1直接积分法
直接概率积分法
直接概率积分法概率积分法是概率论中的一种重要方法,它是通过对概率密度函数进行积分来求解概率问题的方法。
在实际应用中,概率积分法有两种常见的形式:直接概率积分法和变量代换法。
本文将重点介绍直接概率积分法。
一、直接概率积分法的基本思想直接概率积分法是指直接对概率密度函数进行积分,从而求解概率问题的方法。
其基本思想是:对于一个随机变量X,其概率密度函数为f(x),则X在区间[a,b]内取值的概率为:P(a≤X≤b)=∫ba f(x)dx其中,f(x)是X的概率密度函数,P(a≤X≤b)表示X在区间[a,b]内取值的概率。
二、直接概率积分法的应用直接概率积分法可以应用于各种概率问题的求解,下面将分别介绍其在离散型随机变量和连续型随机变量中的应用。
1. 离散型随机变量对于一个离散型随机变量X,其概率分布列为:X x1 x2 x3 ... xnP(X=xi) p1 p2 p3 ... pn则X在区间[a,b]内取值的概率为:P(a≤X≤b)=∑i=1n P(X=xi) (ai≤xi≤bi)其中,ai和bi分别表示区间[a,b]的左右端点。
2. 连续型随机变量对于一个连续型随机变量X,其概率密度函数为f(x),则X在区间[a,b]内取值的概率为:P(a≤X≤b)=∫ba f(x)dx其中,f(x)是X的概率密度函数,P(a≤X≤b)表示X在区间[a,b]内取值的概率。
三、直接概率积分法的注意事项在使用直接概率积分法求解概率问题时,需要注意以下几点:1. 概率密度函数必须满足非负性和归一性。
2. 区间的左右端点必须明确。
3. 积分区间必须是连续的。
4. 积分区间的长度不能为负数。
5. 积分区间的长度不能为无穷大。
四、直接概率积分法的优缺点直接概率积分法的优点是:简单易懂,适用范围广,可以应用于各种概率问题的求解。
其缺点是:对于复杂的概率密度函数,直接概率积分法可能会比较困难,需要使用变量代换法等其他方法来求解。
基本积分公式直接积分法
基本积分公式直接积分法下面是一些常用的基本积分公式:1.常数函数的积分∫kdx = kx + C其中,k为常数,C为常数项。
2.幂函数的积分∫x^nd x = (1/(n+1))x^(n+1) + C,其中,n≠-1,C为常数项。
3.正弦函数的积分∫sinxdx = -cosx + C4.余弦函数的积分∫cosxdx = sinx + C5.指数函数的积分∫e^xdx = e^x + C6.对数函数的积分∫(1/x) dx = ln,x, + C7.倒数函数的积分∫1/(x^2)dx = -(1/x) + C8.基本三角函数的积分∫sec^2xdx = tanx + C以上仅列举了一些基本的积分公式,还有其他很多常用的积分公式可以参考。
当然,还有一些特殊的积分公式,如换元积分法、分部积分法等,可以通过特定的变化方式将复杂的函数转化为易于求解的形式,从而进行积分运算。
在进行直接积分求解时,一般的思路是先根据题目给出的函数,结合各种基本的积分公式进行变形,然后利用积分公式求解,并在最后加上常数项C。
具体步骤如下:1.根据题目给出的函数进行变形,利用一些简单的代数运算将其化简。
2.判断题目给出的函数是否符合基本积分公式中的其中一种形式,如果符合,则可以直接按照相应的基本公式进行求解。
3.如果不符合基本积分公式中的形式,则可以尝试利用一些变形技巧,如换元积分法、分部积分法等,将其转化为符合基本公式的形式。
对于复杂的函数,可能需要多次变形或使用多个变换方法。
4.求解出积分后,需要记得加上常数项C,这是因为积分运算的结果是一个函数的无穷个解,加上常数项C可以表示出所有的解。
需要注意的是,在进行积分运算时,要特别留意函数的定义域,避免出现不可积分的情况。
此外,不定积分求解通常存在多种解法,有时我们可以选择适用性较强的方法,以便更快地求得结果。
总结起来,基本积分公式是求解不定积分时的重要工具,通过利用这些公式,我们可以将一个函数进行积分从而得到其原函数。
不定积分的基本公式和直接积分法
不定积分的基本公式和直接积分法不定积分,也叫原函数或不定积分,是微积分中的一个重要概念。
不定积分是指求函数的原函数的过程,也就是求解导数的逆运算。
在实际应用中,不定积分常用于求解曲线下的面积、确定概率密度函数等问题。
本文将介绍不定积分的基本公式和直接积分法。
不定积分的基本定义是,对函数F(x)求导得到f(x)。
式子可以写作F'(x) = f(x),其中F(x)称为f(x)的一个原函数。
不定积分的符号为∫f(x)dx,表示对函数f(x)求不定积分。
积分号∫放在被积函数前面,并将被积函数写在后面。
积分变量x在∫的上下限之间。
1.常函数的不定积分:∫c dx = cx + C,其中c和C是常数。
2.幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n不等于-1,并且C是常数。
3.正弦函数和余弦函数的不定积分:∫sin(x) dx = -cos(x) + C∫cos(x) dx = sin(x) + C4.指数函数的不定积分:∫e^x dx = e^x + C5.对数函数的不定积分:∫(1/x) dx = ln,x, + C,其中x不等于0这些基本公式是不定积分中常用的,掌握了这些公式可以在求解不定积分的过程中提供一定的指导。
另外,不定积分还可以通过直接积分法来求解。
直接积分法也叫换元积分法,是不定积分的常用方法之一、直接积分法的基本思想是通过适当的代换将被积函数化简为容易求解的形式。
常见的直接积分法有以下几种:1. 代入法:通过适当的代换将被积函数化简为容易求解的形式。
例如,将∫(2x + 3)^4 dx通过代入u = 2x + 3来化简。
2. 分部积分法:对一个积分式或一个积产品做分部积分,将其转化为不定积分的和或差的形式。
公式为∫u dv = uv - ∫v du。
3. 三角代换法:通过适当的三角代换将被积函数化简为容易求解的形式。
例如,将∫(x^2 - 1)^(3/2) dx通过代换x = cosθ来化简。
求不定积分的基本方法
说明: 此技巧适用于形为 acoxsbsin xdx的积分. ccoxsdsin x
机动 目录 上页 下页 返回 结束
例 解1:2因. 求 为I1aco sx isx b n sixn dIx2 及 aco cx sox bssixndx. a acco oxxss b bssiin n xxdx b acco oxxss a bssiin n xxdx
机动 目录 上页 下页 返回 结束
3. 分部积分法
uvdxuvuvdx
使用原则:
1) v 易求出
由 2) uvvdx;比
好求 .
一般经验: 按“反, 对, 幂, 指 , 三”
的顺序, 排前者取为 u ,排后者取为 v .
