七年级数学上册数轴类动点问题综合题专题提高练习(四) (3)
七年级数学上册数轴上动点问题专项练习
七年级数学上册数轴上动点问题专项练习1.已知数轴上有两点A、B,点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数;(2)是否存在这样的点P,使点P到点A,B的距离之和为20?若存在,请求出x的值;若不存在,请说明理由?(3)点Q是数轴上另一个动点,动点P,Q分别从A,B同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒4个单位长度的速度沿数轴向左匀速运动,点M为AP的中点,点N在线段BQ上,且BN=BQ,设运动时间为t(t>0)秒.①分别求数轴上点M,N表示的数(用含t的式子表示);②t为何值时,M,N之间的距离为10?2.如图,已知点A,B是数轴上原点O两侧的两点,其中点A在负半轴上,点B在正半轴上,AO=2,OB=10.动点P从点A出发以每秒2个单位长度的速度向右运动,到达点B后立即返回,速度不变;动点Q从点O出发以每秒1个单位长度的速度向右运动,当点Q到达点B时,动点P,Q停止运动.设P,Q两点同时出发,运动时间为t秒.(1)当点P从点A向点B运动时,点P在数轴上对应的数为.当点P从点B 返回向点O运动时,点P在数轴上对应的数为(以用含t的代数式表示)(2)当t为何值时,点P,Q第一次重合?(3)当t为何值时,点P,Q之间的距离为3个单位?3.如图,已知数轴上点A表示的数为9,B是数轴上一点,且AB=15.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,运动时间为t(t>0)秒.发现:(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);探究:(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P.Q 同时出发,问,为何值时点P追上点Q?此时P点表示的数是多少?(3)若M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.点P 在运动的过程中,线段MN的长度是否发生变化?在备用图中画出图形,并说明理由.拓展:(4)若点D是数轴上一点,点D表示的数是x,请直接写出|x+6|+|x﹣9|的最小值是.4.阅读理解:若A,B,C为数轴上三点且点C在A,B之间,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的好点.例如,如图1,点A表示的数为﹣2,点B表示的数为2.表示1的点C到A的距离是3,到B的距离是1,那么点C是【A,B】的好点;又如,表示﹣1的点D到A的距离是1,到B的距离是3,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:(1)若M、N为数轴上两点,点M所表示的数为﹣6,点N所表示的数为2.数所表示的点是【M,N】的好点;数所表示的点是【N,M】的好点;(2)若点A表示的数为a,点B表示的数为b,点B在点A的右边,且点B在A,C之间,点B是【C,A】的好点,求点C所表示的数(用含a、b的代数式表示);(3)若A、B为数轴上两点,点A所表示的数为﹣33,点B所表示的数为27,现有一只电子蚂蚁P从点A出发,以每秒6个单位的速度向右运动,运动时间为t秒.如果P,A,B中恰有一个点为其余两点的好点,求t的值.5.阅读理解:点A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是有序点对[A,B]的好点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是有序点对[A,B]的好点;但点C不是有序点对[B,A]的好点.知识运用:(1)同理判断:如图①,点B[D,C]的好点,点B[C,D]的好点(两空均填“是”或“不是”);(2)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.数轴上数所表示的点是[M,N]的好点;(3)如图③,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.①用含t的代数式表示PB=,PA=;②当t为何值时,P、A和B中恰有一个点为其余两点的好点?6.阅读理解:【探究与发现】如图1,在数轴上点E表示的数是8,点F表示的数是4,求线段EF的中点M所示的数对于求中点表示数的问题,只要用点E所表示的数﹣8,加上点F所表示的数4,得到的结果再除以2,就可以得到中点M所表示的数:即M点表示的数为:.【理解与应用】把一条数轴在数m处对折,使表示﹣20和2020两数的点恰好互相重合,则m=.【拓展与延伸】如图2,已知数轴上有A、B、C三点,点A表示的数是﹣6,点B表示的数是8.AC=18.(1)若点A以每秒3个单位的速度向右运动,点C同时以每秒1个单位的速度向左运动设运动时间为t秒.①点A运动t秒后,它在数轴上表示的数表示为(用含t的代数式表示)②当点B为线段AC的中点时,求t的值.(2)若(1)中点A、点C的运动速度、运动方向不变,点P从原点以每秒2个单位的速度向右运动,假设A、C、P三点同时运动,求多长时间点P到点A、C的距离相等?7.已知数轴上的A、B两点分别对应的数字为a、b,且a,b满足|4a﹣b|+(a﹣4)2=0.(1)直接写出a、b的值;(2)P从A出发,以每秒3个长度的速度沿数轴正方向运动,当PA=PB时,求P运动的时间和P表示的数;(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位的速度向C 点运动,同时,Q从B点出发,以每秒1个长度的速度向正方向运动,点P运动到C点立即返回再沿数轴向左运动.当PQ=10时,求P点对应的数.8.如图,数轴上A,B两点对应的数分别为10和﹣3,点P和点Q同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q以每秒3个单位长度的速度先沿数轴负方向运动,到达点B后再沿数轴正方向运动,当点P到达点A后,两个点同时结束运动.设运动时间为t秒.(1)当t=1时,求线段PQ的长度;(2)通过计算说明,当t在不同范围内取值时,线段PQ的长度如何用含t的式子表示?(3)当点Q是BP的中点时直接写出t的值.9.某校为准备运动会,在一条笔直的跑道上画一段跑道AB,如图,主席台0为原点,A 点表示数a米,B点表示数b米,且关于x多项式﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4不含x的3次项和2次项.(1)a=;b=;AB跑道为米赛跑跑道.(2)甲、乙两机器人同时从0出发,甲向A以3米/分速度画线,乙向B以2米/分速度画线,甲、乙两机器人到达终点A、B后,立刻按原速度返回到0点.设两机器人运动时间为t分钟,用含t的式子求出它们从0出发到回到0的过程中,甲、乙两机器人的距离.(3)在(2)的条件下,t为何值时,两机器人相距60米?并直接写出两机器人相距60米时,各自所在位置所表示的数.10.如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B 点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?参考答案1.解:(1)∵点A对应的数为﹣12,点B在点A的右边,且距离A点16个单位,∴点B对应的数为4,∵点P到点A,B的距离相等,∴x﹣(﹣12)=4﹣x,∴x=﹣4.∴点P对应的数为﹣4..(2)当点P在点A左边时,﹣12﹣x+4﹣x=20,解得:x=﹣14;当点P在点A,B之间时,PA+PB=16<20,∴此情况不存在;当点P在点B右边时,x﹣(﹣12)+x﹣4=20,解得:x=6.综上所述:存在这样的点P,使点P到点A,B的距离之和为20,且x的值为﹣14或6.(3)①当运动时间为t秒时,点P对应的数为6t﹣12,点Q对应的数为4﹣4t,∵M为AP的中点,点N在线段BQ上,且,∴点M对应的数为3t﹣12,点N表示的数为.②∵MN=10,∴.解得:,t2=6.答:t为或6时,MN距离为10.2.解:(1)由题意知,点P在数轴上对应的数为:2t﹣2.当点P从点B返回向点O运动时,点P在数轴上对应的数为:22﹣2t.故答案是:2t﹣2;22﹣2t;(2)由题意,得2t=2+t,解得t=2;(3)①当点P追上点Q后(点P未返回前),2t=2+t+3.解得t=5;②当点P从点B返回,未与点Q相遇前,2+t+3+2t﹣12=12.解得,t=;③点点P从B返回,并且与点Q相遇后,2+t﹣3+2t﹣12=12解得t=综上所述,当t的值是5或或时,点P、Q间的距离是3个单位.3.解:(1)设点B表示的数为x,则有:AB=9﹣x=15解得:x=﹣6;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动∴经t秒后点P走过的路程为5t∴点P表示的数为:9﹣5t故答案为:﹣6;9﹣5t;(2)设点P运动t秒时,在点C处追上点Q,如图则AC=5t,BC=2t,∵AC﹣BC=AB∴5t﹣2t=15解得:t=5,∴点P运动5秒时,在点C处追上点Q.当t=5时,9﹣5t=9﹣25=﹣16.此时P点表示的数是﹣16.(3)没有变化.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点,∴PM=AP,PN=BP.分两种情况:①当点P在点A、B两点之间运动时(如图):∴MN=MP+NP=AP+BP=(AP+BP)=AB=10;②当点P运动到点B的左侧时(如图):∴MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=10综上所述,线段MN的长度不发生变化,其值为10.(4)①当x<﹣6时,|x+6|+|x﹣9|=﹣(x+6)﹣(x﹣9)=﹣x﹣6﹣x+9=3﹣2x ∵x<﹣6∴3﹣2x>15;②当﹣6≤x≤9时,|x+6|+|x﹣9|=x+6﹣(x﹣9)=15③当x>9时,|x+6|+|x﹣9|=x+6+x﹣9=2x﹣3∵x>9∴2x﹣3>15综上,当﹣6≤x≤9时,|x+6|+|x﹣9|取得最小值15.故答案为:15.4.解:(1)由题意知,数0或6所表示的点是【M,N】的好点;数﹣4或﹣10所表示的点是【N,M】的好点;故答案是:0或6,﹣4或﹣10;(2)设点C所表示的数为c,依题意得(3)依题意得,AB=60①P是【A,B】的好点②P是【B,A】的好点③B是【A,P】的好点④B是【P,A】的好点答:当时,P,A,B中恰有一个点为其余两点的好点.5.(1)因为BD=2,BC=1,BD=2BC,所以B是[D,C]好点,但不是[C,D]好点.(2)因为MN=6,6÷3=2,当为[M,N]好点是,左边距离是右边距离的2倍,所以左边为4个单位,右边为2个,所以这个数是2.(3)①因为AB=60,PB等于2t,所以AP等于60﹣2t.②因为P、A和B中恰有一个点为其余两点的好点,所以分为5种情况讨论,分别如下:第一种:P为【A,B】的好点,由题意得,x﹣(﹣40)=2(20﹣x),解得:x=0,t =20÷2=10(秒).第二种:A为【B,P】的好点,由题意得,20﹣(﹣40)=2(x﹣(﹣40)),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).第三种:P为【B,A】的好点,由题意得,20﹣x=2(x﹣(﹣40)),解得:x=﹣20,t=(20﹣(﹣20))÷2=20(秒).第四种:A为【P,B】的好点,由题意得,x﹣(﹣40)=2(20﹣(﹣40)),解得:x=80(舍).第五种:B为【A,P】的好点.由题意得,20﹣(﹣40)=2(20﹣x),解得:x=﹣10,t=(20﹣(﹣10))÷2=15(秒).此种情况点P的位置与②中重合,即点P为AB中点.综上可知,当t为10 秒、15 秒或20 秒,P、A和B中恰有一个点为其余两点的好点.6.解:m==1000;故答案为:1000;(1)①点A向右移动的距离为3t,因此点A从数轴上表示﹣6的点向右移动3t的单位后,所表示的数为3t﹣6,故答案为:3t﹣6,②当点B为线段AC的中点时,Ⅰ)当移动后点C在点B的右侧时,此时t<4,如图1,由BA=BC得,8﹣(3t﹣6)=(12﹣t)﹣8,解得,t=5>4(舍去)Ⅱ)当移动后点C在点B的左侧时,此时t>4,如图2,由BA=BC得,(3t﹣6)﹣8=8﹣(12﹣t),解得,t=5,答:当点B为线段AC的中点时,t的值为5秒.(2)根据运动的方向、距离、速度可求出,点P、C相遇时间为12÷(2+1)=4秒,点A、C相遇时间为18÷(3+1)=秒,点A追上点P的时间为6÷(3﹣2)=6秒,当点P到点A、C的距离相等时,①如图2﹣3所示,此时t<4,由PA=PC得,2t﹣(3t﹣6)=(12﹣t)﹣2t,解得,t=3;②当A、C相遇时符合题意,此时,t=,③当点A在点P的右侧,点C在点P的左侧时,此时t>6,∵点A追上点P时用时6秒,之后PA距离每秒增加1个单位长度,而PC每秒增加4个单位长度,∴不存在点P到点A、C的距离相等的情况,因此:当点P到点A、C的距离相等时,t=3或t=.7.解:(1)∵|4a﹣b|+(a﹣4)2=0∴4a﹣b=0,a﹣4=0,解得a=4,b=16.答:a、b的值分别为4、16.(2)设P运动的时间为t1秒,P表示的数为x.根据题意,得x﹣4=16﹣x,解得x=10.3t1=x﹣4=10﹣4=6,∴t1=2.答:P运动的时间为2秒,P表示的数为10.(3)设点P、Q同时出发运动时间为t2秒,则P对应的数为(3t2+4),Q表示的数为16+t2.根据题意,得|4+3t2﹣(16+t)|=10解得t2=1,或t2=11(舍去),∴3t2+4=7.