配筋计算公式1
箍筋配筋率
箍筋体积配筋率体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。
计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv=(4×Ass1)/(dcor×s)(见《混凝土结构设计规范GB50010-2002》第90页)。
式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度;计算复合箍的体积配筋率时,应扣除重叠部分的箍筋体积。
柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。
其中,fc≥16.7N/mm^2(《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》均有此规定),fyv≤360N/mm^2(《混凝土结构设计规范》无此规定,《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》有此规定)。
箍筋面积配筋率面积配筋率(ρsv):配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。
其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。
计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。
最小配筋率:梁:ρsv,min=0.24×ft/fyv;弯剪扭构件:ρsv,min=0.28×ft/fyv。
关于最小配筋率最大配筋率与梁高的取值第一是最小配筋率,最小配筋率的确定理论原则应该是受弯构件的第一阶段末,即截面受拉区砼开裂临界状态,此时的配筋应能承担砼开裂后转嫁的全部拉应力,故与全截面有关,应用全截面。
第二是正常的配筋率或最大配筋率,针对的是受弯构件第三阶段,即极限破坏状态,此时截面只与有效高度有关,保护层多厚都无用,故采用有效高度。
牛腿配筋计算
1.1 基本资料1.1.1 工程名称:1.1.2 作用于牛腿顶部按荷载效应标准组合计算的竖向力值Fvk =150kN作用于牛腿顶部按荷载效应标准组合计算的水平拉力值Fhk =10kN竖向力设计值Fv =202.5kN 水平拉力设计值Fh =14kN1.1.3 裂缝控制系数β = 0.65竖向力的作用点至下柱边缘的水平距离a = 150mm下柱边缘到牛腿外边缘的水平长度c = 300mm 牛腿宽度b = 400mm牛腿与下柱交接处的垂直截面高度h = 450mm 牛腿的外边缘高度h1 = 200mm1.1.4 混凝土强度等级:C30 fc =14.33 ftk =2.006 ft =1.433N/mm1.1.5 钢筋抗拉强度设计值fy =300N/mm 纵筋合力点至近边距离as =40mm1.1.6 承受竖向力所需的纵筋最小配筋率ρmin =Max{0.20%, 0.45ft/fy} =Max{0.20%, 0.21%}=0.21%1.2 计算结果1.2.1 牛腿的裂缝控制要求应按混凝土规范式10.8.1 验算:Fvk ≤ β * (1 - 0.5 * Fhk / Fvk) * ftk * b * ho / (0.5 + a / ho)牛腿斜边倾角α =atan[(h - h1) / c] =39.8°ho =h1 - as + c * tanα =200-40+300*tan39.8°=410mm考虑安装偏差后,竖向力的作用点至下柱边缘的水平距离a =150+20 =170mm β * (1 - 0.5 * Fhk / Fvk) * ftk * b * ho / (0.5 + a / ho)=0.65*(1-0.5*10/150)*2.006*400*410/(0.5+170/410)=226010N ≥ Fvk =150000N,满足要求。
1.2.2 牛腿顶面受压面的面积要求在牛腿顶面的受压面上,由竖向力Fvk 所引起的局部压应力不应超过0.75fc,故受压面的最小面积Asy =Fvk / 0.75fc =13955mm (400×35)1.2.3 纵向受力钢筋的总截面面积按混凝土规范式10.8.2 计算:As ≥ Fv * a / (0.85 * fy * ho) + 1.2 * Fh / fyAs1 =202500*170/(0.85*300*410) =329mm (ρ =0.20% As,min =352mm )As2 =1.2*14000/300 =56mmAs =As1 + As2 =352+56 =408mm钢筋数量不宜少于4 根,直径不宜小于12mm1.2.4 水平箍筋Asv箍筋的直径宜为6~12mm,间距宜为100~150mm,且在上部2ho/3 =273mm 范围内的水平箍筋总截面面积不宜小于承受竖向力的受拉钢筋截面面积的二分之一Asv =As1 / 2 =176mm1.2.5 弯起钢筋Asw当a / ho ≥ 0.3 时,宜设置弯起钢筋,Asw =As1 / 2 =352/2 =176mm集中荷载作用点到牛腿斜边下端点连线的长度l =481mm弯起钢筋宜位于牛腿上部l/6 至l/2 (80~241mm)之间的范围内。
抗震配筋要求
抗震配筋要求根据设防烈度、结构类型和房屋高度,抗震等级分为一、二、三、四级。
A 一般规定1.结构构件中的纵向受力钢筋宜选用HRB335、HRB400级钢筋。
按一、二级抗震等级设计时,框架结构中纵向受力钢筋的强度实测值应符合9-1-1-1的要求。
2.纵向受拉钢筋的抗震锚固长度l aE:对一、二级抗震等级为1.15l a对三级抗震等级为1.05l a,对四级抗震等级为l a。
3.采用搭接接头时,纵向受拉钢筋的抗震搭接长度L lE,应按下列公式计算:L lE=ξl aE(9-5)式中ξ——纵向受拉钢筋搭接长度修正系数,见表9-15。
