导数综合大题分类

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数21 大题(其他、中档、中上、未)-2022年全国一卷新高考数学题型细分汇编

 导数21 大题(其他、中档、中上、未)-2022年全国一卷新高考数学题型细分汇编

导数——大题——其他中下:1.(2022年湖北宜昌夷陵中学J39)青岛胶东国际机场的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.曲线的曲率定义如下:若()f x ¢是()f x 的导函数,()f x ''是()f x ¢的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''=⎡⎤⎦'+⎣.已知函数()()()ln cos 10,0x f x ae x b x a b =---≥>,若0a =,则曲线()y f x =在点()()1,1f 处的曲率为22.(1)求b ;(2)若函数()f x 存在零点,求a 的取值范围;(①)(3)已知1.098ln 3 1.099<<,0.048 1.050e <,0.0450.956e -<,证明:1.14ln π 1.15<<.(求导,中下;第二问,未;)导数——大题——其他中档:1.(2022年广东肇庆J36)已知函数()()ax f x axe a b x =++,()(1)ln g x x x =+.(1)当1a b =-=时,证明:当,()0x ∈+∞时,()()f x g x >;(②)(2)若对(0,)∀∈+∞x ,都[1,0]b ∃∈-,使()()f x g x ≥恒成立,求实数a 的取值范围.(切线放缩,比较大小,中档;第二问,未;)导数——大题——中档、中上、未:1.(2022年河北演练二J40)已知函数(1)ln (),()|ln |1x xf xg x x x -==+.(1)若()()(1,1)f m g n m n =>>,证明:m n >;(③)(2)设函数()(1)ln (1)F x x x a x =--+,若()0F x =有两个不同的实数根12,x x ,且12x x <,证明:221eax x >⋅.(中档,未;第二问,未;)2.(2022年湖北荆州中学J19)已知函数f (x )=e x -e -x -a sin x ,其中e 是自然对数的底数.(1)当x >0,f (x )>0,求a 的取值范围;(④)(2)当x >1时,求证:12x x e e x x ---+>sin sin(ln )x x -.(中档,未;第二问,未;)3.(2022年湖北荆门四校J21)已知函数3()ln()4f x ax x ax=++(其中实数0a >)的最小值为5,(1)求实数a 的值;(⑤)(2)若不等式()(4)5f x k x ≥++恒成立,求实数k 的取值范围.(中上,未;第二问,未;)4.(2022年湖北襄阳五中J23)已知函数()()e ln ln 1(0)x af x x a a x-=-++>(e 是自然对数的底数).(1)当1a =时,试判断()f x 在()1,+∞上极值点的个数;(⑥)(2)当1e 1a >-时,求证:对任意1x >,()1f x a >.(中档,未;第二问,未;)2.(2022年河北衡水中学J15)已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥.(Ⅰ)讨论()f x 的单调性;(⑦)(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(中上,未;第二问,未;)(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+-1.(2022年湖南师大附中J11)已知函数()()()1ln 1f x x x a x =+--.(⑧)(1)若1a =,比较(log 10f 与()5log 9f 的大小;(2)讨论函数()f x 的零点个数.(中档,未;第二问,未;)1.(2022年江苏江阴J61)已知函数()e (1ln )x f x m x =+,其中m >0,f '(x )为f (x )的导函数,设()()ex f x h x '=,且5()2h x ≥恒成立.(1)求m 的取值范围;(⑨)(中档,未;第二问,未;)(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1.1.(2022年山东枣庄一模J60)已知函数()()e sin xf x x a x a =-∈R .(1)若[]0,πx ∀∈,()0f x ≥,求a 的取值范围;(⑩)(2)当59a ≥-时,试讨论()f x 在()0,2π内零点的个数,并说明理由.(中档,未;第二问,未;)①【答案】(1)1;(2)10,e⎡⎤⎢⎥⎣⎦;(3)证明见解析.【解析】【分析】(1)将0a =代入并计算()1f ,()f x '',根据曲率直接计算即可.(2)等价转化为()ln cos 1xx x a e+-=有根,然后令()()ln cos 1xx x g x e+-=并研究其性质,最后进行判断可得结果.(3)依据(2)条件可知1ln 1x x e-+≤,然后根据π3113π,π3ln 1ln 13πe e -+<+<判断即可.【详解】(1)当0a =时,()()ln cos 1f x x b x =---,()1f b =-.()()1sin 1f x b x x '=-+-,()()21cos 1f x b x x''=+-.∴()f x 在()1,b -处的曲率为3212122b k b +==⇒=.(2)()()()ln cos 1ln cos 10x xx x f x ae x x a e +-=---=⇒=令()ln 1h x x x =+-,则()111x h x x x-'=-=当()0,1∈x 时,()0h x '>,当()1,∈+∞x 时,()0h x '<所以函数()h x 在()0,1单调递增,在()1,+¥单调递减,所以()(1)0h x h ≤=,则ln 1x x +≤又令()x x m x e =,则()1'xxm x e -=当()0,1∈x 时,()0m x '>,当()1,∈+∞x 时,()0m x '<所以函数()m x 在()0,1单调递增,在()1,+¥单调递减所以()1(1)m x m e≤=令()()ln cos 1xx x g x e+-=,∴()ln 11x x x x g x e e e+≤≤≤,当且仅当1x =时取“=”,显然,当1a e>时,()f x 无零点.当10a e ≤≤时,()11g a e =≥,111cos 110ee g a e e ⎛⎫-+- ⎪⎛⎫⎝⎭=<≤ ⎪⎝⎭∴存在1,1x e ⎛⎫∈ ⎪⎝⎭使()0g x a =,符合题意.综上:实数a 的取值范围为10,e ⎡⎤⎢⎥⎣⎦.(3)由(2)知ln 11xx e e+≤,∴1ln 1x x e -+≤(当且仅当1x =时取“=”)∴π10.0483πln 13e e -+<<,∴0.048ln π1ln 3 1.0501 1.099 1.15e <-+<-+<又∵310.045π3ln 1πe e -+<<,∴0.045ln πln 31 1.09810.956 1.14e ->+->+->综上:1.14ln π 1.15<<.【点睛】关键点点睛:第(1)问关键在于求导;第(2)问关键在于等价转化的使用以及常用不等式(ln 1x x +≤)的使用以及放缩法;第(3)问在于利用第(2)问的条件ln 11xx e e+≤进行比较.②【答案】(1)证明见解析;(2)1,e∞⎡⎫+⎪⎢⎣⎭.③【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由()()(1,1)f m g n m n =>>,列出m 与n 的关系式,利用指数对数的运算性质进行化简与放缩即可证明;(2)把()0F x =化成()f x a =的形式,根据导数确定()f x 的单调性与极值,画出简图,确定12,x x 与1的大小关系,利用(1)的结论,可以得到12,x x 与e a 的关系,进而可证得结论.【小问1详解】证明:由()()(1,1)f m g n m n =>>,得(1)ln |ln |ln 1m mn n m -==+,则有(1)ln 1121ln 1111e(e)m m m m m m m m m n mmm ----++++====<,所以m n >;【小问2详解】证明:令()(1)ln (1)0(0)F x x x a x x =--+=>,化简可得(1)ln 1x xa x -=+,即()f x a =,2212ln 2ln 1()(1)(1)(1)x x x x x f x x x x x +--'=+=+++,令1()2ln g x x x x=+-,221()10x x xg =++>',所以()g x 在()0,∞+上单调递增且(1)0g =,则()g x 即()0f x '<时()0,1x ∈,()0f x '>时()1,x ∈+∞,可得()f x 在()0,1上单调递减,在()1,+∞单调递增,且有(1)0f =,由下图可知,1201x x <<<,0a >,又2222(1)ln ()ln e ln e =(e )1a a a x x f x a g x -====+,即22()=(e )(1,e 1)a a f x g x >>,由(1)可得2e ax >⋅⋅⋅①,又由1()f x a =得1111111111(1)ln (1)ln 1(()ln e ln e =(e )111a a a x x x x f f x a g x x x --======++,即1111((e )(1,e 1)a a f g x x >>,由(1)可得11e a x >⋅⋅⋅②,①②相乘可得221e a x x >,即221e a x x >⋅.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④22.【答案】解:(1)由题意可知f '(x )=e x +e -x -a cos x ,①当0<a ≤2时,由-1≤cos x ≤1可知-2≤-a ≤a cos x ≤a ≤2,又因为e x +e -x ≥2恒成立,所以f '(x )=e x +e -x -a cos x ≥0恒成立,所以y =f (x )在[0,+∞)上恒为增函数.又f (0)=0,所以f (x )>0对x >0恒成立;②当a >2时,,且可知y =e x +e -x 与y =a cos x 必有一个交点,不妨设为x 0,所以y =f (x )在[0,x 0)上为减函数,在[x 0,+∞)为增函数,又f (0)=0,所以f (x 0)<0,与题意不符,故舍去.综合可知a 的取值范围是(0,2].(2),只需证,即证,即证e x -e -x -2sin x >e ln x -e -ln x -2sin (ln x ),即证f (x )>f (ln x )(此时a =2),由(1)问可知当0<a ≤2时y =f (x )在[0,+∞)上恒为增函数.所以即证x >ln x ,不妨令g (x )=x -ln x ,则所以y =g (x )在(0,1)递减,(1,+∞)递增.又因为g (x )min =g (1)=1>0所以g (x )=x -ln x >0恒成立,即x >ln x ,所以原结论得证.⑤【答案】(1)2;(2)(],4-∞-.【解析】【分析】(1)对()f x 求导,构造2()43(0)g x ax ax x =+->并由二次函数性质判断其零点0x 及区间符号,进而确定()f x 的单调性、极值,结合已知最值列方程得003ln2(41)6041x x ++-=+,再构造中间函数求零点,进而求a 的值;(2)令2(0)t x t =>问题转化为()0F t ≥对(0,)t ∈+∞恒成立,构造中间函数研究()F t 的最值,并判断单调性,最后可求k 的范围.【小问1详解】由题设,2243()(0)ax ax f x x ax +-'=>且0a >,令2()43(0)g x ax ax x =+->,则()g x 在(0,)+∞上递增且(0)30=-<g ,所以()0g x =有唯一正实根,记为0x ,则200430ax ax +-=.当00x x <<时,()0g x <即()0f x '<,()f x 单调递减,当0x x >时,()0>g x 即()0f x '>,()f x 单调递增,所以极小值也是最小值为00003()ln()45f x ax x ax =++=.又200430ax ax +-=,可得00341ax x =+,故003ln2(41)6041x x ++-=+,令3()ln26(1)h t t t t =+->,其中041t x =+,则121()20t h t t t-'=-+=>,所以()h t 在(1,)+∞上单调递增且(3)0h =,而3t =,即012x =,从而2a =.综上,实数a 的值为2.【小问2详解】由题意,3ln(2)502x kx x+--≥恒成立,令2(0)t x t =>.令3()ln 5(0)2kt F t t t t =+-->,则2226()2kt t F t t-+-'=,令2()26(0)t kt t t ϕ=-+->ⅰ、当0k ≥时,(1)202kF =--<,不合题意,舍去,ⅱ、当0k <时,()0t ϕ=有唯一的正实根,记为0t ,且200260t kt -=<,则0(0,3)t ∈且0312kt t -=当00t t <<时,()0t ϕ<,即()0F t '<,当0t t >时,()0t ϕ>,即()0F t '>所以()F t 在0(0,)t 单调递减,在0(,)t +∞上单调递增,则极小值也是最小值为00000036ln 5ln 62()kt t F t t t t +--+==-.要使()0F t ≥对(0,)t ∈+∞恒成立,则0()0F t ≥.令6()ln 6(03)m x x x x =+-<<,则26()0x m x x-'=<,即()m x 在(0,3)上递减,又(1)0m =,所以不等式()0m x ≥的解集为(]0,1,故001t <≤,又(]020062,0,1,k t t t -=+∈则k 的取值范围是(],4-∞-.【点睛】关键点点睛:(1)构造中间函数,并结合导数研究()f x 单调性、最值,根据已知求得参数间的函数关系及参数范围;(2)令2(0)t x t =>,根据已知确定隐零点0t 与参数k 的关系,并求出0t 的范围,进而求k 的范围.