计算格式: 列表计 算
机动 目录 上页 下页 返回 结束
多次分部积分的 规 律
senc2x
(n 2 )se n 3 x c se xtc axn senc2xtaxn ( n 2 )sn e 2 x c (s 2 x e 1 )d x c
sen c2xtaxn(n2)In(n2)In2
机动 目录 上页 下页 返回 结束
例8. 求
解:
设
x1, F(x)x1
x1
u u u
u (n) u(n1)
(1)n (1)n1
v(n1k) v(n1) v (n) v(n1) v
v
特别: 当 u 为 n 次多项式时u(,n1) 0,计算大为简便 .
机动 目录 上页 下页 返回 结束
例1. 求
解: 原式
2x3x 32x 22x
dx
1 ((3232))x2dxadxx axlnadx
基本积分公式
tan x cot x C
微积分 五②
12/12
3 2 )dx . 例7 求积分 ( 2 2 1 x 1 x 3 2 1 1 解 ( )dx 3 dx 2 dx 2 2 2 2 1 x 1 x 1 x 1 x 3 arctan x 2 arcsin x C
dx x x C
C ( x ) x x .
微积分 五②
Back
微减同一个代数式,然后分项
x dx 例3. 求 1 x2 1 x2 1 1 解:原积分= dx dx dx 2 2 1 x 1 x x arctan x C dx 例4. 求 2 2
2
x (1 x ) 2 2 1 x x 1 dx dx 2 dx 解:原积分= 2 2 2 x (1 x ) x 1 x 1 arctan x C x
dx x 3 x 3 dx d ( )
(4) a x dx a x / ln a C
2 x dx x 2 dx e 2 x dx
dx 2 x du u 2 dx 2 x
微积分 五②
7/12
2.2、具体分项法 将被积函数化为几个函数的代数和,然后分项积分.
2/12
一、基本积分公式
1.1、积分法 1.2、基本积分公式
二、直接积分法
2.1、方法定义 2.2、具体分项法
三、小结
13个基本积分公式
微积分 五②
3/12
1.1、积分法
x x 1
1
x 1 x dx C . ( 1) 1
高等数学分部积分法
17
例14 已知 f (x) 的一个原函数是 e x 2 , 求 xf (x)dx. 解 xf (x)dxxd[f(x)]x(fx)f(x)dx
f(x)dxex2C,
两边同时对x求导,得 f(x)2xex2,
xf(x)dx xf(x)f(x)dx
Inn 1sin n 1xco x snn 1In2
注意循环形式
I3
sin3 xdx
1sin 2xcoxs2
3
3
sin xdx
1si2n xcox s2cox sC.
3
3
20
例16 求
xe x dx.
ex 1
解 被积函数是两类函数的乘积,所以用分部积分法
xcoxsdx
设函数 uu(x)及 v v(x)具有连续导数. 则 (uv) uvuv,移项 uv(u)vuv
则 uvdxuvuvdx.
即 udvuv vdu 即为分部积分公式
利用分部积分公式求积分的方法叫分部积分法.
作用:化难为易
2
udvuvvdu
21
例16 求
xe x dx.
Байду номын сангаас
ex 1
另解 令 ex 1 u, 则du u22u1du,
(u21)lnu2 (1) 2u
原式=
u
u21du
2lnu(21)du2ulnu(21)4
u2 u21du
2uln u2(1)4u4arcu tC an
2x ex 14ex14arce txa 1n C .
总结 若被积函数是幂函数和对数函数(或反三角函
数)的乘积,就考虑设对数函数(或反三角函数)
不定积分的计算(1)
cos x ∫ x dx
= 2 ∫ cos x d x = 2 sin x + c
例10
∫
x 1− 2x
2
dx
1 1 解 原式 = − ∫ d (1 − 2 x 2 ) 4 1− 2x2 1 1 2 2 = − ⋅ 2 1 − 2x + c = − 1 − 2x + c 4 2
例11
sin 3xdx ∫
cos 3 xdx ∫
1 1 解 ∫ cos 3xdx = ∫ cos 3 xd (3 x) = sin 3x + c 3 3
● 凑微分法主要用于:
1、 当被积函数是一个复合函数时; 2、 当被积函数是两个函数相乘(其中有一个 往往是复合函数)时。
注意: 凑后要调整 !!!
例3
cos(1 − 2 x)dx ∫
练习:求不定积分
解
∫x
2
x + 1dx
∫x
x + 1dx
x +1 = t x = t −1
4
∫ (t
2
2
− 1) ⋅ t ⋅ 2tdt
= ∫ (2t − 2t )dt
2 5 2 3 = t − t +c 5 3 2 = ( x + 1) x + 1(3 x − 2) + c 15
(t − 1) + 1 1 = 3∫ dt = 3∫ (t − 1 + )dt 1+ t 1+ t 1 2 = 3( t − t + ln | 1 + t |) + c 2 33 2 = x − 33 x + 3 ln | 1 + 3 x | + c 2
定积分的直接积分法
2
x
|dx
解
3 |
1
2
x
|dx
2 (2
1
x)dx
3
2
(
x
2)dx
(2x
x2 2
)
|2
1
x2 (
2
2x) |32
2 5 ( 3) 2 5 22
同学练习2
1.
已知
f
(x)
2x , 3x2
1,
x0
,
x0
2
求 f (x)dx . 1
例8(*)
dx 1
因此
lim
1et2 dt
cos x
lim
ecos2
x
sin
x
1
x x0
2
x0
2x
2e
同学练习2
1.
lim
x
0
1
1 t
t
dt
x
x
2.
