2017年数学花园探秘六年级组初试试卷ABC
2017年“数学花园探秘”决赛小高A卷(答案作者版)
![2017年“数学花园探秘”决赛小高A卷(答案作者版)](https://img.taocdn.com/s3/m/85aa22f80029bd64783e2cd7.png)
2017年“数学花园探秘”科普活动小学高年级组决赛试卷A(测评时间:2017年1月1日8:00—9:30)一.填空题Ⅰ(每小题8分,共40分)1. 算式⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-631163163的计算结果是________. 〖答案〗64 〖作者〗武汉 明心书院 夏端2. 一个边长为100厘米的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是________厘米(π取3.14).〖答案〗2384 〖作者〗广州 沃伦教育 李冰莹3. 在2016年里约奥运会女排决赛中,中国队战胜了塞尔维亚队获得冠军.统计4局比赛中中国队的得分,发现前2局的得分之和比后2局的得分之和少12%,前3局的得分之和比后3局的得分之和少8%.已知中国队在第2局和第3局中各得了25分,那么中国队在这4局中的得分总和为________分.〖答案〗94 〖作者〗北京 高思教育 赵家鹏4. 右面两个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“李白杜甫”=________.〖答案〗9285 〖作者〗北京 摩比思维 张诗梦5. n 个数排成一列,其中任意连续三个数之和都小于30,任意连续四个数之和都大于40,则n的最大值为________.〖答案〗5 〖作者〗长沙 拓维·天问数学 叶军 徐斌二.填空题Ⅱ(每小题10分,共50分)6. 算式2222220172017201720172017214161201412016120162016201620162016201620161248163264+++++-----------的计算结果是________. 〖答案〗32〖作者〗北京 智康一对一 尹彪7. 有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数;那么这个四位数是________.〖答案〗7776 〖作者〗北京 学而思培优 胡浩8.在空格里填入数字1~6,使得每行、每列和每个2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F中各自数字和依次分别为a,b,c,d,e,f,且a=b,c=d,e>f.那么第四行的前五个数字从左到右依次组成的五位数是________.〖答案〗31462 〖作者〗北京智益加陈岑9.抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50元的5个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的5个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10的倍数.”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包.〖答案〗16 〖作者〗北京厚朴教育李陆欧10.如图,P为四边形ABCD内部的点,AB:BC:DA=3:1:2,∠DAB=∠CBA=60°.图中所有三角形的面积都是整数.如果三角形P AD和三角形PBC的面积分别为20和17,那么四边形ABCD的面积最大是________.〖答案〗147 〖作者〗北京资优教育科技中心成俊锋三.填空题Ⅲ(每小题12分,共60分)11.有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n个数是1、2、……、n的最小公倍数.那么这列数的前100个数中共有________个不同的值.〖答案〗36 〖作者〗成都科雅数学彭泽12.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3歩,途中从未相遇的跳法共有________种.〖答案〗343 〖作者〗北京资优教育科技中心成俊锋ABACDPB 201713.甲以每分钟60米的速度从A地出发去B地,与此同时乙从B地出发匀速去A地;过了9分钟,丙从A地出发骑车去B地,在途中C地追上了甲;甲、乙相遇时,丙恰好到B地;丙到B地后立即调头,且速度下降为原来速度的一半;当丙在C地追上乙时,甲恰好到B地.那么AB两地间的路程为________米.〖答案〗1620 〖作者〗北京资优教育科技中心陈平14.在一个8×8的方格棋盘中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子.规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作.那么最后在棋盘上最少剩下________枚棋子.〖答案〗2 〖作者〗武汉明心书院付谦。
2017年迎春杯6年级初赛A卷
![2017年迎春杯6年级初赛A卷](https://img.taocdn.com/s3/m/a555295cb307e87101f6968b.png)
2017年“数学花园探秘”科普活动六年级组初试试卷A(测评时间:2016年12月3日8:30—9:30)一.填空题I (每小题8分,共32分)1.算式11112016123365472108⎛⎫-+-⨯-+ ⎪⎝⎭的计算结果是____________.2.相邻两个自然数,如果它们的数字和都是8的倍数,我们就称它们为“8和数组”,那么最小的一组“8和数组”中两数之和是___________.3.侠客岛的人,原来有13是卧底,后来卧底中有30%的人被驱离出岛,而不是卧底的人有13转变成了卧底.如果侠客岛上现在还有810人,那么现在侠客岛上有__________人是卧底.(没有其他人入岛)4.如图,一道除法竖式中已经填出了“2017”,那么被除数是____________.二.填空题II (每小题10分,共40分)5.今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验.如果一种奇怪的植物,它的生长只和温度有关,如果某一天的温度是n 摄氏度,那么该植物在当天增重2n 克.5天过去,这株植物共增重88克.已知这5天太空舱里的温度的数值都是互不相同的非0自然数,且前3天的总增重量和后3天的总增重量都不是3的倍数,则第3天的温度是____________摄氏度.6.如图,在一直角三角形中,剪掉一个最大的半圆,使得半圆的直径在斜边AB 上;已知AC 长210厘米,BC 长280厘米,那么图中阴影部分的面积是_____________平方厘米.(π取3.14)177.甲、乙、丙三人同时从A 出发匀速向B 行走;甲到B 后立即调头,与乙相遇在距离B 地100米的地方;甲再行120米与丙相遇时,乙恰好到B ,那么此时甲共行了_____________米.8.如图,由54根直线型管道搭成的大正方体框架,一只蚂蚁要从A 点处在管道内部爬过6根管道首次达到B 点处,已知这只蚂蚁在爬行过程中没有走过回头路,且相连的管道都是想通的.那么这只蚂蚁共有_________种可能的爬行路线.(翻转或旋转后相同的路线视为不同的路线)三.填空题III (每小题12分,共48分)9.如图,正方形ABCD 的面积为64平方厘米.图中AE =AF =BG =BH .如果三角形AEF 和三角形BGH 的面积都是27.5平方厘米.那么,梯形GF AB 的面积是__________平方厘米.10.从1至9这9个数字中选出4个不同的数字,组成一个四位数,使得这个四位数能被未选出的5个数字整除,而不能被选出的4个数字整除.那么,这个四位数是____________.11.在空格里填入数字1至6中的某个数字,使得每行、每列和每个23的宫内数字不重复.图中两格之AB C A D CB H G F E间的分数表示两个数中较小数除以较大数得到的商.那么,最后一行从左到右前五个数组成的五位数是__________.。
2017数学花园探秘初赛六年级讲义第3讲几何学生版
![2017数学花园探秘初赛六年级讲义第3讲几何学生版](https://img.taocdn.com/s3/m/36b9c54c3c1ec5da50e270cb.png)
【3】(2012 年迎春杯初赛六年级第 2 题)
将棱长为 5 的大正方体切割成 125 个棱长为 1 的小正方体.这些小正方体的表面积总和是原大正方
体表面积的
倍.
王乃聪 15010104597 QQ:310343359
7
2017 数学花园探秘六年级初赛讲义
【18】(2016 年迎春杯初赛六年级第 11 题)
在每个空格内填入数字 1~4,使得每行每列数字都不重复.表格外的数字表示该方向所在行或列的
第一个奇数或第一个偶数.那么,第三行的四个格从左到右组成的四位数是
.
练习
【1】(2009 年迎春杯初赛六年级第 2 题) 有 10 个同心圆,任意两个相邻的同心圆半径之差等于里面最小圆的半径.如果射击时命中,那么最 里面的小圆得 10 环,命中最外面的圆环得 1 环.得 1 环圆环的面积是 10 环圆面积的_____倍.
A
D
B
C
【8】(2016 年迎春杯初赛六年级第 7 题)
右图是由 9 块相同的长方体摆放而成的大长方体,已知大长方体的表面积是 360 平方厘米,那么一
个小长方体的表面积是
平方厘米.
【9】(2015 五年级网赛) 左图 6×6 的方格中,每行每列 2、0、1、5 四个数字各出现一次,空格把每行每列的数字隔成四位数、 三位数、两位数或者一位数。右边和下面的数表示该行或列里的几个数之和。0 不能作为多位数的 首位。(右图是一个 1、2、3、0 各出现一次的例子)那么,大正方形两条对角线上所有数字之和是 __________.