⑥【答案】(1)()f x 在()1,+∞上只有一个极值点,即唯一极小值点;(2)证明见解析【解析】【分析】(1)求出函数的导数,判断其正负,结合零点存在定理,判断函数的单调性,求得答案;(2)求出函数的导数,构造函数()=e 1x axh x x ---,判断其正负情况,确定函数单调性,进而确定函数的最小值()000ln ln 11(1)x a f x x -++-=,故可将原问题转化为对任意1x >,()001ln ln 111x a x a-++>-,再构造函数,利用其单调性即可证明结论.【小问1详解】当1a =时,()1e ln ln2x f x x x-=-+,则1122(1)(e )e (1)11()x x xx x x f x x x x ------'=-=,设1()=e1x x x x ϕ---,则11()e 11x x x ϕ-=---在()1,+∞上是增函数,当1x +→时,()x ϕ→-∞,(2)e 20ϕ=->,所以存在0(1,2)x ∈,使得0()0x ϕ=,当0(1,)x x ∈时,()0x ϕ<,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0x ϕ>,则()0f x '>,即()f x 在0(1,)x 上单调递增,所以()f x 在()1,+∞上只有一个极值点,即唯一极小值点;【小问2详解】证明:由22(1)(e )e (1)11()x a x a xx x x f x x xx ------'=-=,设()=e1x ax h x x ---,则1()e 11x ah x x -=---在()1,+∞上是增函数,当1x +→时,()h x →-∞,因为1e 1a >-,所以1(1)e 10h a a +=-->,所以存在0(1,1)x a ∈+,使得0000()e01x ax h x x -=-=-,当0(1,)x x ∈时,()0h x <,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0h x >,则()0f x '>,即()f x 在0(1,)x 上单调递增,故0x x =是函数()()e ln ln 1(0)x af x x a a x -=-++>的极小值点,也是最小值点,则()0000e ln l 1)n ()(x af x x f x a x --+=+≥,又因为000e1x ax x -=-,所以()000ln ln 11(1)x a f x x -++-=,即证:对任意1x >,()001ln ln 111x a x a-++>-,即证:对任意1x >,()001ln ln 111x a x a->-+-,设()ln 11g x x x =--,则()ln 11g x x x =--在()1,+∞上单调递减,因为0(1,1)x a ∈+,所以0()(1)g x g a >+,故()001ln ln 111x a x a->-+-,故对任意1x >,()1f x a>.【点睛】本题考查了利用导数判断函数的极值点的个数以及证明不等式成立的问题,综合性较强,要能熟练求导,利用导数判断函数的单调性以及求函数最值,解答的关键是根据函数或导数的特点,构造函数,进而结合零点存在定理判断导数正负,求得函数的最值,利用函数最值进而证明不等式成立.⑦【答案】(Ⅰ)当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)见解析;(Ⅲ)见解析.【详解】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥,下面分两种情况讨论:(1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)-∞-(1,1)-(1,)+∞()f x '-+-()f x所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增;当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x ',可得202.a x x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1a x n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101a x x x x x n''-<-=+-.因为2n ≥,所以11112(11)111n n n C n n ---=+≥+=+-=,故1102n n x -≥=,所以2121a x x n-<+-.【解析】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.⑧【答案】(1)(()25log 10log 9f f >(2)当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点【解析】【分析】(1)利用导数判断函数()f x 在()1,+∞上的单调性,根据函数的单调性即可得出答案;(2)求出函数的导函数()f x ',再利用导数可求得()min 2f x a '=-,再分20a -≥和20a -<两种情况讨论,结合零点的存在性定理,从而可得出结论.【小问1详解】解:当1a =时,()()()1ln 1f x x x x =+--,()1ln 11ln x f x x x x x+'=+-=+,当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增,因为2445log 10log 10log 9log 91=>>>,所以(()25log 10log 9f f >;【小问2详解】解:()11ln ln 1x f x x a x a x x +'=+-=++-,令()1ln 1g x x a x =++-,则()()221110-'=-=>x g x x x x x,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()min 12g x g a ==-,即()min 2f x a '=-,①若20a -≥,即2a ≤,则()0f x '≥,()f x 在()0,∞+上递增,因为()10f =,则1x =为()f x 的唯一零点;②若20a -<,即2a >,则()()min 10f x f ''=<,因为e 1a >,()1e 10e aaf '=+>,则()f x '在()1,+∞内仅有个零点,记为n ,因为0e 1a -<<,()e e 21a af a -'=-+设()e 21a h a a =-+,则当2a >时,()e 20ah a '=->,所以()h a 在()2,+∞内单调递增,从而()()22e 30h a h >=->,即()e 0af -'>,所以()f x 在()0,1内仅有一个零点,记为m ,于是,当()0,x m ∈或(),x n ∈+∞时,()0f x '>,当(),x m n ∈时,()0f x '<,所以函数()f x 在(),n +∞和()0,m 上递增,在(),m n 上递减,因为01m n <<<,()10f =,则()0f m >,()0f n <,故()f x 在(),m n 内有唯一零点,因为()()()e e 1e 12e 0aa a a f a a a ----=-+--=-<,则()f x 在()0,m 内有唯一零点,因为()()()e e 1e 120a a af a a a =+--=>,则()f x 在(),m +∞内有唯一零点,所以()f x 在()0,∞+内有3个零点.综上所述,当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点.【点睛】本题考查了利用导数求函数的单调区间及最值问题,考查了利用导数研究函数的零点的问题,考查了二次求导,考查了学生的数据分析能力及分类讨论思想,属于难题.⑨【答案】(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析【解析】【分析】(1)求导可得()'f x 解析式,即可得()h x 解析式,利用导数求得()h x 的单调区间和最小值,结合题意,即可得m 的范围.(2)求得()f x ''解析式,令22()1ln (0)m m t x m x x x x=++->,利用导数可得()t x 的单调性,根据零点存在性定理,可得存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,令()1ln s x m x =+,分析可得s (x 1)<0,即可得证【小问1详解】由题设知()e (1ln )x m f x m x x'=++,则1ln (())0h m m x x x x ++>=,所以22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数,当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数,所以h (x )min =h (1)=512m +≥,解得32m ≥,所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭【小问2详解】222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令22()1ln (0)m m t x m x x x x=++->则2322()m m m t x x x x '=-+=2233(1)1(22)0m x m x x x x ⎡⎤-+-+⎣⎦=>恒成立,所以t (x )在(0,+∞)单调递增.又1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<,所以存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减;当x ∈(x 2,+∞)时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增;所以f '(x )在x =x 2处取得极小值.即x 1=x 2,所以t (x 1)=0,即11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,所以1122111(12)21ln 0m x m m m x x x x -+=-=<,令()1ln s x m x =+,则s (x )在(0,+∞)单调递增;所以s (x 1)<0因为f (x )的零点为x 0,则01ln 0m x +=,即s (x 0)=0所以s (x 1)<s (x 0),所以x 0>x 1【点睛】解题的关键是熟练掌握利用导数求函数单调区间,极(最)值的方法,并灵活应用,难点在于,需结合零点存在性定理,判断零点所在区间,再进行分析和求解,属中档题.⑩【答案】(1)(],1-∞(2)若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点,证明见解析.【解析】【分析】(1)求导,然后,分别讨论0a ≤,01a <≤和1a >时的单调性即可.(2)根据(1)的结论,分别讨论590a -≤≤,01a <≤和1a >时零点的个数.【小问1详解】'()(1)e cos x f x x a x=+-①若0a ≤,当[0,]x π∈时,0a -≥,sin 0x ≥,()e ()sin 0x f x x a x =+-≥,当且仅当0x =时取等号,可见,0a ≤符合题意.②若01a <≤,当[0,]2x π∈时,0'()(1)e cos 10f x x a x a ≥+-≥-≥;当,2x π⎛⎤∈π ⎥⎝⎦时,cos 0x <,'()(1)e (cos )0x f x x a x =++⋅->.可见,当[]0,x π∈时,'()0f x ≥,当且仅当1a =,且0x =时取等号.所以()f x 在[0,]π上单调递增,所以,()(0)0f x f ≥=.所以01a <≤符合题意.③若1a >,因为(1)e x y x =+在[]0,π上单调递增,cos y a x =-在[]0,π上单调递增,所以,'()(1)e cos x f x x a x =+-在[]0,π上单调递增,又'(0)10f a =-<,2'((1)e 022f πππ=+>,由零点存在定理及'()f x 的单调性,存在唯一的0(0,2x π∈,使得0'()0f x =.当0(0,)x x ∈时,0'()'()0f x f x <=,()f x 单调递减,所以,()(0)0f x f <=.可见,1a >不符合题意.综上,a 的取值范围是(],1-∞【小问2详解】①若590a -≤≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(),2x ∈ππ时,1sin 0x -≤<,0sin 1x <-≤,sin a x a -≥,又由e x y x =单调递增,则33()e sin e 3e 593 2.7590.0490x f x x a x a ππ=->+>->⨯-=>.可见,若590a -≤≤,()f x 在(0,2)π内无零点.②若01a <≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(,2)x ππ∈时,sin 0x ->,()e (sin )0x x f x x a x xe =+->>.可见,若01a <≤,()f x 在(0,2)π内无零点.③若1a >,由(1),存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,当0(0,)x x ∈时,0'()'()0f x f x <=.()f x 单调递减;当0(,)x x π∈时,0'()'()0f x f x >=,()f x 单调递增.又(0)0f =,所以0()(0)0f x f <=.又()e 0f πππ=>,由零点存在定理及()f x 的单调性,存在唯一的10(,)x x π∈,使得1()0f x =.可见,()f x 在(]0,π内存在唯一的零点.当(,2)x ππ∈时,sin 0,sin 0x a x <->,所以,()e sin e 0x x f x x a x x =->>,所以,()f x 在(,2)ππ内没有零点,可见,()f x 在(0,2)π有且仅有1个零点.综上所述,若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点.【点睛】关键点睛:通过导数讨论含参函数的单调性时,要对参数进行分类讨论,分类讨论时,要注意做到不重不漏;讨论含参函数的零点个数时,要利用零点存在定理来讨论零点个数,利用零点存在定理讨论零点个数时,要注意结合单调性讨论,属于难题。

