一次函数与一次不等式教案
一元一次不等式与一次函数优秀教案

一元一次不等式与一次函数【课时安排】2课时【第一课时】【教学目标】一、教学知识点。
(一)一元一次不等式与一次函数的关系。
(二)会根据题意列出函数关系式,画出函数图像,并利用不等关系进行比较。
二、能力训练要求。
(一)通过一元一次不等式与一次函数的图像之间的结合,培养学生的数形结合意识。
(二)训练大家能利用数学知识去解决实际问题的能力。
三、情感与价值观要求。
体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
【教学重点】了解一元一次不等式与一次函数之间的关系。
【教学难点】自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答。
【教学方法】研讨法。
即主要由学生自主交流合作来解决问题,老师只起引导作用。
【教学准备】投影片两张。
【教学过程】一、创设问题情境,引入新课。
[师]上节课我们学习了一元一次不等式的解法,那么,是不是不等式的知识是孤立的呢?本节课我们来研究不等式的有关应用。
二、新课讲授。
(一)一元一次不等式与一次函数之间的关系。
[师]大家还记得一次函数吗?请举例给出它的一般形式。
[生]如y=2x -5为一次函数。
[师]在一次函数y=2x -5中, 当y=0时,有方程2x -5=0; 当y >0时,有不等式2x -5>0; 当y <0时,有不等式2x -5<0。
由此可见,一次函数与一元一次方程、一元一次不等式之间有密切关系,当函数值等于0时即为方程,当函数值大于或小于0时即为不等式。
下面我们来探讨一下一元一次不等式与一次函数的图像之间的关系。
(二)做一做。
请大家讨论后回答:[生](1)当y=0时,2x -5=0,∴x=25,∴当x=25时,2x -5=0。
(2)要找2x -5>0的x 的值,也就是函数值y 大于0时所对应的x 的值,从图像上可知,y >0时,图像在x 轴上方,图像上任一点所对应的x 值都满足条件,当y=0时,则有2x-5=0,解得x=25。
一次函数与一元一次方程及不等式复习教案

一次函数与一元一次方程及不等式复习教案沂南三中张继学联系电话:一、【教材分析】二、【教学流程】运用4、直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1C.x<1 D.x≤15、已知直线y=2x+k与x轴的交点为(-2,0),则关于不等式2x+k<0的解集是()A.x>-2 B.x≥-2C.x<-2 D.x≤-26、已知函数y=x-3,当x时,y>0,当x时,y<0.7、已知一次函数y=kx+b的图象如图所示,则不等式kx+b>0解集是()A.x>-2 B.x<-2C.x>-1 D.x<-18、如图是一次函数y=kx+b(k≠0)的图象,则关于x的方程kx+b=0的解为;关于x的不等式kx+b>0的解集为;关于x的不等式kx+b<0的解集为.让学生体会解一元一次不等式与求一定条件下自变量的取值范围的关系.解一元一次不等式从函数值的角度看,就是寻求使一次函数y=ax+b的值大于或小于零的自变量的取值范围.通过图象让学生认识不等式的解集与图象上点的坐标的联系学生独立完成问题,然后师生共同归纳得到,解一元一次不等式从形的角度看,就是确定直线y=kx+b在x轴上(或下)部分所有点的横坐标所构成的集合。
三、【板书设计】四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。
本节课的成功与遗憾有:成功之一:在问题探究中,挖掘了四个“一次”间的相互联系,方程刻画数量之间的相等关系,不等式刻画数量之间的不等关系,函数刻画数量之间的变化关系。
当函数中的一个变量的值确定时,可以利用方程来确定另一个变量的值;当已知函数中的某一个变量取值范围时,可以利用不等式(组)来确定另一个变量的范围。
成功之二:利用所学知识培养了学生数形结合的思想,让学生体会到华罗庚所说的“数无形时少直观,形无数时难入微”。
数形结合思想是重要的数学思想之一,也是解决数学问题的重要方法之一,通过数和形相互转化我们常常能把数学问题化难为易,化抽象为具体,成功之三:这节内容把不同的知识点融合在一起,在学生已有的知识基础上,让学生初步领略了数学学习中对知识的整合很有必要,为今后学习二次函数、二次方程、二次不等式的综合作了一个很好的铺垫。
一次函数与一元一次不等式教案

§14.3.2 一次函数与一元一次不等式教学目标(一)知识认知要求1、认识一元一次不等式与一次函数问题的转化关系.2、学会用图象法求解不等式3、进一步理解数形结合思想. (二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.2、训练大家能利用数学知识去解决实际问题的能力. (三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用. 教学重点1、理解一元一次不等式与一次函数的转化及本质联系。
2、掌握用图象求解不等式的方法。
教学难点图象方法求解不等式中自变量取值范围的确定。
教学过程一、创设情境,引入新课 问题:1、你能利用函数图象解下面的方程吗?学生作图得出答案,师、生一起分析:画出直线 ,发现图象与x 轴的交点坐标为(2,0)。
所以,原方程的解为x=2。
2、在图象上任取一点,如点A (x 1,y 1),易得x 1>0,y 1=2 x 1-4>0可见,在一次函数图象上也存在着不等关系,今天我们就来学习这个内容。
二、分析问题,探究新知思考1:我们来看下面两个问题有什么关系? (1)解不等式5x +6>3x +10。
(2)当自变量x 为何值时函数y =2 x -4的值大于0? 得出:这两个问题实际上是同一个问题。
思考2:以下解不等式的问题可以与怎样的一次函数问题是统一的? (1)解不等式 2 x +6 > 0 (2)解不等式 - 5 x - 5<0 (3)解不等式 8 x +4 > 3 x +7学生讨论并猜想“解不等式a x +b >0” 与“求自变量x 在什么范围内,一次函数y =a x +b 的值大于0”之间的关系?240x -=24y x =-思考3:再次观察函数y =2 x -4的图象,如何利用图象来说明问题(2)?我们先观察函数у=2χ-4的图象。
一次函数与一元一次方程和不等式教案