当P返回时,设时间为t,则P表示的数为36﹣3t,Q表示的数为+t,则列出方程36﹣3t+10=+t,解得t=,∴P表示的数为.答:P点对应的数7或.8.解:(1)当t=1时,P点对应的有理数为1,Q点对应的有理数为﹣3×1=﹣3,所以PQ=1﹣(﹣3)=4;(2)①当0<t<1时,P点对应的有理数为t,Q点对应的有理数为﹣3t,PQ=t﹣(﹣3t)=4t;②当1≤t<3时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=t﹣(3t﹣6)=﹣2t+6;③当3≤t≤10时,P点对应的有理数为t,Q点对应的有理数为3t﹣6,PQ=3t﹣6﹣t=2t﹣6.综上所述,PQ=;(3)①当0<t<1时,则﹣3t×2=﹣3+t,解得t=;②当1≤t<3时,则(3t﹣6)×2=﹣3+t,解得t=.故t的值是或.9.解:(1)﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4=﹣5x5+(40﹣b)x2+(120+2a)x3+x ﹣4,∵关于x多项式﹣5x5﹣bx2+2ax3+x+40x2+120x3﹣4不含x的3次项和2次项,∴120+2a=0,40﹣b=0,解答a=﹣60,b=40,∴AB=40﹣(﹣60)=100.故答案为:﹣60,40,100;(2)甲到达A点用时t==20(分),乙到达B点用时t==20(分).①如果t≤20,甲在数轴上表示的数为﹣3t,乙在数轴上表示的数为2t,所以甲、乙两机器人的距离为:2t﹣(﹣3t)=5t(米);②如果t>20,甲在数轴上表示的数为﹣60+3(t﹣20)=3t﹣120,乙在数轴上表示的数为40﹣2(t﹣20)=80﹣2t,所以甲、乙两机器人的距离为:80﹣2t﹣(3t﹣120)=200﹣5t(米);(3)①如果t≤20,令5t=60,解得t=12,符合题意,此时甲表示的数为﹣36,乙表示的数为24;②如果t>20,令200﹣5t=60,解得t=28,符合题意,此时甲表示的数为﹣36,乙表示的数为24.答:两机器人相距60米时,两次都是甲表示的数为﹣36,乙表示的数为24.10.解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒4t个单位,由题意,得3t+3×4t=15,解得:t=1,∴点A的速度为每秒1个单位长度,则点B的速度为每秒4个单位长度.如图:(2)设x秒时原点恰好在A、B的中间,由题意,得3+x=12﹣4x,解得:x=1.8.∴A、B运动1.8秒时,原点就在点A、点B的中间;(3)由题意,得B追上A的时间为:15÷(4﹣1)=5,∴C行驶的路程为:5×20=100单位长度.。
人教版七年级上册数学 数轴上的动点问题 期末培优训练 专题训练
(1)求A,B两点间的距离;(2)直接写出点P、点Q表示的数.(3)当P,Q两点相遇时,求t的值.(4)当点P运动到点B时,直接写出点4.如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.5.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点Pt>)秒.从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(0(1)点B表示的数是___________;(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,当点P运动多少秒时,点P与点Q相遇?6.如图,已知点A,B,C是数轴上的三个点.(1)请直接写出点A,C所表示的数;(2)在此数轴上有点M,P,Q三个动点同时出发运动,其中,动点M从点A出发,以每秒1个单位长度的速度沿数轴向左运动;动点P,Q分别从点B,C处同时出发,分别以每秒2个单位长度和5个单位长度的速度沿数轴向右运动.①写出运动t秒时,点P所表示的数(用含有点t的式子表示);-的值是否②若点P与点M之间的距离表示为PM,点P与点Q之间的距离表示为PQ.试探究:PQ PM随时间t的变化而变化?若变化,请说明理由;若不变,请求其常数值.(1)直接写出a=___________,b=(2)现有一只蚂蚁P从点A出发,以每秒每秒3个单位长度的速度向右运动.①两只蚂蚁经过多长时间相遇?②设两只蚂蚁在数轴上的点C处相遇,求点③经过多长时间,两只蚂蚁在数轴上相距(1)a=________,b=________;(2)若O为原点,P向左运动,Q向右运动,的值是否发生变化?若不变,求其值;若变化,请说明理由;(3)若动点P、Q同时出发向左运动,此时动点(1)当1t=秒时,A、B同学在数轴上所表示的数为______、______.(2)①若t秒后A恰好追上B,则t=______秒.②记A在数轴上的位置为a,B在数轴上的位置为b,在a ba b+的值为0的这段时间内,B多少米?(3)分别取线段AC、BD中点为E、F,若在点A、B运动期间,2mEF nDA-为定值(其中mn的值.14.如图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.15.如图1,在数轴上从左到右依次是A、B、C 三个点,且A、B 两点位于原点O 的两侧,A 点所表示的数为4-,且23OA OB BC AB ==,;(1)求出数轴上点B、C 所表示的数;(2)如图2,动点P 从A 点出发,以4个单位长度每秒的速度沿AC 方向运动,到达C 点后,立即掉头以原速返回;与此同时,另一动点Q 从B 出发,以1.5个单位长度每秒的速度沿BC 方向运动,到达C 后,点P、Q 停止运动.在运动过程中,点Q 的运动时间记为t(秒),当4PQ =时,求出满足条件的t 的值;(3)在第(2)问的条件下,有另一动点M 与P、Q 同时出发,从点C 以3个单位长度每秒的速度沿CA 方向运动,当点P 停止运动时,点M 停止运动.在运动过程中,点Q 的运动时间记为t(秒),当P、Q、M 三点中一点是另外两点的中点时,请直接写出满足条件的t 的值.。
初一数学 数轴上的动点问题压轴题 专题训练
七年级数学上册 数轴上的动点问题 专题训练1.在数轴上依次有A,B,C 三点,其中点A,C 表示的数分别为-2,5,且BC=6AB .(1)在数轴上表示出A,B,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?2,21,41(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,求点P 对应的数;若不存在,请说明理由.2.已知多项式x 3-3xy 2-4的常数项是a ,次数是b(1) 直接写出a ,b ,并将这两个数在数轴上所对应的点A 、B 表示出来(2) 数轴上A 、B 之间的距离记作|AB |,定义:|AB |=|a -b |,设点P 在数轴上对应的数为x ,当|PA |+|PB|=13时,直接写出x 的值_____________(3) 若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,AO 23=OB ,求点B 的速度53.(本题12分)已知A、B两个动点同时在数轴上匀速运动,且保持运动的方向不变.若A、B两点的起始位置分别用有理数a、b表示,c是最大的负整数,且|a-19c2|+|b-8c3|=0(1) 求a、b、c的值(2) 根据题意及表格中的已知数据,填写完表格:057t运动时间(秒)A点位置a-1B点位置b1727(3) 若A、B两点同时到达点M的位置,且点M用有理数m表示,求m的值(4)A、B两点能否相距18个单位长度?如果能,求出此时运动了多少秒及此时A、B两点表示的有理数;如果不能,请说明理由c4.(本题7分)已知ab<0,>0,且|c|>|b|>|c|,数轴上a、b、c对应的点是A、aB、C(1) 若|a|=-a时,请在数轴上标出A、B、C的大致位置(2) 在(1)的条件下,化简:|a-b|-|b+c|+|c+a|5.如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a +3|+(b +3a )2=0(1) 求点C 表示的数(2) 点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP +BQ =2PQ ,求时间t(3) 若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:① 的值不PCPB PA 变;②2BM -BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值6.数轴上点对应的数是﹣1,点对应的数是1,一只小虫甲从点出发沿着数轴的正方向以A B B 每秒4个单位的速度爬行至点,再以同样速度立即返回到点,共用了4秒钟.C A (1)求点对应的数;C (2)若小虫甲返回到点后再作如下运动:第1次向右爬行3个单位,第2次向左爬行5个A 单位, 第3次向右爬行7个单位,第4次向左爬行9个单位,……依次规律爬下去,求它第10次爬行后停在点所对应的数.(3)①若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从点出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动秒后,甲、乙B t 两只小虫的距离为: .(用含的式子表示)t ②若小虫甲返回到A 后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点和点出发背向而行,乙的速度是每秒2个单位,丙的速度B C是每秒1个单位。
苏科版七年级数学上册 数轴与数轴动点问题提高专题
数轴与数轴动点问题提高专题一.【数轴基础知识】:⒈【数轴的概念】:规定了原点,单位长度,正方向的直线叫做数轴。
2.【数轴的画法】:(1)画一条直线(一般画成水平的直线)。
(2)在直线上选取一个点为原点,并用这个点表示零(在原点下标0)。
(3)确定正方向(一般规定向右为正),并用箭头表示出来。
(4)选取适当的单位长度,以原点为界点,从原点向右,每隔一个单位长度取一点,依次标上1,2,3,…,从原点向左,依次标上-1,-2,-3,…。
3.【归纳数轴上的点的意义】:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度。
【结论】:所有的有理数和无理数都可以用数轴上的点来表示,但数轴上的点表示的数不一定都是有理数。
我们规定:(1)数轴上的原点表示0;(2)数轴上原点右边的点表示正数;(3)原点左边的点表示负数4.【在数轴上比较有理数】:利用数轴比较有理数的大小:①数轴上右边的点表示的数大于左边的点表示的数;②正数都大于0,负数都小于0,正数都大于负数;③两个负数比较,距离原点远的数比距离原点近的数小。
【重要结论】:数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数5.【数轴上点的移动规律】:根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
6.【相反数,绝对值与数轴的关系】:①一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的②绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离二.【知识应用】:Eg1.【数形结合思想】:有3个单位长度的点所表示的数是【例1】:在数轴上距2(注意:在数轴上到某个定点距离为定值的点有两个)【例2】:a,b为两个有理数,表示在数轴上的位置如图所示,把-a,-b在数轴上表示出来,再把a,b,-a,-b,0按从大到小的顺序排列出来。
人教版七年级上册数学 第1章 有理数 数轴动点问题 专题提升练习