高考导数题型精选(分类处理,费了好大的劲)

高考导数题型精选(分类处理,费了好大的劲)

单调区间和极值1. (最值应用,转换变量)设函数221()(2)ln (0)ax f x a x a x+=-+<.(1)讨论函数()f x 在定义域内的单调性;(2)当(3,2)a ∈--时,任意12,[1,3]x x ∈,12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.解:⑴221()2a f x a x x -'=+-222(2)1ax a x x+--=2(1)(21)ax x x +-=. 当2a <-时,112a -<,增区间为11(,)2a -,减区间为1(0,)a -,1(,)2+∞. 当2a =-时,112a -=,减区间为(0,)+∞.当20a -<<时,112a ->,增区间为11(,)2a -,减区间为1(0,)2,1(,)a-+∞.⑵由⑴知,当(3,2)a ∈--时,()f x 在[1,3]上单调递减,∴12,[1,3]x x ∈,12|()()|f x f x -≤(1)(3)f f -1(12)[(2)ln 36]3a a a =+--++, 即12|()()|f x f x -≤24(2)ln 33a a -+-. ∵12(ln 3)2ln 3|()()|m a f x f x +->-恒成立, ∴(ln 3)2ln 3m a +->24(2)ln 33a a -+-,即243ma a >-, 又0a <,∴243m a<-. ∵(3,2)a ∈--,∴132384339a -<-<-,∴m ≤133-.恒成立问题2. (最值应用)已知二次函数()g x 对x R ∀∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设函数19()()ln 28f xg x m x =+++(m R ∈,0x >).(Ⅰ)求()g x 的表达式;(Ⅱ)若x R +∃∈,使()0f x ≤成立,求实数m 的取值范围;(Ⅲ)设1m e <≤,()()(1)H x f x m x =-+,求证:对于12[1,]x x m ∀∈,,恒有12|()()|1H x H x -<.解:(Ⅰ)设()2g x ax bx c =++,于是()()()()2211212212g x g x a x c x -+-=-+=--,所以121.a c ⎧=⎪⎨⎪=-⎩,又()11g =-,则12b =-.所以()211122g x x x =--. …………3分 (Ⅱ)()2191()ln ln (0).282f xg x m x x m x m x =+++=+∈>R ,当m >0时,由对数函数性质,f (x )的值域为R ;…………4分当m =0时,2()02x f x =>对0x ∀>,()0f x >恒成立; …………5分 当m <0时,由()0mf x x x m x'=+=⇒=-,列表: x (0)m -, m - ()m -+∞,()f x '- 0 + ()f x减极小增[]min ()()ln .2mf x f m m m =-=-+-这时, []minln 0()0e<0.20mm m f x m m ⎧-+->⎪>⇔⇒-<⎨⎪<⎩,所以若0x ∀>,()0f x >恒成立,则实数m 的取值范围是(e 0]-,.故0x ∃>使()0f x ≤成立,实数m 的取值范围()(,e]0-∞-+∞ ,.…………9分(Ⅲ)因为对[1]x m ∀∈,,(1)()()0x x m H x x --'=≤,所以()H x 在[1,]m 内单调递减.于是21211|()()|(1)()ln .22H x H x H H m m m m -≤-=--2121113|()()|1ln 1ln 0.2222H x H x m m m m m m-<⇐--<⇔--< 记13()ln (1e)22h m m m m m=--<≤,则()221133111()022332h'm m m m =-+=-+>, 所以函数13()ln 22h m m m m=--在(1e],是单调增函数, 所以()()e 3e 1e 3()(e)1022e 2eh m h -+≤=--=<,故命题成立. …………12分3. 设3x =是函数()()()23,xf x x ax b e x R -=++∈的一个极值点.(1)求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;(2)设()2250,4xa g x a e ⎛⎫>=+⎪⎝⎭,若存在[]12,0,4ξξ∈,使得()()121f g ξξ-< 成立,求a 的取值范围.解:(1)∵()()23xf x x ax b e-=++∴()()()()''32321x x f x x a e x ax b e --=++++-()232xx a x b a e-⎡⎤=-+-+-⎣⎦ 由题意得:()'30f=,即()23320a b a +-+-=,23b a =--∴()()2323xf x x ax a e-=+--且()()()'331x fx x x a e -=--++令()'0fx =得13x =,21x a =--∵3x =是函数()()()23,xf x x ax b ex R -=++∈的一个极值点∴12x x ≠,即4a ≠-故a 与b 的关系式为()23,4b a a =--≠-. 当4a <-时,213x a =-->,由()'0f x >得单增区间为:()3,1a --;由()'0fx <得单减区间为:(),3-∞和()1,a --+∞;当4a >-时,213x a =--<,由()'0f x >得单增区间为:()1,3a --;由()'0fx <得单减区间为:(),1a -∞--和()3,+∞;(2)由(1)知:当0a >时,210x a =--<,()f x 在[]0,3上单调递增,在[]3,4上单调递减,{},)32()4(),0(min )(3min e a f f x f +-==()()max 36f x f a ==+, ∴()f x 在[]0,4上的值域为]6,)32([3++-a e a . 易知()2254xg x a e ⎛⎫=+⎪⎝⎭在[]0,4上是增函数, ∴()g x 在[]0,4上的值域为2242525,44a a e ⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦. 由于()222516042a a a ⎛⎫⎛⎫+-+=-≥ ⎪ ⎪⎝⎭⎝⎭,又∵要存在[]12,0,4ξξ∈,使得()()121f g ξξ-<成立,∴必须且只须()2025614a a a >⎧⎪⎨⎛⎫+-+< ⎪⎪⎝⎭⎩解得:302a <<.所以,a 的取值范围为30,2⎛⎫⎪⎝⎭.4. (2011北京理18倒数第3大题,最值的直接应用) 已知函数2()()xk f x x k e =-。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

导数压轴大题归类 (解析版)

导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。

导数大题求参归类(学生版)

导数大题求参归类(学生版)

