,要不就是打扫卫生,要不就是坐在柳树荫下哼起小曲。最大变化的是,她经常来到我暂住的木屋里, 找我聊天。其实,我倒不拒绝和别人谈天谈地的,只是对仁玉突然有如此变化感到吃惊,想不到仁玉是这么一个活泼的 女生,看来她以前是一直封闭着自己的内心世界。每次聊天,仁玉都会在我还没说上几句就开始扯到自己的事情,一扯 就是几个时辰,我倒是成为了一个忠实的听众。而且,这样的日子过久了,我们也熟络起来了。她也称我莲,也不再这 么客客气气的了,讲话也不再这么文绉绉的了。一边听着她的

初一二元一次方程的解法

初一二元一次方程的解法

二元一次方程的解法考点名称:二元一次方程的解法二元一次方程的解:使二元一次方程左、右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

二元一次方程解法:二元一次方程有无数个解,除非题目中有特殊条件。

一、消元法“消元”是解二元一次方程的基本思路。

所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。

这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。

如:5x+6y=7 2x+3y=4,变为5x+6y=7 4x+6y=8消元方法:代入消元法(常用)加减消元法(常用)顺序消元法(这种方法不常用)例:x-y=3 ①{3x-8y=4②由①得x=y+3③③代入②得3(y+3)-8y=4y=1所以x=4则:这个二元一次方程组的解x=4{y=1(一)加减-代入混合使用的方法. 例:13x+14y=41 ①{14x+13y=40②②-①得x-y=-1x=y-1 ③把③代入①得13(y-1)+14y=4113y-13+14y=4127y=54y=2把y=2代入③得x=1所以:x=1,y=2最后 x=1 ,y=2,解出来特点:两方程相加减,得到单个x或单个y,适用接下来的代入消元。

(二)代入法是二元一次方程的另一种方法,就是说把一个方程带入另一个方程中如:x+y=590y+20=90%x带入后就是:x+90%x-20=590(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式(x+5,y-4),换元后可简化方程。

(三)另类换元例:x:y=1:4①5x+6y=29②令x=t,y=4t方程2可写为:5t+24t=2929t=29t=1所以x=1,y=4二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

初一数学二元一次方程组解法

初一数学二元一次方程组解法

初一数学二元一次方程组解法
一元一次方程是指方程中只有一个未知数的一次方程,而二元一次方程是指方程中有两个未知数的一次方程。

解二元一次方程的方法有三种:代入法、消元法和 Cramer 法则。

1. 代入法:
通过消元将其中一个方程变成只有一个未知数的一次方程,然后将该未知数的解代入另一个方程中求解。

2. 消元法:
通过对两个方程进行适当的加、减、乘、除运算,使得一个未知数的系数相等,然后进行消元,最后求解一个未知数,再带回原方程中求出另一个未知数。

3. Cramer 法则:
针对二元一次方程组,可以利用行列式的性质,通过计算行列式的值来求解未知数。

无论使用哪种方法,我们都需要遵循以下步骤来解决二元一次方程组:
1. 将方程组写出来,明确其中的未知数和系数。

2. 选择一种解法方法(代入法、消元法或 Cramer 法则)。

3. 根据选定的方法,进行相应的运算和代入,得出未知数的解。

4. 将解代入原方程组中验证,确保解是正确的。

需要注意的是,在使用代入法或消元法时,我们要先判断方程组是否有解、无解或有无穷多解。

如果方程组无解或有无穷多解,则应当相应地说明。

希望以上解法能够帮助你解决初一数学中的二元一次方程组问题。

七年级下册数学二元一次方程组解法

七年级下册数学二元一次方程组解法

七年级下册数学二元一次方程组解法
解二元一次方程组的方法主要有消元法和代入法。

以下是七年级下册数学中解二元一次方程组的步骤:
假设有如下二元一次方程组:
1. 方程一:ax + by = c
2. 方程二:dx + ey = f
消元法解法步骤:
Step 1: 确定一个未知数的系数,使得两个方程中该未知数的系数在绝对值上相等。

Step 2: 将两个方程相加或相减,使得其中一个未知数的系数相消,从而得到一个只包含一个未知数的方程。

Step 3: 解得这个未知数的值。

Step 4: 将得到的未知数的值代入任意一个方程中,解得另一个未知数的值。

Step 5: 得到两个未知数的值,从而得到方程组的解。

代入法解法步骤:
Step 1: 将其中一个方程中的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程中。