人教版七年级上册数学第1章有理数数轴动点问题专题提升练习1.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?2.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(B在﹣2与﹣3的正中)两点的位置,分别写出它们所表示的有理数A: B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣2表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M: N:.3.如图,数轴上点A,B所表示的数分别是4,8.(1)请用尺规作图的方法确定原点O的位置;(不写作法,保留作图痕迹)(2)已知点M在线段OA上,点N在射线AB上,且AN=2AM.①当点M所表示的数为1时,AM=,AN=;当点M所表示的数为x时,AM=,AN=;②若线段BN=2,求点M所表示的数.4.阅读下面材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|,当A、B两点都不在原点时.(1)如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2)如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|综上,数轴上A、B两点的距离|AB|=|a﹣b|回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示﹣2和5的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2那么x为.(3)若x表示一个有理数,则|x﹣1|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.5.如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?6.思考下列问题并在横线上填上答案.(1)数轴上表示﹣3的点与表示4的点相距个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是.(4)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(5)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过秒三个点聚于一点,这一点表示的数是,点C在整个运动过程中,移动了个单位.7.已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO﹣AM的值是否变化?若不变求其值.8.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简|2m|(请写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C 之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.9.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.10.点A、B在数轴上分别表示数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示数x和﹣2的两点之间的距离表示为.(2)若﹣3<x<1,则|x﹣1|+|x+3|=;若|x﹣1|+|x+3|>4,则数x的取值范围是.(3)当两点A,B对应的数分别为﹣2,4,点P为数轴上一动点,其对应的数为y.①若点P在线段AB上,且将线段AB分成1:3的两部分,求点P对应的数;②数轴上是否存在点P,使点P到点A的距离与到点B的距离之比为1:2?若存在,求出y的值;若不存在,说明理由.11.如图1,已知数轴上的点A对应的数是a,点B对应的数是b,且满足(a+5)2+|b﹣1|=0.(1)求数轴上到点A、点B距离相等的点C对应的数(2)动点P从点A出发,以2个单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由(3)如图2在数轴上的点M和点N处各竖立一个挡板(点M在原点左侧,点N在原点右侧),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向左运动,乙弹珠以1个单位/秒的速度沿数轴向右运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M和点N的距离相等.试探究点M对应的数与点N对应的数是否满足某种数量关系,请写出它们的关系式,并说明理由.12.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,利用数轴找出所有符合条件的整数x,使点P到点A和点C的距离之和为6.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C 之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.13.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.14.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:(1)若数轴上数2表示的点与﹣2表示的点重合,则数轴上数﹣6表示的点与数表示的点重合.(2)若数轴上数﹣3表示的点与数1表示的点重合.①则数轴上数3表示的点与数表示的点重合.②若数轴上A、B两点之间的距离为2017,并且A、B两点经折叠后重合,如果A点表示的数比B点表示的数大,则A点表示的数是多少?(请在答题卡写出解答过程)15.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点8个单位长度,点B 在原点的右边.(Ⅰ)求点A,点B对应的数;(Ⅱ)数轴上点A以每秒1个单位长度出发向左移动,同时点B以每秒3个单位长度的速度向左移动,在点C 处追上了点A,求点C对应的数.(Ⅲ)已知在数轴上点M从点A出发向右运动,速度为每秒1个单位长度,同时点N从点B出发向右运动,速度为每秒2个单位长度,设线段NO的中点为P(O为原点),在运动的过程中,线段的值是否变化?若不变,请说明理由并求其值;若变化,请说明理由.16.利用数轴解决下面的问题:(1)式子|x+1|+|x﹣2|的最小值是;(2)式子|x﹣2|+|2x﹣6|+|x﹣4|的最小值是;(3)当式子|x﹣1|+|x﹣2|+|x﹣3|+……+|x﹣2019|取最小值时,相应的x的取值范围或值是,最小值是.17.我们知道,|a|的几何意义是数轴上表示数a的点与原点的距离,一般地,点A,B在数轴上分别表示数a,b,那么A,B之间的距离可表示为|a﹣b|,请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上的数x与1所对应的点的距离为,数x与﹣1所对应的点的距离为;(2)求|x+1|﹣|x﹣1|的最大值;(3)直接写出|x+1|+|x+2|+|x+3|+|x+4|﹣|x﹣1|﹣|x﹣2|﹣|x﹣3|﹣|x﹣4|的最大值为.18.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.所以式子|x﹣3|的几何意义是数轴上表示有理数x的点与表示有理数3的点之间的距离;同理|x﹣4|也可理解为x与4两数在数轴上所对应的两点之间的距离.试探索:(1)若|x﹣2|=5,则x的值是.(2)同理|x﹣5|+|x+3|=8表示数轴上有理数x所对应的点到5和﹣3所对应的两点距离之和为8,则所有符合条件的整数x是.(3)由以上探索猜想,若点P表示的数为x,当点P在数轴上什么位置时,|x﹣3|+|x﹣6|有最小值?如果有,直接写出最小值是多少?19.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a﹣b|=15.(1)若b=﹣6,则a的值为.(2)若OA=2OB,求a的值;(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.20.如图,数轴上A,B两点对应的数分别﹣4,8.有一动点P从点A出发第一次向左运动1个单位长度;然后在新的位置第二次运动,向右运动2个单位长度;在此位置第三次运动,向左运动3个单位长度,…按照如此规律不断地左右运动(1)当运动到第2018次时,求点P所对应的有理数.(2)点P会不会在某次运动时恰好到达某一个位置,使点P到点B的距离是点P到点A的距离的3倍?若可能请求出此时点P的位置,若不可能请说明理由.。
七年级上册数轴上的动点压轴题专练
七年级上册数轴上的动点压轴题专练一、数轴上动点问题相关知识点回顾1. 数轴的三要素原点、正方向和单位长度。
在数轴上,数与点是一一对应的关系。
2. 两点间的距离公式设数轴上两点公式、公式所表示的数分别为公式、公式,则公式和公式两点间的距离公式。
例如,若公式表示公式,公式表示公式,则公式;若公式表示公式,公式表示公式,则公式。
3. 动点在数轴上的表示设动点公式从数轴上表示数公式的点出发,以速度公式沿数轴正方向运动,经过时间公式后,点公式所表示的数为公式;若沿数轴负方向运动,则点公式所表示的数为公式。
二、典型例题及解析1. 已知数轴上公式、公式两点对应的数分别为公式和公式,点公式为数轴上一动点,其对应的数为公式。
(1)若点公式到点公式、点公式的距离相等,求点公式对应的数。
解析:因为点公式到点公式、点公式的距离相等,根据两点间距离公式公式,公式。
又因为公式,所以公式。
当公式时,方程无解。
当公式时,公式,公式,解得公式。
所以点公式对应的数为公式。
(2)若点公式在点公式、点公式之间,且公式,求点公式对应的数。
解析:因为公式,公式,且公式,所以公式。
因为点公式在公式、公式之间,即公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式,解得公式。
所以点公式对应的数为公式。
(3)点公式以每分钟公式个单位长度的速度从原点公式向左运动,同时点公式以每分钟公式个单位长度的速度向左运动,点公式以每分钟公式个单位长度的速度向左运动,设运动时间为公式分钟。
问公式为何值时,点公式到点公式、点公式的距离相等?解析:公式分钟后,点公式表示的数为公式,点公式表示的数为公式,点公式表示的数为公式。
根据公式,公式。
当公式时,即公式。
当公式时,公式,公式,解得公式。
当公式时,公式,公式,公式,解得公式。
2. 数轴上点公式表示的数为公式,点公式表示的数为公式。
(1)求线段公式的长。
解析:根据两点间距离公式公式。
(2)若点公式是线段公式的中点,则点公式表示的数为多少?解析:设点公式表示的数为公式,因为公式是公式中点,所以公式。
人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(四)
人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(四)1.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.在数轴上若点A、B分别表示有理数a、b,在数轴上A、B两点之间的距离AB=|a﹣b|.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示﹣3和2的两点之间的距离是;数轴上表示x和﹣3两点之间的距离是;(2)若a表示一个有理数,则|a+4|+|a﹣2|有最小值吗?若有,请求出最小值;若没有,请说明理由;(3)当a=时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值是.2.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5﹣3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上表示数a的点与表示﹣2的点之间的距离表示为;(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是;(3)a、b、c、d在数轴上的位置如图所示,若|a﹣d|=12,|b﹣d|=7,|a﹣c|=9,则|b﹣c|等于.3.我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A.B,分别用a,b表示,那么A.B两点之间的距离为AB=|a﹣b|.利用此结论,回答以下问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A、B之间的距离是(列式表示),如果|AB|=2,那么x的值为;(3)写出|x+1|+|x+2|的最小值是.4.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为﹣20和40.(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.5.已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点8个单位长度,点B在原点的右边.(Ⅰ)求点A,点B对应的数;(Ⅱ)数轴上点A以每秒1个单位长度出发向左移动,同时点B以每秒3个单位长度的速度向左移动,在点C处追上了点A,求点C对应的数.(Ⅲ)已知在数轴上点M从点A出发向右运动,速度为每秒1个单位长度,同时点N从点B出发向右运动,速度为每秒2个单位长度,设线段NO的中点为P(O为原点),在运动的过程中,线段的值是否变化?若不变,请说明理由并求其值;若变化,请说明理由.6.一只电子跳蚤在数轴上左右跳动,最开始在数轴上的位置记为A,按如下指令运动:第一次向右跳动一格到A1.第二次在第一次的基础上向左跳动两格到A2.第三次在第二次的基础上向右跳动三格到A3.第四次在第三次的基础上向左跳动四格到A4,以此类推(1)若点A0表示原点,则跳动 10次后到点A10,它的位置在数轴上表示的数是.若每跳一格用时一秒,则跳动10次后到点A10,共用去时间是秒.(2)若跳动100次后到点A100,且所表示的数恰好是50,试求电子跳蚤的A初始位置所表示的数A.7.已知在数轴l上,一动点Q从原点O出发,沿直线l以每秒钟2个单位长度的速度来回移动,其移动方式是先向右移动1个单位长度,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度,又向右移动5个单位长度…(1)求出5秒钟后动点Q所处的位置;(2)如果在数轴l上还有一个定点A,且A与原点O相距20个单位长度,问:动点Q 从原点出发,可能与点A重合吗?若能,则第一次与点A重合需多长时间?若不能,请说明理由.8.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时A、B两点间的距离为多少?9.如图,点A、B、C在数轴上表示的数分别是1、﹣1、﹣2,E是线段BC的中点,点P从点A出发,向左运动,速度是每秒0.3个单位,设运动的时间是t秒.(1)点E表示的数是;(2)在t=3,t=4这两个时间中,使点P更接近原点O的时间是哪一个?(3)若点P分别在t=8,t=n两个不同的位置时,到点E的距离完全一样,求n的值;(4)设点M在数轴上表示的数是m,点N在数轴上表示的数是n,式子的值可以体现点M和点N之间距离的远近,这个式子的值越小,两个点的距离越近.10.根据下面给出的数轴,解答下面的问题:(1)请根据图中A、B两点的位置,分别写出它们所表示的有理数(点B在﹣3和﹣2的正中间):A:;B:.