4.纵向受力钢筋连接接头的位置宜避开梁端、柱端箍筋加密区;当无法避开时,应采用满足等强度要求的高质量机械连接接头,且钢筋接头面积百分率不应超过50%。
5.箍筋的末端应做成135°弯钩,弯钩端头平直段长度不应小于箍筋直径的10倍;在纵向受力钢筋搭接长度范围内的箍筋,其直径不应小于搭接钢筋较大直径的0.25倍,其间距不应大于搭接钢筋较小直径的5倍,且不应大于l00mm。
B 框架梁1.框架梁梁端截面的底部和顶部纵向受力钢筋截面面积的比值,除按计算确定外,一般抗震等级不应小于0.5;二、三级抗震等级不应小于0.3。
2.梁端箍筋的加密区长度、箍筋最大间距和箍筋最小直径应按表9-17采用。
当梁端纵向受拉钢筋配筋率大于2%时,表中箍筋最小直径应增大2mm。
梁端箍筋加密区的构造要求表9-17注:d为纵向钢筋直径;h为梁的高度。
梁端纵向钢筋配筋率>2%时,箍筋最小直径增加2mm。
3.沿梁全长顶面和底面至少应备配置两根通长的纵向钢筋。
对一、二级抗震等级,钢筋直径不应小于14mm,且分别不应少于梁两端顶面和底面纵向受力钢筋中较大截面面积的1/4;对三、四级抗震等级,钢筋直径不应小于12mm。
4.梁箍筋加密区长度内的箍筋间距;对一级抗震等级,不宜大于200mm和20倍箍筋直径的较大值;对二、三级抗震等级,不宜大于250mm和20倍箍筋直径的较大值;对四级抗震等级,不宜大于300mm。
新规配筋率汇总 (1)
配筋率汇总非抗震梁、板纵筋(%):《混规》8.5.1最小配筋率:和45f t/f y中的较大值,如梁C30HRB335为;板C30HPB300为。
(《混凝土》8.5.1)注:1,受压构件全部纵向钢筋ρmin,采用C60以上时,增大2,板类受弯构件(不包括悬臂板)的受拉钢筋,采用400MPa、500MPa钢筋时,ρmin采用和45f t/f y较大值;3,卧置于地基上的基础底板为最大配筋率:根据界限受压区高度算得,如C30HRB335为;ρmax=ξb*α1*f c/f y=**300==%抗震梁、板纵筋(%):最小配筋率:(《混凝土》11.3.6)框架梁的钢筋配置应符合下列规定:1、纵向受拉钢筋的配筋率不应小于表11.3.6-1规定的数值:注:1,表中C30,小括号内数值:HRB335,中扩号: HRB400,大扩号: HRB500 2,框架梁端截面底部和顶部纵筋截面积比值,一级不应小于,二三级不应小于(下部纵筋不宜过少);A S底/A S顶≥最大配筋率:%,《混凝土》11.3.7《抗规》梁内受扭纵筋(%):最小配筋率:85f t/f y,C30HRB335为。
(《混凝土》9.2.5)梁内箍筋(%):最小配箍率:非抗震24f t/f y,受扭时28f t/f y,C30HPB300分别为和。
(《混凝土》9.2.9,)抗震,一级30f t/f y,二级28f t/f y,三四级26f t/f y(《混凝土》11.3.9)向受压钢筋多于4根时,应设置复合箍筋。
非抗震柱纵筋(%):最小配筋率:一侧;全部。
《混凝土》8.5.1(注意同梁)最大配筋率:不宜5%,不应6%,《混凝土》9.3.1抗震柱纵筋(%):最小配筋率:(《混凝土》11.4.12)(《抗规》)注:12,采用335MPa、400MPa时可增加和,采用C60以上时,增大3,IV类场地较高的高层建筑增加;()最大配筋率:5%,《混凝土》11.4.13 、《抗规》剪跨比不大于2的一级框架的柱,每侧不宜大于%柱内箍筋(%):加密区最小体积配箍率(%):(《混凝土》11.4.17)C35 : N/mm2注:1,表中数值按C30混凝土HPB300箍筋算得(ρV≥λv fc/fyv) 2,混凝土强度等级高于C60时、框支柱时、剪跨比小于2时见规范《混凝土》11.4.17:箍筋加密区的体积配筋率应符合下列规定:(注意条文说明第388页)剪力墙(%):非抗震:(《混凝土》9.4.4、5)抗震:一、二、三级;四级;框-剪;部分框支(《混凝土》11.7.14《抗规》、6.5.2)梁中配筋要求:纵筋:《混凝土》9.2.1(注意条文)、6、13;、7;《抗震》6.3.3、4箍筋:《混凝土》9.2.9、11;、8、9;《抗震》6.3.4-3柱中配筋要求:纵筋:《混凝土》9.3.1;、13;《抗震》6.3.7、8柱中箍筋:《混凝土》9.3.2;、14、15、17、18;《抗震》6.3.7、9、1011.4.12-2《抗规》6.3.7-2轴压比:《混凝土》11.4.16 《抗规》墙中配筋要求:水平、竖向分布筋:《混凝土》9.4.2、4、5、6;、15、18、19《抗震》6.4.3、4、5、6、9;框架抗震墙6.5.1、2墙轴压比:《抗规》6.4.5 《混规》轴压比限值:《混规》11.7.16 《抗规》(新修订全高)分项系数柱体积配箍率的计算(《混凝土》6.6.3):《混凝土》9.2.9):墙配筋率的计算(《混凝土》9.4.4):配箍率在混凝土结构中,配箍率是用来体现箍筋相对于混凝土的含量,分体积配箍率和面积配箍率。
简单的配筋计算【路桥常用计算公式】
受压区砼和相应的一部 分受力钢筋As1的拉力 所承担的受弯承载力 Mu1
Mu1=Mu,max =
415.68 kNm
As1
=
x b bh0
a1 fc fy
=
由受压钢筋及相应的受 拉钢筋承受的弯矩设计 值为
因此所需的受压钢筋为
Mu2=MMu1=
3539.25 ㎜2 -172.68 kNm
As'
=
Mu2
f
' y
(h0
-
a
' s
)
=
-1139.83 ㎜2
与其对应的那部分受拉 钢筋截面面积为
纵向受拉钢筋总截面面 积
As2=A's= -1139.83 ㎜2
As=As1+ As2= 2399.42 ㎜2
受拉钢筋取钢筋直径
¢=
20
实取 9
实配钢筋面积AS= 2827.43 mm2
受压钢筋取钢筋直径
¢=
12
实取 2
As=As1+ As2= 565.93 ㎜2
受拉钢筋取钢筋直径
¢=
20
实取 8
实配钢筋面积AS= 2513.27 mm2
验算受压区高度x=
fyAs1/(α1fcb)=
-31.60 mm
2α's= 70 mm
>
根 OK!
x NO!!!