Step 2: 解得一个未知数的值。

Step 3: 将得到的未知数的值代入任意一个方程中,解得另一个未知数的值。

Step 4: 得到两个未知数的值,从而得到方程组的解。

无论是消元法还是代入法,最后都需要验证求得的未知数的值是否符合原方程组,以确保解的正确性。

1/ 1。

七年级数学下华师大版721二元一次方程组的解法1

七年级数学下华师大版721二元一次方程组的解法1

例1 解方程组
X+y=7

3x+y=17 ②
思考:是否 可以把方程1 或2变形
解: 由①得 : y=7-x ③
将 ③代入 ②,得
3x+(7-x)=17
即 x=5
将x=5代入③ ,得 Y=2
所以
X=5 Y=2
本堂小结
1、解二元一次方程组的思想方法:通过代 入的方法,达到消元的目的,化二元一次 方程组为一元一次方程求解;
校舍,使校舍总面积增加30﹪.若建造新校舍的面积为
被拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,
建造多少新校舍?(单位:m2 )
拆 (x m2)
设应拆除旧校舍x m2 ,
建造新校舍y m2 .
20000 m2
根据题意列方程组
y=4x y-x=20000× 30﹪.
y=4x 即
y-x=6000
新建(y m2)
所以
x =2000, y=8000.
一元一次方程
练一练
x=3y+2,
解方程组: (1) x+3y=8.
4x-3y=17, (2)
y=7-5x.
x=3y+2, ①
(1)
x+3y=8. ②
解:把① 代入②,得
( 3y+2 )+3y=8,
6y+2=8, 6y=6, y= 1.
把y=1代入①,得
x=3×1+2
目标:
1.通过探索,逐步发现解方程的基本思想是“消 元”,化二元一次方程组为一元一次方程。
2.了解“代入消元法”,并掌握直接代入消元法。
回顾复习
1.什么叫做二元一次方程? 2.什么叫做二元一次方程组? 3.什么叫做二元一次方程(组)的

七年级二元一次方程

七年级二元一次方程

七年级二元一次方程
七年级二元一次方程组解法如下:
七年级二元一次方程组解法的基本思想就是消元。

消元即通过同解变形,将方程组中的未知数个数逐渐消去,最后转化为一元一次方程来求解,代入法和加减法是常见的消元方法。

代入法解二元一次方程组的步骤:(1)将其中一个方程变形为由一个未知数表示另一个未知数的形式。

(2)将变形后的方程代入另一个方程中,将方程组转化为一元一次方程。

(3)解这个一元一次方程,将得到的未知数的值,代入变形后的方程求得另一个未知数的值。

下题就是用代入法解答。

加减法解二元一次方程组的步骤:(1)将两个方程中的其中一个未知数的系数化成相同或互为相反数。

(2)通过加减消去这个未知数,得到一个一元一次方程。

(3)解这个一元一次方程,再将求得的未知数的值代入原方程组中任何一个方程求出另一个未知数的值。

我们来看下面这个例题.
当然这二个例题也分别可以用加减法和代入法来做,方法的差异主要是解题的复杂度影响,选择用什么方法还是要结合方程组的特征来灵活对待。

当然一个题中有时也可以二种方法结合来做,看下面一题。

最后我们再看一下“整体换元”的方法。

这题中我们把2x+5y这个看成一个整体来进行替换,很方便的求出y的值,从而求出方程组的解,所以解方程组方法不是固定的,但各种的方法的思想是一致的,就是消元,消去一个未知数,变成只有一个未知数的一元方程来求解。

初一数学二元一次方程组解题技巧

初一数学二元一次方程组解题技巧

初一数学二元一次方程组解题技巧初一数学中的二元一次方程组通常是由两个关于同一组变量的一次方程组成的。

解题的关键在于找到合适的方法和技巧来求解方程组。

解题技巧如下:1.消元法:通过加减乘除等运算,使方程组中的其中一变量的系数相等,然后相减或相加得到一个只有一变量的方程。

这样可以将原方程组化简为一个只有一变量的方程,从而求出该变量的值。

例如,考虑以下方程组:2x+3y=73x-2y=4我们可以通过乘以适当的系数来使得y的系数相等。

观察到2和-3之间存在公倍数6,所以我们可以令第一个方程乘以2,第二个方程乘以3,得到:4x+6y=149x-6y=12然后相加两个方程,会得到:13x=26从而解得x=2,然后将x的值代入其中一个方程,可以得到y的值。