(2)观察数轴,与点B的距离为4个单位的点表示的数是.(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.(4)若数轴上M、N两点之间的距离为2018个单位(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:,N:.参考答案1.解:(1)﹣3和2的两点之间的距离是|2﹣(﹣3)|=5;数轴上表示x和﹣3两点之间的距离是|x﹣3|;故答案为:5,|x﹣3|;(2)当﹣4≤a≤2时存在最小值,且最小值=(a+4)+(2﹣a)=6;(3)当a=1时,|a+4|+|a﹣1|+|a﹣2|=5+0+1=6.故当a=1时,|a+4|+|a﹣1|+|a﹣2|的值最小,最小值为6.故答案为1,6.2.解:(1)根据题意,得:|3﹣2|=1,|a﹣(﹣2)|=|a+2|,故答案为:1,|a+2|;(2)设点Q表示的点为x,根据题意,得:|x﹣2|=3,∴x﹣2=3,或x﹣2=﹣3,解得:x=5或x=﹣1,故答案为:5或﹣1;(3)根据题意,可知:,①﹣③,得:d﹣c=3④,④﹣③,得:b﹣c=﹣4,∴|b﹣c|=4,故答案为:4.3.解:(1)根据题意,得:|﹣2﹣(﹣5)|=|﹣2+5|=3,|1﹣(﹣3)|=|1+3|=4,故答案为:3,4;(2)根据题意,得AB的距离为:|x﹣(﹣1)|=|x+1|,∵|AB|=2,∴|x+1|=2,即x+1=2或x+1=﹣2,解得:x=1或x=﹣3,故答案为:|x+1|,1或﹣3;(3)当x>﹣1时,|x+1|+|x+2|=x+1+x+2=2x+3>1,当﹣2≤x≤﹣1时,|x+1|+|x+2|=﹣x﹣1+x+2=1,当x<﹣2时,|x+1|+|x+2|=﹣x﹣1﹣x﹣2=﹣2x﹣3>1,综上所述,|x+1|+|x+2|的最小值为1,故答案为:1.4.解:(1)∵P是AB的中点,A、B所对应的数值分别为﹣20和40.∴点P应该位于点A的右侧,和点A的距离是30,而点A位于原点O的左侧,距离为20 ∴点P位于原点的右侧,和原点O的距离为10.(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度).故P点所运动的路程是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中7.5≤t≤15,P点经过t秒钟后,在数轴上对应的数值为3t﹣35;③存在.点P接触到点A后调转方向,向B运动时,假设P为AB的中点,由题意,3t﹣35=,解得t=.∴满足条件的t的值为.5.(Ⅰ)解:∵点A在原点的左边,距离原点8个单位长度,∴点A表示的数为﹣8,而|AB|=28,且B在原点的右边,∴点B表示的数为20.即A、B点对应的数分别为﹣8,20.(Ⅱ)解:由题意可设经过x秒后,点B在C处追上了点A,列方程得3x﹣x=28解得x=14因此C点在A点向左14个单位处,即﹣8﹣14=﹣22故C点表示的数为﹣22.(Ⅲ)解:设运动时间为t秒,则NO=20+2t,AM=t,OB=20而P为线段NO的中点,所以OP=(20+2t)=10+t于是故该线段的值不随时间变化而变化,为常数6.解:(1)∵在数轴原点上第一次向右跳动一格,到数1;第二次在第一次基础上向左跳两格,到数﹣1;第三次在第二次的基础上向右跳动三格;第四次在第三次的基础上向左跳四格,∴它跳10次后,它的位置在数轴上表示的数=0+1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=﹣5.答:它跳10次后,它的位置在数轴上表示的数是﹣5;电子跳蚤跳10次所跳过的格数=1+2+3+4+5+6+7+8+9+10=55,∵它每跳一格用时1秒,∴它跳10次共用去的时间=55×1=55秒.答:它每跳一格用时1秒,它跳10次共用去55秒.故答案为﹣5,55;表示的数为a,则a+1﹣2+3﹣4+…+99﹣100=50.(2)设A∴a+(1﹣2)+(3﹣4)+…+(99﹣100)=50.∴a﹣50=50.∴a=100.表示的数是100.∴点A7.解:(1)∵2×5=10,∴点Q走过的路程是1+2+3+4=10,Q处于:1﹣2+3﹣4=4﹣6=﹣2;(2)①当点A在原点右边时,设需要第n次到达点A,则=20,解得n=39,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+|﹣38|+39,=1+2+3+ (39)==780,∴时间=780÷2=390秒(6.5分钟);②当点A原点左边时,设需要第n次到达点A,则=20,解得n=40,∴动点Q走过的路程是1+|﹣2|+3+|﹣4|+5+…+39+|﹣40|,=1+2+3+ (40)==820,∴时间=820÷2=410秒(6分钟).8.解:(1)若点A表示数﹣2,将A点向右移动5个单位长度,那么终点B表示的数是3,此时A,B两点间的距离是5.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B,则B表示的数是2;此时A,B两点间的距离是1.故答案为3,5,2,1;(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B,此时终点B表示的数为m+n﹣t此时A、B两点间的距离为:AB=|(m+n﹣t)﹣m|=|n﹣t|9.解:(1)根据实数在数轴上的排列特点和绝对值的意义,E点到远点的距离是,符号是“﹣”,故答案是:﹣.(2)当t=3,t=4时 0.3t的值分别是0.9、1.2.根据出发点A的位置,可以确定当t =3时,点P的位置位于原点O的右侧距离原点O0.1个单位长度,而当t=4时,点P 的位置位于原点O的左侧距离原点O0.2个单位长度,故答案是t﹣0.3.(3)当t=8时,0.8t=2.4.,结合图形可以确定此时点P的位置位于点E的左侧距离点E0.1个单位长度.所以,数轴上到点E的距离相同的点应该是﹣1.6.此时点P到点A距离是2.6个单位长度,所以r=2.6÷0.3=8.故答案是8(4)根据数轴上两点间的距离公式点M和N的距离等于|m﹣n|,故答案是|m﹣n|.10.解:(1)A:1,B:﹣2.5;(2)在B的左边时,﹣2.5﹣4=﹣6.5,在B的右边时,﹣2.5+4=1.5,所表示的数是﹣6.5或1.5;(3)设点B对应的数是x,则=,解得x=0.5.所以,点B与表示数0.5的点重合;(4)∵M、N两点之间的距离为2018,∴MN==1009,对折点为=﹣1,∴点M为﹣1﹣1009=﹣1010,点N为﹣1+1009=1008.故答案为:(1)1,﹣2.5;(2)﹣6.5或1.5;(3)0.5;(4)﹣1010,1008.。
七年级数学上册1.2.2 数轴-数轴上的动点问题 选择题专项练习四(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习四1.2.2 数轴-数轴上的动点问题1.数轴上一点A向右移动5个单位长度到达点B,再向左移动3个单位长度到达点C.若点C表示的数是1-,则点A表示的数是()A.1-B.2-C.3-D.22.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.503.已知m<2<﹣m,若有理数m在数轴上对应的点为M,则点M在数轴上可能的位置是()A.B.C.D.4.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为()A.﹣2 B.﹣6 C.﹣3 或﹣5 D.无法确定5.在数轴上,点P从-2开始移动,先向右移动5个单位长度,再向左移动4个单位长度,最后到达的点表示的数为()A.3 B.-4 C.-1 D.-6A B C D,先让正方形上的顶6.如图,正方形的边长为1,在正方形的4个顶点处标上字母,,,点A与数轴上的数2-所对应的点重合,再让正方形沿着数轴按顺时针方向滚动,那么数轴上的数2019将与正方形上的哪个字母重合()A .字母AB .字母BC .字母CD .字母D7.点A 为数轴上表示﹣3的点,将A 点沿着数轴向右移动5个单位长度后到点B ,点B 表示的数为( )A .2B .﹣2C .8D .﹣88.一动点p 从数轴上的原点出发,沿数轴的正方向以前进5个单位,后退3个单位的程序运动,已知p 每秒前进或后退1个单位.设n x 表示第n 秒点p 在数轴的位置所对应的数,如4564,5,4x x x ===,则2019x 为( )A .504B .505C .506D .5079.数轴上一动点A 向左移动3个单位长度到达点B ,再向右移动7个单位长度到达点C ,若点C 表示的数是2,则点A 表示的数是( ).A .1B .2C .1-D .2-10.如图,将半径为1个单位长度的圆片上的点A 放在原点,并把圆片向右沿数轴滚动2周,则点A 所在位置表示的数是( )A .2πB .π-C .2π±D .4π11.如图,在数轴上,点A 表示数1,现将点A 沿数轴作如下移动,第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律进行下去,第2021次移动到点2021A ,那么点2021A 所表示的数为( )A .3029-B .3032-C .3035-D .3038-12.把数轴上表示数2的点向右移动3个单位长度后,表示的数为( )A .1B .﹣1C .5D .﹣513.A 为数轴上表示1-的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的实数为( )A .3B .2C .4-D .2或 4-14.已知数轴上有A 、B 、C 三点,分别代表-26、-12、12,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒,则甲、乙在数轴上相遇点为( )A .-12B .-3.8C .-10.8D .015.一个质点在第一象限及x 轴、y 轴上运动, 在第一秒钟,它从原点运动到()0,1,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .()0,9B .()9,0C .()0,8D .()8,016.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-117.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -18.点A 是数轴上表示2-的点,当点A 沿数轴向右移动4个单位长度到点B 时,则点B 表示的有理数是( )A .2B .6-C .2或4-D .2或6-19.在数轴上有一个动点从原点出发,每次向正方向或负方向移1个单位长度,经过5次移动后,动点落在表示数3的点上,则动点的不同运动方案共有( )A .2种B .3种C .4种D .5种20.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数,给出下列结论(1)33x =;(2)51x =;(3)7677x x >;(4)103104x x <;(5)20182019x x <其中,正确结论的个数是( )A .1个B .2个C .3个D .4个参考答案1.C解析:将点C先向左移动5个单位,然后再向右移动3个单位即可得到点A表示的数.详解:解:将点C项左移动5个单位得到点B表示的数为-6,将点B向右移动3个单位得到点A表示的数是-3.故选:C.点睛:本题主要考查的是数轴的认识,逆向思维的应用是解题的关键.2.C解析:分析:根据题意可以把滑动两次后的结果放在一起考虑,已知先向右滑动1个单位长度,紧接着向左滑动2个单位长度,也就是说每连续滑动两次后它就向左移动了一个单位;由于50=25×2,即连续滑动50次可看作是25个连续两次;已知每连续滑动两次后它就向左移动了一个单位,则25个连续两次左移动了25个单位.详解:观察可知如果将连续两次滑动看做一个整体,则每滑动完两次后它就向左移动了一个单位,那么滑动完50=25×2次即25个两次后它就向左移动了25个单位,所以当它滑动第50次落下时,落点处离O点的距离是25个单位,落点所表示的数为-25. 故选C.点睛:本题考查了图形类规律与探索,要注意数轴上点的移动规律是“左减右加”,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.3.B解析:首先根据m<2<-m,可得m<-2;然后根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判断出点M在数轴上可能的位置即可.m<2<-m,∴ m<-2,∴点M在数轴上可能的位置是:故答案选B.点睛:本题考查的知识点是数轴,解题的关键是熟练的掌握数轴.4.C解析:分两种情况讨论:把表示﹣4的点向左移动1个单位长度或向右移动1个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.详解:把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.故选C.点睛:本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.5.C解析:数轴一般向右为正方向,向右移动时用加法,向左移动时用减法,进行计算即可.详解:解:由题意得:-2+5-4=-1,故选C.点睛:此题主要考查了数轴,关键是掌握数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.6.B解析:根据题意,正方形上的四个字母以4个单位长度为一个循环节进行循环,而-2与2019间共有2021个单位长度,据此进一步求解即可.∵()2019245051+÷=⋯⋯,∴A 与2018重合,∴2019与B 重合.所以答案为B 选项.