【2】(2016 年迎春杯初赛六年级第 4 题) 下图六角星的 6 个顶点恰好是一个正六边形的 6 个顶点.那么阴影部分面积是空白面积的
2017年“数学花园探秘”决赛小高A卷(答案作者版)
![2017年“数学花园探秘”决赛小高A卷(答案作者版)](https://img.taocdn.com/s3/m/ca4c00dc227916888586d75e.png)
2017年“数学花园探秘”科普活动小学高年级组决赛试卷A(测评时间:2017年1月1日8:00—9:30)一.填空题Ⅰ(每小题8分,共40分)1. 算式⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-631163163的计算结果是________. 〖答案〗64 〖作者〗武汉 明心书院 夏端2. 一个边长为100厘米的正五边形和五个扇形拼成如图的“海螺”,那么这个图形的周长是________厘米(π取3.14).〖答案〗2384 〖作者〗广州 沃伦教育 李冰莹3. 在2016年里约奥运会女排决赛中,中国队战胜了塞尔维亚队获得冠军.统计4局比赛中中国队的得分,发现前2局的得分之和比后2局的得分之和少12%,前3局的得分之和比后3局的得分之和少8%.已知中国队在第2局和第3局中各得了25分,那么中国队在这4局中的得分总和为________分.〖答案〗94 〖作者〗北京 高思教育 赵家鹏4. 右面两个算式中,相同汉字代表相同数字,不同汉字代表不同数字;那么四位数“李白杜甫”=________.〖答案〗9285 〖作者〗北京 摩比思维 张诗梦5. n 个数排成一列,其中任意连续三个数之和都小于30,任意连续四个数之和都大于40,则n的最大值为________.〖答案〗5 〖作者〗长沙 拓维·天问数学 叶军 徐斌二.填空题Ⅱ(每小题10分,共50分)6. 算式2222220172017201720172017214161201412016120162016201620162016201620161248163264+++++-----------的计算结果是________. 〖答案〗32〖作者〗北京 智康一对一 尹彪7. 有一个四位数,它和6的积是一个完全立方数,它和6的商是一个完全平方数;那么这个四位数是________.〖答案〗7776 〖作者〗北京 学而思培优 胡浩8.在空格里填入数字1~6,使得每行、每列和每个2×3的宫(粗线框)内数字不重复.若虚线框A,B,C,D,E,F中各自数字和依次分别为a,b,c,d,e,f,且a=b,c=d,e>f.那么第四行的前五个数字从左到右依次组成的五位数是________.〖答案〗31462 〖作者〗北京智益加陈岑9.抢红包是微信群里一种有趣的活动,发红包的人可以发总计一定金额的几个红包,群里相应数量的成员可以抢到这些红包,并且金额是随机分配的.一天陈老师发了总计50元的5个红包,被孙、成、饶、赵、乔五个老师抢到.陈老师发现抢到红包的5个人抢到的金额都不一样,都是整数元的,而且还恰好都是偶数.孙老师说:“我抢到的金额是10的倍数.”成老师说:“我和赵老师抢到的加起来等于孙老师的一半.”饶老师说:“乔老师抢到的比除了孙老师以外其他所有老师抢到的总和还多.”赵老师说:“其他所有老师抢到的金额都是我的倍数.”乔老师说:“饶老师抢到的是我抢到的3倍.”已知这些老师里只有一个老师没说实话,那么这个没说实话的老师抢到了________元的红包.〖答案〗16 〖作者〗北京厚朴教育李陆欧10.如图,P为四边形ABCD内部的点,AB:BC:DA=3:1:2,∠DAB=∠CBA=60°.图中所有三角形的面积都是整数.如果三角形PAD和三角形PBC的面积分别为20和17,那么四边形ABCD的面积最大是________.〖答案〗147 〖作者〗北京资优教育科技中心成俊锋三.填空题Ⅲ(每小题12分,共60分)11.有一列正整数,其中第1个数是1,第2个数是1、2的最小公倍数,第3个数是1、2、3的最小公倍数,……,第n个数是1、2、……、n的最小公倍数.那么这列数的前100个数中共有________个不同的值.〖答案〗36 〖作者〗成都科雅数学彭泽12.如图,有一个固定好的正方体框架,A、B两点各有一只电子跳蚤同时开始跳动.已知电子跳蚤速度相同,且每歩只能沿棱跳到相邻的顶点,两只电子跳蚤各跳了3歩,途中从未相遇的跳法共有________种.〖答案〗343 〖作者〗北京资优教育科技中心成俊锋ABACDPB 201713.甲以每分钟60米的速度从A地出发去B地,与此同时乙从B地出发匀速去A地;过了9分钟,丙从A地出发骑车去B地,在途中C地追上了甲;甲、乙相遇时,丙恰好到B地;丙到B地后立即调头,且速度下降为原来速度的一半;当丙在C地追上乙时,甲恰好到B地.那么AB两地间的路程为________米.〖答案〗1620 〖作者〗北京资优教育科技中心陈平14.在一个8×8的方格棋盘中放有36枚棋子,每个方格中至多放一枚棋子,恰好使最外层所有方格中均没有棋子.规定每一步操作可选择一枚棋子,跳过位于邻格(具有公共边的方格)的棋子进入随后的空格中,同时拿掉被跳过的棋子(如下图所示);若邻格中没有棋子,则不能进行操作.那么最后在棋盘上最少剩下________枚棋子.〖答案〗2 〖作者〗武汉明心书院付谦。
数学花园探秘(迎春杯)六年级初赛试题及详解
![数学花园探秘(迎春杯)六年级初赛试题及详解](https://img.taocdn.com/s3/m/f25e0906964bcf84b9d57b37.png)
一、 填空题 I(每题 8 分,共 32 分) 1 1 1 1 1、算式( + )×2016+12+3 的计算结果是________. 36 54 72 108 2、相邻两个自然数,如果他们的数字和都是 8 的倍数,我们就称他为“8 和数组”,那么最 小的一组“8 和数组”中两数之和是________. 1 3、侠客岛的人,原来有 是卧底,后来卧底中有 30%的人被驱离出岛,而不是卧底的人有 13 3 转变成了卧底。如果侠客岛上现在还有 810 人,那么现在侠客岛上有_____人是卧底。 4、如图,一道除法竖式中已经填出了“2017”,那么被除数是_______.
二、填空题 II(每小题 10 分,共 40 分) 5、今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验,如果一种奇怪的 植物,它的生长之和温度有关,如果某一天的温度是 n 摄氏度,那么该株植物在当天增重 n2 克。5 天过去,这株植物共增重 88 克,已知这 5 天太空舱里的温度的数值都是互不相同的飞 0 自然数,且前 3 天的总增重量都不是 3 的倍数,则第 3 天的气温是_______摄氏度。 6、如图,在一直角三角形中,剪掉一个最大的半圆,使得半圆的直径在斜边 AB 上,已知 AC 长 210 厘米,BC 长 280 厘米,那么图中阴影部分的面积是_________平方厘米。(π 取 3.14)
98
比例法解行程,此题比以往考查的行程问题要稍微容易一些,只要找到速度之比就可 以迎刃而解。 8、答案:124 解析:通过俯视图可以知道,从 A 到 B 需要经过 4 根管道,但是题 目要求经过 6 根管道,故而分成两种情况,第一种是指在中间这个平面移动,第二种 是经过上平面或者下平面。第一种情况可以轻易数出只有 4 种。 第二种情况,需要上下爬行一次,那么水平爬行还是 4 根管道,通过俯视图标数可以 知道水平移动要经过 5 个点,而且标出爬到 B 的爬行情况。最后加上需要在五个点内 选两个点上下,一定是靠近 A 的点向下、靠近 B 的点向上或者靠近 A 的点向上、靠近 2 B 的点向下两种情况,所以是 6×C5 ×2=120,两种情况相加 120+4=124 种。
2017“数学花园探秘”科普活动(迎春杯)小学三年级组 初试模拟考试试卷
![2017“数学花园探秘”科普活动(迎春杯)小学三年级组 初试模拟考试试卷](https://img.taocdn.com/s3/m/16eb7d86bb68a98271fefaa6.png)
2017“数学花园探秘”科普活动(迎春杯)小学三年级组初试模拟考试试卷一.填空题I(每小题8分,共32分)1、算式31×39+24×98-193×8的计算结果是()。
2、甲、乙、丙三人分别是里约奥运会男子10米气步枪的奖牌得主,他们说:甲:“我既不是第一,也不是第二”;乙:“我的名次排在甲的后面”;丙:“我的成绩是三人当中最差的”;现在知道,甲、乙、丙分别获得第A、B、C名,并且其中只有一个人口误了,那么三位数BAC=()。
3、如图,大正方形的对角线上放着4个正方形,正方形4、B、C、D的边长是依次增大的整数且成等差数列,如果大正方形的边长为24,那么正方形C的边长为()。
4、下图中的数字谜,在空格中填入不同的数字,最后的计算结果是()。
□□□+□□□□□□ 7二、填空题Ⅱ(每小题10分,共40分)5、在一堂趣味数学课上,许老师准备采用“小组讨论”的形式让大家学习莫比乌斯环.当天班里共16人,4人一组,每组有一个小黑板进行最后的小组展示.现在许老师设计的环节如下:各组先自行讨论5分钟,然后轮流上台进行3分钟展示,再用2分钟回答其他组同学或老师的提问,所有小组发言完毕后,老师再用3分钟总结.已知:此班11:30下课,老师坚决不拖堂.那么许老师最晚()就要开始小组讨论环节。
(请将答案写为四位数,例如,10点10分,就写为1010;9点3分,就写为0903.)6、甲乙丙三名同学各自在卡片上写了一个数。
甲让乙看了自己卡片上的数,乙说:“我写的数比你的2倍少3.”乙让丙看了自己卡片上的数,丙说:“我写的数比你的6倍多10.”丙让甲看了自己卡片上的数,甲说:“你写的数比我的11倍多1.”那么三人所写的数的总和是()。
7、右图中,等腰直角三角形有个()。
8、甲乙丙各想了一个两位数,并且他们都知道甲写的是7的倍数,乙写的是11的倍数,丙写的是16的倍数.下面是三个人的聊天内容:乙:“我与丙的个位数字不同。
“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)
![“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)](https://img.taocdn.com/s3/m/b78a945d102de2bd97058874.png)
2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是3.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多个月.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加天.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有张积分卡.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过秒钟,乙才第一次到达B.11.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是.2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是2418 .【解答】解:(+++)×2015=()×2015==2418故答案为:2418.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是20685【解答】解:依题意可知:首先根据图中方框代表的是金三角,只能唯一情况是10﹣9.所以结果1中的百位和十位为10,那么除数的百位和十位就是10,商的首位是1.再根据结果2的首位数字是9,那么商的十位数字是9,根据尾数是5,推理出除数为105.商的前两位是19.最后结果3的数字经尝试不能是600多只能是105的7倍735.被除数为105×197=20685.故答案为:206853.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多10 个月.