2.代入法:通过将一个方程的解代入另一个方程,从而将方程组化简为一个只有一变量的方程。

这种方法一般适用于一方程的系数较简单的情况。

例如,考虑以下方程组:3x+2y=11x-4y=-7我们可以从第一个方程中解出x,得到x=11-2y。

然后将x的值代入第二个方程,得到:11-2y-4y=-7化简得到:-6y=-18从而解得y=3、然后将y的值代入第一个方程,可以得到x的值。

3.图像法:将方程组中的两个方程分别画在坐标系中,根据图像的交点得出方程的解。

例如,考虑以下方程组:y=2x-1y=-x+4我们可以将两个方程分别画在坐标系中。

两条直线在图像上相交,并且交点坐标为(1,1)。

因此,解为x=1,y=14.系数法:通过对方程组中的相应系数进行调整,使得方程组中的一些常数项消失,从而得到只有一变量的方程。

例如,考虑以下方程组:2x+y=53x+4y=14我们可以通过将第一个方程乘以2,将第二个方程乘以3,得到:4x+2y=109x+12y=42然后将第一个方程乘以3,得到:12x+6y=30然后将这个方程减去第二个方程,可以得到只含有x的方程:3x-6y=-12从而解得x=-4,然后将x的值代入任意一个方程,可以得到y的值。

数学七年级下册二元一次方程组的解法

数学七年级下册二元一次方程组的解法

数学七年级下册-二元一次方程组的解法在数学七年级下册的学习中,我们将学习到二元一次方程组的解法。

二元一次方程组是由两个未知数的一次方程组成的,通常以x和y表示。

解二元一次方程组就是要找出同时满足这两个方程的x和y的值。

在本文中,我将深入探讨二元一次方程组的解法,为了更好地理解这个概念,我会从简单到复杂、由浅入深地介绍这个主题。

一、基本概念让我们回顾一下一元一次方程的解法。

一元一次方程通常写成ax+b=0的形式,我们可以通过一些简单的运算规则找到未知数的值。

同样地,二元一次方程组也有自己的解法。

二元一次方程组通常写成如下形式:a1x + b1y = c1a2x + b2y = c2其中,a1、b1、c1、a2、b2、c2都是已知的常数,而x和y则是我们需要求解的未知数。

二、解法方法在解二元一次方程组时,我们通常使用替换法、消元法或Cramer法。

其中,替换法是把一个方程的一元变量用另一个方程的一元变量表示,然后代入另一个方程中,从而得出一个一元一次方程。

消元法则是通过加减消元或乘除消元来消去一个方程中的一个变量,得到一个一元一次方程。

Cramer法则是通过矩阵求逆的方法来解方程组,需要一定的线性代数知识。

三、举例说明为了更好地理解以上方法,我将通过具体的例子来说明。

假设我们有以下二元一次方程组:2x + 3y = 84x - 2y = 10我们可以使用替换法,将第一个方程改写为:y = (8 - 2x) / 3然后代入第二个方程中,得到:4x - 2 * ((8 - 2x) / 3) = 10通过整理化简,我们可以得到x的值,再代入第一个方程中求解y的值,从而得出方程组的解。

同样地,我们也可以使用消元法或Cramer 法来解这个方程组。

四、个人观点在学习二元一次方程组的解法时,我觉得这是一个对逻辑思维和数学运算能力有一定要求的知识点。

通过不断练习和探索,可以加深对数学的理解,培养解决问题的能力。

对于涉及到更多未知数的方程组,如三元或多元一次方程组,这些解法也是基础和奠定了学习高阶数学的基础,因此在学习中要注重理论联系实际,灵活运用所学知识。

初一数学二元一次方程组典型例题详解

初一数学二元一次方程组典型例题详解

初一数学二元一次方程组典型例题详解一、和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:甲、乙两人分别以不变的速度打字,2分钟共打了240个字,已知甲每分钟比乙多打10个字。

问甲、乙两人每分钟各打多少个?解:设甲每分钟打x个字,乙每分钟打y个字。

根据题意可列方程组为2(x+y)=240①x-y=10②由①得x+y=120 ③,②+③得2x=130,解得x=65,将x=65代入②得:y=55。

答:甲每分钟打65个字,乙每分钟打55个字。

思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

二、产品配套问题典型例题:某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个,螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品正好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设分配x名工人生产螺钉,y名工人生产螺母。