点睛:本题主要考查了数轴上动点的规律性问题,正确找出循环规律是解出本题的关键.7.A解析:数轴一般来说是向右为正,故将A 点沿着数轴向右移动5个单位长度,则需将-3加上5,计算即可得答案.详解:解:∵将A 点沿着数轴向右移动5个单位长度后到点B ,∴B 表示的数为:-3+5=2,故选:A .点睛:本题考查了数轴上的点所表示的数及移动之后的点所表示的数,熟练掌握数轴的性质是解题的关键.8.D解析:先解出点P 每8秒完成一个循环,解出对应的数值,再根据规律推导出答案. 详解:解:依题意得,点P 每8秒完成一组前进和后退,前8个对应的数是1、2、3、4、5、4、3、2;9∼16对应的数是3、4、5、6、7、6、5、4;∵2019=8×252+3,故2019x =252×2+3=507.故选:D .点睛:此题主要考查了数轴上点对应数字的规律探索,弄清题中的基本循环规律是解本题的关键.9.D解析:解:设数轴上的动点是x ,由于向左平移3个单位到点B ,所以点B 的数是(3)x -,再向右平移7个单位到C ,所以点C 的数是(37)x -+.又∵点C 表示数是2,∴372x -+=即2x =-,∴A 表示2-.故选D .10.D解析:计算出圆的周长,得到点A 滚动两周后表示的数.详解:解:圆的半径为1,该圆的周长为2π,当该圆从原点出发,向右沿数轴滚动2周时,滚过2×2π=4π.∴点A 所在的位置表示的数是4π.故选:D .点睛:本题考查了圆的周长公式及用数轴上的点表示数.计算圆滚动两周的长,是解决本题的关键.11.C解析:从A 的序号为奇数的情形中,寻找解题规律求解即可.详解:∵A 表示的数为1,∴1A =1+(-3)×1=-2,∴2A =-2+(-3)×(-2)=4,∴3A =4+(-3)×3=-5= -2+(-3),∴4A =-5+(-3)×(-4)=7,∴5A =7+(-3)×(-5)=-8= -2+(-3)×2,∴2021A = -2+(-3)×1011=-3035,故选C.点睛:本题考查了数轴上动点运动规律,抓住序号为奇数时数的表示规律是解题的关键.12.C解析:根据“左减右加”的法则进行解答即可.详解:解:把数轴上表示数2的点向右移动3个单位长度后,即2+3=5,表示的数为5,故选:C.点睛:本题考查了数轴,熟知“左减右加”的法则是解答此题的关键.13.B解析:结合数轴的特点,运用数轴的平移变化规律即可计算求解.详解:根据题意,点B表示的数是-1+3=2.故选B.点睛:本题主要考查了实数与数轴之间的对应关系,解决此类问题,一定要结合数轴的特点,根据数轴的平移变化规律求解.14.C解析:设x秒后甲与乙相遇,根据甲与乙的路程和为38,可列出方程求解即可;详解:(1)设x秒后,甲、乙在数轴上相遇。
七年级数学上册动点问题专项练习
七年级数学上册动点问题专项练习本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March七年级数学上册动点问题专项练习明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值.......,也即用右边的数减去左边的数的差。
即数轴上两点间的距离.......。
.......-.左边点表示的数......... = .右边点表示的数2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
基础题1.如图所示,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C点.(1)求动点A所走过的路程及A、C之间的距离.(2)若C表示的数为1,则点A表示的数为 .2.画个数轴,想一想(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位,有这样的关系5=8-3,那么在数轴上表示数4的点和表示-3的点之间的距离是________单位;(2)已知在数轴上到表示数-3的点和表示数5的点距离相等的点表示数1,有这样的关系1=-+,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的1(35)2数是__________________.(3)已知在数轴上表示数x的点到表示数-2的点的距离是到表示数6的点的距离的2倍,求数x.应用题1、已知数轴上有A、B、C三点,分别代表-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时出发相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
七年级数学上册数轴类动点问题专题讲解练习汇总
七年级数学上册数轴类动点问题专题讲解练习汇总关于动点问题的基本认知1.数轴是一条直线,是无穷多个点构成的,数轴上面每个点都可以表示一个实数(不仅仅是有理数,如π也可以在数轴上表示出来),而不能说数轴上面有实数或数轴上面是实数;数轴把数和数轴上的点联系起来,是“数形结合”的基础,画图可以明确解题思路,简化计算过程,画出一个正确的图形非常重要.2.数轴有两个方向(正方向与负方向,在未明确指出向左为正方向时,我们默认向右为正方向,向左为负方向),数轴上一个点有两侧,点的运动方向有两个(往正方向、往负方向),遇见动点问题我们要常考虑多种情况.3.数轴上两点间的距离等于在右边的点表示的数与在左边的点表示的数的差,即,若数轴上A 、B 两点分别表示数a 、数b (a <b ),则AB =b -a ;若位置点的位置,则可用绝对值表示:AB =|a -b |.4.若数轴上的点A 表示数a ,则:(1)它向右移动b 个单位长度为:a +b ;(2)向左移动c 个单位长度为:a -c ;(3)先向右移动b 个单位长度,再向左移动c 个单位长度为:a +b -c .(4)数轴上点的运动顺序可以改变,并不改变点的最终位置,因为实数具有加法交换律.5.数轴上各种距离或者线段长度表示:(1)A 、B 两点距离或者线段AB 长度:;0a b a b AB a b a b b a a b ->⎧⎪=-==⎨⎪-<⎩(2)AB =m ,动点P 从A 向B 的方向匀速运动,速度为每秒v 个单位长度,运动时间为t ,则:①,AP vt =m vt P AB BP m vt vt m P AB -⎧=-=⎨-⎩点在线段上;点在线段延长线上.②P 点位置为:运动方向为正时是m +vt ,运动方向为负时是m -vt .6.线段比例关系:(1)线段AB 的中点M 的位置为:;2a b m +=(2)点C 在直线AB 上,且AC =nBC ,点C 的位置为要考虑在线段AB 上和在线段AB 的延长线两种情况.如:若点A 在点C 左侧,点B 满足:AB =2BC ,点B 的位置可能为:1°点B 在点A 左侧时(b <a ),AB <BC 不符合条件;2°点B 在点A 、C 之间时(a ≤b ≤c ):;()2b a c b -=-3°点B 在点C 右侧时(c <b ):此时C 为AB 中点:;2a b c +=或者直接有,解这个方程即可.2a b b c -=-(3)点在数轴上的周期运动注意找规律:注意周期的开始与结束分别在上面时候,记数是从“1”开始,还是从“0”开始.数轴上的动点问题基本解法:“点 一 线一 式 ” 三步.(1)读题画图;(2)列点:写出相关各点的坐标;(3)列线:出相关各线段的长度;(4)列式:根据等量关系(题意)建立方程(或写出代数式);(5)求解.7. 从另一个角度来看点的运动:设点P 开始的坐标为p 始,它在数轴上做匀速运动,速度为v (当运动方向为正方向时,v >0;当运动方向为负方向时,v 小于0;这时,我们用速度的绝对值描述其运动快慢,符号描述其运动方向),则经过时间t 以后的坐标p 终为:p 终=p 始+vt .8. 其它:解绝对值方程:,则 ,则b a =①b a ±=b =a ②b ±=a (零点分段法)c b x a x =-+-③模块一:数轴上点的基本认知【例题1】数轴上点的距离(1)一个点从数轴的原点出发,先向左移动6个单位长度,再向右移动7各单位长度,这时它对应的数是.Q(2)数轴上一点P距离原点4个单位长度,若将其向右移动2个单位长度到点处,问点Q表示的数为.A(3)点A在数轴上运动了6个单位长度后距离表示2的点3个单位长度,则点原来表示的数为.(4)叠纸面,使表示的点与表示的点重合,若数轴上两点之间距离为11,(在3-5BA、A的左侧),且两点经折叠后重合,则两点表示的数是.B BA、A、B【例题2】点的运动情况(1)一点P在数轴上从表示数3的点开始运动,第一次向右运动1个单位长度,再向左运动2个单位长度;第二次先向右运动3个单位长度,再向左运动4个单位长度,第三次先向右运动5个单位长度,再向左运动6个单位长度,如此下去:① 第1次运动后,点表示的数为;P① 第6次运动后,点表示的数为;P① 第次运动后,点表示的数为;n P① 若第次运动后,点表示的数为,则为.-mm P2019(2)点从原点出发以每秒3个单位长度的速度向数轴正方向运动,3秒后点表示的数P P 为;t秒后点表示的数为,若点表示的数为20,则线段P Q PQ 长度为.(3)数轴上两点分别表示点从点出发,以每秒个单位长度的速度向右运B A 、,、71P A 2动,点从点出发,以每秒个单位长度的速度向左运动.秒后,点表示的数为Q B 4t P ______,点示的数为,求两点之间的距离为.Q Q 、P 【例题3】数轴上的周期规律问题(1)如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A 与表示3的点重合,滚动一周后到达点B ,点B 表示的数是( ).A .-2πB .3-2πC .-3-2πD .-3+2π(2)如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点,那么点A 51所表示的数为51A ( )A .①74B .①77C .①80D .①83【例题4】纯位置关系(1)已知数轴上两点A 、B 对应的数分别为和,点P 为数轴上一点,其对应的数为3-2x .① 数轴上是否存在点P ,使点P 到点B 的距离是点P 到点A 距离的两倍?若存在,请求出的值;若不存在,说明理由.x ① 数轴上是否存在点P ,使点P 到点A 、B 的距离之和为9?若存在,请求出的x 值;若不存在,说明理由.(2)在数轴上,点代表的数是,点代表的数是2,代表点与点之间的距A 12-B AB A B 离,① ______.AB =① 若点为数轴上点与之间的一个点,且,则______.P A B 6AP =BP =模块二 数轴上动点问题题类① 若点为数轴上一点,且,则______.P 2BP =AP =① 若点为数轴上一点,且点到点点的距离与点到点的距离的和是35,C C A C B 求点表示的数;C (3)有理数则数轴上对应的点为A 、B 、C ,位置如图所示,且,c b a 、、c a >,,c 是的最小值,则数轴上是否存在一点,使得1020a +=2400b =330x --P P 点到点的距离加上点到点的距离减去点到B 点的距离为50,即C P A P ,若存在,求出点在数轴上所对应的数;若不存在,请说明理50PC PA PB +-=P 由.动点在任意时刻的位置:.vt ±=初始位置末位置【例题5】(1)如图,己知数轴上原点为,点表示的数为2, 在的右边,且与的距离是O B A B A B 5,动点从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,动点从P Q 点出发,以每秒个单位长度的速度沿数轴向左匀速运动, 若点同时出发,A 4Q P 、设运动时间为秒.)0(>t t写出数轴上点表示的数________,点表示的数________(用含的代数式表示);P Q t (2)如图,数轴上点表示的数是,点表示的数是,动点从点出发,以每秒3个A 4-B 8P 8单位长度的速度向点运动,到点停止;动点从点出发,以每秒1个单位长度B B Q B 的速度向点运动,到点停止,点运动的时间为(秒).A A Q t① 求线段的长度;AB ① 在运动过程中,用含的代数式表示的长度.t PQ中点位置类型一:题目中明确说明其中一个点为另外两个点的中点,如:三点,点是点C B A 、、A 的中点,直接利用中点公式列方程C 、B 类型二:题目中说三个点中有一个点是另外两个点的中点,如:s 三点,有一点C B 、、A 是另外两个点的中点,分三种情况进行讨论,然后利用中点公式列方程.【例题6】中点问题(1)如图,数轴原点为,是数轴上的两点,点dui 对应的数是,点对应的数是O B 、A A 1B ,动点同时从出发,分别以个单位/秒和3个单位/秒的速度沿着数轴正4-Q 、P B 、A 1方向运动,设运动时间为秒()t 0>t① 两点间的距离是________;动点对应的数是________(用含的代数式表AB P t 示);动点对应的数是________(用含的代数式表示).Q t ① 几秒后,点恰好为线段中点?O PQ ① 几秒后,恰好有2POOQ =(2)已知数轴上的点对应的数分别是,且,点为数轴上B 、A y x ,21002000x y ++-=P 从原点出发的动点,速度为单位长度每秒.30① 若同时向左运动,的速度为单位长度每秒,的速度为单位长度每B 、A A 10B 20秒,当两点相距个单位时,求点对应的数;B 、A 30B ① 若三点同时出发都向右运动,的速度为单位长度每秒,B 的速度为P B A 、、A 10单位长度每秒,为线段的中点,则运动时间满足什么条件时,的值为20M BP 3AM MP +?500解题思路:点的重合问题:通常是相遇与追及问题,通过点的运动状态可以判断出两个动点重合,重合则两点表示的数相等,将两个动点用含的式子表示出来,并令两个式子相等.t 题目中通常会涉及到点与点之间的距离,即线段的长度,条件中会给出两条线段的和、差、倍数或者比例关系,先将题目种的线段用两点间的距离表示出来,然后根据具体的关系列方程,当动点之间的位置无法确定时,通常用绝对值来表示线段的长度.