Mu2=f'yA's( h0-a's)=
由弯矩Mu1按单筋矩形 截面求As1
因此所需的受压钢筋为
Mu1=MMu2=
942.48
3 ¢ 20 942.48 mm2
142.79 kNm
-62.79 kNm
混凝土梁配筋计算
混凝土梁配筋计算混凝土梁配筋计算是建筑工程设计中不可或缺的重要环节。
正确的梁配筋计算能够保证梁的稳定性和承载能力,为建筑的安全运行提供保障。
下面将详细介绍混凝土梁配筋计算的流程和方法。
一、计算梁的载荷梁的载荷是指梁在使用过程中承受的荷载。
在进行梁的配筋计算前,需要先确定梁的设计荷载,包括活荷载和静荷载。
活荷载是指人员和设备的重量,静荷载是指梁自身的重量以及其他固定荷载,例如墙体的重量和地面的重量等。
二、确定梁的尺寸梁的尺寸是指梁的截面尺寸和长度。
在确定梁的截面尺寸时,需要考虑其承受荷载的能力和美观度。
同时,梁的长度也是需要考虑的因素,因为长度较长的梁需要更多的钢筋来增强其承载能力。
三、计算梁的弯矩和曲率梁的受力状态包含弯矩和曲率两个因素。
弯矩是指腰部以上的曲率处的力矩,而曲率是指梁的曲率半径的大小。
在计算梁的弯矩和曲率时,需要考虑梁的载荷和尺寸。
四、确定梁的钢筋比例梁的钢筋比例是指钢筋与混凝土截面面积之比。
钢筋比例的大小决定了梁的承载能力。
在确定钢筋比例时,需要考虑梁的受力状态和尺寸,以及具体的使用环境和要求。
五、计算梁的配筋数量和位置梁的配筋为钢筋的数量和位置。
在计算钢筋数量时,需要根据梁的长度和受力状态进行计算。
在确定钢筋位置时,需要考虑梁的截面,以及钢筋与混凝土之间的粘结力,以保证梁的稳定性。
六、检查和调整梁的配筋在完成梁的配筋计算后,还需要进行检查和调整。
通过检查梁是否符合设计要求,以及钢筋位置和数量是否符合要求,可以发现可能存在的问题并进行调整,从而保证梁的稳定性和承载能力。
总之,混凝土梁配筋计算是建筑工程设计中不可或缺的重要环节。
正确的梁配筋计算能够保证梁的稳定性和承载能力,提高建筑物的安全性和使用寿命。
需要注意的是,在进行混凝土梁配筋计算时,需要考虑多个因素,包括梁的载荷、尺寸、弯矩和曲率、钢筋比例、配筋数量和位置等。
通过科学合理的计算和检验,可以保证建筑物在使用过程中的安全性和可靠性。
控制矩形截面钢筋混凝土构件的配筋计算法
控制矩形截面钢筋混凝土构件的配筋计算法矩形截面钢筋混凝土构件是工程中常见的一种结构形式,其承载能力和受力性能直接关系到工程的安全性和稳定性。
控制其配筋计算法就成为工程设计过程中需要关注的关键问题。
目前,常见的钢筋混凝土构件配筋计算法主要有工作应力法、双曲线法、极限平衡法等。
而对于矩形截面的钢筋混凝土构件,可以采用多个计算法进行配筋计算。
首先是工作应力法。
该法重在考虑钢筋的拉压应变,计算时将整个构件划分为若干截,通过求解每一截的内力和受力来获得配筋。
这种方法可以保证构件的合理受力和结构合理性。
其次是双曲线法。
该法是将受压区和受拉区分开进行配筋计算。
在受压区配筋时,通过假定混凝土受力为双曲线分布来计算其受力和内力,再根据要求的安全性指标和材料参数得到配筋。
在受拉区配筋时,将拉力均匀分布于钢筋上,根据受拉区纵向受力和偏心距进行计算。
最后是极限平衡法。
该法是将结构分为两个部分进行计算,分别是受力区和调整区。
在受力区,根据构件的受力情况进行配筋计算。
在调整区,考虑构件的变形和荷载的调整,使构件在安全和经济的基础上更好地满足要求。
在实际工程应用中,控制矩形截面钢筋混凝土构件的配筋计算法还需要考虑一些辅助因素,如构件的图形尺寸、钢筋强度和混凝土强度等。
因此,在使用相关计算法时,需要根据具体情况做出具体的调整和优化。
同时,也需要保证计算精度和合理性,防止产生过度配筋或弱配筋等问题。
总之,控制矩形截面钢筋混凝土构件的配筋计算法是工程设计中关键的一环。
正确选择和应用相关计算法,可以保证构件的结构安全和正常使用。
同时,在实际应用中还需要考虑一些辅助因素,以保证计算精度和合理性。
平法配筋计算方法(G101-1)
混凝土结构施工图 平面整体表示方法制图规则和构造详图 (现浇混凝土框架、剪力墙、框架、剪力墙、框支剪力墙结构) (平法配筋计算方法)
G101-1
前 言 混凝土结构施工图平面整体表示方法制图规则和构造详图是把结构构件的尺寸和配筋等,按照平面整体表 示方法制图规则,整体直接表达在各类构件的结构平面布置图上,再与标准构造详图相配合,即构成一套新型 完整的结构设计。平面整体表示方法的推广应用是我国混凝土结构施工图设计表示方法的一次重大改革。 平面整体表示方法自推广以来,是我国建筑行业结构设计、施工、监理实行统一的标准,目前使用的 03G101-1(第二版)、 03G101-2、 04G101-3、 04G101-4、 06G101-6、共五套。 由于本人能力有限,难免出现一些错误,请提出宝贵意见,以便改进,谢谢! 本人邮箱:. 附《**G101-**图集》答问(转载)。
KZ1
12d
边柱柱头
(
与梁上部纵筋搭接
)
100
截面
≥1.5LaE
计算结果如下: 考虑相邻纵筋连接接头需错开,纵筋要分两部分计算: (以下计算保护层尺寸可按设计调整) 基础部分: 主: 6Φ25 L1=底部弯折+基础高+基础顶面到上层接头的距离(满足>=Hn/3) =200+(1000-100)+(3200-500)/3 =200+1800 主: 6Φ25 L2=底部弯折+基础高+基础顶面到上层接头的距离+纵筋交错距离 =200+(1000-100)+(3200-500)/3+Max(35d,500) =200+2675 一层: 12Φ25: L1=L2=层高-基础顶面距接头距离+上层楼面距接头距离 =3200-Hn/3+Max(Hn/6,Hc,500) =3200-900+550=2850 二层: 12Φ25: L1=L2=层高-本层楼面距接头距离+上层楼面距接头距离 =3200-Max(Hn/6,Hc,500)+Max(Hn/6,Hc,500) =3200-550+550 =3200 三层: 12Φ25: L1=L2=层高-本层楼面距接头距离+上层楼面距接头距离 =3200-Max(Hn/6,Hc,500)+Max(Hn/6,Hc,500) =3200-550+550 =3200 顶层: 柱外侧纵筋4Φ25: 2Φ25: L1=层高-本层楼面距接头距离-梁高+柱头部分 =3200-Max(Hn/6,Hc,500)-500 + Hb-BHC +1.5Lae-(Hb-BHC) =3200 –550-500+ (500-30)+1.5*35*25-(500-30) =2620+843 2Φ25: L2=层高-(本层楼面距接头距离+本层相邻纵筋交错距离) -梁高+柱头 =3200-(Max(Hn/6,Hc,500) +Max(35d,500))-500+Hb-BHC +1.5Lae-(Hb-BHC)) =3200-(550+35*25)-500+(500-30)+1.5*35*25-(500-30) =1745 +843
纵筋配筋率计算公式(一)
纵筋配筋率计算公式(一)
纵筋配筋率计算公式
概述
纵筋配筋率是指在混凝土结构中,纵向受力的钢筋与横向截面面积的比值。
它是衡量混凝土结构受力性能的重要指标之一。
在设计和施工过程中,需要根据结构的受力要求和材料的性能来计算纵筋配筋率。
本文将介绍纵筋配筋率的计算公式及其示例。
纵筋配筋率计算公式
1.弯曲受拉构件的纵筋配筋率计算公式:纵筋配筋率
= 弯曲构件受拉钢筋总面积 / 弯曲构件受拉区一侧截面积
示例:某混凝土柱子需要进行弯曲受拉构件的纵筋配筋率计算。
该柱子的受拉钢筋总面积为500 mm^2,受拉区一侧截面积为1000 mm^2。
根据上述公式,纵筋配筋率 = 500 mm^2 / 1000 mm^2 = 。
2.压力构件的纵筋配筋率计算公式:纵筋配筋率 = 压
力构件受压钢筋总面积 / 压力构件横向截面积
示例:某混凝土框架结构的柱子需要进行压力构件的纵筋配筋率计算。
该柱子的受压钢筋总面积为800 mm^2,横向截
面积为2000 mm^2。
根据上述公式,纵筋配筋率 = 800 mm^2 / 2000 mm^2 = 。
总结
纵筋配筋率是混凝土结构设计中重要的计算参数之一,它用于评估结构的受力性能。
本文介绍了弯曲受拉构件和压力构件的纵筋配筋率计算公式,并给出了具体的示例。
在实际应用中,需要根据具体的结构和受力要求,采用适当的公式进行计算,以确保结构的安全性和稳定性。
钢筋工程—板的配筋与计算
钢筋工程—板的配筋与计算一、板内钢筋类型:二、板平法:1、B——板底部钢筋(底筋);T——板顶部钢筋(面筋);B&T——双层钢筋2、X——贯通横向钢筋;Y——贯通纵向钢筋;X&Y——双向钢筋3、原位标注中负筋线长度尺寸为伸至支座中心线尺寸三、板受力筋:板底钢筋的长度计算:长度=净跨+伸进长度*2+弯勾2*6.25*d,弯勾2*6.25*d只有一级钢筋时需要计算。
弯勾2*6.25*d只有一级钢筋时需要计算板底钢筋的支座-伸进长度:板受力筋伸入支座(梁、剪力墙、圈梁)的长度,为max(支座宽/2,5d)。
而如果支座为砌体墙,则伸入长度为max(板厚,120) 板底钢筋根数计算:起步距离的三种算法:第一根钢筋距梁或墙边50mm(通常算法)第一根钢筋距梁或墙边一个保护层第一根钢筋距梁角筋为1/2板筋间距四、板负筋:板负筋计算:·中间支座负筋长度计算:弯折长度的计算方法:1)板厚-2*保护层(通常算法);2)板厚-保护层(04G101-4);3)支座宽-保护层+板厚-2*保护层;4)伸过支座中心线+板厚-2*保护层;5)支座宽-保护层+板厚-保护层;6)伸过支座中心线+板厚-保护层·端支座板负筋长度的计算锚入长度的计算方法:1)La(通常算法/04G101-4);2)0.4La+15*d(通常算法)在计算锚入长度时有些图纸也规定按伸至梁外边向下弯折,通常算法为“梁宽-保护层+板厚-2*保护层”;也有伸过支座中心线即向下弯折的,通常算法为“梁宽/2+板厚-2*保护层”另外端支座板负筋同面筋。
板负筋的根数计算:起步距离的三种算法同板受力筋五、板分布筋:板分布筋计算:·负筋的分布筋长度计算规范不同、地区不同、设计院不同、施工单位不同……都会导致分布筋长度计算的方法不同!我们大致可以归为下列三种算法:方式一:分布筋和负筋搭接一定的长度,如150、300mm方式二:分布筋长度=轴线长度方式三:分布筋长度=按照负筋布置范围计算·端支座负筋的分布筋根数计算为什么用“负筋板内净长”,而不扣除起步距离?原因是分布筋是自外向内布置的。
板配筋率计算公式(一)
板配筋率计算公式(一)板配筋率计算公式1. 概述在钢筋混凝土结构中,板配筋率是指板中所含的钢筋面积与板面积之比。
计算板配筋率的公式可以根据不同情况而有所不同。
下面将列举几种常见的计算公式,并进行解释说明。
2. 公式1:直板配筋率计算公式对于直板结构,其板配筋率的计算公式如下:ρ = (As / b * d) * 100%其中,ρ表示板配筋率,As表示钢筋面积,b表示板的宽度,d 表示板的有效深度。
例子:假设某一直板结构的钢筋面积为600平方毫米,板的宽度为1000毫米,板的有效深度为300毫米。
则根据上述公式,该结构的板配筋率计算公式为:ρ = (600 / 1000 * 300) * 100% = 20%因此,该直板结构的板配筋率为20%。
3. 公式2:梁板配筋率计算公式对于梁板结构,其板配筋率的计算公式如下:ρ = (As / (b * h)) * 100%其中,ρ表示板配筋率,As表示钢筋面积,b表示板的宽度,h 表示梁板的高度。
例子:假设某一梁板结构的钢筋面积为900平方毫米,板的宽度为1000毫米,梁板的高度为500毫米。
则根据上述公式,该结构的板配筋率计算公式为:ρ = (900 / (1000 * 500)) * 100% = 18%因此,该梁板结构的板配筋率为18%。
4. 公式3:双向板配筋率计算公式对于双向板结构,其板配筋率的计算公式如下:ρ = (As / a * b) * 100%其中,ρ表示板配筋率,As表示钢筋面积,a表示板的长度,b 表示板的宽度。