【解答】解:根据分析,因都是正常耗电,正常工作,故耗电速度一样,甲时钟耗尽电量所需时间是乙时钟的电池耗尽电量所需时间的6倍,所以甲时钟可以正常工作:6×2=12个月,比乙时钟多工作:12﹣2=10个月.故答案是:10.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的 3 倍.【解答】解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是 2 .【解答】解:假设原数分解质因数后为2a×3b,乘6后变为2a+1×3b+1,由题意:3(a+1)(b+1)=(a+2)(b+2),由于A要尽可能小,因此令a=1,b=0即可得到答案.所以满足条件的A最小值为2.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加15 天.【解答】解:365×47.9%×20%﹣20≈174.8×20%﹣20≈35.0﹣20=15(天)答:下半年需要使优良天气相比2013年同期至少增加15天.故答案为:15.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?【解答】解:由题意可知,有ab,ac,ad和ab,ac,bc两种不同的订阅类型:ab,ac,ad有×=5×(4×3×2)=5×24=120种;ab,ac,bc有×=10×6=60种.所以共有120+60=120种不同的订阅方式.8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是40 .【解答】解:根据分析,如图1所示,由对称性可知,△ADE与△OBE面积相等,因此可知,△AOD的面积与△AOB的面积相等,都等于△ABC面积的三分之一,由于△AOD与△ABC都是圆的内接正三角形,因此可以得到小圆的面积为大圆面积的三分之一,依此小圆面积为40故答案是:40.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有15 张积分卡.【解答】解:根据分析,假设第一、二句是对的,那么总和应该是20的倍数,根据第一句,希希与珊珊积分卡之比应该为15:5,根据第二句,希希与珊珊卡数之比应该为4:16,每个人差的11倍对应了7张卡,不是整数,舍去.假设第一、三句是对的,总和应该是12的倍数,根据第一句,二人积分卡之比为9:3,根据第二句,二人积分卡之比为10:2,差的1份为多给的2张,成立,因此希希和珊珊积分卡之比为6:24,根据第三句,希望和珊珊积分卡之比为25:5,相差的19份为9张,不是整数,不成立,舍去.综上,第一、三句是对的,希希有15张积分卡.故答案是:15.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过56 秒钟,乙才第一次到达B.【解答】解:甲经过12秒钟到从A到达B,则再过9秒钟后甲到达C点,且BC的长度等于AB长度的,则AC的长度等于AB长度的,即21秒钟的时间内,甲的路程为AB+BC=AB段,乙的路程为AC=AB,丙的路程为BC=AB,则速度比甲:乙:丙=7:1:3,丙从C到达A所用时间=21×=7(秒),此时乙从C点到达D点,所用时间也为7秒,因为CA=BC,则CD=AC,则CB=8CD,丙到达A后乙到达B的所需时间:8×7=56(秒)故答案为:5611.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是21436 .【解答】解:依题意可知:如图所示,D,E,F必然是1,2,4或者4,2,1.因此B,C一定是3和6.故可知A是5.而G,H,I为三个连续自然数,I存在2倍关系,则只能是1,2,3.故右上角为6.左上角为4.并可以判定B是6,C是3.因此C的右边临格为6.以此为突破口,可以填表如图所示:故答案为:21436声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:12:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
数学花园探秘 迎春杯 六年级初赛试题及详解
![数学花园探秘 迎春杯 六年级初赛试题及详解](https://img.taocdn.com/s3/m/370b83251ed9ad51f01df284.png)
6、8 至少取一个,要么取 8、要么取 6; 3、如果取 8,那么 4 必须取,否则
XYZ8 (Z 为奇)一定不是 4 的倍数,进而发现无数可取,否则必然不是 3 的倍数或
者能被本身的数整除; 4、那么必须取 6,进而必须取 3、9,这样我们取的数就
是 3、6、9、5;
5、为了是 8 的倍数则末尾必须为 6,剩下的 3 个数,共可组
5. 答案:3 解析:该题的本质是找到 5 个互不相同的平方数,使得他们的和为 88,
由于平方数除以 3 的余数只能是 0 或 1,要使得最终的和为除以 3 余 1 的数(88),
那么有两种情况,要么除以 3 余 1,1,0,1,1;要么除以 3 余 0,0,1,0,0.显然
后一种情况可以排除,因为最小的 4 个除以 3 余 0 的平方数的和已经超过 88
角形 BGH 的面积都是 27.5 平方厘米,那么,梯形 GFAB 的面积是_______平方厘米。
10、从 1 至 9 这 9 个数字中选出 4 个不同数字,组成一个四位数,使得这个四位数能被 未选出的 5 个数字整除,而不能被选出的 4 个数字整除,那么,这个四位数是_______.
11、在空格里填入数字 1 至 6 中的某个数字,使得每行、每列和每个 2×3 的宫内的数字 不重复,图中两格之间的分数表示两个数中较小数除以较大数得到的商,那么,最后一行从 左到右前五个数组成的五位数是________.
97
2017 年“数学花园探秘”解析
1. 答案:43 解析:原式=118 (12 -13 +14 -16 )×2016+15=118 ×14 ×2016+15=43
提取公因数是重要考点,该题设计到分数的提取公因数,较为创新,如果直接通分会
2017年6年级年测数学试卷解析
![2017年6年级年测数学试卷解析](https://img.taocdn.com/s3/m/615a2fc0d15abe23482f4df6.png)
【考点】定义新运算 【难度】☆☆ 【答案】B 【分析】原式 1
2
3
6
5 4 7
5
0
5.
4.
艾迪有一本书,他原计划每天看 10 页,10 天看完.现在他已经看了 5 天,平均每天看 8 页.如果艾迪想要按原计划 10 天把书看完,那么从现在开始他应该平均每天看 ________页. A.8 B.10 C.12 D.14
B C D
N E
1 1 1 【分析】如下图,连接 HC、CO、DO、HO,可知 SCOD S , SCDGH 4 S S ,所以 8 8 2 SGOD 1 1 1 S S 2 SGOM SMON , 另 外 SE 2 4 8
O M O F
1 S 8
【考点】应用题,平均数问题 【难度】☆☆ 【答案】C 【分析】这本书一共有 10 10 看 60
5 100 页,还剩下 100 5 8 60 页要看,所以之后平均每天
12 页才能按原计划.
5.
如图,左边是一个分球器.把小球从上方处放进去之后,第 1 个球会从左边出来,第 2 个球从中间出来,第 3 个球从右边出来,第 4 个从左边出来,第 5 个从中间出来,第 6 个从右边出来……依此类推.现在,我们把 11 台左图中这样的分球器组合成一台大机 器,如右图所示,然后不断的从入口放入小球.那么最先从最右边的出口 o 出来的是放 入的第________个球.
个位为 2:
2
的倍数又是 11 的倍数,且此时 M 同理当个位为 6 时, M
N 的差最小为 31592 69817
29513 2079 .
2079 .
N 的差最小为 71896
2017笔试初赛_6年级C卷(答案作者)
![2017笔试初赛_6年级C卷(答案作者)](https://img.taocdn.com/s3/m/c3e7c41802020740be1e9bda.png)
2017年“数学花园探秘”科普活动六年级组初试试卷C(测评时间:2016年12月3日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每小题8分,共32分)1. 算式1120171123433⎡++⎤⎛⎫⨯⨯++ ⎪⎢⎥⎝⎭⎣⎦的计算结果是________.〖答案〗57 〖作者〗湖北 明心书院 付谦2. 太极图意义深远,其内涵包含了古代哲学,体现出阴阳概念,具有对称之美.已知图中的太极大圆半径是10厘米,那么阴影部分的面积是________平方厘米.(π取3.14) 〖答案〗157 〖作者〗广州 小匠教育 李子青3. 已知质数a 、b 、c 满足:38a b c ++=.那么a b c ⨯⨯的最大值为________. 〖答案〗646 〖作者〗南京书人教育 张东杰4. 某款手机充电5分钟,能够通话2小时,或者玩游戏1.5小时.某人将一部完全没电的手机充电4分钟,之后打了20分钟的电话.请问这部手机还能玩________分钟的游戏. 〖答案〗57 〖作者〗太原 新东方 刘酉祯二.填空题Ⅱ(每小题10分,共40分)5. 某个实心长方体是由若干个棱长为1厘米的正方体堆叠而成,将其按如图方式放置墙角(图只示意堆放方式,并不代表实际情况),刚好有40个小正方体看不见,那么原长方体的表面积最小是________平方厘米. 〖答案〗126 〖作者〗南京 书人教育 经鑫6. 如图所示,有一个五边形ABCDE ,其中M 、N 、P 分别为边AE 、BC 、DE 的中点,每块图形中的数表示该块图形的面积(单位:平方厘米),则图中阴影部分的面积是________平方厘米.〖答案〗31 〖作者〗长沙 拓维天问数学 叶军 杨星E C7. 今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验.如果一种奇怪的植物,它的生长只和温度有关.如果某一天的温度是n 摄氏度,那么该株植物在当天增重2n 克.5天过完,这株植物共增重88克.已知这5天里,每天太空舱里的温度数值都是大于0的自然数且依次递增,则第4天的气温是________摄氏度. 〖答案〗5 〖作者〗北京 摩比思维 曹寅8. 将右图中的乘法竖式补充完整后,两个乘数的差(大减小)是________.〖答案〗4286〖作者〗广州 小匠教育 李子青三.填空题Ⅲ(每小题12分,共48分)9. 甲乙两人同时从A 地出发去B 地,乙的速度比甲的速度快50%.在距离B 地6千米处有个淘气的小精灵,他会把每次经过的人的速度变为原来的一半.当甲到精灵处时,刚好与第一次从B 地返回的乙相遇.那么当乙第一次回到A 地时,甲距离A 地________千米. 〖答案〗22 〖作者〗天津 华英 王昭10. 如图,有一个4×4的方格网络,每个方格都是边长为1分米的正方形,一只蚂蚁在点A 处,试图沿着方格网络爬遍所有的线(可重复)然后回到点A ,那么这只蚂蚁至少要爬________分米. 〖答案〗48 〖作者〗长沙 思齐 程良伟11. 如图,由54根直线型管道搭成的大正方体框架,一只蚂蚁要从A 点处在管道内部爬过6根管道首次达到B 点处,已知这只蚂蚁在爬行过程中没有重复爬同一根管道,且相连接的管道都是相通的.那么这只蚂蚁有________种可能的爬行路线.(翻转或旋转后相同的路线视为不同的路线)〖答案〗124 〖作者〗北京 摩比思维 石健12. 你认为本试卷中一道最佳试题是第________题(答题范围为01~11);你认为本试卷整体的难度级别是________(最简单为“1”,最难为“9”,答题范围为1~9); 你认为本试卷中一道最难试题是第________题(答题范围为01~11). (所有答题范围内的作答均可得分,所有的评定都将视为本人对本试卷的有效评定,不作答或者超出作答范围不得分.)A21 7B。
数学花园探秘(迎春杯)六年级决赛试卷及详解
![数学花园探秘(迎春杯)六年级决赛试卷及详解](https://img.taocdn.com/s3/m/7308bdc3ad51f01dc281f18c.png)
超 出作答范围不得分.)