【例题7】(1)己知数轴上点表示的数为6, 是数轴上在A 左侧的一点,且 两点间的距离A B B A 、为10. 动点从点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点P A Q 从点B 出发, 以每秒3个单位长度的速度沿数轴向左匀速运动.若点同时出Q P 、发,求:① 当点运动多少秒时,点与点相遇?P P Q ① 当点运动多少秒时,点与点间的距离为8个单位长度?P P Q(2)已知分别为数轴上两点,点对应的数为,点对应的数为10,现在一只电子蚂A、A2 BB蚁P从B点出发,以6个单位每秒的速度向左运动,同时另一只电子蚂蚁Q从A点出发,以4个单位长度每秒的速度向左运动.① 若两只电子蚂蚁则C点相遇,求C点对应的数;① 多长时间后,两只电子蚂蚁的距离是8个单位?① 多长时间后,电子蚂蚁P到原点的距离是电子蚂蚁Q到原点的距离的2倍?(3)如图,则数轴上A 点对应的数为,B 点对应的数为,AB 表示A 点和B 点之间的距a b 离,且满足,点P 从A 点出发以每秒3个单位长度的速度向b 、a 0)3(32=+++a b a 右运动,点Q 同时从B 点出发以每秒2个单位长度的速度向左运动,若经过秒后,t ,试求t 的值.PQ BQ AP 2=+(4)已知多项式的常数项为,次数为,这两数中数轴上对应的点分别为3234x xy --a b A 、B ,若A 、B 同时沿着数轴向正方向运动,A 点的速度是B 点速度的2倍,且3秒后,,求点B 的运动速度.OB OA =2不变量线段定值问题:题目中给出几条线段之间的关系,要求判断其是否为定值,先将所给线段都用两点的距离表示出来,然后再将题目中所给的式子用线段表示出来,化简之后可以将消去,所得值为常数,因此可以确定为定值.t 【例题8】(1)数轴上三点对应的数分别是,期中b 是最小的正整数,且C B 、、A c 、、b a c、、b a 满足.()250a b c ++-=① 求的值,并则数轴上表示出三点;c 、、b a C B 、、A ① 若点开始则数轴上运动,点以每秒个单位长度的速度向左运动,同C B 、、A A 1时,点和点分别以每秒个单位长度和个单位长度的速度向右运动. 若秒后,点B C 25t和点之间的距离表示为BC ,点与点之间的距离表示为,试问:的值B C A B AB BC AB -是否随时间的变化而改变?若改变,请说明理由;若不变,求其值.t (2)如图,已知点则数轴上对应的数分别为,且,动点B 、A b a ,()2250a b ++-=分别从出发以,的速度同时沿数轴负方向运动(为原点),是N M 、B O 、1v 2v O P 线段AN 的中点,若点M 、N 运动到任意时刻时,总有PM 的长度为定值,下列结论:①的值不变;②的值不变;其中只有一个结论是正确的,请你找出正确12v v 12v v +的结论并求出其值.(3)如图,将一条数轴在原点和点处各折一下,得到一条 “折线数轴”图中点表示O B A ,点B 表示, 点表示, 我们称点和点在数轴上相距个长度单10 10C 15A C 25位,动点从点出发,以单位/秒的速度沿着 “折线数轴” 的正方向运动,从点P A 2O 运动到点期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点出B C 发,以l 单位/秒的速度沿着数轴的负方向运动,从点运动到点。
人教版七年级上册数学期末复习专题---数轴类动点问题(4)
人教版七年级上册数学期末复习专题---数轴类动点问题(4)1.根据下面给出的数轴,解答下面的问题:①请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:;B:;②观察数轴,与点A的距离为4的点表示的数是:;③若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;④若数轴上M、N两点之间的距离为2014(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N表示的数分别是:M:;N:.2.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=.(2)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(3)由以上探索猜想对于任何有理数x,|x﹣3|+|x+6|是否有最小值?如果有,写出最小值,如果没有,说明理由.3.根据给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:,B:.(2)观察数轴,与点A的距离为4的点表示的数是:.(3)若将数轴折叠,使得A点与﹣2表示的点重合,则:①B点与哪个数表示的点重合?②若数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,求M、N两点表示的数分别是多少?4.某中学位于东西方向的北京路上,这天学校的王老师出校门去家访,她先向东走100米到聪聪家,再向西走150米到青青家,再向西走200米到刚刚家,请问:(1)聪聪家与刚刚家相距多远?(2)如果把这条北京路看作一条数轴,以向东为正方向,以校门口为原点.请你画出这条数轴,并在数轴上标出他们三家与学校的大概位置(数轴上一格表示50米)(3)聪聪家向西210米是体育场,体育场所在点所表示的数是多少?(4)如果数轴上有两点A、B,点A所表示的数是x1,点B所表示的数是x2,你认为可用一个怎样的式子来求数轴上AB两点之间的距离d?请用含有x1,x2的式子把d表示出来.5.对数轴上的点P进行如下操作:先把点P表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图,若点A表示的数是1,则点A′表示的数是;若点B′表示的数是﹣4,则点B表示的数是;(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是.并在数轴上画出点M的位置.6.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A:;B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合;(4)若数轴上M、N两点之间的距离为2010(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:N:.7.一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?8.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.05升,那么这辆货车共耗油多少升?9.已知在数轴上到表示数﹣3的点和表示数5的点距离相等的点表示数1,有这样的关系,那么在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是.(3)已知在数轴上表示数x的点到表示数﹣2的点的距离是到表示数6的点的距离的2倍,求数x.10.邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到C时,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若这辆摩托车每100km耗油2升,这趟路共耗油多少升?参考答案1.解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.故答案为:1,﹣2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.故答案为:﹣3或5;(3)当A点与﹣3表示的点重合,则B点与数0.5表示的点重合.故答案为:0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2014(M在N的左侧)可知,点M、N到﹣1的距离为2014÷2=1007,所以,M点表示数﹣1﹣1007=﹣1008,N点表示数﹣1+1007=1006.故答案为:﹣1008,1006.2.解:(1)7﹣(﹣7)=14,故答案为:14;(2)∵|x+3|+|x﹣1|=x+3+1﹣x=4,∴x+3≥0,且x﹣1≤0,∴﹣3≤x≤1,即符合条件的整数有±1,0,﹣2,﹣3,故答案为:±1、0、﹣2、﹣3.(3)有最小值.最小值为9,理由是:∵丨x﹣3丨+丨x+6丨可以理解为:在数轴上表示x到3和﹣6的距离之和,∴当x在3与﹣6之间的线段上(即﹣6≤x≤3)时:即丨x﹣3丨+丨x+6丨的值有最小值,最小值为3﹣(﹣6)=9.3.解:(1)利用数轴得出:A:1 B:﹣2.5;故答案为:1,﹣2.5;(2)分为两种情况:①当点在表示1的点的左边时,数为1﹣4=﹣3;②当点在表示1的点的右边时,数为1+4=5;故答案为:5和﹣3;(3)①∵A点与﹣2表示的点重合,∴A点与﹣2关于﹣0.5对称,∴B点与表示1.5的点重合,②∵数轴上M、N两点之间的距离为2011(M在N的左侧),且M、N两点经过折叠后互相重合,∴M、N两点表示的数分别是﹣1006,1005.4.解:(1)150+200=350(米);(2)如图所示:;(3)体育场所在点所表示的数是﹣110;(4)数轴上两点x1,x2之间的距离是d=|x1﹣x2|.5.解:(1)点A'表示的数是:1×3﹣1=2;设点B表示的数为x,则3x﹣1=﹣4,解得:x=﹣1,若点B'表示的数是:﹣4,则点B表示的数是﹣1;(2)设点M表示的数为y,则3y﹣1=y,解得:y=,即点M表示的数是:,在数轴上画出点M的位置如图所示:.6.解:(1)由数轴可知,A点表示数1,B点表示数﹣2.5.故答案为:1,﹣2.5;(2)A点表示数1,与点A的距离为4的点表示的数是:﹣3或5.故答案为:﹣3或5;(3)当A点与﹣3表示的点重合,则B点与数0.5表示的点重合.故答案为0.5;(4)由对称点为﹣1,且M、N两点之间的距离为2010(M在N的左侧)可知,点M、N到﹣1的距离为2010÷2=1005,所以,M点表示数﹣1﹣1005=﹣1006,N点表示数﹣1+1005=1004.故答案为:﹣1006,1004.7.解:(1);(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,则耗油量是:20×0.5=10升.答:小明家距小彬家7.5千米,这趟路货车共耗油10升.8.解:(1)如图所示:A、B、C分别表示小明、小红、小刚家(2)小明家与小刚家相距:4﹣(﹣4.5)=8.5(千米);(3)这辆货车此次送货共耗油:(4+1.5+10+4.5)×0.05=1(升).答:小明家与小刚家相距8.5千米,这辆货车此次送货共耗油1升.9.解:(1)4﹣(﹣3)=7.(2)在数轴上到表示数a的点和表示数b的点之间距离相等的点表示的数是:(a+b).(3)由x与﹣2的差的绝对值等于x与6的差的绝对值的2倍,得:x﹣(﹣2)=2(x﹣6),解得:x=14.x﹣(﹣2)=﹣2(x﹣6),解得:x=.10.解:(1)(2)C村离A村为:4﹣(﹣2)=4+2=6(km).答:C村离A村有6km.(3)邮递员实际一共走了|﹣2|+|﹣3|+|+9|+|9﹣5|=2+3+9+4=18(km),18÷100×2=0.36答:这趟路共耗油0.36升.。
人教版七年级上册数学 数轴上的动点问题 专题提升练习
人教版七年级上册数学数轴上的动点问题专题提升练习1.如图,数轴上A,B,C三点对应的数分别是a,b,14,满足OA=4,BC=6,动点P从A点出发,沿数轴以每秒1个单位长度匀速向左运动,动点Q从C点出发,沿数轴匀速向左运动,且两点同时出发。
(1)则a= ,b= 。
(2)当P点运动到数-8的位置时,Q点的运动位置恰好是线段AB的中点,求点Q的运动速度?(3)点Q以(2)中的速度运动,当P、Q两点相距2个单位长度时,它们所对应的数分别是多少?2. 如图,已知A、B分别为数轴上两点,A点对应的数为—10,B点对应的数为150。
(1)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A 点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(2)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
3.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P 运动多少秒时追上点Q?(3)在(2)的条件下,在数轴上,点C到点B、点O的距离相等.P、Q运动多少秒后,P到C的距离比Q 到B的距离多2。