《19.2.3一次函数与方程、不等式》教学设计陈静雯教材人教版《数学》八年级下册学习目标知识与技能1.初步理解一次函数与一元一次方程、一元一次不等式、二元一次方程(组)的内在联系,明白方程(组)、不等式与函数三者之间相互转化,相互渗透.2.通过画函数图像、观察函数图像,体会数形结合思想.3.能结合利用函数、方程、不等式的相关知识解决实际问题.过程与方法通过对一次函数与一次方程、一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力;情感态度与价值观通过对一次函数与一次方程、一次不等式关系的探究,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。
教学重点理解一次函数与一次方程、一次不等式的关系;教学难点根据一次函数的图象求一元一次方程的解和一次不等式的解集,发展学生数形结合的思想和辩证思维能力。
教具多媒体教学过程问题与情境师生互动时间活动一复习引入问题:1、什么是二元一次方程?2、一次函数与二元一次方程是什么关系?活动二探究新知知识点一.一次函数与二元一次方程(一)例:一次函数y=0.5x+15,二元一次方程y-0.5x=15,观察例子问题:1、二元一次方程中,当x=0时,y=?,点(0,15)与一次函数y=0.5x+15的图像有什么关系?2、二元一次方程中,当x=4时,y=?,点(4,17)与一次函数y=0.5x+15的图像有什么关系?3、二元一次方程的有多少个解?一次函数的图像有几个点?教师提问并且结合例子补充说明学生观察回答让学生观察例子,从特殊值入手,探索一次函数的点与二元一次方程的解之间的关系,学生观察回答问题3分钟9分钟教师总结:以二元一次方程的解为坐标的点,落在对应的一次函数的图像上,无数个解对应无数个点,点动成线,构成一次函数的图像。
知识点二.一次函数与一元一次方程(一)例:下面三个方程有什么共同特点?你能从函数的角度对解这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.问题:1、三个方程有什么共同特点?什么不同点?2、从函数的角度出发,对解这三个方程进行解释?3、一次函数问题如何转换为一次方程问题?总结:用函数的观点看:解一元一次方程ax +b =k 就是求当函数值为k 时,对应的自变量的值.(二)练一练知识点三.一次函数与一次不等式(一)例:下面三个不等式有什么共同特点?你能从函数的角度对解这三个不等式进行解释吗?能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.学生分组讨论教师巡视启发学生学生代表发言,师生共同评价学生自主做练习,学生代表回答问题教师提出问题学生思考回答师生点评9分钟4分钟9分钟问题:1、三个不等式的相同点和不同点是什么?2、结合一次函数与方程,谈谈如何从函数的角度,解释一次函数与不等式?3、一次函数问题如何转换成一次不等式问题?总结:1、不等式ax+b>c的解集就是使函数y =ax+b 的函数值大于c的对应的自变量取值范围,2、不等式ax+b<c的解集就是使函数y =ax+b 的函数值小于c的对应的自变量取值范围.(二)练一练:活动三、作业与小结1.谈谈本节课你学到了什么?2.作业师生共同归纳总结学生自主完成学生在教师的引导下回顾这节课所学内容3分钟3分钟。
19.2.3一次函数与方程、不等式(教案)方案

1.理论介绍:首先,我们要了解一次函数与一元一次方程、不等式的基本概念。一次函数是形如y=kx+b的表达式,它描述了两个变量之间的线性关系。一元一次方程和不等式则是解决实际问题时常用的数学工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过一次函数图像来求解一元一次方程和不等式,以及它如何帮助我们解决实际问题。
举例解释:
-对于难点一,教师可以通过具体的图像和方程例子,如y=3x-4与方程3x-4=0,引导学生观察图像上与x轴交点的坐标,从而理解该点即为方程的解。
-对于难点二,教师可以设计一些具有实际背景的题目,如“小明买苹果,每千克x元,买y千克需要花费多少钱?”并指导学生如何从中提取数学信息,建立一次函数模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数、方程和不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在新课讲授中,我注意到学生们对于案例分析部分较为感兴趣,能够积极参与讨论。但在重点难点解析部分,部分学生仍存在理解困难,尤其是在将实际问题抽象为数学模型方面。为此,我调整了教学方法,通过更多具体的例子和引导性问题,帮助学生逐步建立起一次函数、方程和不等式之间的联系。
实践活动环节,学生们分组讨论和实验操作的过程较为顺利,但成果展示时,部分小组的表达能力较弱,需要我在以后的教学中加强对学生表达能力的培养。同时,我也发现有些小组在讨论过程中过于依赖我,缺乏独立思考的能力,这一点我将在以后的教学中加以引导和改进。
一元一次不等式与一次函数教案

一元一次不等式与一次函数教案第一章:引言1.1 学习目标理解一元一次不等式与一次函数的概念掌握一元一次不等式与一次函数的关系1.2 教学内容介绍一元一次不等式与一次函数的定义解释一元一次不等式与一次函数的关系1.3 教学活动引入一元一次不等式与一次函数的概念通过实例解释一元一次不等式与一次函数的关系第二章:一元一次不等式的解法2.1 学习目标学会解一元一次不等式2.2 教学内容介绍一元一次不等式的解法讲解解一元一次不等式的步骤2.3 教学活动讲解解一元一次不等式的步骤学生分组练习解一元一次不等式第三章:一次函数的图像3.1 学习目标学会绘制一次函数的图像3.2 教学内容介绍一次函数的图像讲解绘制一次函数图像的方法3.3 教学活动讲解绘制一次函数图像的方法学生分组练习绘制一次函数图像第四章:一元一次不等式与一次函数的应用4.1 学习目标学会应用一元一次不等式与一次函数解决实际问题4.2 教学内容介绍一元一次不等式与一次函数的应用讲解一元一次不等式与一次函数在实际问题中的应用4.3 教学活动讲解一元一次不等式与一次函数在实际问题中的应用学生分组练习解决实际问题5.1 学习目标复习一元一次不等式与一次函数的知识点5.2 教学内容5.3 教学活动进行复习测试,巩固所学知识第六章:一元一次不等式的应用举例6.1 学习目标学会使用一元一次不等式解决实际问题。
6.2 教学内容通过实例讲解一元一次不等式在实际问题中的应用。
分析并解决实际问题。
6.3 教学活动分析实际问题,引导学生运用一元一次不等式进行解决。
学生分组讨论并练习解决实际问题。
第七章:一次函数的性质7.1 学习目标理解一次函数的性质,包括斜率和截距。
7.2 教学内容介绍一次函数的斜率和截距。
讲解一次函数的性质及其影响因素。
7.3 教学活动讲解一次函数的性质及其影响因素。
学生分组练习分析一次函数的性质。
第八章:一次函数图像的变换8.1 学习目标学会分析一次函数图像的平移变换。
一次函数与一元一次不等式(教案)