由题意可列方程组为x+y=22①2x1200x=2000y②由②得6x=5y③,由①得x=22-y,代入③得6(22-y)=5y,整理得11y=132,解得y=12,则x=22-12=10。

答:应该分配10名工人生产螺钉,12名工人生产螺母。

思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

三、工作量问题知识梳理:我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。

典型例题:现要整理一批文件,由1个人完成需要40个小时,计划由一部分人先做4小时,再增加2人和他们一起再做8小时,完成这项任务,假设这些人的工作效率都相同,则应先安排多少人工作?解:设总工作量为1,应先安排x人工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.注意:组成方程组的两个方程不必同时含有两个未知数,例如 也是二元一次方程组.4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个.题型1:二元一次方程【例1-1】已知下列方程,其中是二元一次方程的有________. (1)2x-5=y ; (2)x-1=4; (3)xy =3; (4)x+y =6; (5)2x-4y =7; (6);(7);(8);(9);(10).举一反三:下列各方程中,是二元一次方程的是( ) A .=y+5x B .3x+2y=2x+2y C .x=y 2+1 D .题型2:二元一次方程的解【例2-1】下列数组中,是二元一次方程x+y=7的解的是( ) A .B .C .D .【例2-2】已知二元一次方程. ⎩⎨⎧=-=+52013y x x x ay b =⎧⎨=⎩2526x y x y +=⎧⎨+=⎩1222x y x y +=-⎧⎨+=-⎩102x +=251x y+=132x y +=280x y -=462x y +=3142x y +=(1)用含有x 的代数式表示y ;(2)用含有y 的代数式表示x ; (3)用适当的数填空,使是方程的解.举一反三:1、若方程的一个解是,则a= .2、已知:2x +3y =7,用关于y 的代数式表示x ,用关于x 的代数式表示y .题型3:二元一次方程组及方程组的解【例3-1】下列各方程组中,属于二元一次方程组的是( ) A .B .C .D .【例3-2】判断下列各组数是否是二元一次方程组的解.(1) (2)举一反三:2_______x y =-⎧⎨=⎩24ax y -=21x y =⎧⎨=⎩4221x y x y +=⎧⎨+=-⎩①②35x y =⎧⎨=-⎩21x y =-⎧⎨=⎩1、写出解为的二元一次方程组.知识点二:代入消元法1、消元法消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.消元的基本思路:未知数由多变少.消元的基本方法:把二元一次方程组转化为一元一次方程. 2、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的. (2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便; ③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.题型1:用代入法解二元一次方程组 【例1-1】用代入法解方程组:的解为 .12x y =⎧⎨=-⎩【例1-2】用代入法解二元一次方程组:举一反三:1、若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.2、与方程组有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .3、若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .题型2:由解确定方程组中的相关量 【例2-1】已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【例2-1】若方程组的解为,试求的值.举一反三:524050x y x y --=⎧⎨+-=⎩①②2020x y x y +-=⎧⎨+=⎩22(2)0x y x y +-++=ax+by=11(5-a)x-2by+14=0⎧⎨⎩14x y =⎧⎨=⎩a b 、1、已知是二元一次方程组的解,则m﹣n的值是.知识点三:加减消元法1、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.2、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.题型1:加减法解二元一次方程组【例1-1】直接加减:已知21xy=⎧⎨=⎩是二元一次方程组21mx nynx my+=⎧⎨-=⎩的解,则3m n+的值为.【例1-2】先变系数后加减:2521 4323x yx y-=-⎧⎨+=⎩①②【例1-3】建立新方程组后巧加减:解方程组2511 524x yx y+=⎧⎨+=-⎩①②【例1-4】先化简再加减:解方程组0.10.3 1.3123x yx y+=⎧⎪⎨-=⎪⎩①②举一反三:1、已知关于x,y的二元一次方程组的解满足x﹣y=a,求该方程组的解.题型2:用适当方法解二元一次方程组【例2-1】(1)323112x yx y-=⎧⎨=-⎩(2)5(1)2(3)2(1)3(3)m nm n-=+⎧⎨+=-⎩举一反三:1、用两种方法解方程组29(1) 321(2) x yx y+=⎧⎨-=-⎩三、课堂练习一、选择题1.