14aCBO4. 已知a 是最大的负整数,b 是多项式2m 2n ﹣m 3n 2﹣m ﹣2的次数,c 是单项式﹣2xy 2的系数,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)求a 、b 、c 的值,并在数轴上标出点A 、B 、C .(2)若动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,点Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于10,并写出所有点M 对应的数.5. 已知:数轴上点A 、C 对应的数分别为a 、c,且满足│a+7│+(c-1)2018=0,点B 对应的数为-3,(1)求数a= ,c= ; (2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P,Q 两点的距离为43;(3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P,Q 同时到达的点在数轴上表示的数.6. 如图,在数轴上有A 、B 、C 三点,A 、B 两点所表示的有理数分别是2k -4和-2k+4,且k 为最大的负整数.点C 在A 、B 之间,且C 到B 的距离是到A 点距离的2倍,动点P 从点A 出发,以每秒3个单位长度的速度向右运动,到达点B 后立即返回,以每秒3个单位长度的速度向左运动;动点Q 从点C 出发,以每秒l 个单位长度的速度向右运动,设它们同时出发,运动时间为t 秒,当点P 与点Q 第二次重合时,P 、Q 两点停止运动.(1)直接写出A 、B 、C 三点所代表的数值:A :_____ ;B :_____ ;C :_____ .(2)当t 为何值时,P 到点A 与点Q 的距离相等;(3)当t 为何值时,P 、Q 两点间的距离为1个单位长度.–1–2–3–4–5–6–71230BO7. 如图所示,在数轴上原点O 表示数0,A 点在原点的左侧,所表示的数是a ;B 点在原点的右侧,所表示的数是b ,并且关于x 的多项式()73433--++b x x a 是五次二项式.(1)a= ;b= . (2)点P 、Q 是数轴上的两个动点,点P 从点A 出发,同时点Q 从点B 出发。
七年级数学上册数轴上的动点问题培优专题练习 附答案解析
七年级数学上册数轴上的动点问题培优专题练习附答案解析七年级数学上册数轴上的动点问题培优专题练习含答案解析一、相关学问打算1.数轴上表示4和1的两点之间的距离是_____________。
2.若数轴上点A表示的数为,点B表示的数为,则A与B 两点之间的距离用式子可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为,则A点运动的路程可以用式子表示为______________。
4.若数轴上点A表示的数为,A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为,则A点运动秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3;2、,x+1;3、2t;4、二、例题精讲1、如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满意(1)点A表示的数为_________,点B表示的数为________。
(2)若点P从点A动身沿数轴向右运动,速度为每秒3个单位长度,点Q从点B动身沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。
(3)在(2)的条件下,若点P运动到达B点后按原路原速马上返回,点Q接着按原速原方向运动,从P、Q在点C处相遇起先,再经过多少秒,P、Q两点的距离为4个单位长度?解:(1)点A表示的数为____,点B表示的数为___8____(2)设P、Q同时运动t秒在点C处相遇3t+t=24解得t=6此时点C所表示的数是答:点C所表示的数是2.(2)再经过a秒,P、Q两点的距离为4个单位长度分类探讨:①从点C处相遇后反向而行,点P到达B点前相距4个单位长度3a+a=4解得a=1②点P到达B点后返回,此时相当于点Q在P点前4个单位长度解得a=4③点P到达B点后返回,从后追上Q点后又相距4个单位长度,此时相当于点P在点Q前4个单位长度解得a=8答:再经过1秒或4秒或8秒,P、Q两点的距离为4个单位长度。
七年级数学上册数轴类动点问题压轴题专题提高练习(三)
七年级数学上册数轴类动点问题压轴题专题提高练习1.已知数轴上有A、B两个点对应的数分别是a、b,且满足|a+3|+(b﹣9)2=0;(1)求a、b的值;(2)点M是数轴上A、B之间的一个点,使得MA=2MB,求出点M所对应的数;(3)点P,点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,设运动时间为t秒,若AP+BQ =2PQ,求时间t的值.2.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB 的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP 为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.3.已知a、b满足(a﹣2)2+|ab+6|=0,c=2a+3b,且有理数a、b、c在数轴上对应的点分别为A、B、C.(1)则a=,b=,c=.(2)点D是数轴上A点右侧一动点,点E、点F分别为CD、AD中点,当点D运动时,线段EF的长度是否发生变化,若变化,请说明理由,若不变,请求出其值;(3)若点A、B、C在数轴上运动,其中点C以每秒1个单位的速度向左运动,同时点A和点B分别以每秒3个单位和每秒2个单位的速度向右运动.请问:是否存在一个常数m使得m•AB﹣2BC不随运动时间t的改变而改变.若存在,请求出m和这个不变化的值;若不存在,请说明理由.4.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0.a、b、c所对应的点分别为A、B、C.(1)请求出a、b、c的值;(2)点P为动点,其对应的数为x,当点P在原点到2对应的点之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|;(写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.设运动时间为t秒,请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.5.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)a、b、c所对应的点分别为A、B、C,点P为动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程);(3)一般地,数轴上表示数m和m的两点之间的距离等于|m﹣b|,请利用(2)中分类讨论的思想或利用绝对值的几何意义,求|m+4|+|m﹣2|的最小值.6.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?7.我们知道一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离原点(表示数0)的距离,x的绝对值表示为|x|,也可以写成|x﹣0|,比如|2|=|2﹣0|=2;在数轴上表示两个数x,y的点之间的距离可以表示为|x﹣y|,比如,表示3的点与﹣1的点之间的距离表示为|3﹣(﹣1)|=|3+1|=4;|x+2|+|x﹣1|可以表示点x与点1之间的距离跟点x与﹣2之间的距离的和,根据图示易知:当点x的位置在点A和点B之间(包含点A和点B)时,点x与点A的距离跟点x与点B的距离之和最小,且最小值为3,即|x+2|+|x﹣1|的最小值是3,且此时x的值为﹣2≤x≤1请根据以上阅读,解答下列问题:(1)|x+2|+|x﹣2|的最小值是;|x+1|+|x﹣2|=7,此时x的值为;(2)|x+2|+|x|+|x﹣1|的最小值是,此时x的值为;(3)当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,求出a的值及x的值.8.在数轴上,若点C到点A的距离恰好是3,则称点C为点A的“幸福点”;若点C到点A,B的距离之和为6,则称点C为点A,B的“幸福中心”.(1)如图1,点A表示的数是﹣1,则点A的“幸福点”C表示的数是.(2)如图2,点M表示的数是﹣2,点N表示的数是4,若点C为点M,N的“幸福中心”,则点C表示的数可以是(填两个即可);(3)如图3,点A表示的数是﹣1,点B表示的数是4,点P表示的数是8,点Q从点P 出发,以2单位/s的速度沿数轴向左运动,经过多少时间点Q是点A,B的“幸福中心”?9.动点A从原点出发沿数轴的负方向运动,同时动点B也从原点出发沿数轴的正方向运动,且动点B的速度是动点A的速度的2倍(速度单位:1个单位长度/秒).运动2秒钟时,动点A,B相距6个单位长度(1)若设动点A的运动速度为x个单位长度/秒,则可列方程为::(2)若动点A,B运动3秒时都停止,则此时动点A,B在数轴上表示的数分别为:A,B:;(直接写出结果)(3)若动点A,B分别从(2)中的位置再次同时开始在数轴上按原来的速度运动,但运动方向不限,问经过几秒钟,A,B两点相距6个单位长度?10.数轴上,若点A、B表示的数分别是﹣1和﹣3,一个点从A出发向右移动5cm到达C 点,用1个单位长度表示1cm(1)请在数轴上标出A,B,C三点的位置,并直接写出线段BC的长度:BC=;(2)若点M在数轴上表示的数是x,且MA=3cm,则x的值是;(3)若点B以每秒2cm的速度向左移动至点P1,同时点A、C分别以每秒1cm和4cm 的速度向右移动至点P2、P3,设移动时间为t秒,试探索:P3P2﹣P1P2的值是否会随着t的变化而变化?请说明理由.参考答案1.解:(1)∵|a+3|+(b﹣9)2=0,∴a+3=0,b﹣9=0,解得a=﹣3,b=9;(2)AB=9﹣(﹣3)=12,∵MA=2MB,∴点M所对应的数是﹣3+12×=5;(3)∵点P从A点以每秒3个单位的速度向右运动,点Q同时从B点出发以每秒2个单位的速度向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的右边时,PQ=5t﹣12,方程变为3t+2t=2(5t﹣12),解得t=.故时间t的值为或.2.解:(1)∵|a+2|+(b+2a)2=0,∴a+2=0,b+2a=0,解得a=﹣2,b=4,∴=1,∴点C表示的数是1;(2)∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=6.(3)∵AB=2+4=6,点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,∴AP=2t,BQ=t,PQ=6﹣3t.∵AP+BQ=2PQ,∴2t+t=12﹣6t,解得t=;还有一种情况,当P运动到Q的左边时,PQ=3t﹣6,方程变为2t+t=2(3t﹣6),解得t=4.故时间t为或4秒.3.解:(1)∵a、b满足(a﹣2)2+|ab+6|=0,∴a﹣2=0且ab+6=0.解得a=2,b=﹣3.∴c=2a+3b=﹣5.故答案为:2,﹣3,﹣5(2)如图,当点D运动时,线段EF的长度不发生变化,理由如下:∵点E、点F分别为CD、AD中点,∴ED=CD,FD=AD,∴EF=ED﹣FD=CD﹣AD=AC=×7=3.5,∴当点D运动时,线段EF的长度不发生变化,其值为3.5;(3)假设存在常数m使得m•AB﹣2BC不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB﹣2BC=m(5+t)﹣(4+6t)=5m+mt﹣4﹣6t与t的值无关,即m﹣6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.4.解:(1)依题意得b=﹣1,c﹣5=0,a+b=0,解得a=﹣1,b=1,c=5;(2)当点P在原点到2对应的点之间运动时(即0≤x≤2时),因此,当0≤x≤1时,x+1≥0,x﹣1≤0,原式=x+1+x﹣1=2x;当1<x≤2时,x+1>0,x﹣1>0,原式=x+1﹣(x﹣1)=2.(3)不变.因为点A以每秒1个单位长度的速度向左运动,点B以每秒2个单位长度的速度向右运动.所以A,B每秒增加3个单位长度;因为点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,所以B,C 每秒增加3个单位长度;所以BC﹣AB=2,BC﹣AB的值不随着时间t的变化而变化.5.解:(1)∵b是最小的正整数,∴b=1.根据题意得:c﹣5=0且a+b=0,∴a=﹣1,b=1,c=5.(2)根据题意可得0≤x≤2,且x﹣1=0时,x=1①当0≤x≤1时,原式=(x+1)﹣(1﹣x)+2(x+5)=4x+10;②当1<x≤2时,原式=(x+1)﹣(x﹣1)+2(x+5)=2x+12.答:原式化简结果为2x+12或4x+10.(3)当m+4=0时,m=﹣4,当m﹣2=0时,n=2,根据题意可得当m<﹣4时,原式=(﹣m﹣4)+(2﹣m)=﹣2m﹣2;当4≤m≤2时,原式=(m+4+(2﹣m)=6;当m>2时,原式=m+4)+(m﹣2=2m+2.综上所述,当﹣4≤m≤2时,原式取得最小值为6.故答案为:﹣1;1;5.6.解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)∵4﹣(﹣2)=6,∴M,N之间的所有数都是M,N的幸福中心.故C所表示的数可以是﹣2或﹣1或0或1或2或3或4(答案不唯一);(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.7.解:(1)根据绝对值的几何意义可得,当﹣2≤x≤2时,|x+2|+|x﹣2|的最小值是4;当x<﹣1时,﹣x﹣1﹣x+2=7,解得x=﹣3,当﹣1≤x<2时,x+1+2﹣x=7,方程无解,当x≥2时,x+1+x﹣2=7,解得x=4,∴x的值为﹣3或4,故答案为:4,﹣3或4;(2)根据绝对值的几何意义可得,当x=0时,|x+2|+|x|+|x﹣1|的最小值是3,故答案为:3,0;(3)由图可得,只有当a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0时,|x+1|+|x|+|x﹣2|+|x ﹣a|的最小值是4.5,∴当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0.8.