一次函数与一元一次不等式知识要点1.解一元一次不等式可以看作是:当一次函数值大于(或小于)0时,求自变量相应的取值范围.2.解关于x的不等式kx+b>mx+n可以转化为:(1)当自变量x取何值时,直线y=(k-m)x+b-n上的点在x轴的上方.或(2)求当x取何值时,直线y=kx+b上的点在直线y=mx+n上相应的点的上方.(不等号为“<”时是同样的道理)典型例题例:用画图象的方法解不等式2x+1>3x+4分析:(1)可将不等式化为-x-3>0,作出直线y=-x-3,然后观察:自变量x取何值时,图象上的点在x轴上方?或(2)画出直线y=2x+1与y=3x+4,然后观察:对于哪些x的值,直线y=2x+1上的点在直线y=3x+4上相应的点的上方?解:方法(1)原不等式为:-x-3>0,在直角坐标系中画出函数y=-x-3•的图象(图1).从图象可以看出,当x<-3时这条直线上的点在x轴上方,即这时y=-x-3>0,因此不等式的解集是x<-3.方法(2)把原不等式的两边看着是两个一次函数,•在同一坐标系中画出直线y=2x+1与y=3x+4(图2),从图象上可以看出它们的交点的横坐标是x=-3,因此当x<-3时,对于同一个x的值,直线y=2x+1上的点在直线y=3x+4•上相应点的上方,此时有2x+1>3x+4,因此不等式的解集是x<-3.(1) (2)练习巩固☆我能选1.直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1 C.x<1 D.x≤12.已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k<0•的解集是()A.x>-2 B.x≥-2 C.x<-2 D.x≤-23.已知关于x的不等式ax+1>0(a≠0)的解集是x<1,则直线y=ax+1与x轴的交点是()A.(0,1) B.(-1,0) C.(0,-1) D.(1,0)☆我能填4.当自变量x的值满足____________时,直线y=-x+2上的点在x轴下方.5.已知直线y=x-2与y=-x+2相交于点(2,0),则不等式x-2≥-x+2•的解集是________.6.直线y=-3x-3与x轴的交点坐标是________,则不等式-3x+9>12•的解集是________.7.已知关于x的不等式kx-2>0(k≠0)的解集是x>-3,则直线y=-kx+2与x•轴的交点是__________.8.已知不等式-x+5>3x-3的解集是x<2,则直线y=-x+5与y=3x-3•的交点坐标是_________.☆我能答9.某单位需要用车,•准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y元,付给出租车公司的月租费是y元,y,y分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?10.在同一坐标系中画出一次函数y1=-x+1与y2=2x-2的图象,并根据图象回答下列问题:(1)写出直线y1=-x+1与y2=2x-2的交点P的坐标.(2)直接写出:当x取何值时y1>y2;y1<y2☆探究园11.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1)(1)求k、b的值,在同一坐标系中画出两个函数的图象.(2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2(3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0一次函数与方程、不等式1、函数y=kx+b ,当12x =时,y <0,则k 与b 的关系是( ) A .2b >k B .2b <k C .2b >-k D .2b<-k2、 在函数14x y =-+中,若y 的值不小于0.则x ( ) A .x ≤4 B .x ≥4 C .x ≤-4 D .x ≥-43、无论m 为何实数,直线y=x +2m 与y=-x +4的交点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限4、若函数132y x =+,2115y x =--,且12y y y =+,则y 的值是13时,x 的值是 .5、当x =2时,函数y=kx+10与y=3x+3k 的值相等,则k 的值是 .6、函数4233y x =-与函数342x y -=-的交点坐标为____. 7、 当x 时,函数y =2x +3的值大于0.8、当x=2时,函数y =k x +10与y =3 x +3k 的值相等,则k 的值是______.9、在同一直角坐标系中,有直线11:52l y x =+和21:23l y x =+,请你求出当x 在怎样的范围内直线l 1在直线l 2的上方.10、已知函数y=kx+b 的图像经过(-1,-5)和(1,1)点.(1) 当x 取怎样的值时,y ≥0;(2) 当x <2时,y 值的范围是什么?11、已知函数y 1=3x +5,y 2=2x-1,当x 时,有y 1<y 2.12、当x =2时,函数y =kx +10与y =3x +3k 的值相等,则k 的值是 .13、已知函数y 1=3x +5,,y 2=2x -1,当x 时,有y 1<y 214、某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.(1)请写出制作纪念册的册数x与甲公司的收费1y(元)的函数关系式.(2)请写出制作纪念册的册数x与甲公司的收费2y(元)的函数关系式.(3)如果学校派你去甲、乙两甲公司订做纪念册,你会选择哪家公司?15、某化工厂生产某种化肥,每吨化肥的出厂价为1780元,其成本价为900元,但在生产过程中,平均每吨化肥有280立方米有害气体排出,为保护环境,工厂须对有害气体进行处理,现有下列两种处理方案可供选择:①将有害气体通过管道送交废气处理厂统一处理,则每立方米需付费3元;②若自行引进处理设备处理有害气体,则每处理1立方米有害气体需原料费0.5元,且设备每月管理、损耗等费用为28000元.设工厂每月生产化肥x吨,每月利润为y元(注:利润=总收入-总支出)(1)分别求出用方案①、方案②处理有害气体时,y与x的函数关系式;(2)根据工厂每月化肥产量x的值,分析工厂应如何选择处理方案才能获得最大利润.一次函数与方程、不等式答案答案:1、D 2、答案:A 3、答案:C 4、答案:-25、答案:46、答案:(2,2)7、答案:32->8、答案:4 9、答案:根据题意得1152,18.23x x x +>+>-解得10、答案:根据题意得23,2,(1)0320;(2)2, 4.3k b y x x x y ==--<<即解得时≥≥≥11、答案:<-6 12、答案:4 13、答案:<-614、答案:(1)1y =5x +1500; (2)2y =8x ;(3)因当1y =2y 时, 5x +1500=8x ,x =500.因当1y >2y 时, 5x +1500>8x ,x <500因当1y <2y 时, 5x +1500<8x ,x >500即当订做纪念册的册数为500时,选择甲、乙两家公司均可;当订做纪念册的册数少于500时,选择乙公司;当订做纪念册的册数多于500时,选择甲公司.。
一次函数与方程、不等式教案