lim
x0
1 et2 dt
cos x
x2
定积分的直接积分法
三、微积分基本公式
1.定理3 若函数 F x是连续函数 f x在区 间 a,b上的一个原函数,则
知识回顾 Knowledge Review
y
p( x)
oa x
bx
定理6.1 若 f x 在a,b上连续,则积分
上限函数
px
x
a
f
t dt
在 a, b 可导,
且 p'x f x a x b
不定积分的几种形式及求解技巧
不定积分的几种形式及求解技巧不定积分是微积分中的重要概念,通常用来求解函数的原函数。
在求解不定积分时,我们有几种不同的形式和求解技巧。
1. 一般形式不定积分:一般形式的不定积分表示为∫f(x)dx,其中f(x)是要求积分的函数。
求解一般形式的不定积分的方法主要有以下几种:- 直接积分法:根据不同函数的性质,应用相关的积分求法,例如多项式函数、三角函数、指数函数等。
例如,对于多项式函数f(x)=x^n,不定积分为∫x^n dx=(1/(n+1))x^(n+1)+C,其中C是常数。
- 分部积分法:分部积分法可以将一个复杂的函数积分转化为两个简单函数的乘积积分。
公式表达为:∫u dv = uv - ∫v du。
通过选取适当的u和dv,进行分部积分求解不定积分。
例如,对于函数f(x)=x*sin(x),可以令u=x,dv=sin(x)dx,然后进行分部积分求解。
- 代换法:代换法是通过选择一个新的变量来简化不定积分的求解过程。
通过选择适当的代换变量可以将复杂的函数转化为一个简单的函数。
例如,对于函数f(x)=e^x,我们可以令u=e^x,然后进行代换求解。
- 部分分式分解法:当不定积分的被积函数可以使用部分分式分解时,就可以将其转化为一组简单的分式的和的形式,然后依次求解。
例如,对于函数f(x)=1/(x^2+1),可以将其分解为1/((x+1)(x-1))的形式,然后再分别进行不定积分求解。
2. 特殊形式不定积分:特殊形式的不定积分是指一些常见的函数在积分过程中的特殊形式。
这些特殊形式的不定积分可以通过特定的方法进行求解。
常见的特殊形式不定积分有以下几种:- 三角函数不定积分:对于一些常见的三角函数,例如sin(x)、cos(x)、tan(x)等,其不定积分可以通过特定的恒等变换和公式进行求解。
例如,∫sin(x)dx=-cos(x)+C,∫cos(x)dx=sin(x)+C,∫tan(x)dx=-ln|cos(x)|+C。
不定积分典型例题
不定积分典型例题一、直接积分法直接积分法是利用基本积分公式和不定积分性质求不定积分的方法,解题时往往需对被积函数进行简单恒等变形,使之逐项能用基本积分公式.例1、求∫(1−1)x x dx x 234−54714解原式=∫(x −x )dx =x 4+4x 4+C 7e 3x +1例2、求∫x dx e +1解原式=∫(e 2x −e x +1)dx =例3、求∫12x e −e x +x +C 21dx 22sin x cos xsin 2x +cos 2x 11解原式=∫dx =dx +dx =tan x −cot x +C 2222∫∫sin x cos x cos x sin x例4、∫cos 2解原式=∫x dx 2x +sin x 1+cos x dx =+C 22x 2例5、∫dx 21+x x 2+1−11dx =(1−解原式=∫∫1+x 2)dx =x −arctan x +C 1+x 2注:本题所用“加1减1”方法是求积分时常用的恒等变形技巧.二、第一类换元积分法(凑微分法)∫f (x )dx =∫g [ϕ(x )]ϕ'(x )dx 凑成令ϕ(x )=u =∫g (u )du 求出=G (u )+C 还原=G [ϕ(x )]+C 在上述过程中,关键的一步是从被积函数f (x )中选取适当的部分作为ϕ'(x ),与dx 一起凑成ϕ(x )的微分d ϕ(x )=du 且∫g (u )du 易求.tan x dx cos x例1、求∫3−2sin x −d cos x =−∫(cos x )2d cos x =+C dx =∫解原式=∫cos x cos x cos x cos x cos x例2、求∫arcsin xx −x 2dx解原式=∫arcsin x1−x ⋅1x dx =∫2arcsin x1−(x )2d (x )=2∫arcsin xd (arcsin x )=(arcsin x )2+C注1dx =2d (x )x1−x9−4x 2 例3、求∫dx1−1d (2x )12 解原式=∫+∫(9−4x )2d (9−4x 2)232−(2x )28=12∫2d (x )11213+9−4x 2=arcsin x +9−4x 2+C 423421−(x )23例4、求∫tan 1+x 2⋅x1+x 2dx解原式=∫tan1+x 2d 1+x 2=−ln |cos 1+x 2|+C 例5、求∫x x −x −12dxx (x +x 2−1)22dx =x dx +x x −1dx 解原式=∫2∫∫x −(x 2−1)3x 31x 31222=+∫x −1d (x −1)=+(x −1)2+C 3233例6、求∫1dx 1+tan xcos x 1cos x −sin x )dx dx =∫(1+sin x +cos x 2cos x +sin x解原式=∫=1⎡1⎤1++(cos sin )x d x x =(x +ln |cos x +sin x |)+C ∫⎢⎥2⎣cos x +sin x ⎦211+x ln dx 1−x 21−x11+x 1+x 121+x ln (ln +C )d ln =∫21−x 1−x 41−x例7、求∫ 解原式= 例8、求∫1dx x e +1e x 1+e x −e x dx =∫dx −∫dx 解原式=∫e x +11+e x=∫dx −∫1x x d (1+e )=x −ln(1+e )+C x1+e例9、求∫1dx e x +e −xe x 1 解原式=∫2x dx =∫d (e x )=arctan e x +C x 2e +11+(e ) 例10、求∫sin x dx 1+sin x11−sin x )dx =∫dx −∫dx 21+sin x cos x解原式=∫(1−=x −∫1sin x dx +dx =x −tan x +sec x +C 22∫cos x cos x例11、求∫dx x 2−3ln x−12 解原式=∫(2−3ln x )d (ln x )1111(2−3ln x )2+C =∫(2−3ln x )(−)d (2−3ln x )=−⋅33−1+12−12=−22−3ln x +C 31dx a 2sin 2x +b 2cos 2x1b 2+a 2tan 2x d (tan x )=11a (tan x )d ab ∫1+(a tan x )2b b例 12、求∫ 解原式=∫=1a arctan(tan x )+C ab bx 4+1dx 例13、求∫6x +1(x 2)2−x 2+1x 2x 4−x 2+1+x 2dx +∫32dx dx =∫解原式=∫(x 2)3+1(x )x 6+1=∫111133dx +dx =arctan x +arctan x +C 232∫1+x 31+(x )3例14、求∫1dx x (1+x 8)1+x 8−x 811x 78=−dx dx dx 解原式=∫=ln |x |−ln(1+x )+C 88∫x ∫1+x x (1+x )8例15、求∫3x −2dx x 2−4x +53d (x 2−4x +5)1+4∫2 解原式=∫2dx 2x −4x +5x −4x +5d (x −2)3ln |x 2−4x +5|+4∫22(x −2)+13ln |x 2−4x +5|+4arctan(x −2)+C 2== 注由于分子比分母低一次,故可先将分子凑成分母的导数,把积分化为形1dx 的积分(将分母配方,再凑微分).