导数大题求参归类目录题型01 恒成立求参:常规型题型02 恒成立求参:三角函数型题型03恒成立求参:双变量型题型04 恒成立求参:整数型题型05恒成立求参:三角函数型整数题型06“能”成立求参:常规型题型07“能”成立求参:双变量型题型08“能”成立求参:正余弦型题型09 零点型求参:常规型题型10 零点型求参:双零点型题型11 零点型求参:多零点综合型题型12 同构型求参:x1,x2双变量同构题型13 虚设零点型求参高考练场热点题型归纳题型01恒成立求参:常规型【解题攻略】利用导数求解参数范围的两种常用方法:(1)分离参数法:将参数和自变量分离开来,构造关于自变量的新函数,研究新函数最值与参数之间的关系,求解出参数范围;(2)分类讨论法:根据题意分析参数的临界值,根据临界值作分类讨论,分别求解出满足题意的参数范围最后取并集.1(2024上·北京·高三阶段练习)设a>0,函数f(x)=x a ln x.(1)讨论f(x)的单调性;(2)若f(x)≤x,求a的取值范围;(3)若f (x)≤1,求a.2(2024上·甘肃武威·高三统考期末)已知函数f x =2xe x+a ln x+1.(1)当a=0时,求f x 的最大值;(2)若f x ≤0在x∈0,+∞上恒成立,求实数a的取值范围.【变式训练】1(2023上·江苏镇江·高三校考阶段练习)已知函数f x =x2-ax e x.(1)若f x 在-2,-1上单调递增,求实数a的取值范围;(2)若f x ≥sin x对x∈-∞,0恒成立,求实数a的取值范围.2(2024上·山西·高三期末)已知函数f x =m x-12-2x+2ln x,m≥2.(1)求证:函数f x 存在单调递减区间,并求出该函数单调递减区间a,b的长度b-a的取值范围;(2)当x≥1时,f x ≤2xe x-1-4x恒成立,求实数m的取值范围.3(2024·全国·模拟预测)已知函数f(x)=2x2-a ln x-1,a∈R.(1)求函数f(x)的单调区间;(2)若对任意的x∈(0,+∞),不等式f(x+1)>(x+1)2+1x+1-1e x恒成立,求实数a的取值范围.题型02恒成立求参:三角函数型【解题攻略】三角函数与导数应用求参:1.正余弦的有界性2.三角函数与函数的重要放缩公式:x≥sin x x≥0.1(2023·全国·高三专题练习)已知函数f x =sin xx,g x =a cos x.(1)求证:x∈0,π2时,f x <1;(2)当x∈-π2,0∪0,π2时,f x >g x 恒成立,求实数a的取值范围;(3)当x∈-π2,0∪0,π2时,f x2>g x 恒成立,求实数a的取值范围.2(2023上·全国·高三期末)已知函数f (x )=e x sin x -2x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)求f (x )在区间0,π2上的最大值;(3)设实数a 使得f (x )+x >ae x 对x ∈R 恒成立,求a 的最大整数值.【变式训练】1(2023上·湖北省直辖县级单位·高三校考阶段练习)已知函数f x =e ax -2ax a ∈R ,a ≠0 .(1)讨论f x 的单调性;(2)若不等式f x ≥sin x -cos x +2-2ax 对任意x ≥0恒成立,求实数a 的取值范围.2(2023上·甘肃定西·高三甘肃省临洮中学校考阶段练习)已知函数f x =e x-sin x-cos x,f x 为其导函数.(1)求f x 在-π,+∞上极值点的个数;(2)若f (x)≥ax+2-2cos x a∈R对∀x∈-π,+∞恒成立,求a的值.题型03恒成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2023·四川攀枝花·统考模拟预测)已知函数f x =ae x -x a ∈R .(1)当a =1时,求f x 的单调区间;(2)设函数g x =x 2-1 e x -x -f x ,当g x 有两个极值点x 1,x 2x 1<x 2 时,总有tg x 2 ≥2+x 1 ex 2+x 22-3 成立,求实数t 的值.2(2024上·四川成都·高三成都七中校考阶段练习)设函数f x =e x -ax ,其中a ∈R .(1)讨论函数f (x )在[1,+∞)上的极值;(2)若函数f (x )有两零点x 1,x 2x 1<x 2 ,且满足x 1+λx 21+λ>1,求正实数λ的取值范围.【变式训练】1(2023·上海松江·校考模拟预测)已知函数f (x )=ax -a ln x -e xx.(1)若a =0,求函数y =f (x )的极值点;(2)若不等式f (x )<0恒成立,求实数a 的取值范围;(3)若函数y =f (x )有三个不同的极值点x 1、x 2、x 3,且f (x 1)+f (x 2)+f (x 3)≤3e 2-e ,求实数a 的取值范围.2(2023下·山东德州·高三校考阶段练习)已知函数f x =2ln x +12(a -x )2,其中a ∈R .(1)讨论函数f x 的单调性;(2)若f x 存在两个极值点x 1,x 2x 1<x 2 ,f x 2 -f x 1 的取值范围为34-ln2,158-2ln2 ,求a 的取值范围.题型04恒成立求参:整数型【解题攻略】恒成立求参的一般规律①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;如果参数涉及到整数,要注意对应解中相邻两个整数点函数的符号1(2023上·湖北·高三校联考阶段练习)已知f x =e x -2x +a .(1)若f x ≥0恒成立,求实数a 的取值范同:(2)设x 表示不超过x 的最大整数,已知e x +2ln x -e +2 x +2≥0的解集为x x ≥t ,求et .(参考数据:e ≈2.72,ln2≈0.69,ln3≈1.10)2(2023上·浙江·高三校联考阶段练习)已知函数f x =ae x-2,g x =x+1x+2ln x,e=2.71828⋯为自然对数底数.(1)证明:当x>1时,ln x<x2-12x;(2)若不等式f x >g x 对任意的x∈0,+∞恒成立,求整数a的最小值.【变式训练】1(2023·江西景德镇·统考一模)已知函数f x =sin x+sin ax,x∈0,π2.(1)若a=2,求函数g x =f x +sin x值域;(2)是否存在正整数a使得f xx>3cos x恒成立?若存在,求出正整数a的取值集合;若不存在,请说明理由.2(2023·全国·高三专题练习)已知函数f x =5+ln x,g x =kxx+1k∈R.(1)若函数f x 的图象在点1,f1处的切线与函数y=g x 的图象相切,求k的值;(2)若k∈N∗,且x∈1,+∞时,恒有f x >g x ,求k的最大值.(参考数据:ln5≈1.61,ln6≈1.7918,ln2+1≈0.8814)题型05恒成立求参:三角函数型整数1(2020·云南昆明·统考三模)已知f(x)=e x-2x-1 2.(1)证明:f(x)>0;(2)对任意x≥1,e sin x+x2-ax-1-ln x>0,求整数a的最大值.(参考数据:sin1≈0.8,ln2≈0.7)2(2020上·浙江·高三校联考阶段练习)已知函数f x =a sin x +sin2x ,a ∈R .(1)若a =2,求函数f x 在0,π 上的单调区间;(2)若a =1,不等式f x ≥bx cos x 对任意x ∈0,2π3恒成立,求满足条件的最大整数b .【变式训练】1(2022·全国·高三专题练习)已知函数f (x )=e x +a cos x -2x -2,f ′(x )为f (x )的导函数.(1)讨论f ′(x )在区间0,π2 内极值点的个数;(2)若x ∈-π2,0时,f (x )≥0恒成立,求整数a 的最小值.2(2023·云南保山·统考二模)设函数f x =x sin x ,x ∈R (1)求f x 在区间0,π 上的极值点个数;(2)若x 0为f x 的极值点,则f x 0 ≥λln 1+x 20 ,求整数λ的最大值.题型06“能”成立求参:常规型【解题攻略】形如f x ≥g x 的有解的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x max≥0恒成立即可;2、参数分离法:转化为a≥φx 或a≤φx 恒成立,即a≥φx min或a≤φx max恒成立,只需利用导数求得函数φx 的单调性与最值即可.1(2023上·浙江·高三浙江省长兴中学校联考期中)已知函数f x =a ln x+x,a∈R.(1)讨论函数f x 的单调性;(2)若存在x∈e,e2,使f x ≤ax+1 2ln x成立,求实数a的取值范围.注:e为自然对数的底数.2(2023上·湖南长沙·高三统考阶段练习)已知函数f x =a2e2x+a-2e x-12x2,y=g x 是y=f x 的导函数.(1)若a=3,求y=g x 的单调区间;(2)若存在实数x∈0,1使f x >32a-2成立,求a的取值范围.【变式训练】1(2023·全国·模拟预测)已知函数f x =x2+a ln ex.(1)讨论f x 的单调性;(2)若存在x∈1,e,使得f x -ax-a≤2,求实数a的最小值.2(2023上·黑龙江齐齐哈尔·高三统考阶段练习)已知函数f x =a ln x+1-a2x2-x a∈R.(1)若a=2,求函数f x 的单调区间;(2)若存在x0≥1,使得f x0<aa-1,求a的取值范围.题型07“能”成立求参:双变量型【解题攻略】一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d(1)相等关系记y =f x ,x ∈a ,b 的值域为A , y =g x ,x ∈c ,d 的值域为B ,①若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊆B ;②若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 =g x 2 成立,则有A ⊇B ;③若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,故A ∩B ≠∅;(2)不等关系(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,总有f x 1 <g x 2 成立,故f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x max <g x max ;(3)若∃x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x min ;(4)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,故f x min <g x max .1(2022·江西上饶·高三校联考阶段练习)已知函数f (x )=2ax -e x +2,其中a ≠0.(1)若a =12,讨论函数f (x )的单调性;(2)是否存在实数a ,对任意x 1∈[0,1],总存在x 2∈[0,1],使得f x 1 +f x 2 =4成立?若存在,求出实数a 的值;若不存在,请说明理由.2(2023上·辽宁沈阳·高三沈阳二十中校考阶段练习)已知函数f x =a ln x +1xx >0 .(1)讨论函数f x 的单调性;(2)若存在x 1,x 2满足0<x 1<x 2,且x 1+x 2=1,f x 1 =f x 2 ,求实数a 的取值范围.【变式训练】1(2023·全国·高三专题练习)已知函数f x =ax 2-2+5a x +5ln x a ∈R ,g x =x 2-52x .(1)若曲线y =f x 在x =3和x =5处的切线互相平行,求a 的值;(2)求f x 的单调区间;(3)若对任意x 1∈0,52 ,均存在x 2∈0,52,使得f x 1 <g x 2 ,求a 的取值范围.2(2023上·重庆·高三校联考阶段练习)已知函数f (x )=ax +ln x (a ∈R ),g (x )=x 2-2x +2.(1)当a =-12时,求函数f (x )在区间[1,e ]上的最大值和最小值;(2)若对任意的x 1∈[-1,2],均存在x 2∈(0,+∞),使得g x 1 <f x 2 ,求a 的取值范围.题型08“能”成立求参:正余弦型1(2017·江苏淮安·高三江苏省淮安中学阶段练习)函数f (x )=a cos x -x +b (a >0,b >0).(1)求证:函数f (x )在区间0,a +b 内至少有一个零点;(2)若函数f (x )在x =-π6处取极值,且∃x ∈0,π2 ,使得f (x )<3cos x -sin x 成立,求实数b 的取值范围.2(2023·全国·高三专题练习)已知函数f (x )=x +2-2cos x(1)求函数f (x )在-π2,π2 上的最值:(2)若存在x ∈0,π2使不等式f (x )≤ax 成立,求实数a 的取值范围【变式训练】1(2020·四川泸州·统考二模)已知函数f (x )=sin x x,g (x )=(x -1)m -2ln x .(1)求证:当x ∈(0,π]时,f (x )<1;(2)求证:当m >2时,对任意x 0∈(0,π],存在x 1∈(0,π]和x 2∈(0,π](x 1≠x 2)使g (x 1)=g (x 2)=f (x 0)成立.2(2023·全国·高三专题练习)已知函数f x =ln1+x-a sin x,a∈R.(1)若y=f x 在0,0处的切线为x-3y=0,求a的值;(2)若存在x∈1,2,使得f x ≥2a,求实数a的取值范围.题型09零点型求参:常规型【解题攻略】零点常规型求参基础:1.分类讨论思想与转化化归思想2.数形结合与单调性的综合应用:一个零点,则多为所求范围内的单调函数,或者“类二次函数”切线处(极值点处)3.注意“找点”难度,对于普通学生,可以用极限思维代替“找点思维”。