《19.2 一次函数》教学设计19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式教材分析本节内容是在学生已有对一元一次方程、一元一次不等式的认识之后,从变化和对应的角度,对一次函数进行更深入的讨论,是站在更高起点上的动态分析.通过讨论一次函数与一元一次方程及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用.备课素材一、新知导入【复习导入】(1)按照“列表——描点——连线”的步骤画出一次函数y=2x-3的图象;(2)观察一次函数y=2x-3的图象与x轴的交点,指出当y=0时,自变量x的取值是多少?它与方程2x-3=0的解相同吗?它们之间有什么联系?(3)观察一次函数y=2x-3的图象在x轴上方的部分,这些点的纵坐标的符号是怎样的?(4)观察一次函数y=2x-3的图象在x轴下方的部分,这些点的纵坐标的符号是怎样的?【说明与建议】说明:复习一次函数图象的画法,把所列表格中的数据与函数图象中点的坐标结合起来,分析函数值的不同符号特征,与方程、不等式建立起联系.建议:用描点法画一次函数图象时,可以多列出几组数对,在x=1的左右两侧分别列出3~4组对称的数对,再将其与函数图象对照,发挥数形结合思想的优势,使函数值的符号特征更加明显.二、命题热点命题角度1 利用一次函数图象求一元一次方程的解1.一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为(A)A.x=-2 B.y=-2 C.x=1 D.y=1第1题图第2题图2.一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是x =3W.命题角度2 利用一次函数图象求一元一次不等式的解集3.如图,已知直线y =kx -2,根据图象可知不等式kx -2<0的解集是(C ) A .x >1 B .x >-2 C .x <1 D .x <-2第3题图 第4题图4.一次函数y =kx +b 的图象如图所示,当0<kx +b <3时,x 的取值范围为-4<x <0.命题角度3 通过解一元一次方程确定一次函数的图象与坐标轴的交点坐标 5.已知直线经过点(1,2)和点(4,5). (1)求这条直线的解析式;(2)求直线与坐标轴所围成的三角形面积. 解:(1)设直线解析式为y =kx +b ,把(1,2),(4,5)代入,得⎩⎪⎨⎪⎧k +b =2,4k +b =5, 解得⎩⎪⎨⎪⎧k =1,b =1.∴这条直线的解析式为y =x +1.(2)如图,对于直线y =x +1, 令x =0,则y =1; 令y =0,则x =-1. ∴A (0,1),B (-1,0). ∴S △AOB =12 ×1×1=12.∴直线与坐标轴所围成的三角形面积为12.教学设计课题 19.2.3 第1课时 一次函数与一元一次方程、不等式 授课人 素养目标1.会用图象法解一元一次方程、一元一次不等式.2.经历用函数图象表示方程、不等式解集的过程,进一步体会“以形表示数,以数解释形”的数形结合思想.3.通过对一次函数与一元一次方程、一元一次不等式关系的探究,发展学生辩证思维能力.4.体会数学知识的融会贯通,从不同方面认识事物的本质.教学重点理解一次函数、一元一次方程、一元一次不等式之间的联系.教学难点根据一次函数的图象求一元一次方程的解和一元一次不等式的解集.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.解方程4x+1=0;当自变量x为何值时,函数y=4x+1的值为0?2.解不等式3x+6>-2;当自变量x为何值时,函数y=3x+6的值大于-2?回顾旧知,更好地学习新知,为突破重难点做准备.活动一:创设情境、导入新课【课堂引入】(1)观察下面的一元一次方程与一元一次不等式,它们有什么共同之处?2x-2>0,2x-2=0,2x-2<0.(2)上面的一元一次方程与一元一次不等式的解或解集,与一次函数y=2x-2的图象有关系吗?师生活动:教师引导学生观察一元一次方程与一元一次不等式的左边,并与一次函数y=2x-2的右边进行比较,让学生初步感知它们之间有一定的联系.通过直观观察这三个式子与一次函数的区别,联合一次函数的意义,使学生产生深入探究的欲望,更好地进入新课.活动二:实践探究、交流新知【探究新知】1.一次函数的图象与一元一次方程的解下面三个方程有什么共同特点?你能从函数的角度对这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.观察、思考、分析、归纳,引导学生探索一元一次函数、一元一次不等式的关系,学生进一步体会数形结合思想,构建完整的知识体系.师生活动:教师引导学生从函数的角度看一元一次方程.学生小组讨论之后,派出代表汇报想法,教师帮助总结.归纳:解关于x的一元一次方程ax+b=k,就是求当y=ax +b的函数值为k时对应的自变量的值.从数的角度看:求ax+b=0(a≠0)的解⇩x为何值时,y=ax+b的值为0?从形的角度看:求ax+b=0(a≠0)的解⇩确定直线y=ax+b与x轴交点的横坐标2.一次函数的图象与一元一次不等式的解集下面三个不等式有什么共同特点?你能从函数的角度对这三个不等式进行解释吗?你能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.师生活动:教师引导学生类比一元一次方程,自主探究从函数的角度看一元一次不等式.归纳:利用图象求ax+b>0(a≠0)或ax+b<0(a≠0)的解集,就是求一次函数y=ax+b的图象在x轴上方或下方部分所有的点的横坐标所构成的集合.活动三:开放训练、体现应【典型例题】例1 一次函数y=kx+b的图象如图所示,根据图象信息可典型例题巩固新知,让学生进一步熟悉一用求得关于x的方程kx+b=3的解为(C)A.x=-1 B.x=1 C.x=2 D.x=3例1题图例2题图例2 如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是(C)A.x<1 B.x>1 C.x<3 D.x>3【变式训练】1.若一次函数y=ax+b的图象过点A(2,1),则ax+b=1的解是x=2W.2.已知关于x的方程ax+b=2的解为x=-5,则一次函数y=ax+b-2的图象与x轴交点的坐标为(-5,0)W.3.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是(B)A.x>2B.x<2C.x≥2D.x≤2师生活动:学生独立思考,举手回答,师生交流心得和方法.次函数与一元一次方程与一元一次不等式的关系,发展学生数形结合的思想,培养灵活地解决问题的能力.活动四:课堂检测【课堂检测】1.若关于x的方程4x-b=0的解是x=-2,则直线y=4x-b一定经过点(C)A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)2.若直线y=2x+b与x轴交于点A(-3,0),则方程2x+b=0的解是(A)A.x=-3 B.x=-2 C.x=6 D.x=-32通过设置当堂检测,及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.3.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b-1≥0的解集是(D)A.x≥2 B.x≥0 C.x≤2 D.x≤0第3题图第4题图4.如图,已知一次函数y=kx+b,观察图象回答下列问题:当x>2.5时,kx+b>0;当x>3时,kx+b>1.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结(1)本节课你学到了什么?有哪些体会与收获?(2)本节课你还有哪些疑惑?2.布置作业教材第99页第8题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思,更进一步提升.19.2 一次函数19.2.3 一次函数与方程、不等式第2课时一次函数与二元一次方程组教材分析函数、方程和不等式都是人们刻画现实世界的重要数学模型.用函数的观点看方程(组)与不等式,不仅能帮助学生加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美.本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义.备课素材一、新知导入【置疑导入】小聪和小惠去某景区游览,约好在“飞瀑”见面.上午7:00小聪乘电动汽车从“古刹”出发:沿景区公路去“飞瀑”,车速为36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多远?追问:当小聪追上小慧时,他们两个人的什么量是相同的?是否已经过了“草甸”?该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析式法?【说明与建议】 说明:通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决问题,在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.建议:在这个环节的学习过程中,如果学生入手感到困难.可用以下问题串引导学生进行分析:(1)两个人是否同时起步?(2)在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?(3)这个问题中的两个变量是什么?它们之间是什么函数关系?(4)如果用s 表示路程,t 表示时间,那么他们各自的解析式分别是什么?【情景导入】在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离y (km )与行驶时间x (min )之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是80km ;(2)已知货轮距B 码头的距离与行驶时间的函数解析式为y 1=12 x ,求客轮距B 码头的距离y 2(km )与时间x (min )之间的函数解析式;(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意义.【说明与建议】 说明:通过学生熟悉的问题导入新课,培养学生的识图能力和探究能力,调动学生学习的自主意识及学习兴趣.建议:引导学生建立函数模型,结合图象利用“数形结合”解决问题.二、命题热点命题角度1 利用两个一次函数图象求二元一次方程组的解1.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(C )A .⎩⎪⎨⎪⎧x =3y =-1B .⎩⎪⎨⎪⎧x =-3y =-1C .⎩⎪⎨⎪⎧x =-3y =1D .⎩⎪⎨⎪⎧x =3y =1第1题图 第3题图2.在平面直角坐标系中,直线y =-2x +11与直线y =13 x +53的交点坐标是(4,3),则方程组⎩⎪⎨⎪⎧2x +y =11,x -3y =-5 的解为⎩⎪⎨⎪⎧x =4y =3 .命题角度2 利用两个一次函数图象求一元一次不等式的解集3.函数y =kx 与y =-x +3的图象如图所示,根据图象可知,不等式kx >-x +3的解集是x >1.命题角度3 利用一次函数与方程、不等式的联系解决实际问题4.某电信公司有两种上网费用的计算方式,方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基本费20元外,再以每分钟0.05元的价格按上网时间计费.设上网时间为x 分钟,所需费用为y 元.用函数方法解答何时两种计费方式费用相等.解:y A =0.1x ,y B =0.05x +20.函数图象如图所示.∴当每月上网时间为400分钟时,两种计费方式费用相等.教学设计课题19.2.3第2课时 一次函数与二元一次方程组授课人素养目标 1.理解一次函数的图象与二元一次方程(组)的关系.2.经历用函数观点分析二元一次方程(组)的过程,进一步体会类比思想、分类讨论思想.3.利用一次函数图象的性质,解决实际问题.4.体会数学知识的融会贯通,发现数学的美,激发学生的学习兴趣.教学重点借助两个一次函数图象求二元一次方程(组)的解或一元一次不等式的解集.教学难点借助四个一次[一次函数、一元一次方程、二元一次方程(组)的解、一元一次不等式]之间的关系,解决实际问题.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾 1.解二元一次方程组2.一次函数y=5x+6与y=3x+10的交点坐标是多少?复习旧知,引发思考,为突破本节课重难点做铺垫.活动一:创设情境、导入新课【课堂引入】1号探测气球从海拔5 m出发,以1 m/min的速度上升,与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都上升了1小时.用式子分别表示两个气球所在位置的海拔y(单位:m)关于上升时间t(单位:min)的函数关系;1号气球:y=x+5,2号气球:y=0.5x+15.从实际问题抽象出数学问题,一方面有助于发展学生抽象逻辑能力,另一方面可以激发学生的学习兴趣,更好地开展新课.活动二:实践探究、交流新知【探究新知】针对【课堂引入】的问题,继续思考在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多少时间?位于什么高度?问题1 从数的角度看,二元一次方程组与一次函数有什么关系?问题2 从形的角度看,二元一次方程组与一次函数有什么关系?师生活动:教师引导学生类比一次函数与一元一次方程的关系,结合两个一次函数的图象,探求与二元一次方程组之间的关系.最后,教师帮助学生总结.归纳:(2)图象法解方程组的步骤:①将方程组中各方程化为y=ax+b的形式;②画出各函数的图象;通过类比一次函数与一元一次方程,分别从数和形两个角度分析二元一次方程组与一次函数之间的关系,进一步开拓学生的思维,感受数形结合思想以及分类讨论思想,体会数学思想的应用价值.③由交点坐标得出方程组的解.自主探究:在什么时候,1号气球比2号气球高?在什么时候,2号气球比1号气球高?活动三:开放训练、体现应用【典型例题】例1 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是(B)A.x=1 B.x=2 C.x=3 D.x=4例2 如图,在平面直角坐标系中,直线y=-2x和y=ax+2相交于点A(m,1),则不等式-2x<ax+2的解集为(D)A.x<12B.x<1 C.x>1 D.x>-12【变式训练】在同一平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,解决下列问题:(1)求方程-x+4=2x-5的解;(2)求二元一次方程组的解;(3)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?解:画函数图象如图所示.(1)∵一次函数y1=-x+4和y2=2x-5的图象相交于点(3,1),通过典型例题和变式训练.进一步感受两个一次函数与二元一次方程组的解之间的联系.由形判数,培养数形结合思想,体会数学知识的融会贯通.∴方程-x +4=2x -5的解为x =3.(2)由图可知,二元一次方程组(3)由图可知,当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.师生活动:学生独立思考,举手回答,师生交流心得和方法. 活动四:课堂检测 【课堂检测】1.如图,在平面直角坐标系中,直线y =-2x 和y =ax +2相交于点A (m ,1),则关于x ,y 的二元一次方程组的解为(C )第1题图 第2题图 第3题图2.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象交于点A (3,2),它们与x 轴的交点横坐标分别为1和-1,则不等式k 2x +b 2>0>k 1x +b 1的解集为(D )A.x>3 B .x<-1 C .x>1 D .-1<x<13.一次函数y 1=mx +n 与y 2=-x +a 的图象如图所示,则不等式mx +n >-x +a 的解集为(A )A.x >3 B .x <3 C .x <2 D .x >24.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.学以致用,课堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,帮助每个学生有所收获、有所提高.解:(1)∵P(1,b)在直线l1上,∴b=1+1,即b=2.(2)师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结1.如何用一次函数的图象解二元一次方程组?2.你是否从中体会到了某种数学思想?2.布置作业教材第98页练习题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
6.6一次函数、一元一次方程、一元一次不等式 (教案)