如∫2ax +bx +cx 2 例16、已知f (x −1)=ln 2,且f [ϕ(x )]=ln x ,求∫ϕ(x )dx .x −22x 2−1+1x +1 解 因为f (x −1)=ln 2,故f (x )=ln ,又因为x −1−1x −12f [ϕ(x )]=ln ϕ(x )+1ϕ(x )+1x +1=ln x ,得=x ,解出ϕ(x )=,从而ϕ(x )−1ϕ(x )−1x −1∫ϕ(x )dx =∫ 例17、求∫x +12dx =∫(1+)dx =x +2ln |x −1|+C x −1x −11dx cos 4x1 解原式=∫sec 2xd tan x =∫(1+tan 2x )d tan x =tan x +tan 3x +C 3例18、求∫1+ln x dx 22+(x ln x ) 解原式=∫1d (x ln x )x ln x arctan(=)+C 2+(x ln x )222三、第二类换元法设x =ϕ(t )单调可导,且ϕ'(t )≠0,已知∫f [ϕ(t )]ϕ'(t )dt =F (t )+C ,则∫f (x )dx 令x =ϕ(t )=∫f [ϕ(t )]ϕ'(t )dt =F (t )+C t =ϕ−1(x )还原=F [ϕ−1(x )]+C选取代换x =ϕ(t )的关键是使无理式的积分化为有理式的积分(消去根号),同时使∫f [ϕ(t )]ϕ'(t )dt 易于计算.例1、求∫xdx(x +1)1−x 22 解令x =sin t ,dx =cos tdt原式=∫111sin t cos tdt d cos t (=−)d cos t =−+22∫∫(sin t +1)cos t 2−cos t 222−cos t 2+cos t2+cos t 12+1−x 2ln +C =−+C ln =−2222−cos t 222−1−x 1例2、求∫dxx41+x2解令x=tan t,dx=sec2tdtsec2tdt cos3tdt1−sin2t原式=∫=∫=∫d sin t=∫(sin−4t−sin−2t)d sin t 444tan t⋅sec t sin t sin t(1+x2)3(1+x2)111++C=−++C=−333sin t sin t3x xx2−9dxx2例3、求∫解令x=3sec t,则dx=3sec t⋅tan tdt3tan t tan2t原式=∫⋅3sec t⋅tan tdt=∫dt=∫(sec t−cos t)dt29sec t sec t=ln|sec t+tan t|−sin t+C1x x2−a2x2−a2=ln+−+C1a a xx2−a2+C=ln x+x−a−x22例4、求∫1dxx(x7+2)11 解令x=,则dx=−2dt,t t1t 6117 原式=∫(−2)dt =−∫dt =−d (1+2t )77∫11+2t 141+2t +2t 7t t 111ln |1+2t 7|+C =−ln |2+x 7|+ln |x |+C 14142=− 注设m ,n 分别为被积函数的分子,分母关于x 的最高次数,当n −m >1时,可用倒代换求积分.例5、求∫x +1x 2x −12dx11 解令x =,dx =−2dt t t 1+111+t 1d (1−t 2)t (−2)dt =−∫dt =−∫dt +∫ 原式=∫222t 111−t 1−t 21−t −1t 2t 2=−arcsin t +1−t +C =2x 2−11−arcsin +C x x例6、求∫x 3x −x 24dxt 10⋅t 4t 6t 1411解原式=11∫83⋅12t dt =12∫5dt =12∫5dt dx =12t dt t −t t −1t −1令12x =t t 10−1+14121121212⋅t dt =∫(t 5+1+5)dt 5=t 10+t 5+ln |t 5−1|+C =12∫5t −15t −1105561212=x 6+x 12+ln x 12−1+C 555555例7、求∫dx1+e x解令1+e x =t ,e x =t 2−1,dx =2t dt 2t −112t 1t −11+e x −1原式=∫⋅2dt =2∫2dt =ln +C =ln +C x t t −1t −1t +11+e +1ln x dx x 1+ln x例8、求∫解令t =1+ln x原式=∫ln x t −1d ln x =∫dt 1+ln x t112322=∫(t −)dt =t −2t 2+C =(ln x −2)1+ln x +C 33t例9、求∫x +1−1dx x +1+1解令x +1=t ,x =t 2−1,dx =2tdt因为原式=∫x +2−2x +1x +1dx =x +2ln |x |−2∫dx x x而∫x +12t 2dt 1dx =∫2=2∫(1+2)dt x t −1t −1t −1x +1−1+C =2x +1+ln +C t +1x +1+1=2t +ln原式=x +2ln |x |−4x +1−2ln x +1−1+C =x −4x +1+4ln x +1+1+C x +1+1四、分部积分法分部积分公式为∫uv 'dx =uv −∫u 'vdx 使用该公式的关键在于u ,v '的选取,可参见本节答疑解惑4.例1、求∫x 3e x dx解原式=∫x 3de x =x 3e x −3∫x 2de x =x 3e x −3x 2e x +6∫xde x =x 3e x −3x 2e x +6xe x −6e x +C例2、求∫x 2cos 2解原式=x dx 2121312x (1+cos x )dx =x +∫x cos xdx ∫262=131211x +∫x d sin x =x 3+x 2sin x −∫x sin xdx 6262131211x +x sin x +∫xd cos x =x 3+x 2sin x +x cos x −∫cos xdx 62621312x +x sin x +x cos x −sin x +C 623==例3、求∫e x dx令3x =t 解原式dx =3t 2dt=3∫t e dt =3∫t de 2t 2t =3t 2e t −6te t +6e t +C=33x 2e 3x −63xe 3x +6e 3x +C例4、求∫cos(ln x )dx解原式=x cos(ln x )+∫sin(ln x )dx=x cos(ln x )+x sin(ln x )−∫cos(ln x )dxx移项,整理得原式=[cos(ln x )+sin(ln x )]+C2注应用一次分部积分法后,等式右端循环地出现了我们所要求出的积分式,移项即得解,类似地能出现循环现象的例题是求如下不定积分:αxe ∫cos βxdx 或αxe ∫sin βxdx例5、求∫ln(x +1+x 2)dx解原式=x ln(x +1+x 2)−∫x 1+x 2dx =x ln(x +1+x 2)−1+x 2+Cln 3x例6、求∫2dx x 1ln 3x 1 解原式==∫−ln xd ()=−−3∫ln 2xd ()x x x3ln 3x ⎡ln 2x 1⎤ln 3x 3ln 2x 6ln x 6−3⎢+2∫ln xd ()⎥=−−−−+C=−x x ⎦x x x x ⎣x例7、推导∫1dx 的递推公式22n(x +a ) 解令I n =∫1dx (x 2+a 2)nx x 2+a 2−a 21x 2I n =2n +dx 222=+−nI na dx n 2n 22n +122n 22n +1∫∫(x +a )(x +a )(x +a )(x +a )=x 2+2nI −2na In +1n 22n(x +a )I n +1=12na 2⎡⎤x(2n 1)I +−n ⎥⎢(x 2+a 2)n ⎣⎦⎡⎤x(2n 3)I +−n −1⎥⎢(x 2+a 2)n −1⎣⎦I n =12(n −1)a 2例8、推导I n=∫tan n xdx 的递推公式.