导数大题10种主要题型导学案含详解

导数大题10种主要题型导学案含详解

导数大题10种主要题型(一)预习案题型一:构造函数1.1 “比较法”构造函数例1.已知函数f(x)=e x﹣ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为﹣1.(1)求a的值及函数f(x)的极值;(2)求证:当x>0时,x2<e x.1.2 “拆分法”构造函数例2.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处的切线为y=e(x﹣1)+2.(Ⅰ)求a,b;(Ⅱ)证明:f(x)>1.1.3 “换元法”构造函数例3.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.(Ⅰ)求实数a的值;(Ⅱ)求证:当n>m>0时,lnn﹣lnm>﹣;(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求实数k的最大值.1.4 “二次(甚至多次)”构造函数例4.已知函数f(x)=e x+m﹣x3,g(x)=ln(x+1)+2.(1)若曲线y=f(x)在点(0,f(0))处的切线斜率为1,求实数m的值;(2)当m≥1时,证明:f(x)>g(x)﹣x3.题型二:隐零点问题例1.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.例2.(Ⅰ)讨论函数f(x)=e x的单调性,并证明当x>0时,(x﹣2)e x+x+2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.导数大题10种主要题型(一)预习案答案例1. 解:(1)f ′(x )=e x ﹣a ,∵f ′(0)=﹣1=1﹣a ,∴a =2.∴f (x )=e x ﹣2x ,f ′(x )=e x ﹣2.令f ′(x )=0,解得x =ln 2.当x <ln 2时,f ′(x )<0,函数f (x )单调递减;当x >ln 2时,f ′(x )>0,函数f (x )单调递增.∴当x =ln 2时,函数f (x )取得极小值,为f (ln 2)=2﹣2ln 2,无极大值.(2)证明:方法一(作差法)令g (x )=e x ﹣x 2,则g ′(x )=e x ﹣2x ,由(1)可得:g ′(x )=f (x )≥f (ln 2)>0,∴g (x )在R 上单调递增,因此:x >0时,g (x )>g (0)=1>0,∴x 2<e x .方法二(作商法):即可只需证1)(,2)(<=x h e x x h x例2. 解:(Ⅰ) 函数f (x )的定义域为(0,+∞),, 由题意可得f (1)=2,f '(1)=e ,故a =1,b =2.(Ⅱ)证明:方法一(凹凸反转法)由(Ⅰ)知,,从而f (x )>1等价于,设函数g (x )=xlnx ,则g '(x )=1+lnx ,所以当时,g '(x )<0, 当时,g '(x )>0,故g (x )在单调递减,在单调递增,从而g (x )在(0,+∞)的最小值为.设函数,则h '(x )=e ﹣x (1﹣x ),所以当x ∈(0,1)时,h '(x )>0,当x ∈(1,+∞)时,h '(x )<0,故h (x )在(0,1)单调递增,在(1,+∞)单调递减,从而h (x )在(0,+∞)的最大值为.综上:当x >0时,g (x )>h (x ),即f (x )>1.方法二(放缩法)例3. 解:(Ⅰ)∵f (x )=ax 2+xlnx ,∴f ′(x )=2ax +lnx +1,∵切线与直线x +3y =0垂直,∴切线的斜率为3,∴f ′(1)=3,即2a +1=3,故a =1; (Ⅱ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), ∵f ′(x )在(0,+∞)上单调递增,∴当x >1时,有f ′(x )>f ′(1)=3>0,∴函数f (x )在区间(1,+∞)上单调递增,∵n >m >0,∴,∴f ()>f (1)=1即,∴lnn ﹣lnm >; (Ⅲ)由(Ⅰ)知f (x )=x 2+xlnx ,x ∈(0,+∞),f ′(x )=2x +lnx +1,x ∈(0,+∞), 令g (x )=2x +lnx +1,x ∈(0,+∞),则,x ∈(0,+∞),由g ′(x )>0对x ∈(0,+∞),恒成立,故g (x )在(0,+∞)上单调递增, 又∵011121)1(222<-=+-=e e e g ,而>0, ∴存在x 0∈,使g (x 0)=0 ∵g (x )在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,g (x )=f ′(x )<0,f (x )在(0,x 0)上单调递减;当x ∈(x 0,+∞)时,g (x )=f ′(x )>0,f (x )在(x 0,+∞)上单调递增;∴f (x )在x =x 0处取得最小值f (x 0)∵f (x )>k 恒成立,所以k <f (x 0)由g (x 0)=0得,2x 0+lnx 0+1=0,所以lnx 0=﹣1﹣2x 0,∴f (x 0)===﹣=﹣,又,∴f (x 0)∈, ∵k ∈Z ,∴k 的最大值为﹣1.例4. 解:(1)函数f (x )=e x +m ﹣x 3的导数为f ′(x )=e x +m ﹣3x 2,在点(0,f (0))处的切线斜率为k =e m =1,解得m =0;(2)证明:f (x )>g (x )﹣x 3即为e x +m >ln (x +1)+2.由y =e x ﹣x ﹣1的导数为y ′=e x ﹣1,当x >0时,y ′>0,函数递增;当x <0时,y ′<0,函数递减.即有x =0处取得极小值,也为最小值0.即有e x ≥x +1,则e x +m ≥x +m +1,由h(x)=x+m+1﹣ln(x+1)﹣2=x+m﹣ln(x+1)﹣1,h′(x)=1﹣,当x>0时,h′(x)>0,h(x)递增;﹣1<x<0时,h′(x)<0,h(x)递减.即有x=0处取得最小值,且为m﹣1,当m≥1时,即有h(x)≥m﹣1≥0,即x+m+1≥ln(x+1)+2,则有f(x)>g(x)﹣x3成立.例5.(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得,ln(x0+2)=﹣x0.故f(x)≥=>0.综上,当m≤2时,f(x)>0.例6.解:(1)证明:f(x)=f'(x)=e x()=∵当x∈(﹣∞,﹣2)∪(﹣2,+∞)时,f'(x)≥0∴f(x)在(﹣∞,﹣2)和(﹣2,+∞)上单调递增∴x>0时,>f(0)=﹣1即(x﹣2)e x+x+2>0(2)g'(x)====,a∈[0,1),由(1)知,f(x)+a单调递增,对任意的a∈[0,1),f(0)+a=a﹣1<0,f(2)+a=a≥0,因此存在唯一的t∈(0,2],使得f(t)+a=0,当x∈(0,t)时,g'(x)<0,g(x)单调减;当x∈(t,+∞),g'(x)>0,g(x)单调增;h(t)===记k(t)=,在t∈(0,2]时,k'(t)=>0,故k(t)单调递增,所以h(a)=k(t)∈(,].导数大题10种主要题型(二)预习案题型三:恒成立、存在性问题3.1 单变量恒成立、存在性问题例1.已知函数f (x )=xlnx ,g (x )=﹣x 2+ax ﹣3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)若存在x 0∈[,e ](e 是自然对数的底数,e =2.71828…),使不等式2f (x 0)≥g (x 0)成立,求实数a 的取值范围.3.2 双变量恒成立、存在性问题极值点偏移问题:由于函数左右增减速率不同导致函数图像失去对称性。

北京高考导数大题分类

北京高考导数大题分类

导数大题分类一、含参数单一区间的求解步骤:① 确立定义域(易错点)②求导函数 f '(x)③对 f '( x) 进行整理,能十字交错的十字交错分解,若含分式项,则进行通分整理.④ f '( x) 中 x 的最高次系数能否为 0,为 0 时求出单一区间 .例 1: f ( x)a x 3 a 1 x 2 x ,则 f '( x) (ax 1)( x 1) 要第一议论 a 0 状况3 2⑤f '( )最高次系数不为 0,议论参数取某范围的值时, 若 f '(x)0 ,则 f ( x) 在定义域内单一递加;x若 f '(x)0 ,则 f ( x) 在定义域内单一递减 .例2:f (x)a x 2 ln x ,则 f '( x) =ax21, ( x0) ,明显 a0时 f '( x) 0 ,此时 f (x) 的2x单一区间为 (0,) .⑥f '( )最高次系数不为 0,且参数取某范围的值时,不会出现f '(x)0 或许 f '( x) 0 的状况x求出 f '( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根能否都在定义域内 . 假如只有一根在定义域内,那么单一区间只有两段 .若两根都在定义域内且一根为常数,一根含参数 . 则经过比较两根大小分三种状况议论单一区间,即 x 1x 2 , x 1x 2 , x 1 x 2 .例 3: 若 f ( x)a x 2 (a 1)x ln x, (a 0) ,则 f '( x) ( ax 1)( x 1) , (x0)解方程 f'(x)21x0 得 x 11, x 2aa 0时,只有 x 1 1 在定义域内 .a 0 时 , 比较两根要分三种状况: a 1,0 a 1, a 1用所得的根将定义域分红几个不一样的子区间,议论f'( x) 在每个子区间内的正负,求得f (x)的单一区间。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

导数综合问题归类

导数综合问题归类

, z
2 方程根及 函数零点 问题
温馨提示 : 这类 非 明显 一 元 函数 式 的 不 等 式证 明 问题 , 本 题 的 解 决是 构 建 了 一 个 一 元 函 数 , 根 据 一 元 函 数 的 单 调 性 转 化 为 求 最 值 问题 , 本题 最后转化为例3 类型的问题 。 小结 : ( 1 ) 在 解 决 导 数 综 合 问题 解答 题 的 后一 问时 , 要 注意 是 否 能 用到 前 一 问 的 解 题 结 果 。 ( 2 ) 对 于 含 两 元 的 不 等 式 证 明 问题 , 一 般都 要 构 建 为 一 元 函 数 去证明, 但 对 于 例3 构 建 后 的证 明又 不 同 , 例3 是通 过 一 元 函数 的单 总结 : 导 数 在 高 中数 学及 高 考 中有 着 极 其 重 要 的 地 位 , 对 于 导 数 综 合 问题 无 论 是恒 成 立 中求 参 数 问 题 , 方程 根 及零 点问 题 , 还 是 不 等式 证 明 问 题 , 往 往 都 有一 定难 度 , 在解 题 过 程 中一 般 都 是 通 过 导 数 研 究 函数 的 单 调 性 或 最 值 来 解 决 问题 。
解析: ( 1 ) _ 厂 ) ’ :e 卜 。 一l, 令 _ 厂 。 ) =0 , 得 =m 。 故当
例4 ; 证明 : l —

《 :—



nm -
l nn
X ∈ ( 一 o o , m ) 时, , ’ ( ) c ) <0, / ‘ ( ) 单调递减 ; 当X ∈( , + 。 。 ) 时,
( 0 , m) 上有 唯一零点 。 又f ( 2 m) =e 一 2 m, 令g ( m) =e 一2 m, 当

导数的大题题型及解题技巧

导数的大题题型及解题技巧

导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。

下面介绍一些解题技巧。

1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。

常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。

注意求导的顺序和方法。

3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。

常见的参数方程有直角坐标系和极坐标系。

4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。

然后利用求导公式进行计算,最后求得导数。

5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。

例如,奇偶性、周期性、对称性等。

6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。

例如,物体的位移、速度和加速度。

以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。

高中数学导数练习题(分类练习)讲义

高中数学导数练习题(分类练习)讲义

导数专题经典例题剖析考点一:求导公式。

1 3例1. f (x)是f(x) x 2x 1的导函数,贝y f(-1)的值是 _______________________________3解析:f' x =x22,所以f' -1 =1^3答案:3考点二:导数的几何意义。

1例2.已知函数y = f(x)的图象在点M (1, f (1)处的切线方程是y x 2,则2f(1) f (1> _______________ 。

1 」1解析:因为k ,所以f' 1 ,由切线过点M(1, f (1)),可得点M的纵坐标为2 25 5-,所以f 1;=—,所以f 1 • f' 1 A32 2答案:33 2例3.曲线y二x -2x -4x 2在点(1,-3)处的切线方程是___________________ 。

解析:y' = 3x2-4x-4,•点(1,-3)处切线的斜率为k=3-4-4 =「5,所以设切线方程为y二_5x b,将点(1, -3)带入切线方程可得 b = 2,所以,过曲线上点(1, - 3) 处的切线方程为:5x,y-2=0答案:5x y -2 =0点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4•已知曲线C : y =x3 -3x2 2x ,直线l : y =kx,且直线l与曲线C相切于点x0, y0 x0 = 0,求直线l的方程及切点坐标。

解析:;直线过原点,则k 0 X Q = 0 。

由点x 0,y 0在曲线C 上,则 Xy 0 = X Q 3 _ 3X Q 2 2X Q , 西=X Q 2 -3X Q 2。

又 y' = 3x 2 _ 6x 2 , 在X Q-。

所以,直线l 的方程为yx ,切点坐标是 44、 、 1直线I 的方程为y - - — x , 4本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在 切线上”这个条件的应用。