6.6 一次函数、一元一次方程和一元一次不等式(教案)主备人:王建英审核人:王炜班级姓名学号【学习目标】1.通过具体实例,体会一次函数与一元一次方程、一元一次不等式的内在联系;2.了解一次函数、一元一次方程、一元一次不等式在解决问题过程中的作用与联系.【学习重点】体会一次函数与一元一次方程、一元一次不等式的内在联系【学习过程】一、新知探究:活动1(P163):一根长25cm的弹簧,一端固定,另一端挂物体.在弹簧伸长后的长度不超过35cm 的限度内,每挂1kg质量的物体,弹簧伸长0.5cm.设所挂物体的质量为xkg,弹簧的长度为ycm,(1)写出y与x之间的函数表达式;(2)画出函数图像;(3)求出这根弹簧在所允许的限度内所挂物体的最大质量;(4)请用一元一次不等式求这根弹簧在所允许的限度内所挂物体的最大质量?活动分析:通过函数图像的观察结合实际意义,学生容易想到,当弹簧的长度为35cm时,物体A的质量最大,从而利用方程解决问题.题目中的“不超过”其实暗含的是不等式的模型,所以很自然会考虑用不等式解决问题.通过上面例子我们可以看到:一次函数与一元一次方程、一元一次不等式有着紧密的联系,已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值;当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.Array活动2(P164探索):已知一次函数y1=2x+4的图像.(1)根据一次函数y1=2x+4的图像,说出方程2x+4=0(2)根据一次函数y1=2x+4的图像,说出不等式2x+4>0和2x+4<0的解集;(3)根据一次函数y1=2x+4的图像,说出方程2x+4=6的解和不等式2x+4>6、2x+4≤6的解集.(4)如果x的值在-2≤x≤1的范围内,那么相应的y1的值在什么范围内?(5)如果y1的值在-2<y1≤2的范围内,那么相应的x的值在什么范围内?变式1:1、若一次函数y=kx+b 的图像如图:则当x 时, kx+b=0;当x 时, kx+b>0;当x 时, kx+b<0; 2、已知关于x 的一元一次不等式kx+b >0的解集是x <3,则一次函数y =kx+b 的图像与x 轴的交点坐标是 .二、归纳总结:1、一次函数y=kx+b (k ≠0)与一元一次方程的关系:一元一次方程kx +b =0(k ≠0),它的解是一次函数y =kx +b 的函数值y 为 的情形,从图像看即与 轴的交点的 坐标. 2、一次函数y=kx+b (k ≠0)与一元一次不等式的关系:一元一次不等式kx +b >0(k ≠0)的解集是一次函数y =kx +b 的函数值y 的情形,从图像上看即在 轴 方的图像的x 的取值范围,同样一元一次不等式kx +b <0(k ≠0) 的解集是一次函数y =kx +b 的函数值y 的情形,从图像上看即在 轴 方的图像的x 的取值范围.变式2:在活动2的平面直角坐标系中,请画出函数y 2=-x +1的图像,并利用此函数图像求: (1)当x 的值在什么范围内,y 1>y 2,y 1=y 2,y 1≤y 2?(2)当x 的值在什么范围内时,2x +4 >0与-x +1>0同时成立? 你还能提出什么问题?三、拓展提升(P164尝试) 活动3、一辆汽车行驶35km 后,驶入高速公路,并以105km/h 的速度匀速行驶了xh .(1(2)请根据上述情境,提出一个用一元一次方程来解决的问题,并解答; (3)请根据上述情境,提出一个用一元一次不等式来解决的问题,并解答.函数、方程、不等式都是刻画现实世界中量与量之间变化过程的重要模型,三者之间相互联系. 尝试对知识方法进行归纳、提炼、总结,形成理性的认识,内化数学的方法和经验.过去学习方程和不等式时,是直接面对这些概念,没有把它们与其他概念更多的联系起来.现在是在学习新概念(函数)后回头审视老概念,看问题的角度和高度都发生了变化,认识应更深刻,即应能将老概念纳入扩大后的新知识体系中,这样才能体现学习中的进步.y 1=2x+4 B(-2,0)A(0,4)O 12 3 -1 -2 -3 -4 -4 -3-2 -1 4 3 2 1yx。
部编版八年级数学下册《一次函数与方程、不等式》教案及教学反思