解I n=∫tan n −2x ⋅tan 2xdx =∫tan n −2x ⋅(sec 2x −1)dx=∫tan n −2x ⋅sec 2xdx −∫tan n −2xdx =∫tann −2xd (tan x )−In −2=1tan n −1x −I n −2n −1注应用分部积分法可以建立与正整数n 有关的一些不定积分的递推公式.例9、已知f (x )的一个原函数是e −x ,求∫xf '(x )dx解原式=∫xdf (x )=xf (x )−∫f (x )dx =xf (x )−e −x +C例10、求∫x arctan x ln(1+x2)dx解因为∫x ln(1+x 2)dx ==221ln(1+x 2)d (1+x 2)∫211(1+x 2)ln(1+x 2)−x 2+C 221⎤⎡1所以 原式=∫arctan xd ⎢(1+x 2)ln(1+x 2)−x 2⎥2⎦⎣211⎡x 2⎤2222=(1+x )ln(1+x )−x arctan x −∫⎢ln(1+x )−2⎥22⎣1+x ⎦[]=13x arctan x (1+x 2)ln(1+x 2)−x 2−3−ln(1+x 2)+x +C 222[]注本题是三类函数相乘的形式,这类问题大多采用本题的方法.xe arctan xdx 例11、求∫2(1+x )解令x =tan t ,dx =sec 2tdttan t ⋅e t sec 2tdt =∫sin t cos te t dt 原式=∫4sec te arctan x (x 2+x −1)11t t +C =∫sin 2te dt =e (sin 2t −cos 2t )+C =25(1+x )210x 2arctan xdx 例12、求∫21+x 解原式=∫(1−11=−)arctan xdx arctan xdx ∫∫1+x 2arctan xdx 1+x 211=x arctan x −ln(1+x 2)−(arctan x )2+C22arcsin x 1+x 2⋅dx 例13、求∫22x 1−x 解令x =sin t ,arcsin x =t ,dx =cos tdt ,t (1+sin 2t )t cos ⋅tdt = 原式=∫∫sin 2tdt +∫tdt sin 2t cos t=td (−cot t )+∫121t=−t cot t +∫cot tdt +t2221=−t cos t +ln |sin t |+t 2+C21−x 21=−arcsin x +ln |x |+(arcsin x )2+Cx 2注直接积分法、换元法、分部积分法是求不定积分最重要的方法,主要用到了“拆、凑、换、分”的技巧,同时应注意这些方法的综合运用.五、有理函数的积分有理函数的积分总可化为整式和如下四种类型的积分:(1)∫Adx =A ln |x −a |+C x −a−AA 1dx =+C (n ≠1)n n −1(x −a )n −1(x −a )(2)∫(3)∫dx dx dx =∫⎡p 4q −p 2⎤n(x 2+px +q )n 2⎢(x +)+⎥24⎣⎦p令x +=u24q −p 2令=a 4=du 22n∫(u +a )2(4)∫(x +a )dx 11p dx()dx a =−+−,其2n 2n −12n∫(x +px +q )2(n −1)(x +px +q )2(x +px +q )中p 2−4q <0.这就是说有理函数积分,从理论上讲,可先化假分式为整式与真分式之和,再将真分式化为若干部分分式之和,然后逐项积分,但这样做有时非常复杂,因此我们最好先分析被积函数的特点,寻求更合适,更简捷的方法也是很必要的.例1、求∫dx2x −2x +31dx d (x −1)x −1arctan ==+C(x −1)2+2∫2+(x −1)222解原式=∫x 2+5x +4例2、求∫4dx 2x +5x +4x 2+4x解原式=∫2dx +5dx222∫(x +1)(x +4)(x +1)(x +4)dx 5dx 25112=∫2arctan x ()dx +∫2=+−222∫x +12(x +1)(x +4)6x +1x +45x 2+1+C=arctan x +ln 26x +4本题若用待定系数法,较麻烦一些,也可获得同样的结果.事实上,x 2+5x +4Ax +B Cx +D 设4=2+2,通分后应有2x +5x +4x +1x +4x 2+5x +4=(Ax +B )(x 2+4)+(Cx +D )(x 2+1)得A +C =0,B +D =0,4A +C =5,4B +D =4比较等式两端x 的同次幂的系数,55由此,A =,B =1,C =−,D =−1335⎡5⎤−−+11x x ⎢3⎥5x 2+13+2+arctan x +C 故原式=∫⎢2⎥dx =ln 2x +4⎥6x +4⎢x +1⎣⎦例3、求∫解设xdx3x −1x A Bx +C2=+,通分后应有x =A (x +x +1)+(Bx +C )(x −1)32x −1x −1x +x +1比较等式两端x 的同次幂的系数,得A +B =0,A −B +C =1,A −C =0,由此,111A =,B =−,C =333⎡1⎤x −1故原式=∫⎢dx −⎥2⎣3(x −1)3(x +x +1)⎦1d (x +)1dx 12x +112dx +∫=∫−∫23x −16x +x +12(x +1)2+324(x −1)212x +11=ln 2+arctan +C 6x +x +133例4、求∫dx24x (1−x )(x 2+1)−x 211解原式=∫2dx dx =−∫x 2(1−x 2)∫(1−x 2)(1+x 2)dx x (1−x 4)=∫(11111+−+)dx ()dx x 21−x 22∫1−x 21+x 211111=−+∫−dx dx 22∫21+x x 21−x 111+x 1−arctan x +C=−+ln x 41−x 2注:本题若用待定系数法,应当将被积函数分解为A B C D Ex +F11==++++x 2(1−x 4)x 2(1−x )(1+x )(1+x 2)x x 21−x 1+x 1+x 2然后再确定系数,显然这样做比较麻烦,也可获同样结果,此处从略.x 11dxdx 例5、求∫8x +3x 4+3解令x 4=u ,则du =4x 3dx ,于是,u 21411−原式=∫2du =∫(1+)du u +1u +24u +3u +241x 41=(u +ln |u +1|−4ln |u +2|+C )=+ln(1+x 4)−ln(x 4+2)+C 444x 5例6、求∫dx23(2x +3)解令2x 2+3=t ,x 2=t −3,4xdx =dt ,从而,2(t −3)21169原式=∫dt =(−2+3)dt 3∫4⋅4t 16t t t 169169(ln |t |+−2)+C =[ln |2x 2+3|+2−]+C 221616t 2t 2x +32(2x +3)=x 4dx 例7、求∫4x +5x 2+4x 4−(5x 2+4)解4=1+4x +5x 2+4x +5x 2+4−(5x 2+4)A 1x +B 1A 2x +B2设4=2+2,通分后应有x +5x 2+4x +1x +4−(5x 2+4)=(A 1x +B 1)(x 2+4)+(A 2x +B 2)(x 2+1)116由此,A 1=0,B 1=,A 2=0,B 2=−,故33⎡18116⎤xdx −原式=∫⎢1+arctan arctan =x +x −+C ⎥223(1)3(4)++x x 332⎣⎦例8、求∫dx 102x (x +1)x 10+1−x 10x 911==−10解由于102102102x (x +1)x (x +1)x (x +1)(x +1)1x 9x 9=−10−102x (x +1)(x +1)⎤⎡1x 9x 91d (x 10+1)1d (x 10+1)dx =ln |x |−∫10原式=∫⎢−10−∫10−102⎥2x x x (1)(1)10x +110(x +1)++⎦⎣111x 10110=ln |x |−ln(x +1)++C =ln ++C10x 10+110(x 10+1)1010(x 10+1)注对被积函数先做初等变形常常可以使问题得到简化,常见的初等变形有:分子分母同乘一个因子;有理化;加一项或者减一项以及利用三角函数恒等变形等.