102
1.答案:64
2017 数学花园探秘科普活动小高决赛 A 解析 解析:原式=(632-613 )+(1-613 )=63+1=64
2.答案:2384
解析:500+15 ×2×π ×(100+200+300+400+500)=2384
3.答案:94 解析:注意到前三局比前两局多 25 分,后三局比后两局多 25 分,所以中国队得
12.答案:2 解析:注意到如下操作:
所以每次可以将一个“L”形的四个棋子中去掉 3 个,另一个回到原格。所以将 36 枚棋子按图中 的分组依次去掉,最后剩下右下的 1×3 的棋子,再操作一次即可剩下 2 枚。
下面证明最少剩下 2 枚棋子
104
如下图对期盼进行三染色,则每次操作时,有两种颜色格内的棋子数减 1,第三种颜色格内的棋 子数加 1,而开始时三种颜格内的棋子数均相等,所以每次操作后三种颜色格内的棋子数奇偶 性相同,而最后棋子不可能一枚不剩,所以最少剩下 2 枚棋子。
A
B
11. 有一列正整数,其中第 1 个数是 1,第 2 个数是 1、2 的最小公倍数,第 3 个数是 1、2、 3 的最小 公倍数,„„,第 n 个数是 1、2、„„、n 的最小公倍数.那么这列数的前 100 个数 中共_______个不同的值.
2017年小学六年级毕业调研考试数学试卷
![2017年小学六年级毕业调研考试数学试卷](https://img.taocdn.com/s3/m/7c26bf9fe53a580216fcfe5f.png)
2017年小学六年级毕业调研考试数学试卷注意:本试卷共8页,试题总分120分,考试时间90分钟。
一.填空题。
(2题2分、7题1分,其余每空1分,共30分)( )=()% 1、()∶20=1∶()=0.2=502、2小时30分=()小时(填分数)3.06升=()升()毫升3、一个六位数,最高位上的数是最小的质数,万位上的数既是5的倍数又是5的因数,百位上的数是最小的合数,其余各位都是0,这个数写作:()。
把它改写成用“万”作单位的数是(),省略万位后面的尾数约是()万。
4、一个西瓜的质量是2kg,把它平均分给10个小朋友,每个小朋友分得这些西瓜的(),能分到()kg的西瓜。
5、一个小数,如果把它的小数点向左移动一位,就比原小数小22.14,原小数是()。
6、一个四位数是,它既是2的倍数,又有因数5,同时又能被3整除,这个数最小是()。
7、若(x+y):y=8:3,则x:y=():()8、儿童节期间,一支钢笔打八折后的售价是20元,这款钢笔的原价是()元9、一个正方体的表面积是180平方厘米,把这个正方体切割成2个相同的长方体,表面积增加了()平方厘米。
10、浓度为10%的盐水中,盐与水的比是()。
11、一个圆柱与一个圆锥的底面积和高都相等,已知圆柱的体积比圆锥的体积大12立方厘米,这个圆锥的体积是()立方厘米,这个圆柱的体积是()立方厘米。
12、把一个长5cm,宽3cm的长方形按2:1放大,得到的图形的面积是()cm²。
13、从A地到B地,甲要走2小时,乙要走150分钟,甲,乙两人的速度之比是()。
14、圆柱的体积一定,它的高与底面积成()比例。
15、在长12.4cm,宽7.2cm的长方形纸片中剪半径是1cm的圆,能剪()个。
16、2017年的第一季度有()天。
17、找规律:1,-3,5,-7,9,( ),( ),-15。
18、已知图中长方形的面积是30cm 2,半圆的面积是( )cm 2。
2017数学花园探秘详解
![2017数学花园探秘详解](https://img.taocdn.com/s3/m/066a25f4102de2bd96058872.png)
2017“数学花园探秘”科普活动(小低组)——参考答案视听题(注:具体题意请参看视听题动画演示)第一关看谁算的快1)5+5+5+5+1=2)21+13 + 9=3)26+28+74=4)48-2-2-2-2-2=5)169-(16+23+61)=【难度】★【题目解析】此题考察加减法计算基础,涉及巧算方法和小括号的理解与使用.1)5+5+5+5+1=212)21+13+9=433)26+28+74=1284)48-2-2-2-2-2=385)169-(16+23+61)=69【考察知识】速算巧算第二关镜子里的画秋天到了,树叶掉了,下图是小君用树叶在一张纸上做的一幅画.当小君拿着画站在镜子前,请问小君看到的镜子中的图像是A、 B、C中的哪一个?请把正确选项写在答题纸的对应位置.答案:B【难度】★【题目解析】动画演示中镜子在画的前面,所以图形照镜后将左右相反,A和原图的关系是上下相反,C和原图长一样,没有变化,只有B图和给出的画左右相反.【考察知识】生活中的对称思想答案:5下【难度】★【题目解析】短时记忆的考查,在图形变化和声音两种因素的影响下,孩子是否能记住星星闪的次数.【考察知识】专注力、记忆力第四关转一转小朋友,接下来屏幕上将出现一个由四个小方块粘在一起组合而成的图形,认真观察下面ABCDE五个选项,有两个选项不能由原图旋转或者翻转得来,请你把这两个不能由原图旋转或者翻转得来的选项找出来,填写在答题纸对应位置.答案:A、E【难度】★★【题目解析】仔细观察所给的图,不管是旋转还是翻转,那么至少有一个方向是有三层的.再观察所给的选项,A和E中不管哪个方向,最多都只有两层,所以A和E选项不能由上图旋转或者翻转而成.通过尝试,B、C、D都可以由上图旋转或翻转而成.【考察知识】立体空间想象能力小朋友们,我们现在用的数字1、2、3、4、5、6、7、8、9、0是由欧洲传入,被称为阿拉伯数字.其实,最早阿拉伯数字是古印度人发明的.曾经在一个时期,这些印度数字的写法并不是现在的写法,而是后来慢慢演变过来的.下面是阿拉伯数字的一些古老写法,请你仔细观察并记忆,然后回答问题.代表的三位数是___________.答案:347【难度】★★【题目解析】通过对古老数字写法的观察,我们能找到一些相似的形状,比如古老数字中的2与现在我们所使用的2比较相似,那也会发现古老数字版的4更像现在的8,通过两种对比找出相似性和差异性,才能避免最后掉入陷阱中.【考察知识】记忆力、观察能力接下来屏幕上会出现一张卡片,卡片从图①开始顺时针旋转,旋转成图②,再旋转一次成图③,按照这样的规律,请问图③旋转到图④,应该旋转成A、B、C、D中的哪一个?请把正确选项填写在答题纸的对应位置.答案:C【难度】★★★【题目解析】仔细观察图形的变化,根据图形顺时针的旋转进行答案的排除,A和B存在明显的不同,其中漏掉了部分格子,D旋转的方向不同,排除法锁定答案为C.【考察知识】观察力第七关装盒子下课后,乐乐帮老师把所有的正方体小木块收到一个立方体大盒子里,已经放了一部分,请问再放多少块就能把盒子全部装满?请把正确答案填写在答题纸对应位置.答案:10【难度】★★★【题目解析】根据观察我们发现整个大立方体盒子一共需要27块小方块,再减去已经放好的17块,答案为10块.【考察知识】立体图形计数接下来,屏幕中有一个等腰直角三角形的纸,小朋友们仔细看,将下面这张纸对折一次,再对折一次,然后沿着虚线剪开,请问整张纸被剪成了几个单独的小纸片?请把正确答案填写在答题纸对应位置.答案:4个【难度】★★★【题目解析】通过看动画中的动手演示,进行空间想象,通过两次对折纸片变成四层,剪完后的如下图,刚好4个单独的小纸片:【考察知识】空间想象能力第九关翻牌游戏花花和园园两个小朋友一起玩翻牌游戏.花花拿了20张不一样的扑克牌,园园从中抽出一张发现是黑桃A,之后便把黑桃A还给花花,插在了从下往上数的第11张.接着花花把手里的牌依次从左到右、从上到下的摆好.聪明的小朋友,请你找一找,现在这张幸运黑桃A 在第几行第几列.答案:第2行第5列【难度】★★★【题目解析】排队问题的变形,从小往上第11张就是从上往下的第10张,那按照排列顺序,第10张就应该在第2行的第5列【考察知识】排队问题第十关拼接小方块下面的图形是由右侧图形中的两块图形拼接形成的,请你仔细看一看,它是由A、B、C、D、E当中的哪两块图形拼成的?答案:A和D【难度】★★★【题目解析】仔细观察给的图,如果最下一层右后方无方块,那么这个图由7个小方块组成;如果最下一层右后方有方块,那么这个图由8个小方块组成.5个选项是由4或5个小方块组成的,那么可以判断,最下一层右后方有方块.再观察选项,得出所选的选项应有一块有三层,推出其中一块选择A或者C,另一块就需要在B和D中选择(因为E有5个小方块组成,超过了总数).如果选择A,那么另一块需要填满A右下角的空,通过尝试,D符合要求.所以A和D可以拼成上图.如果选择C,那么另一块需要使C左列为两行,经过尝试B和D 都不符合要求.所以本题选择A和D.有的小朋友空间感特别好,可以通过原图对照法,迅速观察到A和D是可以不通过任何翻转就直接拼组成所给图形的.【考察知识】立体图形与空间想象笔试题答案:2017【难度】★★【题目解析】根据第一个算式,找到突破口“花”.三个数字相加,“花”只有两种可能,1或者2,假设花为“2”,发现“数+花+园”的结果最大只能为19,所以排除“花”为2,“花”只能为1;根据“花”为1,“花+花=数”,推理出“数=2”,所以第一个算式变为“2+1+园=1学”,这个算式要凑两位数,园只可能是7、8、9,通过依次尝试,推理出园=7,学=0;所以得出数学花园代表的四位数为2017.