部编版八年级数学下册《一次函数与方程、不等式》教案及教学反思第一课时:一次函数教学目标1.让学生了解什么是一次函数;2.能够根据函数表格和函数图像判断一次函数的特征;3.能够用函数的解析式表示一次函数;4.能够应用一次函数解决实际问题。
教学内容1.一次函数的概念;2.一次函数的性质;3.一次函数的解析式;4.一次函数的应用。
教学重点和难点1.学习一次函数的性质,能够判断一次函数的特征;2.学习一次函数的解析式,能够用解析式表示一次函数。
教学方法1.示范法;2.讲解与练习相结合;3.合作学习。
教学过程1.介绍一次函数的定义和性质;2.根据函数表格和函数图像判断函数的特征;3.通过例题讲解如何用函数的解析式表示一次函数;4.学生小组合作完成练习题;5.学生用一次函数解决实际问题。
教学反思此次教学中,我采用了多种教学方法,如示范法、讲解与练习相结合、合作学习等,能够很好地激发学生的学习兴趣和积极性。
在教学过程中,我也发现了一些问题,如部分学生对函数图像的判断不够准确,需要加强训练;还有部分学生对实际问题的转化能力还不够强,需要进行进一步的帮助和指导。
在以后的教学中,我会更加重视基础练习,增强学生的自信心和解题能力。
第二课时:一次方程教学目标1.学生能够掌握求解一次方程的方法;2.能够应用一次方程解决实际问题。
教学内容1.一次方程的定义;2.一次方程的解法;3.一次方程的应用。
教学重点和难点1.学习一次方程的解法;2.学习一次方程的应用。
教学方法1.示范法;2.讲解与练习相结合;3.合作学习。
教学过程1.介绍一次方程的定义和求解方法;2.在讲解一次方程的解法时,强调学生必须清楚地表达方程的意义,以免出现不必要的错误;3.让学生结合实际问题练习应用一次方程求解;4.学生小组合作解决问题。
教学反思通过此次教学,学生们基本掌握了一次方程的求解方法,并能够用一次方程解决实际问题。
但是,在教学中也发现了一些问题,如部分学生在表述方程意义时不够准确,这导致了一些本应该简单的问题出现了错误。
【教学设计】 一次函数与一元一次方程、不等式

一次函数与一元一次方程、不等式一、教材分析(一)教材背景、地位和作用本节课是人教版八年级下第19章第2节《一次函数与一元一次方程、不等式》,是研究一次函数在数学内部的应用,通过研究,引导学生建立一次函数与一元一次方程、一元一次不等式的内在联系,主动构建认知结构,从中感受数形结合的思想,感悟引入并研究一次函数是数学知识和方法的自然延伸。
(二)教学目标【知识技能目标】(1)通过具体实例,初步体会一次函数与一元一次方程、一元一次不等式的内在联系。
(2)了解一次函数、一元一次方程、一元一次不等式在解决问题过程中的作用和联系。
【过程性目标】通过例题的学习,让学生拥有辨别一元一次不等式与一元一次方程、一次函数关系的能力,使得学生的知识能够形成网状结构,使知识能互相交融,培养触类旁通的能力,培养孩子们的发散思维。
【情感和价值观目标】三个知识在这里融合在一起了,培养学生的观察能力,同时适当地增加学生合作学习交流的机会,尽量让学生参与到小组当中,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神。
另外,孩子们会发现不同的知识其实也可以联系起来,培养孩子们辨证唯物看问题的观点,培养孩子们喜欢数学的情感,促进孩子们心理的成长。
教学重难点重点:初步体会一次函数与一元一次方程、一元一次不等式的内在联系。
难点:掌握一次函数、一元一次方程、一元一次不等式在解决问题过程中的作用和联系。
二、教学过程教学内容教师导拨与学生活动教具(一)情境设置1.填空:(1)方程2x+4=0解是_______ ;(2)不等式2x+4>0的解集为________;不等式2x+4<0的解集为________.2.一次函数y=2x+4的图像是一条经过点(,),点(,)的直线.3.试根据一次函数y=2x+4的图像说出方程2x+4=0的解和不等式2x+4>0 、2x+4<0的解.归纳:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值;当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.学生探讨交流,初步感受一次函数、一元一次方程、一元一次不等式有着紧密的联系.电脑显示通过解决关于习题,从而引出本节课要讨论的问题,过度自然.在所允许的限度内所挂物体的最大质量。
教案-一元一次不等式与一次函数

一元一次不等式与一次函数教案一.课题:一元一次不等式与一次函数二.课型:新授课三.教学目标1.认知目标:利用一次函数图象来解决一元一次不等式2.能力目标:看图解题3.情感目标:体会一次函数与一元一次不等式的关系四.教学重难点1.教学重点:能应用所学的知识,将一元一次不等式与一次函数联系起来2.教学难点:利用一次函数图象解一元一次不等式五.教学方法:引入探索法六.教具:黑板、粉笔、刻度尺或三角板七.教学过程(一).一次函数图形探索我们知道,一次函数的图象是一条直线.作出一次函数y=2x-5的图象,观察回答下列问题:1.x取何值时,2x-5=0?2.x取何哪些时,2x-5>0?3.X取哪些值时,2x-5<0?4.x取哪些值时,2x-5>3?思考:能否将上述“关于一元一次函数值的问题”转化为“关于一元一次不等式”的问题?(因为y=2x-5,故将1~4中的2x-5换成y即可。
)反过来呢,能否将“关于一元一次不等式”的问题转化为“关于一元一次函数值的问题”?(毫无疑问,二者是可以相互转换的。
)(二).结论因此:我们既可以运用函数图象解不等式,也可以运用不等式来帮助研究函数,二者相互渗透、相互作用。
不等式与函数、方程式紧密联系的一个整体。
(三).变式探索想一想:如果y=-2x-5,x取何值时,y>0?解决此题,有哪些方法?方法一:将函数问题转化为不等式问题,即:解不等式 -2x-5>0,解得 x<。
方法二:图像法有图像易知:x<,y>0 。
(四).练一练兄弟两赛跑,哥哥先让弟弟跑9米,弟弟以3m/s的速度前进,哥哥以4m/s的速度前进,列出关系式,画图图象,看看他们在什么时候相遇。
(五).课堂总结(六)课后习题第3、5题写在作业本上。
八.板书设计。
人教版数学七年级上册《一次函数与一元一次不等式》教案