解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;故答案为:﹣4或2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;故答案为:﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.9.解:(1)设点A的速度为x个单位长度/秒,则点B的速度为2x个单位长度/秒,根据题意得:2×(x+2x)=6,故答案为:2×(x+2x)=6;(2)1×3=3,2×3=6,∴运动到3秒钟时,点A表示的数为﹣3,点B表示的数为6.(3)设运动的时间为t秒.当A、B两点向数轴负方向运动时,有|2t﹣t﹣9|=6,解得:t1=15或t2=3;当A、B两点相向而行时,有|9﹣t﹣2t|=6,解得:t3=5,t4=1,答:经过15或3或5或1秒,A、B两点之间相距6个单位长度.10.解:(1)∵点A表示的数是﹣1,一个点从A出发向右移动5cm到达C点,∴C表示的数是4∴BC=7,故答案为:7;(2)∵MA=3cm,∴|﹣1﹣x|=3,∴x=﹣4或2,故答案为:﹣4或2;(3)P3P2﹣P1P2的值不会随着t的变化而变化,理由如下:根据题意得:P3P2=(4+4t)﹣(﹣1+t)=5+3t,P1P2=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴P3P2﹣P1P2=(5+3t)﹣(2+3t)=3,∴P3P2﹣P1P2的值不会随着t的变化而变化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册数轴类动点问题综合题专题提高练习1.已知数轴上A、B两点对应的数分别为﹣4和2,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;(3)若点A、点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A、点B的距离相等?(直接写出结果)2.已知多项式m5n2﹣1中,含字母的项的系数为b,多项式的次数为c,常数项为a,请回答问题.(1)由题意可知:求a=,b=,c=.其中a、b、c所对应的点分别为A、B、C,若将点A向右平移5个单位长度后得到D,点D表示的数比点B表示的数小;(2)点K为一动点,其对应的数为k,点K在B和C之间运动时,请化简代数式:|1﹣k|﹣2|k+1|+|k﹣5|;(3)如果点A以每分钟1个单位长度向左运动,两点同时出发,相向而行,那么运动几分钟后两点之间相距2个单位长度?3.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,则点P对应的数为.(2)若点P到点A、点B的距离之和为5,则点P对应的数为.(3)当点P以每秒5个单位长度的速度从O点向右运动时,点A以每秒5个单位长度的速度向右运动,B以每秒4个单位长度的速度向右运动,它们同时出发,当点P和点B 重合时运动结束,问几秒后P到点A、点B的距离相等?4.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B 点,然后向右移动9cm到达C点.(1)用1个单位长度表示km,请你在数轴上表示出A、B、C三点的位置;(2)把点C到点A的距离记为CA,则CA=cm.(3)阅读理解:观察式子:因此可以得到:括号前面是“﹣”号,把括号和它前面的“﹣”号去掉,括号里各项都改变正负号.问题解决若点B以每秒2cm的速度向左移动,同时A、C点分别以每秒km、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.5.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动5秒后,两点相距20个单位长度.已知动点A、B的速度比是1:3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动5秒时的位置;恰好处在两个动点的正中间?6.动点A从原点出发向数轴负方向匀速运动,同时,动点B也从原点出发向数轴正方向匀速运动,已知动点A、B运动的速度比是1:4(速度单位:单位长度/秒)3秒后,两动点相距15个单位长度(1)求动点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置(2)若动点A、B从(1)中的位置按原速度同时向数轴负方向匀速运动,几秒后原点恰好处在两个动点正中间?(3)A、B两动点在(2)中的位置,继续同时向数轴负方向匀速运动时,另一动点C同时从点B位置出发向点A运动,当遇到点A后,立即返向点B运动,遇到点B后立即返向点A运动,如此往返,直至点B追上点A时,点C立即停止运动,若点C一直以20单位长度/秒的速度匀速运动,那么,点C从开始到停止运动,其运动的路程是多少单位长度?7.动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后.两点相距15cm(单位长度为1cm).已知动点A、B的逢度比是1:4 (违度单位:cm/s).(1)求出3s后,A、B两点在数轴上对应的数分别是多少?个动点的正中间?8.在规定向右为正方向的数轴上从左至右依次有A、B、C、D四点,线段AB=2(单位长度),CD=4(单位长度),点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16,若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.(1)在B点C点重合前,运动多少秒时BC=8(单位长度)?此时点B在数轴上表示的数是多少?(2)若P是线段AB上一点,当B点与C点重合时,是否存在关系式=3?若存在,求线段PC的长;若不存在,请说明理由.9.已知数轴上点A与点B相距12个单位长度,点A在原点的右侧,到原点的距离为22个单位长度,点B在点A的左侧,点C表示的数与点B表示的数互为相反数,动点P从A 出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为,点C表示的数为.(2)用含t的代数式表示P与点A的距离:PA=.(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q 点到达C点后,再立即以同样的速度返回,回到点A处停止运动.①在点Q运动过程中,请求出点Q运动几秒后与点P相遇?②在点Q从点A向点C运动的过程中,P、Q两点之间的距离能否为3个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.10.如图,点A、B在数轴上对应的数分别为6,﹣4.(1)点A到B的距离为个单位长度(直接写出结果);(2)点P是数轴上一点,点P到A的距离是P到B的距离的2倍,求点P在数轴上对应的数;(3)点M,N分别从点O,A同时出发,沿数轴负方向运动,运动时间为t.①若点M,N分别以每秒1个单位长度,2个单位长度的速度运动,若M、N其中一点到原点的距离是另一个点到原点距离的1.5倍,求t的值;②若点N的速度是点M速度的2倍,当M在O,B之间、N在O,A之间时,点Q为O,N之间一点,点Q到N的距离是点B到N距离的一半,则在M,N运动过程中Q到M 的距离为.参考答案1.解:(1)∵A、B两点对应的数分别为﹣4和2,∴AB=6,∵点P到点A、点B的距离相等,∴P到点A、点B的距离为3,∴点P对应的数是﹣1;(2)存在;设P表示的数为x,①当P在AB左侧,PA+PB=10,﹣4﹣x+2﹣x=10,解得x=﹣6,②当P在AB右侧时,x﹣2+x﹣(﹣4)=10,解得:x=4;(3)∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少秒,PB始终距离为2,设运动t分钟后P点到点A、点B的距离相等,①A、B不重合时,t﹣(﹣4+2t)=2,t=2;②A、B重合时,(﹣4+2t)﹣t=2,t=6.综上所述,t=2或6.2.解:(1)由题意,得多项式m5n2﹣1的常数项为﹣1,含字母的项的系数1,多项式的次数为7,﹣1+5=4,∴D点表示的数是4,1﹣4=﹣3.(2)由题意,得1<k<6,当1<k≤5时,原式=k﹣1﹣2(k+1)+(5﹣k),=k﹣1﹣2k﹣2+5﹣k,=﹣2k+2;(3)设x分钟A、C两点相距2个单位,由题意,得当两点相遇前相距2个单位长度时,x+3x+2=8,解得:x=3,当两点相遇后相距2个单位长度时,x+3x﹣2=8,解得:x=2.5.答:两点运动3分钟或2.5分钟后相距2个单位长度.3.解:(1)∵点P到点A,点B的距离相等,∴点P对应的数x==1.故答案为:1;(2)当P在A左侧时,3﹣x+(﹣1﹣x)=5,解得:x=﹣;当P在B右侧时,x﹣3+x﹣(﹣1)=5,解得:x=;当P在A、B之间时,x不存在.故答案为:﹣或;(3)当P点在AB之间时,此时B到P点距离等于A点到P点距离,则4x+3﹣5x=1,解得:x=2.故2秒后P到点A、点B的距离相等.4.解:(1)如图所示:(2)∵AO=2cm,OC=4cm,∴CA=6cm;故答案为:6;(3)不变,理由如下:当移动时间为t秒时,点A、B、C分别表示的数为﹣2+t、﹣5﹣2t、4+4t,则CA=(4+4t)﹣(﹣2+t)=6+3t,AB=(﹣2+t)﹣(﹣5﹣2t)=3+3t,∵CA﹣AB=(6+3t)﹣(3+3t)=3∴CA﹣AB的值不会随着t的变化而改变.5.解:(1)设动点A的速度为x单位长度/秒,动点B的速度为3x单位长度/秒,根据题意得:5(x+3x)=20,解得:x=1则3x=3答:动点A的速度为1单位长度/秒;动点B的速度为3单位长度/秒;数轴上表示A、B两点:A点位置在﹣5,B点位置在+15,画图如下:.(2)设经过y秒原点恰好处在两个动点的正中点,根据题意得:15﹣3y=5+y,解得:y=2.5答:经过2.5秒原点恰好处在两个动点的正中点.6.解:(1)设A的速度是x单位长度/秒,则B的速度为4x单位长度/秒,由题意,得3(x+4x)=15,解得:x=1,∴B的速度为4,∴A、B两点从原点出发运动3秒时,A到达的位置为﹣3,B到达的位置是12,在数轴上的位置如图:答:A的速度为1;B的速度为4.(2)设y秒后,原点恰好处在A、B的正中间.由题意得:y+3=12﹣4y,解得:y=.答:经过秒后,原点恰处在A、B的正中间;(3)设B追上A需时间z秒,则:4×z﹣1×z=2×(+3),解得:z=,20×=64.答:C点行驶的路程是64长度单位.7.解:(1)设动点A的速度为xcm/s,则动点B的速度为4xcm/s,根据题意得,3x+12x=15,解得:x=1.故点A表示的数是﹣3,点B表示的数是12.(2)由(1)可知动点A的速度为1cm/s,点B的速度为4cm/s,设经过ys,原点恰好处在两动点的正中间,根据题意得3+y=12﹣4y,解得:y=1.8.答:经过1.8s原点恰好处在两动点的正中间.8.解:(1)设运动t秒时,BC=8单位长度,①当点B在点C的左边时,由题意得:6t+8+2t=24解得:t=2(秒);②当点B在点C的右边时,由题意得:6t﹣8+2t=24解得:t=4(秒).当运动2秒时,点B在数轴上表示的数是4;当运动4秒时,点B在数轴上表示的数是16.(2)存在关系式=3.设运动时间为t秒,①当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即=3;②当3<t<时,点C在点A和点B之间,0<PC<2,点P在线段AC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+2PC=AB﹣BC+2PC=2﹣BC+2PC,当PC=1时,有BD=AP+3PC,即=3;点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC,当PC=时,有BD=AP+3PC,即=3;当t=时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2,AP+3PC=4PC,当PC=时,有BD=AP+3PC,即=3;当<t<时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC=时,有BD=AP+3PC,即=3.因此PC为1或.9.解:(1)由分析可知,点A表示的数为22,点C表示的数为﹣10;(2)PA=1×t=t;(3)①Ⅰ)在点Q向点C运动过程中,设点Q运动x秒与点P相遇,根据题意得3x=x+12,解得x=6.Ⅱ)在点Q向点A运动过程中,设点Q运动x秒与点P相遇,根据题意得3x+x=22﹣(﹣10)+10﹣(﹣10),解得x=13.答:点Q运动6或13秒后与点P相遇;②分两种情况:如果点Q在点P的后面,那么x+12﹣3x=3,解得x=4.5,此时点P表示的数是5.5;如果点Q在点P的前面,那么3x﹣(x+12)=3,解得x=7.5,此时点P表示的数是2.5.答:点P表示的数5.5或2.5.故答案为:22,﹣10;t.10.解:(1)点A到B的距离为6﹣(﹣4)=10个单位长度.故答案为:10;(2)设点P在数轴上对应的数是x,①P在AB之间,依题意有6﹣x=2[x﹣(﹣4],解得x=﹣;②P在B点左边,依题意有6﹣x=2(﹣4﹣x),解得x=﹣14.故点P在数轴上对应的数是﹣或﹣14;(3)①OM=1.5ON时,依题意有t=1.5(6﹣2t),解得t=;或t=﹣1.5(6﹣2t),解得t=;ON=1.5OM时,依题意有1.5t=6﹣2t,解得t=;或﹣1.5t=6﹣2t,解得t=12.故t的值为或或或12;②设点M速度为v,则点N的速度是2v,则N为6﹣2vt,∵B为﹣4,∴Q为=1﹣vt,则M为﹣vt,则在M,N运动过程中Q到M的距离为1﹣vt﹣(﹣vt)=1.故答案为:1.。