【考察知识】数字谜答案:A【难度】★★【题目解析】通过观察发现图1是由5个小方格组成的图形,观察尝试发现A可以用图1拼成,而且,图B是23个小放歌,图C是21个小方格,不能由5凑出来总数,所以不能是由图1拼成的.【考察知识】图形剪拼答案:27【难度】★★★【题目解析】根据图中已知的2、5、6三个数字可推理出:①这六个数字有两种可能性,1、2、3、4、5、6或者2、3、4、5、6、7;②2、5、6这三个数字是相邻的,不能相对.六个数字如果为1~6,则1+6=2+5=3+4符合对面数字和相等,但是这样2和5就需要相对,与题目已知条件不符;六个数字如果为2~7,则2+7=3+6=4+5符合对面数字和相等,且2、5、6这三个数字相邻,符合题意.所以这六个数字是2、3、4、5、6、7,正确答案为2+3+4+5+6+7=27.【考察知识】正方体找对面答案:19个【难度】★★★【题目解析】改变灯光包含两种情况,不亮的小方块灯打开灯,已经亮的小方块灯关闭.根据左右两边的数字对比,2变成0需要动3个小方块灯,0变成1需要变7个小方块灯,1变成0一样是7个小方块灯,7变成1需要动2个小方块灯,所以加在一起共需要变动3+7+7+2=19个小方块灯.【考察知识】图形计数答案:7点【难度】★★★【题目解析】根据老师的描述,从昨晚9点到中午12点有15个小时,被分成了相等的三份,得出一份是5个小时,所以距中午12点吃饭还有5个小时,得出现在是早上7点.【考察知识】逻辑推理答案:A【难度】★★★【题目解析】根据第一个天平推理出A>B,通过第一个与第二个天平对比,得出A+D>A+C,所以D>C,通过第三个天平推理出B>D,综合前面的结论,得出A>B>D>C,所以A最重.【考察知识】等量代换答案:36【难度】★★★★【题目解析】首先2颗糖,第一次摆放1颗,第二次刚好是在两个间隔之间摆放2颗,第三次是4个间隔摆放4颗,第四次是8个间隔摆放8颗,第五次16个间隔摆放16颗,加上最后的3颗糖,2+1+2+4+8+16+3=36(颗).【考察知识】间隔问题、找规律答案:795【难度】★★★★【题目解析】从三位数中最高位开始有序的尝试,百位到十位、个位,从大的数字9开始凑,得出最大的三位数为995;最小三位数通过有序的尝试,百位为1的话,用掉两根火柴棒,个位十位没有能凑15根火柴棒的,由此发现百位最小只能是2,则最小三位数为200,最后得出两数的差为995-200=795.【考察知识】动手操作、计算答案:6【难度】★★★★【题目解析】根据东东的话,猜测出西西和南南手上的四张牌刚好为1、3、5、7四个奇数,东东自己拿2、8;乙说东东、南南两人自己的两张牌和相等,已经知道东东手中的牌的和为2+8=10,则南南为3+7=10,推理出西西的两张牌为1、5,所以西西的两张牌数字和为1+5=6. 【考察知识】逻辑推理答案:【难度】★★★★【题目解析】观察发现后从一宫突破,圆圈在角上,说明圆圈中不能填写2或者3,如果填写2或者3,圆圈周围的3个格子在同一个宫,同一宫中只能有一个△,则圆圈中只能填写1;再根据第二列圆圈中的3推理出第一个宫的3,找到突破口后按照数独规则推理即可.【考察知识】数独答案:129【难度】★★★★【题目解析】想要收获最多金币,最好的情况是从起点到终点的过程中走过所有小岛,尝试后发现一定会走重复路线,全部金币都拿到是不可能实现的;那开始尝试放弃一些金币比较少的小岛,从放弃通过3个金币的小岛开始尝试,发现放弃3不行,放弃通过有4个金币的小岛可以实现.所以路线是:起点-6-3-8-16-14-9-7-5-10-11-15-12-13-终点,顺序不唯一. 【考察知识】枚举法答案:110101【难度】★★★★【题目解析】理解规则后,从同行、同列、同一条斜线已经出现3个相同数字入学,层层推理,思路步骤不唯一.【考察知识】数独。
“迎春杯”数学花园探秘初赛试卷(六年级b卷)
![“迎春杯”数学花园探秘初赛试卷(六年级b卷)](https://img.taocdn.com/s3/m/4f030290dd36a32d7275816b.png)
2016年“迎春杯”数学花园探秘初赛试卷(六年级B卷)一、填空题Ⅰ(每题6分,共24分)1.(6分)算式2016×(﹣)×(﹣)的计算结果是.2.(6分)涵涵老师与希希老师的课时费之比为5:4.公司决定对这两位助教老师加快培养,给两位老师的课时费都上调了20元,她们的课时费之比变成了6:5.上调之后,这两位老师的课时费之和为元.3.(6分)如图,乘法竖式中已经填出了3和8,那么,乘积是.4.(6分)对于自然数N,如果1﹣9这九个自然数中至少有五个数可以整除N,则称N是一个“五顺数”,则在大于2000的自然数中,最小的“五顺数”是.二、填空题Ⅱ(每题10分,共40分)5.(10分)正方形ABCD中,AB长为4厘米,AE=AF=1,四边形EFGH是长方形,且FG=2EF.那么“风筝园”(阴影部分)的总面积为平方厘米.6.(10分)桌子上有一些扑克牌,甲拿走了质数张,剩下的个数是5的倍数;乙又拿走了质数张,剩下的个数是3的倍数;丙拿走了质数张,剩下的个数是2的倍数;丁拿走了质数张,剩下了质数张给戊.已知甲、乙、丙、丁、戊拿走的张数是递减的,那么桌子上原先至少有张牌.7.(10分)一个自然数A连着写2遍(例如把12写成1212)得到一个新的数B,如果B是2016的倍数,则A最小是.8.(10分)如图,一个半径为10的圆内接两个正方形,这两个正方形重叠的部分刚好构成一个正八边形,那么这个正八边形的面积与图中阴影部分的面积差为.(π取3.14)三、填空题Ⅲ(每题12分,共48分)9.(12分)12个蓝精灵围着圆桌坐着,每个蓝精灵都讨厌与他为邻的2个蓝精灵,但不讨厌其余的9个蓝精灵.蓝爸爸要派出一个由5个蓝精灵所组成的小队来营救格格巫抓走的蓝妹妹,小队中不能有互相讨厌对方的人,则有种方法来组队.10.(12分)2016年,天堂里有四个数学家在讨论各自去世的年龄.甲:我40岁时候,乙就去世了,真是令人惋惜啊!又过了不到十年,我也去世了.乙:对啊,而且我去世时的年龄,正好是丙去世到现在的年数.丙:记得1980年,我参加了甲的葬礼,当时他比我小十岁.丁:你们三个人出生的时间正好是一个等差数列.那么丙是年去世的.11.(12分)甲、乙两人同时从A地出发去B地:甲比乙快,甲到达B地后速度变为原来的2倍并立即返回A地,在距离B地240米处与乙相遇;乙遇到甲后速度也变为原来的2倍,并掉头返回;当甲回到A地时,乙距离A地还有120米.那么AB两地的距离是米.2016年“迎春杯”数学花园探秘初赛试卷(六年级B卷)参考答案与试题解析一、填空题Ⅰ(每题6分,共24分)1.(6分)算式2016×(﹣)×(﹣)的计算结果是8 .【解答】解:2016×(﹣)×(﹣)=63×8×4×(﹣)×(﹣)=4×[(﹣)×8]×[(﹣)×63]=4×[×8﹣×8]×[×63﹣×63]=4×[2﹣1]×[9﹣7]=4×1×2=8故答案为:8.2.(6分)涵涵老师与希希老师的课时费之比为5:4.公司决定对这两位助教老师加快培养,给两位老师的课时费都上调了20元,她们的课时费之比变成了6:5.上调之后,这两位老师的课时费之和为220 元.【解答】解:根据分析,设涵涵老师与希希老师的课时费分别为5k和4k,则上调后变成:5k+20和4k+20,故:(5k+20):(4k+20)=6:5解得:k=20,故上调后两位老师的课时费之和为:5k+20+4k+20=9k+40=9×20+40=220(元).故答案是:220.3.(6分)如图,乘法竖式中已经填出了3和8,那么,乘积是1843 .【解答】解:依题意可知:结果中有1个进位那么前两位数字是18,乘积中最大数字就是两位数乘一位数的最大99×9=891结果是800多,不会有900多.故第一个结果首位是8,第二个结果中的首位数字就是9.尾数是3的共有1×3或者7×9,再根据第二个乘积是两位数,即97×19=1843故答案为:18434.(6分)对于自然数N,如果1﹣9这九个自然数中至少有五个数可以整除N,则称N是一个“五顺数”,则在大于2000的自然数中,最小的“五顺数”是2004 .【解答】解:依题意可知:2001是1,3,倍数不满足题意;2002=2×13×11×7不满足题意;2003不满足题意;2004是1,2,3,4,6的倍数,满足题意.故答案为:2004二、填空题Ⅱ(每题10分,共40分)5.(10分)正方形ABCD中,AB长为4厘米,AE=AF=1,四边形EFGH是长方形,且FG=2EF.那么“风筝园”(阴影部分)的总面积为 4 平方厘米.【解答】解:AC的长=4EF的长:=梯形AEHC的面积:(2+4)××=6××=3(平方厘米)六边形AEHCGF的面积3×2=6(平方厘米)长方形EFGH空白部分的面积是长方形面积的一半=4(平方厘米)阴影部分的面积6﹣2=4(平方厘米)答:阴影部分的面积是4平方厘米.故答案为:4.6.