人教版数学七年级上册《一次函数与一元一次不等式》教案一. 教材分析人教版数学七年级上册的《一次函数与一元一次不等式》是初中数学的基础知识,主要介绍了函数与不等式的概念、性质和应用。
这部分内容为学生以后学习更高级的数学知识奠定了基础。
本节课的内容包括一次函数的定义、图象、性质以及一元一次不等式的解法、应用等。
通过本节课的学习,学生能够理解一次函数与一元一次不等式的基本概念,掌握它们的性质和应用方法。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,但对于函数和不等式这类抽象的概念还是初次接触,可能存在一定的困难。
因此,在教学过程中,教师需要注重引导学生从具体的事物中抽象出函数和不等式的概念,并通过大量的实例让学生加深对这两个概念的理解。
同时,七年级学生的学习积极性较高,对新鲜事物充满好奇,教师应充分利用这一点,激发学生的学习兴趣。
三. 教学目标1.知识与技能:使学生理解一次函数的定义、图象、性质,掌握一元一次不等式的解法,并能应用于实际问题。
2.过程与方法:通过观察、分析、归纳等方法,让学生掌握一次函数与一元一次不等式的基本性质,培养学生的逻辑思维能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的自主学习能力,使学生感受数学在生活中的应用。
四. 教学重难点1.重点:一次函数的定义、图象、性质,一元一次不等式的解法。
2.难点:一次函数与一元一次不等式的综合应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数和不等式,让学生感受数学与实际的联系。
2.启发式教学法:引导学生从具体的事物中抽象出函数和不等式的概念,培养学生的抽象思维能力。
3.案例教学法:通过分析具体案例,使学生掌握一次函数与一元一次不等式的性质和应用。
4.小组合作学习:鼓励学生相互讨论、交流,提高学生的合作能力和口头表达能力。
六. 教学准备1.教具:黑板、粉笔、多媒体课件。
2.学具:练习本、笔。
一次函数与一元一次不等式实用教案

-=y 一次函数与一元一次不等式【教学目标】知识与技能:理解一次函数与一元一次不等式的关系掌握用函数图象求一元一次不等式的解集的方法。
过程与方法:渗透由特殊到一般和转化的数学思想方法,提高发现问题、分析问题、解决问题的能力。
【教学重点】 用函数的知识求一次不等式的解集。
【教学难点】 一次函数图象与一元一次不等式的关系。
【教学互动设计】〈一〉创设情景 导入新课大家对一次函数与一元一次方程之间的联系都有了一定的了解,通过一次函数的图象,我们可以直接看出对应的一元一次方程的解。
那么,一次函数与一元一次不等式又有何关系呢?我们能否通过看一次函数的图象得到一元一次不等式的解集呢?这就是我们今天要探讨的内容。
〈二〉合作交流 解读探究(课前导案,学生在课前进行学习讨论)一次函数与一元一次不等式的关系 ﹝展示﹞已知函数62+-=x y 的图象如图所示,根据图象回答:⑴当x= 时,y=0,即方程062=+-x 的解为 思考:⑵当x 时,y >0,即不等式062>+-x 的解集为⑶当x 时,y <0,即不等式062<+-x 的解集为总结:当y=0时,正好是图象与轴的交点当y>0时,图象位于轴方当y<0时,图象位于轴方学生完成展示共同完成课本导学(多媒体展示)解(1)移项得:5x - 3x > 10 - 6合并,得2x > 4化系数为1,得x >2∴原不等式的解是: x>2(2)作出函数y = 2x -4 的图象(如图)从图知观察知,当x>2时y 的值在x轴上方,即y > 0因此当x > 2 时函数的值大于0。
﹝概括﹞任何一元一次不等式都可以化为0b<ax+(a、b>bax+或0为常数且a≠0)的形式,所以解一元一次不等式,可以看作:当一次函数值大(小)于0时,求自变量的取值范围;或者看作:当一次函数图象在x轴上(下)方时,求自变量的取值范围。
〈三〉例题讲解例题:用画函数图象的方法解不等式5x+4<2x+10解法1:原不等式化为3x -6,画出直线y = 3x -6(如图)可以看出,当x<2 时这条直线上的点在轴的下方,即这时y = 3x -6 <0所以不等式的解集为x<2解法二:画出函数y = 2x+10 y = 5x+4图象从图中看出:当x <2时直线y = 5x +4 在y = 2x +10的下方即5x+4 < 2x +10∴不等式5x+4 < 2 x +10 的解集是x < 2师生总结步骤:1把不等号右边划为0 2 画函数图象 3 找与X轴的交点4作答〈四〉随堂练习1.自变量X的取值满足什么条件时,函数y=3X+8的值满中下列条件?(3)y>0 (4)y<22 利用函数图象解出X:(2)6x—4<3x+2〈五〉课堂小结1.一次函数与一元一次不等式的关系2.用函数图象求一元一次不等式的解集的方法。
一次函数与方程不等式教案

一次函数与方程不等式教案教案标题:一次函数与方程不等式教案教案目标:1. 学生能够理解一次函数的概念,并能够识别一次函数的特征。
2. 学生能够理解方程与不等式的概念,并能够解一次方程与不等式。
3. 学生能够应用一次函数与方程不等式解决实际问题。
教学准备:1. PowerPoint演示文稿2. 白板和马克笔3. 学生练习册4. 实际问题练习题教学步骤:引入(5分钟):1. 使用PowerPoint演示文稿引入一次函数的概念,包括函数的定义和一次函数的特征。
2. 引导学生观察一次函数的图像,并讨论斜率和截距的含义。
讲解(15分钟):1. 解释方程与不等式的概念,并与一次函数进行比较。
2. 介绍如何解一次方程,包括变量的消去和平衡原则。
3. 介绍如何解一次不等式,包括变量的消去和不等式的性质。
示范(15分钟):1. 在白板上解决几个简单的一次方程和不等式,并解释每个步骤。
2. 引导学生参与解决一些中等难度的一次方程和不等式。
练习(15分钟):1. 分发学生练习册,并指导学生独立完成一些练习题,涵盖一次函数、方程和不等式。
2. 在学生完成练习后,进行讲解和讨论,解答学生遇到的问题。
应用(15分钟):1. 提供一些实际问题,涉及一次函数、方程和不等式,让学生应用所学知识解决问题。
2. 鼓励学生在小组中合作讨论,并分享他们的解决方法和答案。
总结(5分钟):1. 总结一次函数、方程和不等式的重点概念和解法。
2. 强调学生在今后的学习中应用这些知识。
拓展活动:1. 鼓励学生在家里继续解决更多的一次方程和不等式,并记录他们的解题过程。
2. 提供额外的挑战问题,让学生进一步巩固和扩展他们的知识。
评估方式:1. 观察学生在课堂上的参与程度和问题解决能力。
2. 检查学生练习册上的练习题答案。
3. 评估学生在应用实际问题时的解决能力。
教学延伸:1. 引导学生探索更复杂的一次函数、方程和不等式,并解决相关问题。
2. 鼓励学生使用图表和图形工具来可视化和解决一次函数和方程不等式。
2023一次函数与一元一次不等式说课稿

2023一次函数与一元一次不等式说课稿2023一次函数与一元一次不等式说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。
在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。
本节内容在初中数学学习阶段中,占据重要的`地位,以及为其他学科和今后高中数学学习打下基础。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。
(2)、过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。
(3)情感、态度与价值观通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略:教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。
学法:建构主义教学构想的核心思想是:通过问题的解决来学习。
根据本节课的特点,采用自主探究、合作交流的探究式学习方法。
一次函数与方程不等式教案