六、三角函数有理式的积分一般从理论上讲,三角函数有理式的积分∫R (sin x ,cos x )dx 可通过万能代换x化为代数有理式的积分,但有时较繁,因此我们常采用三角恒等变形,2然后再求解.t =tan 例1、求∫dx4sin x cos xsin 2x +cos 2x sin x dx dx dx =+解原式=∫442∫∫sin x cos x cos x sin x cos x=−∫=sin x dx1d (cos x )dx ++∫cos 2x ∫sin xcos 4x x 111d (cos x )x −+ln |tan |=++ln |tan |+C 3cos 3x ∫cos 2x 23cos 3x cos x 2例2、求∫1+sin xdxx x x x +cos 2+2sin cos dx2222解原式=∫sin 2=∫(sin x x x x x x+cos )2dx =∫(sin +cos )dx =−2cos +2sin +C222222例3、求∫dx2sin x −cos x +5x 2t 1−t 22dt,cos x ,dx ==,于是解令t =tan ,则sin x =22221+t 1+t 1+t x ⎞⎛3tan +1⎟⎜11dt ⎛3t +1⎞2⎟+C 原式=∫2arctan ⎜arctan ⎜=⎟+C =3t +2t +2555⎜⎟⎝5⎠⎜⎟⎝⎠例4、求∫sin xdx 1+sin xsin x (1−sin x )sin x 1−cos 2xdx =∫dx −∫dx 解原式=∫cos 2x cos 2x cos 2x=1−tan x +x +C cos xsin xdx sin x +cos x1sin x +cos x +sin x −cos x 1⎛sin x −cos x ⎞dx =⎜1+⎟dx ∫∫2sin x +cos x 2⎝sin x +cos x ⎠例5、求∫解原式==11−d (sin x +cos x )1x +∫=(x −ln |sin x +cos x |)+C 22sin x +cos x 2例6、求∫sin 5x cos xdx解原式=111[sin 4x +sin 6x ]dx =−cos 4x −cos6x +C 2∫812注积化和差公式1sin αx ⋅cos βx =[sin(α+β)x +sin(α−β)x ]21sin αx ⋅sin βx =[cos(α−β)x −cos(α+β)x ]21cos αx ⋅cos βx =[cos(α+β)x +cos(α−β)x ]2例7、求∫dx2(2+sin x )cos x解令sin x =t ,cos xdx =dt1(2+t 2)+(1−t 2)dt =于是原式=∫dt(2+t 2)(1−t 2)3∫(2+t 2)(1−t 2)=1dt 111+t 1dt tln +=+arctan()+C 22∫∫31−t 32+t 61−t 32211+sin x 1sin xarctan(=ln +)+C 61−sin x 322注形如∫R (sin x ,cos x )dx 的有理函数的积分,一般可利用代换tan 为有理函数的积分.(i) 若R (−sin x ,cos x )=−R (sin x ,cos x )或R (sin x ,−cos x )=−R (sin x ,cos x )成立,最好利用代换cos x =t 或对应的sin x =t .(ii) 若等式R (−sin x ,−cos x )=R (sin x ,cos x )成立,最好利用代换tan x =t .x=t 化2例8、求∫sin xdx sin 3x +cos 3x解令tan x =t ,则sec 2xdx =dt ,于是t 1(1+t )2−(1−t +t 2)1t +11dt dt =dt =dt −原式=∫1+t 33∫(1+t )(1−t +t 2)3∫1−t +t 23∫1+t 112t −11arctan()−ln |1+t |+C =ln(t 2−t +1)+63332tan x −11tan 2x −tan x +11+arctan()+C =ln 26(1+tan x )33 21。
不定积分的解题方法与技巧
一.直接积分法(公式法)利用不定积分的运算性质和基本积分公式直接求出不定积分二.第一类换元法 1.当遇到形如⎰++cbx ax dx2的不定积分,可分为以下三种情况: (1)当0>∆时,可将原式化为()()21x x x x --,其中,21,x x 为c bx ax++2的两个解,则原不定积分为:()()()()()⎥⎦⎤⎢⎣⎡------=--⎰⎰⎰221112211x x x x d x x x x d x x x x x x dx ()C x x x x x x +---=2112ln 1(2)当0=∆时,可利用完全平方公式,化成()()⎰--2k xk x d 。
然后根据基本积分公式即可解决。
(3)当0<∆时,可先给分母配方,多利用C x x dx+=+⎰arctan 12解决。
2.当被积函数是三角函数的乘积时,拆开奇次项去凑微分。
当被积函数为三角函数的偶次幂时,常用半角公式降幂;若为奇次,则拆一项去凑微分,剩余的偶次用半角公式降幂。
三.第二类换元法 1.三角代换当被积函数含有22x a -时,令x=asint 或x=acost ,⎪⎪⎭⎫⎝⎛-∈2,2ππt 。
当被积函数含有22x a +时,令x=tant ,⎪⎪⎭⎫ ⎝⎛-∈2,2ππt 。
当被积函数含有22a x -时,令x=±asect ,⎪⎪⎭⎫⎝⎛∈2,0πt2.倒代换当分母中因子次数较高时,可考虑倒代换。
三.分部积分法口诀:反对幂指三,谁后谁先微。
意思是:反三角函数,对数函数,幂函数,指数函数,三角函数,谁在后面谁先被微分。
分部积分法一般用于两个函数相乘且两个函数属于口诀中五种函数中的两个。
四.有理函数的积分 1.形如()ka -x 1的有理函数,它所对应的部分分式是()()()kk221a -x A a -x A a -x A +⋯⋯++ 2.形如()kqpx ++2x1的有理函数,它所对应的的部分分式是()()()k2kk 2222211xx x qpx C x B qpx C x B q px C x B ++++⋯⋯++++++++3.非以上二者形式的有理函数,采取固定分项步骤(其实,就是上述两种方法的综合): 部分分式项数为原有理函数的分母整体的次数和。
4.2不定积分的计算
以sinx为内层函数的复合函数 为内层函数的复合函数
常见的配元形式还有: 常见的配元形式还有:
(4)
∫ f (cos x)sin xdx =
dcos x
(5)
∫ f (e )e dx =
x x
de
x
1 (6) ∫ f (ln x) dx = x
dln x
u
1 u 1 ∴ 原式 = ∫ xe du = e du 2x 2
∫
1 u = e +C 2
1 x2 = e +C 2
巩固练习一
(1) ∫ x e dx
2 x3
(2) ∫ cos xe
x
sin x
dx
(3) ∫ e cos e dx
x
(ln x) (4) ∫ dx x
4
题型三(分离分子分母) 其中一个是另一个的导数) ( 题型三(分离分子分母) 其中一个是另一个的导数)
(分母的导数是分子) 分母的导数是分子)
(1 + sin x) = cos x
'
1 解:原式 = ∫ (1 + sin x) ' dx 1 + sin x
联想公式
1 =∫ d (1 + sin x) 1 + sin x
= ln 1 + sin x + C
凑 微 分
思考
若分子的导数是分母是否可行? 若分子的导数是分母是否可行?