(10分)桌子上有一些扑克牌,甲拿走了质数张,剩下的个数是5的倍数;乙又拿走了质数张,剩下的个数是3的倍数;丙拿走了质数张,剩下的个数是2的倍数;丁拿走了质数张,剩下了质数张给戊.已知甲、乙、丙、丁、戊拿走的张数是递减的,那么桌子上原先至少有63 张牌.【解答】解:如下表格以此递推剩下拿走戊 3丁10 7丙27 17乙40 19甲63 23以上数据都符合题意,并且是最小数值.故:应该填63.7.(10分)一个自然数A连着写2遍(例如把12写成1212)得到一个新的数B,如果B是2016的倍数,则A最小是288 .【解答】解:2016=25×7×32,因为B是2016的倍数,即B=2016k;则A至少是两位数,则两位数表示为,B==×101,101与2016没有公因数,所以A不是最小;因此换成A是三位数,表示为,则B=×1001=×13×11×7,则×13×11×7=25×7×32k,×13×11=25×32k,因为后面,A×(10001、100001…,都不是2和3的倍数),所以要使A最小,则A==25×32=288;答:A最小是 288.故答案为:288.8.(10分)如图,一个半径为10的圆内接两个正方形,这两个正方形重叠的部分刚好构成一个正八边形,那么这个正八边形的面积与图中阴影部分的面积差为86 .(π取3.14)【解答】解:由图象可知,S圆﹣S正方形=S阴+4•S小三角形,∴S阴=S圆﹣S正方形﹣4•S小三角形,∵S八边形=S正方形﹣4•S小三角形,∴S八边形﹣S阴=(S正方形﹣4•S小三角形)﹣(S圆﹣S正方形﹣4•S小三角形)=S正方形﹣S圆+S正方形=2××202﹣π•102=86.故答案为86.三、填空题Ⅲ(每题12分,共48分)9.(12分)12个蓝精灵围着圆桌坐着,每个蓝精灵都讨厌与他为邻的2个蓝精灵,但不讨厌其余的9个蓝精灵.蓝爸爸要派出一个由5个蓝精灵所组成的小队来营救格格巫抓走的蓝妹妹,小队中不能有互相讨厌对方的人,则有36 种方法来组队.【解答】解:按要求分成三大类情况:一类是全选奇数号的,其组数是=6,二类是全选偶数号的,其组数是=6,三类是奇偶数混合的,因情况复杂,再分为4小类:1类:1偶4奇的(或4奇1偶),其所组成的小组有:2﹣5﹣7﹣9﹣11、4﹣7﹣9﹣11﹣1、6﹣9﹣11﹣1﹣3、8﹣11﹣1﹣3﹣5、10﹣1﹣3﹣5﹣7、12﹣3﹣5﹣7﹣9计6种.2类:2偶3奇(或3奇2偶)所组成的小组有:2﹣4﹣7﹣9﹣11、4﹣6﹣9﹣11﹣1、6﹣8﹣11﹣1﹣3、8﹣10﹣1﹣3﹣5、10﹣12﹣3﹣5﹣7、12﹣2﹣5﹣7﹣9计6种.3类:3偶2奇(或2奇3偶)所组成的小组有:2﹣4﹣6﹣9﹣11、4﹣6﹣8﹣11﹣1、6﹣8﹣10﹣1﹣3、8﹣10﹣12﹣3﹣5、10﹣12﹣2﹣5﹣7、12﹣2﹣4﹣7﹣9计6种.4类:4偶1奇(或1奇4偶)所组成的小组有:2﹣4﹣6﹣8﹣11、4﹣6﹣8﹣10﹣1、6﹣8﹣10﹣12﹣3、8﹣10﹣12﹣2﹣5、10﹣12﹣2﹣4﹣7、12﹣2﹣4﹣6﹣9计6种.根据计算法得:6+6+(6+6+6+6)=6+6+24=36(种).故:共有36种方法组队.10.(12分)2016年,天堂里有四个数学家在讨论各自去世的年龄.甲:我40岁时候,乙就去世了,真是令人惋惜啊!又过了不到十年,我也去世了.乙:对啊,而且我去世时的年龄,正好是丙去世到现在的年数.丙:记得1980年,我参加了甲的葬礼,当时他比我小十岁.丁:你们三个人出生的时间正好是一个等差数列.那么丙是1986 年去世的.【解答】解:依题意可知:去世的顺序是乙甲丙的顺序.甲去世1980年,到现在2016一共是36年.因为丙是1980年以后去世,乙去世时的年龄,正好是丙去世到现在的年数.所以乙小于36岁去世.所有甲乙丙的年龄顺序是丙>甲>乙.丙大于甲10岁,甲比乙大10岁.乙的年龄同时是丙去世的年龄:2016﹣30=1986故答案为:198611.(12分)甲、乙两人同时从A地出发去B地:甲比乙快,甲到达B地后速度变为原来的2倍并立即返回A地,在距离B地240米处与乙相遇;乙遇到甲后速度也变为原来的2倍,并掉头返回;当甲回到A地时,乙距离A地还有120米.那么AB两地的距离是420 米.【解答】解:依题意可知如图所示:AD=120米,BC=240米;设甲乙第一次在C处相遇,那么BC=240米.根据如果甲从B点返回时速度不变,那么甲乙的路程差是240+120=360米;当甲乙在C相遇以后都向A返回,两人的速度都是2倍,路程比例相同,路程差是120.说明当乙由A走到C位置时候,甲乙路程差是360,乙返回走到D点时,路程差是120.那么返回的时候就是总路程的.AC的距离为:120÷(1﹣)=180(米);全程AB距离为:180+240=420(米);故答案为:420声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:15:27;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。
2017年数学花园探秘五年级组初试试卷ABC
![2017年数学花园探秘五年级组初试试卷ABC](https://img.taocdn.com/s3/m/190f8ee583c4bb4cf6ecd17d.png)
2017年“数学花园探秘”科普活动 五年级组初试试卷A1. 算式]6)793-122016(×81[×71+++ 的计算结果是_________________。
2. 如图,一道乘法竖式中已经填出了2、0、1、7,那么乘积是_____________。
3. 侠客岛的人,原来有 31 是卧底,现在卧底中有31 被驱离出岛。
如果没有其他人入岛,岛上现在还有2016人,那么其中有_______________人是卧底。
4、如图,图中所有的三角形都是等边三角形,其中三个等边三角形面积分别是1平方厘米,4平方厘米,9平方厘米,那么阴影部分面积为_______________平方厘米。
二、填空题Ⅱ(每小题10分,共40分)5、定义:a ☆b 表示a 除以b 的余数,那么算式(2016☆1203)☆[(2017☆101)☆121] ☆128的计算结果是_____________。
6、如图,一只青蛙从中心点出发,沿图中线段,跳到相邻的端点,跳了5步以后回到中心点(过程中可以经过中心点)。
那么,共有___________种不同的跳法。
7、从2016的因数中选出若干个不同的因数写成一圈,要求相邻位置的两个因数互质。
那么,最多可以选出___________个因数。
8、在空格里填入数字1~6,使得每行、每列和每个2×3的宫内数字不重复。
每个的粗线框里从上到下或从左到右是一个完全平方数。
问第二行前五个数从左到右组成的五位数是______________。
三、填空题Ⅲ(每小题12分,共48分)9、老师让菲菲从1~9这9个数字中选取4个不同的数字,组成一个四位数,使得这个四位数能被所有她没有选中的数整除,但不能被选中的任意一个数字整除。
那么,菲菲组成的四位数是________________。
10、如图所示,EFGHIJKLMNPQ是正方形ABCD内部最大的正十二边形。
正方形与正十二边形的边长差为6,那么正十二边形的面积是___________。
巧解六道竞赛题
![巧解六道竞赛题](https://img.taocdn.com/s3/m/73e76af928ea81c758f57895.png)
巧解六道竞赛题作者:宫正升来源:《数学小灵通·5-6年级》2017年第07期例1.如下图所示,一道除法竖式中已经填出了“2017”,那么被除数是()。
(2017“数学花园探秘”科普话动六年级组初试试卷A笫4题)我是这样解的。
解数字谜要注意选择突破口,位数往往是解数字谜的突破口。
通过观察发现除数和商十位上的数字的乘积是两位数,且个位数字是1,还发现□0□-□1是一位数。
由此可求出除数(两位数)。
只有□0□-91等于一位数。
所以,除数是91,商十位上的数字是1。
由此推知,第一步乘积是91×8=728,即商是8。
第三步商百位上的数字是1。
进而可知,被除数是811×91+6=738O7。
例2.请在图中的每个方框中填入适当的数字,使得乘法竖式成立。
那么乘积是()。
(第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷〈小学高年级组第4题>〉A.2986B.2858C.2672D.2754我是这样解的。
由第一步乘积是一个三位数可推知,第一个乘数的百位数字只能是1;再由第二步乘积是□0□,且最后乘积的千位数字是2可推知,第二步乘积的百位数字有可能是2(要注意逐步填写数字);如果第二步乘积的百位数字是2,则可推知第二个乘数的十位数字是2;结合第二步乘积的十位数字是0,又可推知第一个乘数的十位数字是0;再由第二个乘数的个位数字是7和第一步乘积的十位数字是1,可推知第一个乘数的个位数字是2。
即故选D。
我是这样解的。
例3.下图中“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字。
将各线段两端点的数相加得到五个和,共有()情况使得这五个和恰为五个连续自然数。