一次函数与方程不等式教案一、教学目标1. 理解一次函数的定义和性质;2. 学会列出一元一次方程;3. 掌握一元一次方程的解法;4. 理解不等式的概念和性质;5. 学会解一元一次不等式。
二、教学重点与难点1. 教学重点:一次函数的定义和性质,一元一次方程的解法,不等式的概念和性质。
2. 教学难点:一元一次方程的解法和一元一次不等式的解法。
三、教学方法采用问题驱动法、案例分析法和小组讨论法,引导学生主动探究一次函数、方程和不等式的关系,提高学生解决问题的能力。
四、教学准备1. 教师准备PPT课件,包括一次函数的图像、一元一次方程的例题和不等式的示例;2. 学生准备笔记本和文具。
五、教学过程1. 引入:通过生活中的实例,引导学生思考一次函数、方程和不等式之间的关系;2. 讲解:讲解一次函数的定义和性质,通过PPT课件展示一次函数的图像,让学生直观地理解一次函数;3. 练习:给出一些一次函数,让学生学会列出一元一次方程,并求解;4. 讲解:讲解不等式的概念和性质,通过PPT课件展示不等式的示例,让学生理解不等式的意义;5. 练习:给出一些一元一次不等式,让学生学会解一元一次不等式;6. 总结:对本节课的内容进行总结,强调一次函数、方程和不等式之间的关系;7. 作业:布置一些相关的练习题,巩固所学知识。
教学反思:在课后,教师应认真反思本节课的教学效果,了解学生的掌握情况,对教学方法和教学内容进行调整和改进,以提高学生的学习兴趣和效果。
教师应关注学生的学习反馈,及时解答学生的疑问,帮助学生巩固所学知识。
六、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。
2. 练习完成情况:检查学生完成练习的情况,包括答案的正确性和解题过程的完整性。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作态度和解决问题的能力。
4. 作业提交情况:检查学生完成作业的情况,包括答案的正确性和解题过程的逻辑性。
一次函数与一元一次方程、一元一次不等式的教学设计范文.doc

《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇教具安排学生课堂自主探究材料、多媒体课件。
课时安排这节内容安排两个课时,本节课是第一课时,主要通过探究活动领悟一次函数与一元一次方程、一次不等式之间的联系。
教学过程设计问题与情境师生活动设计意图复习旧知、学前热身小明的爸爸应邀来到合肥投资,在庐阳工业园投资300万元成本建成一个小型家电生产工厂。
建成投产后,不考虑材料费等其他因素,每年盈利75万元。
回答下面两个问题,1:该工厂投产几年刚好收回成本?2:该工厂从哪一年后盈利开始超过300万元以上?师:从小学到现在我们学过哪些解决问题的方法?生:小学的算术法和初中学过的方程、不等式。
师:怎样利用函数图象解决上面的问题呢?贴切的生活情境可以让大多数同学想到解决问题的方法,除了能激发学生的求知欲,也让学生初步感受一次方程和一元一次不等式与一次函数是有联系的,引入课题。
合作交流、探究新知活动一:探究一次函数与一元一次方程之间的联系。
1.解方程 3x+6=0。
2.直线y=3x+6与x轴交点的坐标是什么?3.讨论:图象与方程的解之间的关系。
4.不解方程:你能说出方程3x+6=6的解吗?学生口答三个问题。
师:课前让大家准备了任意的一次函数的图象,观察你的图象,在图象中也有类似的联系吗?学生举例说明。
师:将刚才的思考概括为一般形式呢?归纳:一次函数y=kx+b(k、b为常数,k≠0)与x轴交点的横坐标就是方程kx+b=0的解。
一元一次方程kx+b=0(k、b为常数,k≠0)的解就是一次函数y=kx+b(k0)与x轴交点的横坐标。
引题分解难度,给学生提供了思考的角度和方向。
通过学生反复实践和教师引导,学生从“形”到“数”,或者从“数”到“形”,自己探究一次函数的图象与一元一次方程解的关系,体验知识生成的过程。
5.合作交流(一)你还能利用图象求出哪些一元一次方程的解?6.合作交流(二)通过以上探究,你能总结一次函数与一元一次方程之间的联系吗?师:请写出几个这样的一元一次方程和同伴进行交流。
6.6一次函数、一元一次方程和一元一次不等式教学设计

5.拓展延伸,提升能力
-设计富有挑战性的拓展题目,激发学生的求知欲,提升学生的数学思维能力。
-结合现实问题,引导学生运用所学知识解决实际问题,培养学生的创新意识。
6.关注情感,营造氛围
-关注学生的情感需求,营造轻松、愉快的学习氛围,降低学生对数学的恐惧感。
(四)课堂练习,500字
在课堂练习阶段,我将设计不同难度的习题,帮助学生巩固所学知识,形成技能。
首先,我设计一些基础题,让学生独立完成,检验学生对一次函数、一元一次方程和一元一次不等式的基本概念和性质的掌握程度。然后,我逐步提高题目难度,让学生在练习中提高解题能力。
在练习过程中,我关注学生的解题方法,引导学生总结解题策略。对于学生在解题过程中遇到的问题,我及时给予解答,帮助学生突破难点。
(2)在实际问题中,如何将一元一次方程和一元一次不等式应用于求解?
5.思考题:请同学们思考以下问题,下节课分享自己的观点:
(1)一次函数、一元一次方程和一元一次不等式在实际生活中的应用有哪些?
(2)如何运用所学知识解决现实生活中的问题?
作业要求:
1.请同学们认真完成作业,书写工整,保持卷面整洁。
2.对于拓展题和小组合作探究题,同学们可以互相讨论、交流,但需独立完成作业。
-掌握一元一次不等式的符号规则,如不等式两边加减、乘除同一正数时不等号方向的变化。
-学会使用数轴、区间表示不等式的解集,并能够通过图像直观理解不等式的解。
-能够将现实生活中的不等关系抽象为一元一次不等式,并求解。
(二)过程与方法
在教学过程中,注重以下方法与过程:
1.通过情境导入、问题引导的方式,激发学生对一次函数、一元一次方程和一元一次不等式的探究兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.3.2 一次函数与一次不等式
教学目标
理解一次函数与一元一次不等式的关系,会根据一次函数的图象解决一元一次不等式的求解问题;
学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题的思想;
经历不等式与函数关系问题的探究过程;学习用联系的观点看待数学问题的辩证思想。
教学重点
一次函数与一元一次不等式的关系的理解
教学难点
一次函数图象确定一元一次不等式的解集。
教学过程
I 提出问题,引入新课
通过上节课的学习,我们已经知道,“解一元一次方程0
=
ax”
+b
与“求当x为何值时,b
=的值为0”是同一个问题,现在我们来
ax
y+
看看:
(1)以下两个问题是不是同一个问题?
①解不等式:0
x
-
2>
4
②当为何值时,函数4
y的值大于0?
=x
2-
(2)你如何利用图象来说明②?
(3)“解不等式0
x”可以与怎样的一次函数问题是同一的?怎
-
2>
4
样在图象上加以说明?
II
1.根据下列一次函数的图象,你能求出哪些不等式解集?并直接写出
(1
(对每一题都能写出四种情况(大于0,小于0,大于等于0,小于等于0),让学生在充分理解的基础和写出对应的x的取值范围,先小组内交流,然后反馈矫正。
)
解:
(1)(略)
(2)由图象可以得出:
3
x;0
x;
>
+的解集是3
x-<
<
3
x->
+的解集是3
x-≤
3
≥
x
+的解集是3
x;0
≤
3
x-≥
+的解集是3
例2 P41例题
解法1:
分析:将不等式转化为一般形式,再画出对应的一次函数的图象,就是我们已会的求解了.
解法2:
分析:
(1)如果不将原不等式转化,能否用图象法解决呢?
(2)不等式两边都是一次函数的表达式,因而实际上是比较两个一次函数在x取相同值时谁大的问题.
(3)如何在图象上比较两个一次函数的大小呢?
(4)如何确定不等式的解集呢?。