导数大题20种题型讲解

导数大题20种题型讲解

导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。

解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。

2.常数函数求导:题目描述:求函数f(x)=c的导数。

解答步骤:常数函数的导数始终为零,即f'(x)=0。

3.指数函数求导:题目描述:求函数f(x)=e^x的导数。

解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。

4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。

解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。

5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。

解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。

6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。

解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。

7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。

解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。

对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。

8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。

解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。

对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。

9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。

解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。

10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。

解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。

高考数学导数的综合应用问题解答题专题练习

高考数学导数的综合应用问题解答题专题练习

高考数学导数的综合应用问题解答题专题练习一、归类解析题型一:证明不等式【解题指导】(1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数.【例】 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e 2. 【变式训练】已知函数f (x )=x ln x -e x +1.(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)证明:f (x )<sin x 在(0,+∞)上恒成立.题型二:不等式恒成立或有解问题【解题指导】利用导数解决不等式的恒成立问题的策略(1)首先要构造函数,利用导数求出最值,求出参数的取值范围.(2)也可分离变量,构造函数,直接把问题转化为函数的最值问题.【例 】已知函数f (x )=1+ln x x. (1)若函数f (x )在区间)21,( a a 上存在极值,求正实数a 的取值范围;(2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围. 【变式训练】已知函数f (x )=e x -1-x -ax 2.(1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围. 题型三:求函数零点个数【解题指导】(1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.【例】已知函数f (x )=2a 2ln x -x 2(a >0).(1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数).【变式训练】设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3的零点的个数. 题型四:根据函数零点情况求参数范围【解题指导】函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.【例】 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f x 1-f x 2x 1-x 2<a -2. 【变式训练】【例】已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间],1[e e上有两个不等实根,求实数a 的取值范围. 二、专题突破训练1.已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证f (x )≤g (x ).2.已知函数f (x )=ax 2+bx +x ln x 的图象在(1,f (1))处的切线方程为3x -y -2=0.(1)求实数a ,b 的值;(2)设g (x )=x 2-x ,若k ∈Z ,且k (x -2)<f (x )-g (x )对任意的x >2恒成立,求k 的最大值.3.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x. (1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围.4.设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.5.已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.6.已知函数f (x )为偶函数,当x ≥0时,f (x )=2e x ,若存在实数m ,对任意的x ∈[1,k ](k >1),都有f (x +m )≤2e x ,求整数k 的最小值.7.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数.8.已知f (x )=1x +e x e -3,F (x )=ln x +e x e-3x +2. (1)判断f (x )在(0,+∞)上的单调性;(2)判断函数F (x )在(0,+∞)上零点的个数.9.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.11.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.12.已知函数f (x )=(3-a )x -2ln x +a -3在)41,0(上无零点,求实数a 的取值范围.。

导数大题20种主要题型

导数大题20种主要题型

导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。

2. 给出函数解析式和区间,求函数在区间内的单调性。

二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。

4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。

三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。

6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。

四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。

8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。

五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。

10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。

六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。

12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。

七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。

14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。

八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。

导数大题20种题型

导数大题20种题型

导数大题20种题型导数是微积分中非常重要的概念,它用于描述函数在某一点处的变化率。

在求解导数的过程中,我们会遇到各种不同的题型。

下面是导数大题的20种题型。

1. 基本函数的导数:求解常见函数(如多项式函数、指数函数、对数函数、三角函数等)在给定点处的导数。

2. 复合函数的导数:根据链式法则,求解复合函数在给定点处的导数。

3. 反函数的导数:利用反函数的性质,求解反函数在给定点处的导数。

4. 参数方程的导数:对参数方程中的x和y分别求导,得到x和y 关于另一个参数的导数。

5. 隐函数的导数:根据隐函数的定义,利用全微分的性质,求解隐函数在给定点处的导数。

6. 对数导数:利用对数函数的导数性质,求解函数的对数导数。

7. 高阶导数:求解函数的二阶、三阶或更高阶导数。

8. 反复函数的导数:对反复函数进行多次求导,得到各阶导数。

9. 参数曲线的切线与法线:利用导数的定义,求解参数曲线在给定点处的切线和法线方程。

10. 极限定义的导数:利用导数的极限定义,求解函数在给定点处的导数。

11. 极值问题:利用导数的性质,求解函数的极大值和极小值点。

12. 函数的单调性:根据导数的正负性,判断函数在给定区间上的单调性。

13. 曲线的凹凸性:根据导数的增减性,判断函数在给定区间上的凹凸性。

14. 弧长问题:利用导数的定义,求解曲线弧长。

15. 曲率问题:利用导数的定义,求解曲线在给定点处的曲率。

16. 泰勒展开:利用导数的性质,对函数进行泰勒展开。

17. 函数的积分:利用导数和积分的关系,求解函数的积分。

18. 参数方程的弧长:利用导数的定义,求解参数方程表示的曲线的弧长。

19. 高阶导数的应用:利用高阶导数的性质,求解函数的拐点、极值点等特殊点。

20. 物理问题的应用:利用导数的物理意义,求解物理问题中的速度、加速度等相关概念。

这些题型覆盖了导数的基本概念及其在不同问题中的应用。

通过解答这些题型,我们可以更好地理解导数的性质及其在数学和物理中的重要作用。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