(第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷〈小学高年级组第8题>)我是这样解的。
数代换并不难,试算、调整看一看。
经试算、调整,可得知有如下两种方式。
得到的五个连续自然数是1+3=4、1+4=5、2+4=6、2+5=7、3+5=8。
2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)
![2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)](https://img.taocdn.com/s3/m/91f97b4c1eb91a37f1115cde.png)
2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是.3.如图中共有个平行四边形.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔只.(注:蜘蛛有8只脚)5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有名同学.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了只羊.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是.(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为平方厘米.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.2017年“迎春杯”数学花园探秘决赛试卷(小中组A卷)参考答案与试题解析一、解答题(共11小题,满分0分)1.算式67×67﹣34×34+67+34的计算结果是3434 .【分析】根据乘法的分配律简算即可.【解答】解:67×67﹣34×34+67+34=67×(67+1)﹣34×34+34=67×2×34﹣34×34+34=101×34=3434故答案为:3434.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.在横式×+C×D=2017中,相同的字母代表相同的数字,不同的字母代表不同的数字,若等式成立,那么代表的两位数是14 .【分析】由于0<C×D<100,所以1900<×<2017,根据130×13=1690,140×14=1960,150×15=2250,即可得出结论.【解答】解:由于0<C×D<100,所以1900<×<2017,因为130×13=1690,140×14=1960,150×15=2250,所以=14,进一步可得C×(14+D)=57,C=3,D=5.故答案为14.【点评】本题考查位值原则,考查学生的计算能力,确定1900<×<2017是关键.3.如图中共有15 个平行四边形.【分析】把图中的平行四边形分三类计数:①单个的(红色);②两个组成的(蓝色);③6部分组成的(黄色).【解答】解:根据分析可得,①单个的(红色)有:4个;②两个组成的(蓝色)有8个;③6部分组成的(黄色)有:3个;共有:4+8+3=15(个);答:图中共有 15个平行四边形.故答案为:15.【点评】本题要注意按顺序分类计数,防止遗漏.4.小兔与蜘蛛共50名学员参加舞蹈训练营,小兔学员走了一半,蜘蛛学员增加了一倍,但老师发现学员的脚既没有增加也没有减少,那么原有小兔40 只.(注:蜘蛛有8只脚)【分析】每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,从而可得原有动物共5份,即可得出结论.【解答】解:每走一只小兔,总腿数少了4,每增加一只蜘蛛,总腿数多了8,由此要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍,把增加的蜘蛛当作1份,那么原蜘蛛数量也是1份,走了的兔子数量是2份,原有兔子数量为4份,则原有动物共5份,是50只,1份有10只,所以原有兔子4×10=40只.故答案为40.【点评】本题考查差倍问题,考查学生转化问题的能力,确定要总腿数不变,减少的兔子数量应该是增加蜘蛛数量的两倍是关键.5.一组有两位数组成的偶数项等差数列,所有奇数项的和为100,若从第1项开始,将每个奇数项与它后面相邻的偶数项不改变次序地合并成一个四位数,形成一个新的数列,那么新数列的和与原数列的和相差9900 .【分析】将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列和与原数列的和相差所有奇数项的和的99倍,即可得出结论.【解答】解:设这个等差数列的奇数项分别为a1,a3,a5,…,公差为d,那么将每个奇数项与后面相邻的偶数项合并,由于每一项都是两位数,所以合并后的四位数列可以表示为a1×100+a1+d,a2×100+a2+d,…,所以新数列的和与原数列的和相差99×(a1+a3+a5+…),由于奇数项的和为100,所以99×(a1+a3+a5+…)=99×100=9900,故答案为9900.【点评】本题考查等差数列,考查学生的计算能力,确定合并后的四位数列和与原数列的和相差所有奇数项的和的99倍是关键.6.最常见的骰子是六面骰,它是一个正方体,6个面上分别有1到6个点,其相对两面点数的和都等于7,现在从空间一点看一个骰子,能看到所有点数之和最小是1,最大是15(15=4+5+6),那么在1~15中,不可能看到的点数和是13 .【分析】骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7~15进行分拆,即可得出结论.【解答】解:骰子上相对的两面点数分别为(1,6),(2,5),(3,4),从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面,在1~15中,点数1~6显然可以看到,7=1+2+7,8=6+2,9=6+3,10=6+4,11=6+5,12=6+2+4,14=6+5+3,15=4+5+6,13无法拆出,即在1~15中,不可能看到的点数和是13.故答案为13.【点评】本题考查筛选与枚举,考查学生分析解决问题的能力,解题的关键是从空间一点看一个骰子,可能只看到骰子的一个面,也可以看到相邻的两个面,还可以看到相邻的三个面.7.一排格子不到100个,一开始仅有两端的格子内各放有一枚棋子,几名同学依次轮流向格子中放棋子.每人每次只放一枚且必须放在相邻两个棋子正中间的格子中(如从左到右第3格,第7格中有棋子,第4、5、6格中没棋子,则可以在第5格中放一枚棋子;但第4格,第7格中有棋子,第5、6格没棋子,则第5、6格都不能放).这几名同学每人都放了9次棋子,使得每个格子中都恰好放了一枚棋子,那么共有7 名同学.【分析】由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.进而推出总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学.【解答】解:由题意可得,若相邻两枚棋子之间有偶数个空格子,则无法再往其中放棋子,那么若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.第一轮只能在最中间放1枚棋子,此时将格子分为前半部分和后半部分,那么第二轮在每一部分的中间,都可以放1枚棋子,总共可以放2枚,此时将格子分成了4,第三轮在每一部分的中间,都可以放1枚棋子,总共可以放4枚,以此类推,总共放下的棋子个数应该为等比数列1,2,4,8,…的和,而由于每人都放9次,因此这个和为9的倍数,且该和不能超过100,枚举可得1+2+4+8+16+32=63,满足条件,则共有63÷9=7名同学,棋子分布依次为:1,651,33,651,17,33,49,651,9,17,25,33,41,49,57,65,…故答案为7.【点评】本题考查找规律,考查枚举与筛选,解题的关键是若想要在每个格子中都放上棋子,每次放完相邻两棋子间空格数应为奇数.8.蕾蕾买了一些山羊和绵羊,如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元.蕾蕾一共买了10 只羊.【分析】如果她多买2只山羊,那么每只羊的平均价格会增加60元,如果她少买2只山羊,那么每只羊的平均价格会减少90元,两次变化都是两只山羊的价钱,变化的总价格应该相等,即可得出结论.【解答】解:假设蕾蕾买了x只羊,原平均价格为a元,买2只山羊,每只羊的平均价格会增加60元,总价格增加60x+2(a+60)元;少买2只山羊,那么每只羊的平均价格会减少90元,总价格减少90x+2(a﹣90)元,两次变化都是两只山羊的价钱,应该相等,所以60x+2(a+60)=90x+2(a﹣90),解得x=10,故答案为10.【点评】本题考查等量关系与方程,考查学生分析解决问题的能力,正确建立等量关系是关键.9.