下列方程组是二元一次方程组的是()A.53x yz x+=⎧⎨+=⎩B.1113xxyx⎧+=⎪⎪⎨⎪-=⎪⎩C.434x y xyx y-+=⎧⎨-=⎩D.12132112(2)32x yx y x y⎧-=⎪⎪⎨⎪-=-⎪⎩2. 是方程ax﹣y=3的解,则a的取值是()A.5 B.﹣5 C.2 D.13. 方程组233x yx y-=⎧⎨+=⎩的解是()A .12x y =⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .11x y =⎧⎨=⎩ D .23x y =⎧⎨=⎩4.已知二元一次方程组6511327,x y y x +=⎧⎨-=⎩, ①②,下列说法正确的是()A.适合②的,x y 的值是方程组的解①②B.适合①的,x y 的值是方程组的解C.同时适合①和②的,x y 的值不一定是方程组的解D.同时适合①和②的,x y 的值是方程组的解5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为( ) A .4和6 B .6和4C .2和8D .8和﹣26.对于方程3x-2y-1=0,用含y 的代数式表示x ,应是( ). A .1(31)2y x =- B .312x y += C .1(21)3x y =- D .213y x += 7.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解.则a-b 的值为( ).A .-1B .1C .2D .38.已知2|21|(27)0x y x y --++-=,则3x y -的值是( ) A .3 B .1 C .﹣6 D .8 9.用加减消元法解二元一次方程组231543x y x y +=⎧⎨-=⎩①②,下列步骤可以消去未知数x 的是( )A .①×4+②×3B .①×2-②×5C .①×5+②×2D .①×5-②×2 10.解方程组①3759y x x y =-⎧⎨+=-⎩,②3512,215 6.x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法 二、填空题11.已知方程2x+y ﹣5=0用含y 的代数式表示x 为:x= .12.在二元一次方程组423x y x m y -=⎧⎨=-⎩中,有6x =,则_____,______.y m ==13.若(a ﹣3)x+y |a|﹣2=1是关于x 、y 的二元一次方程,则a 的值是 .14.解方程组523,61,x y x y +=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.15.若方程3x-13y =12的解也是x-3y =2的解,则x =________,y =_______. 16.方程组的解是 .17.用加减法解方程组3634x y x y -=⎧⎨+=-⎩①②时,①+②得________,即________;②-①得________,即________,所以原方程组的解为________. 18.若522325m n x y ++与632134m n x y ---的和是单项式,则m =_______,n =_______. 19.已知关于x ,y 的方程组271x y x y +=⎧⎨-=-⎩满足3x y +=,则k = .三、解答题20.根据下列语句,分别设适当的未知数,列出二元一次方程或方程组. (1)甲数的13比乙数的2倍少7;(2)摩托车的时速是货车的32倍,它们的速度之和是200km/h ;(3)某种时装的价格是某种皮装价格的1.4倍,5件皮装比3件时装贵700元.21.用代入法解下列方程组:一、选择题1.下列各方程中,是二元一次方程的是()A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=12. 关于,m n的两个方程23321m n m n-=+=与的公共解是()A.3mn=⎧⎨=-⎩B.11mn=⎧⎨=-⎩C.12mn=⎧⎪⎨=⎪⎩D.122mn⎧=⎪⎨⎪=-⎩3.利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.用加减消元法解二元一次方程组时,必须使这两个方程中()A.某个未知数的系数是1 B.同一个未知数的系数相等C.同一个未知数的系数互为相反数 D.某一个未知数的系数的绝对值相等7.方程组231498x yx y+=-⎧⎨-=⎩的解是()A.13xy=⎧⎪⎨=-⎪⎩B.2xy=⎧⎨=⎩C.1223xy⎧=⎪⎪⎨⎪=-⎪⎩D.1223xy⎧=-⎪⎪⎨⎪=-⎪⎩8.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.﹣B.C.D.﹣二、填空题9.若是二元一次方程的一个解,则的值是__________.10.已知,且,则___________.11.若方程ax-2y=4的一个解是21xy=⎧⎨=⎩,则a的值是 .12.二元一次方程组的解是.13.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.14.已知二元一次方程组2728x yx y+=⎧⎨+=⎩,则x-y=________,x+y=________.三、解答题15.若方程组是二元一次方程组,求a的值.16.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.。

相关文档
最新文档