导数的综合大题及其分类

导数的综合大题及其分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数f (x )=x -1x,g (x )=a ln x (a ∈R ).(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝⎛⎦⎥⎥⎤0,12,求h (x 1)-h (x 2)的最小值.[审题程序]第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围;第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值.[规范解答] (1)由题意得F (x )=x -1x-a ln x ,其定义域为(0,+∞),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4.①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞);②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,∴F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x+a ln x ,x ∈(0,+∞)求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,设h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , ∴x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x-x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-x -1x ln x +x -1x ,H ′(x )=2⎝⎛⎭⎪⎫1x 2-1ln x =2(1-x )(1+x )ln xx2. 当x ∈⎝⎛⎦⎥⎥⎤0,12时,H ′(x )<0,∴H (x )在⎝⎛⎦⎥⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎪⎫1x 1=h (x 1)-h (x 2),∴[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎪⎫12=5ln2-3.[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎪⎫1x 1,这样将所求问题转化为研究新函数H (x )=h (x )-h ⎝ ⎛⎭⎪⎪⎫1x 在⎝⎛⎭⎪⎪⎫0,12上的最值问题,体现转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:[题型专练]1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )的单调区间;(2)当0<a <2时,求函数g (x )=f (x )-x 2-ax -1在区间[0,3]上的最小值. [解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞), ∴f ′(x )=2(1+x )-21+x =2x (x +2)x +1.由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0.∴函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1), 则g ′(x )=2-a -21+x =(2-a )x -a1+x.∵0<a <2,∴2-a >0, 令g ′(x )=0,得x =a2-a, ∴函数g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,+∞上为增函数.①当0<a2-a <3,即0<a <32时,在区间[0,3]上,g (x )在⎝ ⎛⎭⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎫a 2-a ,3上为增函数,∴g (x )min =g ⎝ ⎛⎭⎪⎫a 2-a =a -2ln 22-a . ②当a2-a ≥3,即32≤a <2时,g (x )在区间[0,3]上为减函数,∴g (x )min =g (3)=6-3a -2ln4.综上所述,当0<a <32时,g (x )min =a -2ln 22-a ;当32≤a <2时,g (x )min =6-3a -2ln4. 北京卷(19)(本小题13分)已知函数f (x )=e x cos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值.(19)(共13分)解:(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1x h x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-. 当π(0,)2x ∈时,()0h x '<,所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-.21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得 ()()120>f x f e e --=所以()2-20<<2e f x -题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R .(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规范解答](1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x变化时,f(x)和f′(x)的变化情况如下:故f()的单调递减区间为(-∞,--1),单调递增区间为(--1,+∞).(2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0为此方程的一个实数解,所以x=0是函数g(x)的一个零点.当x≠0时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x变化时,F(x)和F′(x)的变化情况如下:即F(x)所以F(x)的最小值F(x)min=F(a)=1-a.因为a<1,所以F(x)min=F(a)=1-a>0,所以对于任意x∈R,F(x)>0,因此方程e x-a=x无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.典例321.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -[解题反思] 在本例(1)中求f (x )的单调区间的关键是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -a =x 的解转化为研究函数F (x )=e x -a -x 的最值,从而确定F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练] 2.(2017·浙江金华期中)已知函数f(x)=ax3+bx2+(c-3a-2b)x+d的图象如图所示.(1)求c,d的值;(2)若函数f(x)在x=2处的切线方程为3x+y-11=0,求函数f(x)的解析式;(3)在(2)的条件下,函数y=f(x)与y=13f′(x)+5x+m的图象有三个不同的交点,求m的取值范围.[解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b . (1)由图可知函数f (x )的图象过点(0,3),且f ′(1)=0,得⎩⎨⎧ d =3,3a +2b +c -3a -2b =0,解得⎩⎨⎧d =3,c =0.(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).由函数f (x )在x =2处的切线方程为3x +y -11=0,得⎩⎨⎧f (2)=5,f ′(2)=-3,所以⎩⎨⎧ 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得⎩⎨⎧a =1,b =-6,所以f (x )=x 3-6x 2+9x +3.(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9. 函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根, 等价于g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),g ⎝ ⎛⎭⎪⎫3=27-m ,g (4)=-16-m , 当且仅当⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫23=6827-m >0,g (4)=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16<m <6827. 所以m 的取值范围为⎝⎛⎭⎪⎫-16,6827.21.(12分)已知函数)f x =(a e 2x +(a ﹣2) e x﹣x . (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,(十字相乘法)(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).题型三 利用导数证明不等式题型概览:证明f (x )<g (x ),x ∈(a ,b ),可以直接构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F ′(x )的符号,可考虑分别研究f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·陕西西安三模)已知函数f (x )=e xx.(1)求曲线y =f (x )在点P ⎝⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求f ′(x ),写出在点P 处的切线方程;第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0. [规范解答] (1)因为f (x )=e xx ,所以f ′(x )=e x ·x -e xx 2=e x (x -1)x 2,f ′(2)=e 24,又切点为⎝⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)证明:设函数g (x )=f (x )-2(x -ln x )=e xx-2x +2ln x ,x ∈(0,+∞),则g ′(x )=e x (x -1)x 2-2+2x =(e x -2x )(x -1)x2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0.所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x2=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2017·福建漳州质检)已知函数f (x )=a e x-b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =⎝ ⎛⎭⎪⎫1e -1x+1.(1)求a ,b ; (2)证明:f (x )>0.[解] (1)函数f (x )的定义域为(0,+∞).f ′(x )=a e x-b x ,由题意得f (1)=1e ,f ′(1)=1e-1,所以⎩⎪⎨⎪⎧a e =1e,a e -b =1e -1,解得⎩⎪⎨⎪⎧a =1e 2,b =1.(2)由(1)知f (x )=1e 2·e x-ln x .因为f ′(x )=ex -2-1x在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得e x 0-2=1x 0,则x 0-2=-ln x 0.故f (x )≥f (x 0)=ex 0-2-ln x 0=1x 0+x 0-2>21x 0·x 0-2=0,所以f (x )>0.4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n()(1)(﹤m ,求m 的最小值.21.解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1ax af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥. 故a =1(2)由(1)知当()1,+x ∈∞时,1>0x ln x -- 令1=1+2nx 得111+<22n n ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222nn nln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析题型四利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值范围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围.已知函数f (x )=12ln x -mx ,g (x )=x -ax(a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围.[审题程序]第一步:利用导数判断f (x )的单调性,对m 分类讨论;第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规范解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x -m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(0)=0得x =12m ;由⎩⎪⎨⎪⎧ f ′(x )>0,x >0得0<x <12m ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0得x >12m .综上所述,当m ≤0时,f ′(x )的单调递增区间为(0,+∞);当m >0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12m ,单调递减区间为⎝ ⎛⎭⎪⎫12m ,+∞.(2)若m =12e 2,则f (x )=12ln x -12e 2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max , 由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,g ′(x )=1+a x 2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2]上是增函数,g (x )min =g (2)=2-a 2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].[解题反思] 本例(1)的解答中要注意f (x )的定义域,(2)中问题的关键在于准确转化为两个函数f (x )、g (x )的最值问题.本题中,∀x 1,x 2有g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max .若改为:∃x 1,∀x 2都有g (x 1)≥f (x 2),则有g (x )max ≥f (x )max .若改为:∀x 1,∃x 2都有g (x 1)≥g (x 2),则有g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围;(2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x恒成立. [解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立,则a ≤2ln x +x +3x, 设h (x )=2ln x +x +3x(x >0), 则h ′(x )=(x +3)(x -1)x 2, ①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,所以a ≤h (x )min =4.即实数a 的取值范围是(-∞,4].(2)证明:问题等价于证明x ln x >x e x -2e(x ∈(0,+∞)). 又f (x )=x ln x ,f ′(x )=ln x +1,当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e . 设m (x )=xe x -2e(x ∈(0,+∞)), 则m ′(x )=1-x e x , 易知m (x )max =m (1)=-1e, 从而对一切x ∈(0,+∞),ln x >1e x -2e x恒成立.②当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4.即实数a的取值范围是(-∞,4].题型五:二阶导主要用于求函数的取值范围23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.题型六:求含参数求知范围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值范围并进行消参,由多参数降为单参在求出参数取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用.题型一 利用导数研究函数的单调性、极值与最值题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论.(1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论.(2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点.(3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值.已知函数f (x )=x -1x,g (x )=a ln x (a ∈R ).(1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈⎝⎛⎦⎥⎥⎤0,12,求h (x 1)-h (x 2)的最小值.[审题程序]第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围;第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值.[规解答] (1)由题意得F (x )=x -1x-a ln x ,其定义域为(0,+∞),则F ′(x )=x 2-ax +1x 2,令m (x )=x 2-ax +1,则Δ=a 2-4.①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42,∴F (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ⎝ ⎛⎭⎪⎫0,a -a 2-42和⎝ ⎛⎭⎪⎫a +a 2-42,+∞,F (x )的单调递减区间为⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42. (2)对h (x )=x -1x+a ln x ,x ∈(0,+∞)求导得,h ′(x )=1+1x 2+a x =x 2+ax +1x 2,设h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , ∴x 2=1x 1,从而有a =-x 1-1x 1.令H (x )=h (x )-h ⎝ ⎛⎭⎪⎫1x=x -1x +⎝ ⎛⎭⎪⎫-x -1x ln x -⎣⎢⎡⎦⎥⎤1x-x +⎝ ⎛⎭⎪⎫-x -1x ·ln 1x=2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-x -1x ln x +x -1x , H ′(x )=2⎝ ⎛⎭⎪⎫1x 2-1ln x =21-x 1+x ln x x 2.当x ∈⎝⎛⎦⎥⎥⎤0,12时,H ′(x )<0, ∴H (x )在⎝⎛⎦⎥⎥⎤0,12上单调递减,又H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎪⎫1x 1=h (x 1)-h (x 2),∴[h (x 1)-h (x 2)]min =H ⎝ ⎛⎭⎪⎪⎫12=5ln2-3.[解题反思] 本例(1)中求F (x )的单调区间,需先求出F (x )的定义域,同时在解不等式F ′(x )>0时需根据方程x 2-ax +1=0的根的情况求出不等式的解集,故以判别式“Δ”的取值作为分类讨论的依据.在(2)中求出h (x 1)-h (x 2)的最小值,需先求出其解析式.由题可知x 1,x 2是h ′(x )=0的两根,可得到x 1x 2=1,x 1+x 2=-a ,从而将h (x 1)-h (x 2)只用一个变量x 1导出.从而得到H (x 1)=h (x 1)-h ⎝ ⎛⎭⎪⎪⎫1x 1,这样将所求问题转化为研究新函数H (x )=h (x )-h ⎝ ⎛⎭⎪⎪⎫1x 在⎝⎛⎭⎪⎪⎫0,12上的最值问题,体现转为与化归数学思想.[答题模板] 解决这类问题的答题模板如下:[题型专练]1.设函数f (x )=(1+x )2-2ln(1+x ). (1)求f (x )的单调区间;(2)当0<a <2时,求函数g (x )=f (x )-x 2-ax -1在区间[0,3]上的最小值. [解] (1)f (x )的定义域为(-1,+∞). ∵f (x )=(1+x )2-2ln(1+x ),x ∈(-1,+∞), ∴f ′(x )=2(1+x )-21+x =2x x +2x +1.