现有A、B、C、D、E五名诚实的安保在2016年12月1日~5日各值班三天,每天将有3名安保值班,每位安保值班安排5天一循环.今天(2017年1月1日周日),关于他们在上个月的值班情况,5人进行了如下对话:A:我和B在周末(周六、周日)值班的日子比其他3人都多;B:我与其余4人在这个月都一起值过班;C:12月3日本来我休息,但那天恰逢数学花园探秘初赛,于是我也来帮忙,可惜不算值班;D:E每次都和我安排在一起;E:圣诞节(12月25日)那天我和A都值班了.那么,安保A在12月份中第2次、第6次、第10次值班日期顺次排列组成的五位数是41016 .(如果第2次、第6次、第10次值班分别在12月3日、12月17日,则答案为,31217)【分析】画出12月份值班表,分析A在12月份中第2,6,10次值班日期依次为4,10,16,即可得出结论.【解答】解:12月份值班表如下:由E说的话可知,25日A和E都值班,又由D的话可知D和E永远在一起,那么可以判断5日这一竖列值班人为A,D,E.由C的话可知,3日他不值班,由于每天必须有3人值班,所以D,E中必须有一个,又因为D,E在一起,所以3日这一竖列,D,E都值班.通过A的话判断,A,B在周末值班的日子比C,D,E多,统计出每一列中的周末数量,为2,1,2,2,2,每人都要在三列中值班,若要A,B比其他人多,那么1那一列必须是C,D,E值班,每天都要有3人值班,D,E现在已经排满,因此第1,4列为A,B,C值班.还剩第3列没有排完,B要跟每个人都搭配过,因此此处为B.A在12月份中第2,6,10次值班日期依次为4,10,16,故五位数为41016.故答案为41016.【点评】本题考查逻辑推理,考查学生分析解决问题的能力,确定A在12月份中第2,6,10次值班日期依次为4,10,16是关键.10.如图中每个小正三角形的面积是12平方厘米,那么大正三角形的面积为84 平方厘米.【分析】如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半,即可得出结论.【解答】解:如图所示,补出右边的一些小等边三角形,则△ABC被分为面积相等的三个钝角三角形△AMB,△BNC,△APC,以及一个小正三角形△PMN,其中△AMB面积是所在的平行四边形ADBM的一半为12×4÷2=24平方厘米,那么△ABC面积为3×24+12=84平方厘米.故答案为84.【点评】本题考查面积的计算,考查补形方法的运用,正确补形是关键.11.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有1476 种不同的走法.【分析】考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对,分别求出各种情况的不同的走法,即可得出结论.【解答】解:考虑起始时,警察与小偷所在房间有三类关系相邻、相隔、相对.相邻:如1与2,那么下一步都顺时针走,可变为2与3,都逆时针走,变为6与1,一个顺时针,一个逆时针变为2与1或6与3,都有3种可能相邻,1种可能相对;相隔:如1与3,那么下一步可能变为2与4,6与2,6与4,都有3种可能相邻;相对:如1与4,那么下一步可能变为2与3,6与5,6与3,2与5,即有2种相邻的可能和2种相对的可能.假设警察初始房间为1,小偷与其相邻可能为2或6,那么3次之后不相遇的走法有2×(27+9+6+6+6+2+4+4)=128种相隔⇌3相隔⇌9相隔⇌27相隔.假设警察初始房间为1,小偷与其相邻可能为3或5,那么3次之后不相遇的走法有2×27=54种,假设警察初始房间为1,小偷与其相对为4,那么3次之后不相遇的走法有18+6+4+4+12+4+8+8=64种,综上所述,警察若初始位置为1,满足题目条件的走法有128+54+64+246种,那么警察初始位置还能选择2~6,因此共有246×6=1476种走法.故答案为1476.【点评】本题考查排列组合知识的运用,考查分类讨论的数学思想,正确分类讨论是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年“数学花园探秘”科普活动六年级组初试试卷C
(测评时间:2016年12月3日8:30—9:30)一.填空题Ⅰ(每小题8分,共32分)
1 、算式3231120173141的计算结果是_______.
2、太极图意义深远,其内涵包含了古代哲学,体现出阴阳概念,具有对称之美。
已知图中的太极大圆半径是10厘米,那么阴影部分的面积是_______平方厘米(π取3.14).
3、已知质数a、b、c满足:38cba。
那么a×b×c的最大值为_______.
4、某款手机充电5分钟,能够通话2小时,或者玩游戏1.5小时。
某人将一部完全没电的手机充电4分钟,之后打了20分钟电话,请问这部手机还能玩_______分钟游戏
二.填空题Ⅱ(每小题10分,共40分)
5、某个实心长方体是由若干个棱长为1厘米的正方体堆叠而成,将其按如图方式放置墙角(图只示意堆放方式,并不代表实际情况),刚好又40个小正方体看不见,那么原长方体的表面积最小是_______平方厘米
6、如图所示,有一个五边形ABCDE,其中M、N、P分别是边AE、BC、DE的中点,每块图形中的数表示该块图形的面积(单位:平方厘米),则图中阴影部分的面积是_______平方厘米.
7、今年“天宫二号”成功发射,中国科学家在太空进行植物生长实验.如果一种奇怪的植物,它的生长只和温度有关,如果某一天的温度是n摄氏度,那么该株植物在当天增重2 n 克.5天过去,这株植物共增重88克.已知这5天太空舱里的温度的数值都是互不相同的非0自然数,已知这5天里,每天太空舱里的温度数值都是大于0的自然数且依次递增,则第4天的气温是_______摄氏度
8、将右图中的乘法竖式补充完整后,两个乘数的差(大减小)是_______。
三.填空题Ⅲ(每小题12分,共48分)
9、甲、乙两人同时从A地出发去B地,乙的速度比甲的速度快50%。
在距离B地6千米处有个淘气的小精灵,他会把每次经过的人的速度变为原来的一半。
当甲到精灵处时,刚好与第一次从B地返回的乙相遇,那么当乙第一次回到A地时,甲距离A地_______千米.
10、如图,有一个4×4的方格网络,每个方格都是边长为1分米的正方形,一只蚂蚁在A 点处,试图沿着方格网络爬遍所有的线(可重复)然后回到点A,那么这只蚂蚁至少要爬行_______分米. 11、如图,由54根直线型管道搭成的大
2017年“数学花园探秘”科普活动五年级组初试试卷C 一.填空题Ⅰ(每小题8分,共32分)
1. 算式(20.17×23-0.51+201.6)÷(20.17×5+15+50.4)的计算结果是______.
2. 我爱×数学=花园园探,其中不同的汉字表示不同的数字,如果“我爱”是“数学”的两倍,数=2 ,那么“花园园探”的最小值是______.
3. 用火柴棒可以摆出所有数字,每个数字的摆法如下图所示:
按照这种规则用37根火柴棒摆出了20161203(如下图),之后健健把其中一个数字的火柴棒在原位置摆成了另一个数字(火柴棒全部使用),那么形成的新的八位数有______种.
4. 中国古代数学著作《九章算术》的“衰(读cui)分卷”中有这样一个有趣的问题,我们稍作修改如下:“今有牛、马、羊食人苗,苗主责之粟若干,羊主曰:‘我羊食半马.’马主曰:‘我马食半牛.’今欲衰偿之,问各出几何?”意思是说:现在有牛、马、羊偷吃了人家的秧苗,秧苗的主人要求用粟米进行赔偿,羊的主人说:“我的羊吃的是马的一半.”马的主人说:“我的马吃的是牛的一半.”现在要按相应的次序应该怎样赔偿?如果共要赔偿1001升粟米,那么牛的主人应该赔偿粟米______升.
5. 有一类三位数,它们各个数位上数字和的平方的3倍恰好等于自己;那么,在这类三位数中,各个数位上数字的积的最大值减去最小值的差是______.
6. 如图,正六边形的面积为240平方厘米,A、B、C分别为三条边的中点,M是AB的中点.那么,阴影部分的面积是______平方厘米.
7. 甲乙丙三个聪明且诚实的孩子头上都有一个互不相同的一位数,分别记作A、B、C,每个人都只能看见别人头上的数,但是看不见自己头上的数.他们依次进行了如下对话:甲:B、C都不是我头上数的倍数;乙:A是C的倍数丙:我不知道C是几. 那么,两位数“AB”的值是_______.
8. 如右图所示,大正六边形的边长为2,一只青蛙从A点出发,每次只能沿格线跳到距离为1的点上;那么,第5次恰好跳到B点的方法有______种.
9.在空格里填入数字1~6,使得每行、每列和每个2×3的宫内数字不重复.每个2×1的粗线框里从上到下或从左到右是一个完全平方数.那么,第四行前五个数从左到右组成的五位数是_______.
10.甲、乙、丙三人同时从A出发匀速向B行走;甲到B立即掉头,与乙相遇在距离B地100米的地方;甲再行120米与丙相遇,乙恰好到B,那么此时甲共行了______米.
11.如图,正方形ABCD的边长为30,三角形AEF和三角形BGH都是正三角形,图中阴影部分的面积是_______.。