1 2x ∫ e dx = 2 e + C
2x
exd x = ex +C ∫
∫e
u
d u = e +C
u
结论:积分变量只需统一,即可套用公式! 结论:积分变量只需统一,即可套用公式! 统一
基本积分公式和直接积分法
2
dx
x arctan x C
例3 计算 tan2 xdx 解 tan2 xdx (sec2 x 1)dx sec2 xdx dx
tan x x C
例4
计算
cos2
x dx 2
解
cos2
x 2
dx
1
cos 2
x
dx
1 2
dx cosdx
1 ( x sin x) C
7
作业: 习题4.2
8
2
6
三、小结
1、基本积分公式 由于求不定积分和求导数互为逆运算,因此基本积分
公式是与基本微分公式对应的积分公式。 在基本微分公式较熟 悉的前提下,基本积分公式是不难记住的。
2、直接积分法 用直接积分法求不定积分时,需先对被积函数作代数恒 等变形(如例1,例2等)或三角恒等变形(如例3,例4等), 然后再利用不定积分的基本运算法则,化为能直接用基本积分 公式求不定积分的形式,而后求出积分。这里灵活地对被积函 数进行恒等变形是很重要的。
定理1 两个函数代数和的不定积分等于各函数不定积分 的代数和,即
[ f ( x) g( x)]dx f ( x)dx g( x)dx
证 因为
f ( x)dx
g( x)dx
Байду номын сангаас
f
( x)dx
g( x)dx
f (x)
g( x)
故由不定积分的定义即知定理1成立。类似地,可以证明
定理2 非零常数因子可以提到积分号前面,即
4.2 基本积分公式和直接积分法
主要内容: 1.基本积分公式 2.直接积分法
1
一、基本积分公式
1) 0dx C
3)
求积分的几种常规方法
合肥学院论文求积分的若干方法姓名:陈涛学号:1506011005学院:合肥学院专业:机械设计制造及其自动化老师:左功武完成时间:2015年12月29日求积分的几种常规方法陈涛摘要:数学分析中,不定积分是求导问题的逆运算,而且是联系微分学和积分学的一条纽带。
为灵活运用积分方法求不定积分,本文介绍了求积分的几种重要方法和常用技巧,讨论和分析了求积分的几种方法:直接积分法,换元积分法,分部积分法以及有理函数积分的待定系数法,对于快速求不定积分有重要意义,适当的运用积分方法求不定积分,才可以简捷,准确。
关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法引言数学分析是师范大学数学专业必修专业课,微分和积分都是数学分析的重点,而不定积分是积分学的基础,更是关键,直接关系到学习数学的重点。
其任务是掌握逻辑思维方法和提高使用数学手段解决问题的能力。
一般地,求不定积分要比求导数难很多,运用积分法则和积分公式只能解决一些简单的积分,更多的不定积分要因函数的不同形式和不同类型选用不同的方法,巧妙运用恰当的方法,可以化难为易,从而简单、快捷、准确的求出不定积分。
本文为解决求积分的困难问题给出了相应的解决方法,帮助理解不定积分。
1 积分的概念设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分(indefinite integral)。
记作∫f(x)dx。
其中∫叫做积分号(integral sign),f(x)叫做被积函数(integrand),x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分。
1.1 不定积分积分还可以分为两部分。
第一种,是单纯的积分,也就是已知导数求原函数,而若F(x)的导数是f(x),那么F(x)+C(C是常数)的导数也是f(x),也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x),C是任意的常数,所以f(x)积分的结果有无数个,是不确定的,我们一律用F(x)+C代替,这就称为不定积分。
高数-积分学
2 x x x
x x
x e 2( xe e ) C .
2
e ( x 2 x 2) C
x 2
例 4 已知 f ( x ) 的一个原函数是 e
x2
, 求 xf ( x )dx .
解
f ( x )dx f ( x ), f ( x )dx e
积分学
一、 不定积分
二、 定积分
三、 广义积分 四、重积分
五、平面曲线积分 六、积分应用
一、 不定积分
1. 直接积分法
通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 (要求记住基本积分公式). 2. 换元积分法
第一类换元的基本思路
g ( x)dx
f [ ( x)]d [ ( x)] F [ ( x)] C
d b( x ) F ( x ) f ( t )dt f b( x )b( x ) f a( x )a( x ) dx a ( x )
4、牛顿—莱布尼茨公式
如果 F ( x ) 是连续函数 f ( x ) 在区间[a , b]上的一 个原函数,则
a f ( x )dx F (b) F (a )
注:这里要求f ( x)的原函数易求,且F ( x) f ( x)
第一类换元的关键是凑微分,常用的凑微分结果有
1 1 k dx d (ax b) x dx d (ax k 1 b) a (k 1)a
e dx d (e )
x x
1 dx d (ln x) ( x 0) x
x arcsin x 1 x2
2
1
dx
1
解:
1
不定积分的基本公式和直接积分法
1
1 x2dx
1 x
arctan
x
C.
例2 求下列不定积分
(1) sin2
xdx 2
(2)
cos 2x cos x sin
x
dx
解
(1)原式
1
cos 2
x
dx
1 2
(1 cos
x)dx
1 2
[
dx
cos
xdx]
1 2
(
x
sin
x)
C
(2)原式 cos2 x sin2 x dx
ln a
(2) exdx ex C (Q (e x ) e x )
4 三角函数:
(1) sin xdx cos x C (2) cos xdx sin x C
( (cosx) sin x) ( (sin x) cosx)
(3) sec x tan xdx sec x C ( (secx) sec x tan x)
x)
1 1 x2
, (arc
cot
x)
1 1 x2
基 (1) kdx kx C (k是常数);
本
积
(2)
xdx x1 C ( 1); 1
分
表
(3)
dx x
ln
|
x
|
C;
说明: x 0,
dx ln x C,
x
x 0, [ln( x)] 1 ( x) 1 ,
常见求积分方法总结
Yi b i n U n i v e r s i t y毕业论文(设计)题目常见求积分方法总结系别数学学院专业数学与应用数学学生姓名罗大宏学号********* 年级12级4班指导教师刘信东职称xxx2016 年 3 月10 日常见求积分方法总结作者:罗大宏单位:宜宾学院数学学院12级4班指导教师:刘兴东摘要: 微积分是数学分析中的一个重要基础学科,并且微积分中的积分运算是求导的逆运算,它是连接微分学和积分学的枢纽。
因此怎样求积分就显得非常重要,本文讲解了常见求积分的几种方法:直接积分法、分部积分法、换元积分法和有理函数积分的待定系数法,掌握了这些方法,将对我们迅速求解积分来说非常重要。
关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法引言数学分析是大学数学与应用数学专业必修专业课,而微积分是数学分析的重点,又不定积分是积分学的基础,会影响到后面学习其它的积分,特别是定积分的求解。
它的目的是形成一定的思维方法和解决问题的能力。
并且不定积分的求解要比导数的求解复杂很多,运用积分的基本公式只能解决一些容易的积分,更多的不定积分要因函数的差别而采用相应的方法。
另外,如果我们掌握了求不定积分的方法,那么求解定积分就变得容易。
本文我们就对常见求积分方法进行总结,以便帮助我们解决一些实际问题。
1.积分的概念1.1、不定积分若()x F 是函数()x f 在区间I 上的一个原函数,则()x f 在I 的所有原函数()C x F +(C 为任意常数)称为()x f 在区间I 上的不定积分。
记作()()C x F dx x f +=⎰。
其中⎰称为积分号,函数()x f 称为被积函数,x 称为积分变量,()d x x f 称为被积表达式,C 称为积分常数。
另外,求已知函数不定积分的过程就称作对这个函数进行积分。
1.2、定积分设函数()x f 在区间[]b a ,上有定义,在[]b a ,内任意插入1-n 个分点: ,,...,,,1321x x x x n -,,a 令0x b x n == ,...1210b x x x x x a n n =<<<<<=- 把区间[]b a ,分为n 个小区间[x x 10,],[x x 21,],... ,[x x k k ,1-],... ,[x xn n ,1-],各个小区间的长度依次为x x x 011-=∆, x x x 122-=∆,...,,1x x x n n n--=∆在每个小区间[x x i i ,1-]上任取一点ζi[]()x x ii i,1-∈∀ζ,作乘积()x f i i ∆•ζ()n i , (2)1=,并作和式 ().1x f S i n i i n∆∑==ζ记{},,...,,max 21x x x n ∆∆∆=λ当0→λ时,即n 无限增大时,S n 的极限如果存在并趋于I ,且I 与[]b a ,的分法及ζi 的取法无关,则称此极限I 为函数()x f 在区间[]b a ,上的定积分,记作()()I x f dx x f i ni i ba =∆∑=⎰=→10lim ζλ. 其中符号⎰叫做积分号,()x f 叫做被积函数,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,[]b a ,叫做积分区间. 1.3 定积分与不定积分的联系定积分的本质是将函数的图象在平面直角坐标系上用与y 轴平行的的直线和x 轴将它分割成很多个矩形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 x2
1 x2 1 x2
( A B) 2Ax2 1 x2
A 2
B A
0 1
A B
1 2
1 2
例 20 设
求
. f sin 2
解 由于 f sin 2 x cos 2 x 1 sin 2 x ,
所以
f x 1 x ,故知 f (x) 是1 x 的原函数 ,
被 积 表 达
式
积 分 变 量
任 意 常 数
例1 求 x5dx.