由f ′(x )>0,得x >0;由f ′(x )<0,得-1<x <0.∴函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0). (2)由题意可知g (x )=(2-a )x -2ln(1+x )(x >-1),则g ′(x )=2-a -21+x =2-a x -a 1+x .∵0<a <2,∴2-a >0, 令g ′(x )=0,得x =a2-a,∴函数g (x )在⎝ ⎛⎭⎪⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎪⎫a 2-a ,+∞上为增函数.①当0<a2-a <3,即0<a <32时,在区间[0,3]上,g (x )在⎝ ⎛⎭⎪⎪⎫0,a 2-a 上为减函数,在⎝ ⎛⎭⎪⎪⎫a 2-a ,3上为增函数, ∴g (x )min =g ⎝ ⎛⎭⎪⎪⎫a 2-a =a -2ln 22-a . ②当a2-a ≥3,即32≤a <2时,g (x )在区间[0,3]上为减函数,∴g (x )min =g (3)=6-3a -2ln4.综上所述,当0<a <32时,g (x )min =a -2ln 22-a ;当32≤a <2时,g (x )min =6-3a -2ln4. 卷(19)(本小题13分)已知函数f (x )=e xcos x −x .(Ⅰ)求曲线y = f (x )在点(0,f (0))处的切线方程; (Ⅱ)求函数f (x )在区间[0,π2]上的最大值和最小值.(19)(共13分)解:(Ⅰ)因为()e cos xf x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-.21.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x 因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -题型二 利用导数研究方程的根、函数的零点或图象交点题型概览:研究方程根、函数零点或图象交点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.已知函数f (x )=(x +a )e x ,其中e 是自然对数的底数,a ∈R .(1)求函数f (x )的单调区间;(2)当a <1时,试确定函数g (x )=f (x -a )-x 2的零点个数,并说明理由. [审题程序]第一步:利用导数求函数的单调区间;第二步:简化g(x)=0,构造新函数;第三步:求新函数的单调性及最值;第四步:确定结果.[规解答](1)因为f(x)=(x+a)e x,x∈R,所以f′(x)=(x+a+1)e x.令f′(x)=0,得x=-a-1.当x变化时,f(x)和f′(x)的变化情况如下:故f((2)结论:函数g(x)有且仅有一个零点.理由如下:由g(x)=f(x-a)-x2=0,得方程x e x-a=x2,显然x=0为此方程的一个实数解,所以x=0是函数g(x)的一个零点.当x≠0时,方程可化简为e x-a=x.设函数F(x)=e x-a-x,则F′(x)=e x-a-1,令F′(x)=0,得x=a.当x变化时,F(x)和F′(x)的变化情况如下:即F(x)所以F(x)的最小值F(x)min=F(a)=1-a.因为a<1,所以F(x)min=F(a)=1-a>0,所以对于任意x ∈R ,F (x )>0, 因此方程e x -a =x 无实数解.所以当x ≠0时,函数g (x )不存在零点. 综上,函数g (x )有且仅有一个零点.典例321.(12分)已知函数3()ln ,f x ax ax x x =--且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且230()2e f x --<<.21.解:(1)()f x 的定义域为()0,+∞ 设()g x =ax -a -lnx ,则()()()≥f x =xg x ,f x 0等价于()0≥g x 因为()()()()()11=0,0,故1=0,而,1=1,得1≥=--=g g x g'g'x a g'a a x若a =1,则()11-g'x =x.当0<x <1时,()()<0,g'x g x 单调递减;当x >1时,()g'x >0,()g x 单调递增.所以x=1是()g x 的极小值点,故()()1=0≥g x g综上,a=1(2)由(1)知()2ln ,'()22ln f x x x x x f x x x =--=-- 设()122ln ,则'()2h x x x h x x=--=-当10,2x ⎛⎫∈ ⎪⎝⎭时,()'<0h x ;当1,+2x ⎛⎫∈∞ ⎪⎝⎭时,()'>0h x ,所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,+2⎛⎫∞ ⎪⎝⎭单调递增又()()21>0,<0,102h e h h -⎛⎫= ⎪⎝⎭,所以()h x 在10,2⎛⎫ ⎪⎝⎭有唯一零点x 0,在1,+2⎡⎫∞⎪⎢⎣⎭有唯一零点1,且当()00,x x ∈时,()>0h x ;当()0,1x x ∈时,()<0h x ,当()1,+x ∈∞时,()>0h x .因为()()'f x h x =,所以x=x 0是f(x)的唯一极大值点 由()()000000'0得ln 2(1),故=(1)f x x x f x x x ==-- 由()00,1x ∈得()01'<4f x因为x=x 0是f(x)在(0,1)的最大值点,由()()110,1,'0e f e --∈≠得()()120>f x f e e --=所以()2-20<<2e f x -[解题反思] 在本例(1)中求f (x )的单调区间的关键是准确求出f ′(x ),注意到e x >0即可.(2)中由g (x )=0得x e x -a =x 2,解此方程易将x 约去,从而产生丢解情况.研究e x -a =x 的解转化为研究函数F (x )=e x -a -x 的最值,从而确定F (x )零点,这种通过构造函数、研究函数的最值从而确定函数零点的题型是高考中热点题型,要熟练掌握.[答题模板] 解决这类问题的答题模板如下:[题型专练]2.(2017·期中)已知函数f (x )=ax 3+bx 2+(c -3a -2b )x +d 的图象如图所示.(1)求c ,d 的值;(2)若函数f (x )在x =2处的切线方程为3x +y -11=0,求函数f (x )的解析式;(3)在(2)的条件下,函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,求m 的取值围.[解] 函数f (x )的导函数为f ′(x )=3ax 2+2bx +c -3a -2b . (1)由图可知函数f (x )的图象过点(0,3),且f ′(1)=0,得⎩⎨⎧ d =3,3a +2b +c -3a -2b =0,解得⎩⎨⎧d =3,c =0.(2)由(1)得,f (x )=ax 3+bx 2-(3a +2b )x +3, 所以f ′(x )=3ax 2+2bx -(3a +2b ).由函数f (x )在x =2处的切线方程为3x +y -11=0,得⎩⎨⎧f 2=5,f ′2=-3,所以⎩⎨⎧ 8a +4b -6a -4b +3=5,12a +4b -3a -2b =-3,解得⎩⎨⎧a =1,b =-6,所以f (x )=x 3-6x 2+9x +3.(3)由(2)知f (x )=x 3-6x 2+9x +3,所以f ′(x )=3x 2-12x +9. 函数y =f (x )与y =13f ′(x )+5x +m 的图象有三个不同的交点,等价于x 3-6x 2+9x +3=(x 2-4x +3)+5x +m 有三个不等实根,等价于g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个交点. 因为g ′(x )=3x 2-14x +8=(3x -2)(x -4),x ⎝⎛⎭⎪⎫-∞,2323 ⎝ ⎛⎭⎪⎫23,4 4 (4,+∞)g ′(x ) +0 -0 +g (x )极大值极小值g ⎝ ⎛⎭⎪⎫23=6827-m ,g (4)=-16-m , 当且仅当⎩⎨⎧g ⎝ ⎛⎭⎪⎫23=6827-m >0,g 4=-16-m <0时,g (x )图象与x 轴有三个交点,解得-16<m <6827.所以m 的取值围为⎝⎛⎭⎪⎫-16,6827.21.(12分)已知函数)f x =(a e 2x+(a ﹣2) e x﹣x . (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值围.21.解:(1)()f x 的定义域为(,)-∞+∞,2()2(2)1(1)(21)xx x x f x aea e ae e '=+--=-+,(十字相乘法)(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.(观察特殊值1) ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值围为(0,1).题型三 利用导数证明不等式题型概览:证明f (x )<g (x ),x ∈(a ,b ),可以直接构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).有时需对不等式等价变形后间接构造.若上述方法通过导数不便于讨论F ′(x )的符号,可考虑分别研究f (x )、g (x )的单调性与最值情况,有时需对不等式进行等价转化.(2017·三模)已知函数f (x )=e xx.(1)求曲线y =f (x )在点P ⎝⎛⎭⎪⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ). [审题程序]第一步:求f ′(x ),写出在点P 处的切线方程;第二步:直接构造g (x )=f (x )-2(x -ln x ),利用导数证明g (x )min >0.[规解答] (1)因为f (x )=e x x ,所以f ′(x )=e x ·x -e x x 2=e x x -1x 2,f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)证明:设函数g (x )=f (x )-2(x -ln x )=e xx-2x +2ln x ,x ∈(0,+∞),则g ′(x )=e x x -1x 2-2+2x=e x -2x x -1x2,x ∈(0,+∞).设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=e x -2xx -1x2=0,则x =1.当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0.所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).[解题反思] 本例中(2)的证明方法是最常见的不等式证明方法之一,通过合理地构造新函数g (x ).求g (x )的最值来完成.在求g (x )的最值过程中,需要探讨g ′(x )的正负,而此时g ′(x )的式子中有一项e x -2x 的符号不易确定,这时可以单独拿出e x -2x 这一项,再重新构造新函数h (x )=e x -2x (x >0),考虑h (x )的正负问题,此题看似简单,且不含任何参数,但需要两次构造函数求最值,同时在(2)中定义域也是易忽视的一个方向.[答题模板] 解决这类问题的答题模板如下:[题型专练]3.(2017·质检)已知函数f (x )=a e x-b ln x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =⎝ ⎛⎭⎪⎪⎫1e -1x +1.(1)求a ,b ; (2)证明:f (x )>0.[解] (1)函数f (x )的定义域为(0,+∞).f ′(x )=a e x-b x ,由题意得f (1)=1e ,f ′(1)=1e-1,所以⎩⎪⎨⎪⎧a e =1e,a e -b =1e -1,解得⎩⎪⎨⎪⎧a =1e2,b =1.(2)由(1)知f (x )=1e2·e x -ln x .因为f ′(x )=e x -2-1x在(0,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f ′(x )=0在(0,+∞)上有唯一实根x 0,且x 0∈(1,2). 当x ∈(0,x 0)时,f ′(x )<0,当x ∈(x 0,+∞)时,f ′(x )>0, 从而当x =x 0时,f (x )取极小值,也是最小值. 由f ′(x 0)=0,得ex 0-2=1x 0,则x 0-2=-ln x 0.故f (x )≥f (x 0)=ex 0-2-ln x 0=1x 0+x 0-2>21x 0·x 0-2=0,所以f (x )>0.4、【2017高考三卷】21.(12分)已知函数()f x =x ﹣1﹣a ln x . (1)若()0f x ≥ ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111++1+)222n ()(1)(﹤m ,求m 的最小值. 21.解:(1)()f x 的定义域为()0,+∞.①若0a ≤,因为11=-+2<022f a ln ⎛⎫ ⎪⎝⎭,所以不满足题意;②若>0a ,由()1ax af 'x x x-=-=知,当()0x ,a ∈时,()<0f 'x ;当(),+x a ∈∞时,()>0f 'x ,所以()f x 在()0,a 单调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a =1时,()0f x ≥.故a =1(2)由(1)知当()1,+x ∈∞时,1>0x ln x -- 令1=1+2n x 得111+<22nn ln ⎛⎫ ⎪⎝⎭,从而 2211111111++1+++1+<+++=1-<12222222nn n ln ln ln ⎛⎫⎛⎫⎛⎫⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 故21111+1+1+<222n e ⎛⎫⎛⎫⎛⎫⋅⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭而231111+1+1+>2222⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以m 的最小值为3. 21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a -单调递增,在),21(+∞-a单调递减;(2)详见解析题型四 利用导数研究恒成立问题题型概览:已知不等式恒成立求参数取值围,构造函数,直接把问题转化为函数的最值问题;若参数不便于分离,或分离以后不便于求解,则考虑直接构造函数法,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值围.已知函数f (x )=12ln x -mx ,g (x )=x -ax(a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,数a 的取值围.[审题程序]第一步:利用导数判断f (x )的单调性,对m 分类讨论;第二步:对不等式进行等价转化,将g (x 1)≥f (x 2)转化为g (x )min ≥f (x )max ; 第三步:求函数的导数并判断其单调性进而求极值(最值); 第四步:确定结果.[规解答] (1)f (x )=12ln x -mx ,x >0,所以f ′(x )=12x -m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(0)=0得x =12m ;由⎩⎪⎨⎪⎧f ′x >0,x >0得0<x <12m ;由⎩⎪⎨⎪⎧f ′x <0,x >0得x >12m.综上所述,当m ≤0时,f ′(x )的单调递增区间为(0,+∞);当m >0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎪⎫0,12m ,单调递减区间为⎝ ⎛⎭⎪⎪⎫12m ,+∞.(2)若m =12e 2,则f (x )=12ln x -12e 2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立, 等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max , 由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,g ′(x )=1+a x 2>0(a >0),x ∈[2,2e 2],函数g (x )在[2,2e 2]上是增函数,g (x )min =g (2)=2-a 2,由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值围为(0,3].[解题反思] 本例(1)的解答中要注意f (x )的定义域,(2)中问题的关键在于准确转化为两个函数f (x )、g (x )的最值问题.本题中,∀x 1,x 2有g (x 1)≥f (x 2)⇔g (x )min ≥f (x )max .若改为:∃x 1,∀x 2都有g (x 1)≥f (x 2),则有g (x )max ≥f (x )max .若改为:∀x 1,∃x 2都有g (x 1)≥g (x 2),则有g (x )min ≥f (x )min 要仔细体会,转化准确.[答题模板] 解决这类问题的答题模板如下:[题型专练]4.已知f (x )=x ln x ,g (x )=-x 2+ax -3.(1)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,数a 的取值围; (2)证明:对一切x ∈(0,+∞),ln x >1e x -2e x恒成立.[解] (1)由题意知2x ln x ≥-x 2+ax -3对一切x ∈(0,+∞)恒成立, 则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +3x -1x 2,①当x ∈(0,1)时,h ′(x )<0,h (x )单调递减,②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.即实数a 的取值围是(-∞,4].(2)证明:问题等价于证明x ln x >xe x -2e (x ∈(0,+∞)).又f (x )=x ln x ,f ′(x )=ln x +1,当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎪⎫1e ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎪⎫1e =-1e .设m (x )=xe x -2e (x ∈(0,+∞)),则m ′(x )=1-xe x ,易知m (x )max =m (1)=-1e,从而对一切x ∈(0,+∞),ln x >1e x -2e x 恒成立.②当x ∈(1,+∞)时,h ′(x )>0,h (x )单调递增,所以h (x )min =h (1)=4,对一切x ∈(0,+∞),2f (x )≥g (x )恒成立, 所以a ≤h (x )min =4.即实数a 的取值围是(-∞,4].题型五:二阶导主要用于求函数的取值围23.(12分)已知函数f (x )=(x+1)lnx ﹣a (x ﹣1).(I )当a=4时,求曲线y=f (x )在(1,f (1))处的切线方程; (II )若当x ∈(1,+∞)时,f (x )>0,求a 的取值围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II)∵f(x)=(x+1)lnx﹣a(x﹣1),∴f′(x)=1++lnx﹣a,∴f″(x)=,∵x>1,∴f″(x)>0,∴f′(x)在(1,+∞)上单调递增,∴f′(x)>f′(1)=2﹣a.①a≤2,f′(x)>f′(1)≥0,∴f(x)在(1,+∞)上单调递增,∴f(x)>f(1)=0,满足题意;②a>2,存在x0∈(1,+∞),f′(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,由f(1)=0,可得存在x0∈(1,+∞),f(x0)<0,不合题意.综上所述,a≤2.23.(12分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(I)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(II)若当x∈(1,+∞)时,f(x)>0,求a的取值围.【解答】解:(I)当a=4时,f(x)=(x+1)lnx﹣4(x﹣1).f(1)=0,即点为(1,0),函数的导数f′(x)=lnx+(x+1)•﹣4,则f′(1)=ln1+2﹣4=2﹣4=﹣2,即函数的切线斜率k=f′(1)=﹣2,则曲线y=f(x)在(1,0)处的切线方程为y=﹣2(x﹣1)=﹣2x+2;(II )∵f (x )=(x+1)lnx ﹣a (x ﹣1), ∴f ′(x )=1++lnx ﹣a ,∴f ″(x )=,∵x >1,∴f ″(x )>0,∴f ′(x )在(1,+∞)上单调递增,∴f ′(x )>f ′(1)=2﹣a . ①a ≤2,f ′(x )>f ′(1)≥0,∴f (x )在(1,+∞)上单调递增,∴f (x )>f (1)=0,满足题意; ②a >2,存在x 0∈(1,+∞),f ′(x 0)=0,函数f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增, 由f (1)=0,可得存在x 0∈(1,+∞),f (x 0)<0,不合题意. 综上所述,a ≤2.题型六:求含参数求知围此类问题一般分为两类:一、也可分离变量,构造函数,直接把问题转化为函数的最值问题.此法适用于方便分离参数并可求出函数最大值与最小值的情况,若题中涉及多个未知参量需分离出具有明确定义域的参量函数求出取值围并进行消参,由多参数降为单参在求出参数取值围。

相关文档
最新文档