解
x6
x5,
6
x5dx x6 C
6
例2
求
1
1 x2
dx.
解
arctgx
1 1 x2
,
1 1 x2
dx
arctgx
C
原函数 不
F ( x) f ( x)或 dF ( x) f ( x)dx
积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
质不
定 (1) [ f ( x) g( x)]dx f ( x)dx g( x)dx;
积
(此性质可推广到有限多个函数之和的情况)
分
的 (2) kf ( x)dx k f ( x)dx. (k 是常数,k 0)
x2)
(1 x2) x2 x2 (1 x2 )
1 x2
1
1 x
2
(2)
sin 2
1 x cos2
x
sin2 x cos2 x sin2 x cos2 x
sec2 x csc2 x
例18.
sin 2
1
dx
xcos2 x
sin 2 x cos2 x dx sin 2 x cos2 x
与
性
质
不定积分的运算?
原函数 不
F ( x) f ( x)或 dF ( x) f ( x)dx
那么函数 F ( x) 就称为 f ( x) 或 f ( x)dx
不 定 积
定
积 原函数存
分 的
在定理
在区间 I 内原函数.
连续函数一定有原函数.
分概
的 概 念
念
不定积分 的定义
函数 f ( x)的带有任意 常数项的原函数
1
1 x2
dx
arctgx C;
1
1 x
2
dx
arcctgx
C;
基本积分表
(1) kdx kx C (k是常数);
(2) xdx x1 C ( 1); 1
(4)
1
1 x
2dx
arctgx C;
(5)
1 dx arcsin x C; 1 x2
1 sin2
dx x
csc2
xdx
ctgx
C;
例4 求积分 x2 xdx.
5
解 x2 xdx x 2dx
根据积分公式
(2)
xdx
x 1 C
1
( 1);
5 1
x2 C 5 1
2
7
x2
C.
7
2
原函数 不
F ( x) f ( x)或 dF ( x) f ( x)dx
在区间 I 内原函数.
连续函数一定有原函数.
概
念
不定积分 的定义
函数 f ( x)的带有任意常数项的原函数
称为 f ( x)在区间I 内的 F( x) f ( x)
不定积分,记为 f ( x)dx F( x) C
与
性
质
f ( x)dx F( x) C
积 分 号
被 积 函 数
cos xdx sin x C;
(cos x) sin x
sin xdx cos x C;
(tgx) sec2 x
(ctgx) csc2 x
1
cos2
dx x
sec2
xdx
tgx C;
1 sin2
dx x
csc2
xdx
ctgx
C;
基本初等函数或常数的导数
(arcsin x) 1 1 x2
(arccos x) 1 1 x2
(arctgx)
1
1 x2
(arcctgx)
1
1 x
2
基本积分表
1 dx arcsin x C;
1 x2
1
dx arccos x C;
1 x2
性
质
例5
求积分
( 1
3 x
2
2 )dx. 1 x2
解
( 1
3 x2
1
2
x2
)dx
3
1
1 x2
dx
2
1 dx
1 x2
3arctan x 2arcsin x C
例6
求积分
1 x x x(1 x2
2
)
dx.
(4)
1
1 x
2
dx
arctgx C;
第四章 不定积分
不定积分的概念
主
要
直接积分法
内
不定积分计算
换元积分法
容
方法及类型
分部积分法
特殊类型积分法
基本要求:正确进行不定积分的计算
第四章 不定积分
第一节 不定积分的概念与性质
主要内容:不定积分的定义
不定积分的性质 基本积分公式 直接积分法
不 原函数 定
F ( x) f ( x)或 dF ( x) f ( x)dx
x)
1 x lna
( x ) x 1
a xdx a x C; ln a
e xdx e x C;
1 x
dx
ln
x
C;
1 x
dx
ln a loga
x
C;
xdx x1 C ( 1);
1
(sin x) cos x
解 dy sec2 x sin x, dx
y sec2 x sin xdx
tan x cos x C, y(0) 5, C 6, 所求曲线方程为 y tan x cos x 6.
17. 求下列积分:
(留给读者)
提示:
(1)
1 x2 (1
那么函数 F ( x) 就称为 f ( x) 或 f ( x)dx
不 定
积 分 的
积概
在区间 I 内原函数.
分念
的
概
念 与
例 sin x cos x sin x是cos x的原函数.
性 质
ln x 1 ( x 0)
x
ln x是1 在区间(0,) 内的原函数. x
不 原函数 定
F ( x) f ( x)或 dF ( x) f ( x)dx
那么函数 F ( x) 就称为 f ( x) 或 f ( x)dx
不 定 积
积
在区间 I 内原函数.
分 的 概
原函数存 在定理
连续函数一定有原函数.
分念
的
概
念
问题:(1) 原函数是否唯一?
与 性
(2) 若不唯一它们之间有什么联系?
那么函数 F ( x) 就称为 f ( x) 或 f ( x)dx
不 定
定 积 分
原函数存 在定理
在区间 I 内原函数.
连续函数一定有原函
积 分 的
的 概 不定积分 念 的定义
数.
函数 f ( x)的带有任意 常数项的原函数
称为 f ( x)在区间I 内的
概 念 与 性
基本)
1 dx arcsin x C; 1 x2
解
1 x x2 x(1 x2 )
dx
x (1 x2 x(1 x2 )
)dx
(3)
dx x
ln
x
C;
1
1 x
2
1 x
dx
1 1 x2 dx
1
(4)
1
1 x
2
原函数 不
F ( x) f ( x)或 dF ( x) f ( x)dx
那么函数 F ( x) 就称为 f ( x) 或 f ( x)dx
不 定 积
定
积 原函数存
分 的
在定理
在区间 I 内原函数.
连续函数一定有原函数.
分概
的 概 念
念
不定积分 的定义
函数 f ( x)的带有任意 常数项的原函数
(3)
1 x
dx
ln
x
C;
(12) e xdx e x C;
(13)
a xdx
ax ln a
C;
(6) cos xdx sin x C;