例子:假设某一双向板结构的钢筋面积为1200平方毫米,板的长度为2000毫米,板的宽度为1000毫米。
则根据上述公式,该结构的板配筋率计算公式为:ρ = (1200 / (2000 * 1000)) * 100% = %因此,该双向板结构的板配筋率为%。
5. 结论根据不同结构的特点,板配筋率的计算公式也会有所不同。
在实际工程中,选择合适的板配筋率计算公式,可以为结构的设计提供参考依据。
悬挑雨蓬板配筋计算
悬挑雨篷板计算一、荷载计算1、雨篷板荷载计算:120厚砼板:120x0.001x25=3KN/m2双面粉刷:0.06x20= 1.2KN/m2荷载标准值合计:g K1= 4.2KN/m22、雨篷板翻边荷载计算:翻边高:180mm翻边宽:100mm翻边重:180x0.001x100x0.001x25=0.45KN/m粉刷:0.03x20x(180x2+100)x0.001=0.276KN/m荷载标准值合计:g K2=0.726KN/m3、活荷载:0.5KN/m2积水荷载:180x0.001x10= 1.8KN/m2雪荷载:0.65KN/m2 均部活荷载取q K1=MAX(0.5,0.65,1.8)= 1.8KN/m2检修集中荷载:q K2= 1.0KN/m取1米板宽作为计算单元均部线荷载设计值 q=1.2g K1+1.4q K1= 1.2x4.2+1.4x1.8=7.56KN/m 端部集中荷载设计值 P=1.2g K2+1.4q K2= 1.2x0.726+1.4x1= 2.27KN 二、弯距配筋计算雨篷板挑出长度 L= 1.2m混凝土强度等级C30f c=14.3N/mm2f y=360N/mm2h0=100mmM=qL2/2+PL=0.5x7.56x1.2^2+2.27x1.2=8.17KN.mαS=M/f c bh02=8.17x10^6/(14.3x1000x100^2)=0.057γS=(1+(1-2αS)1/2)/2=A S=M/γS f y h0 =2选用钢筋φ8@120S419mm2三、裂缝宽度验算构件受力特征系数αcr= 2.1混凝土抗拉标准值f tk=2.01N/mm2纵向受拉钢筋表面特征系数 ν= 1.0钢筋弹性模量E s=200000N/mm2 deq=∑(n i * d i^2)/∑(n i*υ*d i)=8/1=8.00ρte=A s/A te=A s/0.5*b*h=419/(0.5x1000x120)=0.007取ρte=0.01荷载标准组合计算的弯矩 M k=(g K1+q K1)L2/2 +(g K2+q K2)L=0.5x(4.2+1.8)x1.2^2+(0.726+1)x1.2= 6.391KN.m σsk=M k/(0.87h0A S)=6.3912x10^6/(0.87x100x419)=175.33N/mm2ψ=1.1-0.65f tk/(ρteσsk)= 1.1-0.65x2.01/(0.01x175.33)=0.355取ψ=0.355(注:当ψ<0.2时,取ψ=0.2,当ψ>1时,取ψ=1)最大裂缝宽度ωmax=αcrψσsk(1.9c+0.08d eq/ρte)/E S=2.1x0.355x175.33x(1.9x20+0.08x8/0.01)/200000=0.067< 0.3 裂缝满足要求。
各种梁配筋计算范文
各种梁配筋计算范文在梁设计中,配筋的计算是非常重要的一部分,它确定了梁的受力性能和承载能力。
本文将介绍各种梁的配筋计算方法,包括受弯梁、剪力梁和受弯剪力梁的配筋计算。
1.受弯梁的配筋计算:受弯梁是指在受弯作用下产生的弯曲变形的梁。
其受力分析一般涉及到弯矩、截面抗弯承载力等参数。
配筋计算的步骤如下:步骤1:确定设计荷载和设计弯矩;步骤2:计算截面抗弯承载力;步骤3:根据截面抗弯承载力和设计弯矩计算配筋面积;步骤4:选择合适的配筋方式,例如使用普通钢筋或预应力钢筋;步骤5:根据配筋面积和钢筋直径计算钢筋数量和间距。
2.剪力梁的配筋计算:剪力梁是指在径向剪力作用下产生的剪切变形的梁。
其受力分析一般涉及到剪力、截面抗剪承载力等参数。
配筋计算的步骤如下:步骤1:确定设计荷载和设计剪力;步骤2:计算截面抗剪承载力;步骤3:根据截面抗剪承载力和设计剪力计算配筋面积;步骤4:选择合适的配筋方式,例如使用普通钢筋或预应力钢筋;步骤5:根据配筋面积和钢筋直径计算钢筋数量和间距。
3.受弯剪力梁的配筋计算:受弯剪力梁是指在同一截面同时存在弯矩和剪力作用的梁。
其受力分析一般涉及到弯矩、剪力、截面抗弯承载力和截面抗剪承载力等参数。
配筋计算的步骤如下:步骤1:确定设计荷载、设计弯矩和设计剪力;步骤2:计算截面抗弯承载力和截面抗剪承载力;步骤3:根据截面抗弯承载力、截面抗剪承载力和设计弯矩、剪力计算配筋面积;步骤4:选择合适的配筋方式,例如使用普通钢筋或预应力钢筋;步骤5:根据配筋面积和钢筋直径计算钢筋数量和间距。
在进行配筋计算时,需要根据具体的工程要求和建筑材料的特性选取合适的截面形式、钢筋种类、布置方式等。
此外,要遵循相关的设计规范和标准,确保梁的受力性能和安全性。
混凝土梁配筋计算
四、结构梁配筋计算一)、储藏室~五层C20 HRB335 a s=30㎜根据前面计算结果取设计值计算:1.L01: b×h=150×250梁自重:1.2×25×0.15×0.25+20×0.02×[0.15+2×(0.25-0.1)]=1.31KN/m墙体重:1.2×22×0.12×(2.8-0.25)=8.08KN/m梯板传:(1.2×4.2+1.4×2.0)×1.4×1/2=5.49 KN/m井道传:(1.2×4.2+1.4×2.0)×0.42/2=1.65 KN/mq =16.53 KN/mM max=1/8ql2=1/8×16.53×2.62=13.97KN·Mαs=M/f cm bh02=13.97×106/(9.6×150×2102)=0.22γs=(1+(1-2αs )1/2 )/2=0.874A s=M/γs f y h o=13.97 ×106/ (0.874×300×210) =253.66㎜2选用2φ14 A s=308㎜22.L02: b×h=150×130为暗梁,根据构造配筋3.L03: b×h=150×130为暗梁,根据构造配筋4.L04: b×h=240×300梁自重:1.2×25×0.24×0.3+20×0.02×[0.24+2×(0.3-0.1)]=2.42KN/m 楼板传:(1.2×4.2+1.4×2.0)×(3.5+3.9)×1/4=14.50KN/mq =16.92KN/mM max=1/8ql2=1/8×16.92×2.62=14.30KN·Mαs=M/f cm bh02=14.30×106/(9.6×240×2602)=0.092γs=(1+(1-2αs )1/2 )/2=0.952A s=M/γs f y h o=14.30 ×106/ (0.952×300×260) =192.58㎜2选用2φ14 A s=308㎜25.L05: b×h=240×300梁自重:1.2×25×0.24×0.3+20×0.02×[0.24+2×(0.3-0.1)]=2.42KN/m墙自重:1.2×(22×0.12×2.5×1.2-0.9×2.1×0.5)÷1.2=6.98 (左侧有)楼板传:q1=(1.2×4.2+1.4×2.0)×3.6×1/4=7.06KN/mq2左=(1.2×4.2+1.4×2.0)×1.5×1/2=5.88KN/mq2右=(1.2×4.2+1.4×2.0)×2.4×1/4=4.70KN/mq左 =22.34KN/m q右=14.18 KN/mL01传集中力:L01自重:1.31KN/mL01上墙自重:1.2×22×0.12×2.55=8.08楼板传L01:(1.2×4.2+1.4×2.0)×1.5×//4=2.94 KN/mp =(1.31+8.08+2.94)×1.5×1/2= 9.25KNR A=[1/2×14.18×2.42+9.25×2.4+22.34×1.2×(0.6+2.4)]/3.6=39.85KNR B=1.2×22.34+9.25+14.18×2.4-R A =30.24KN当V=0或最小时M最大,令V=0处距B支座x,则30.24-14.18x =0,得x=2.13 M max=30.24×2.13-1/2×14.18×2.132=32.24 KN·Mαs=M/f cm bh02=32240000/(9.6×240×2602)= 0.207 γs=(1+(1-2αs)1/2 )/2=0.883A s=M/γs f y h o=32240000/0.883×300×260=468 选用3φ18 As=763㎜26.L06: b×h=240×300梁自重:1.2×25×0.24×0.3+20×0.02×[0.24+2×(0.3-0.1)]=2.42KN/m楼板传:q1=(1.2×4.7+1.4×2.0)×2.1×1/4=4.43KN/mq2左=(1.2×4.7+1.4×2.0)×5.1×1/4=10.76KN/mq2右=(1.2×4.2+1.4×2.0)×3.6×1/4=7.06KN/mq左 =17.61KN/m q右=13.91 KN/mL04传集中力:L04自重:2.42KN/m楼板传L04:(1.2×4.2+1.4×2.0)×2.9×1/4+(1.2×4.7+1.4×2.0)×4.2×1/4=14.55 KN/mp =(2.42+14.55)×2.9×1/2=24.61KNR A=[1/2×13.91×0.722+24.61×0.72+17.61×0.6×(0.3+0.72)]/1.32=24.32KN R B=0.6×17.61+24.61+13.91×0.72-R A =20.87KN当V=0或最小时M最大,令V=0处距A支座x,则24.32-17.61×0.6-24.61-13.91(x-0.6)=0,得x<0,则V最小处为x=0.6,此时M max= 24.32×0.6-17.61×0.6×0.6×1/2=11.42 KN·Mαs=M/f cm bh02=11420000/(9.6×240×2602)= 0.073 γs=(1+(1-2αs)1/2 )/2=0.962A s=M/γs f y h o=11420000/0.962×300×260=152.19 选用2φ16 As=402㎜27.LL01: b×h=240×300梁自重:1.2×25×0.24×0.3+20×0.02×[0.24+2×(0.3-0.1)]=2.42KN/m楼板传:(1.2×3.5+1.4×2.0)×1.5×1/2=5.25KN/mq =7.67KN/mM max=1/11ql2=1/11×7.67×3.92=10.61KN·Mαs=M/f cm bh02=10.61×106/(9.6×240×2602)=0.068γs=(1+(1-2αs )1/2 )/2=0.965A s=M/γs f y h o=10.61×106/ (0.965×300×260) =140.96㎜2选用2φ14 A s=308㎜28.XL01: b×h=240×300梁自重:1.2×25×0.24×0.3+20×0.02×[0.24+2×(0.3-0.1)]=2.42KN/mLL01传来集中力:p=1/2×7.67×3.9=14.96KNM max=1/2ql2+pl=1/2×2.42×1.52+14.96×1.5=25.16KN·Mαs=M/f cm bh02=25160000/(9.6×240×2602)= 0.162γs=(1+(1-2αs )1/2 )/2=0.911A s=M/γs f y h o=25160000/0.911×300×260=353 选用3φ18 As=763㎜2二)、六层C20 HRB335 a s=30㎜1.L01: b×h=150×250梁自重:1.2×25×0.15×0.25+20×0.02×[0.15+2×(0.25-0.1)]=1.31KN/m 楼板传:(1.2×4.85+1.4×2.0)×2.9×1/4=6.25KN/mL06传集中力p1:L06自重:2.42KN/m楼板传L06:q1=(1.2×4.2+1.4×2.0)×0.9×1/2=3.53KN/mq2左=3.53KN/mq2右=(1.2×4.2+1.4×2.0)×0.86×1/2+3.53=6.9KN/mp1 =[1/2×6.9×1.52+3.53×0.9×(0.9/2+1.5)]/2.4=5.82KNp2=6.9×1.5+3.53×0.9-5.82=7.71 KNq=1.31+6.25=7.56 KN/m p1 =5.82KNR A=[1/2×7.56×2.92+5.82×2.0)]/2.9=14.98KNR B=7.56×2.9+5.82-R A =12.76KN当V=0或最小时M最大,令V=0处距B支座x,则7.56x=12.76,得x=1.69,此时M max= 12.76×1.69-7.56×1/2×1.692=10.77 KN·Mαs=M/f cm bh02=10770000/(9.6×150×2102)= 0.170 γs=(1+(1-2αs)1/2 )/2=0.906A s=M/γs f y h o=10770000/0.906×300×210=188.59 选用3φ14 As=461㎜22.L02: b×h=200×300梁自重:1.2×25×0.20×0.30+20×0.02×[0.20+2×(0.30-0.1)]=2.04KN/m 楼板传:(1.2×4.7+1.4×2.0)×(2.9/4+1.2/2)=11.18KN/m由前知,L06传集中力p2=6.9×1.5+3.53×0.9-5.82=7.71 KNq=2.04+11.18=13.22 KN/m p1 =7.71KNR A=[1/2×13.22×2.92+7.71×2.0)]/2.9=24.49KNR B=13.22×2.9+7.71-R A =21.56KN当V=0或最小时M最大,令V=0处距B支座x,则13.22x=21.56,得x=1.63,此时M max= 21.56×1.63-13.22×1/2×1.632=17.58 KN·Mαs=M/f cm bh02=17580000/(9.6×200×2602)= 0.135 γs=(1+(1-2αs)1/2 )/2=0.927A s=M/γs f y h o=17580000/0.927×300×210=243.08 选用4φ16 As=804㎜23.L03: b×h=150×300梁自重:1.2×25×0.15×0.3+20×0.02×[0.15+2×(0.3-0.1)]=1.57KN/m楼板传:(1.2×4.85+1.4×2.0)×3.5×1/4=7.54KN/mL06传集中力p1:L06自重:2.42KN/m楼板传L06:q1=(1.2×4.2+1.4×2.0)×0.9×1/2=3.53KN/mq2左=3.53KN/mq2右=(1.2×4.2+1.4×2.0)×1.46×1/2+3.53=9.25KN/mp1 =[1/2×9.25×1.082+3.53×0.9×(0.9/2+1..08)]/1.98=5.18KNp2=9.25×1.08+3.53×0.9-5.18=7.99 KNq=1.57+7.54=9.11 KN/m p1 =5.18KNR A=[1/2×9.11×2.92+5.18×2.6)]/3.5=14.79KNR B=9.11×3.5+5.18-R A =22.28KN当V=0或最小时M最大,令V=0处距B支座x,则9.11x=22.28,得x=2.45,此时M max= 22.28×2.45-9.11×1/2×2.452=27.24 KN·Mαs=M/f cm bh02=27240000/(9.6×150×2602)= 0.280 γs=(1+(1-2αs)1/2 )/2=0.832A s=M/γs f y h o=27240000/0.832×300×260=419.86 选用3φ18 As=763㎜24.L04: b×h=200×300梁自重:1.2×25×0.20×0.30+20×0.02×[0.20+2×(0.30-0.1)]=2.04KN/m 楼板传:(1.2×4.7+1.4×2.0)×(2.6/4+1.62/2)=12.32KN/m由前知,L06传集中力p2=7.99 KNq=2.04+12.32=14.36 KN/m p2 =7.99KNR A=[1/2×14.36×3.52+7.99×2.6)]/3.5=31.07KNR B=14.36×3.5+7.99-R A =27.18KN当V=0或最小时M最大,令V=0处距A支座x,则14.36x=27.18,得x=1.89,此时M max= 27.18×1.89-14.36×1/2×1.892=25.72 KN·Mαs=M/f cm bh02=25720000/(9.6×200×2602)= 0.198 γs=(1+(1-2αs)1/2 )/2=0.888A s=M/γs f y h o=25720000/0.888×300×260=371.13 选用4φ18 As=1017㎜25.L05: b×h=240×300同前1~5层。
牛腿柱结构设计及配筋知识讲解
式中 Pvs、Phs———由荷载标准值按荷载效应短期组合计算的作用于牛腿顶部的
吊车一侧总竖向轮压值和水平拉力值;
Pv、Ph———作用于牛腿顶部的吊车一侧总竖向轮压设计值和水平拉力设计值;
B0———连续牛腿总轮压的计算分布宽度。
当牛腿高度 h 在 1.0~2.0m 范围内,吊车一侧的轮子为 8 个时,总轮压计算
0.15%,直径不应小于 12mm,沿牛腿 纵向的间距不宜大于 250mm,并不得 下弯兼作弯起钢筋。水平受拉钢筋宜伸
筋宜采用变形钢筋,其配筋率不应小于 0.15%,直径不应小于 12mm,沿牛腿 纵向的间距不宜大于 250mm,并不得 下弯兼作弯起钢筋。水平受拉钢筋宜伸
至墙体的对边,其伸入墙体的长度并应不小于锚固长度 la(图 10.8.2)。 当牛腿顶面以上没有墙体时,则水平受拉钢筋应伸至下面墙体的对边并与墙
10.8 壁式连续牛腿
10.8.1 水电站厂房中采用的壁式连续牛腿仍可按 10.7.1 及 10.7.2 的规定进行配筋 计算,牛腿的设计宽度 b 取为 1m,在 1m 宽度的连续牛腿上作用的竖向力 Fvs、 Fv 及水平拉力 Fhs、Fh 可分别按下列公式计算:
10.8 壁式连续牛腿
10.8.1 水电站厂房中采用的壁式连续牛腿仍可按 10.7.1 及 10.7.2 的规定进行配筋 计算,牛腿的设计宽度 b 取为 1m,在 1m 宽度的连续牛腿上作用的竖向力 Fvs、 Fv 及水平拉力 Fhs、Fh 可分别按下列公式计算:
10.7 立柱独立牛腿
10.7.1 立柱上的牛腿(当 a≤h0 时)的截面尺寸,应符合下列要求: (1)牛腿的裂缝控制应满足:
式中 Fvs———由荷载标准值按荷载效应短期组合计算作用于牛腿顶部的竖向力 值; Fhs———由荷载标准值按荷载效应短期组合计算作用于牛腿顶部的水平拉力值; β———裂缝控制系数,对水电站厂房立柱的牛腿,取β=0.70;对承受静荷载作 用的牛腿,取β=0.80; a———竖向力作用点至下柱边缘的水平距离,应考虑安装偏差 20mm;竖向力作 用点位于下柱截面以内时,取 a=0; b———牛腿宽度; h0———牛腿与下柱交接处的垂直截面有效高度;取 h0=h1-as+ctanα,在此, h、a、c 及α的意义见图 10.7.1,当α>45°时,取α=45°。 (2)牛腿外边缘高度 h1 不应小于 h/3,且不 应小于 200mm。 (3)吊车梁外边缘至牛腿外缘的距离不应 小于 100mm。 (4)牛腿顶面在竖向力设计值 Fv 作用下,其 局部受压应力不应超过 0.9fc,否则应采取 加大受压面积、提高混凝土强度等级或配 置钢筋网片等有效措施。 10.7.2 独立牛腿中由承受竖向力所需的受 拉钢筋和承受水平拉力所需的锚筋组成的 受力钢筋的总截面面积 As 应按下列公式 计算:
对称配筋矩形截面正截面承载力——配筋计算(一)
S 应满足:4 = A - P min bh 注意公式适用条件!!!
混凝土结构•计原理—■第七章二
由力平衡式求出X:
瓦 一万 一 C2as X xbh0
A_ A = Ne -a1fcbhX (1 - 0.5X)
=As=
hK
2as > x
A=As=
一 ; e' = e
h/2+a
> X bh0
按小偏心受压构件计算
(N 一%人bh°& )(h°-―)
上式为S的三次方程,对公式进行降价处理求解。
,=x (1 - °-5x) 持
(7—37)
得.f'A' = N — af bho& — N - a、/bh己
号 一 号 1 - x — -bi
P P
x
b
b—b -i
(7-36)
混凝土结构•计原理—■第七章
代入力矩平衡式得:
一 吨 Ne = a 1 fcb*&(1 - °.5g) + N& b Y x b?
岫(h°- a.
- bi
fi)妃(1-°念)(株)+
混凝土结构•计原理 第七章
2.截面配筋计算
大偏压:
1・判别式:g < Xb或 伞0.3h°且N< af Xb bho
2.计算式:由截面力平衡可得: x = N / a1 fc b
由截面力矩平衡:As= A = Ne — 5'(尾一°・5')
f
(
h0
a
-
s)
式中:e = ei + h/偏压:
L判别式:X > &或qv0・3h0 或为 >O.3ho 但 N > fc Xb bho
混凝土梁配筋计算
混凝土梁配筋计算
1.确定梁的几何尺寸和荷载:根据建筑设计需求和构筑物的使用条件,确定梁的几何尺寸和作用力,包括梁的长度、宽度、高度、跨度和受力点等。
2.确定梁的截面尺寸:根据梁的几何尺寸和受力情况,确定梁的截面
尺寸,包括翼缘宽度、翼缘高度、腹板宽度和腹板高度等。
3.设计配筋方案:根据梁受力情况和设计要求,设计配筋方案,包括
主筋的布置、直径、间距和受力钢筋等。
4.计算荷载:根据设计要求,计算梁的荷载,包括自重、楼面荷载、
悬挑荷载和动荷载等。
5.计算弯矩:根据荷载计算梁的弯矩,包括正弯矩和负弯矩。
6.确定截面抵抗力:根据弯矩和截面尺寸,使用受剪承载力与受弯承
载力的原理,计算截面的抵抗力。
7.确定配筋数量和位置:根据截面抵抗力和配筋的特性,确定配筋的
数量和位置。
8.确定配筋直径和间距:根据配筋数量和位置,确定配筋的直径和间距,满足强度和承载力的要求。
9.进行校核计算:根据设计要求,对计算结果进行校核,包括受剪承
载力、受弯承载力和侧向位移等。
10.编制配筋图:根据配筋方案和计算结果,编制配筋图纸,包括主筋、箍筋和锚筋等的布置和细节。
以上是混凝土梁配筋计算的基本步骤,其中包括了几何尺寸确定、荷载计算、弯矩计算、截面抵抗力计算和配筋设计等内容。
根据实际情况,计算过程会有所调整和细化。
混凝土梁配筋计算是结构设计的重要组成部分,需要严格按照相关规范和标准进行操作,确保梁的安全和稳定性。
配筋计算公式1
配筋计算公式配筋(计算规则)率是钢筋混凝土构件中纵向受力(拉或压)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。
柱子为轴心受压构件!受拉钢筋配筋率、受压钢筋配筋率分别计算。
计算公式:ρ=A(s)/bh(0)。
此处括号内实为角标,,下同。
式中:A(s)为受拉或受压区纵向钢筋的截面面积;b为矩形截面的宽度;h(0)为截面的有效高度。
配筋率是反映配筋数量的一个参数。
最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρ(min)。
最小配筋率是根据构件截面的极限抗弯承载力M (u)与使混凝土构件受拉区正好开裂的弯矩M(cr)相等的原则确定。
最小配筋率取0.2%和0.45f(t)/f(y)二者中的较大值!最大配筋率ρ (max)=ξ(b)f(c)/f(y),结构设计的时候要满足最大配筋率的要求,当构件配筋超过最大配筋率时塑性变小,不利于抗震。
配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。
控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。
钢筋的截面积与所设计的砼结构面的有效面积的比值,称之为配筋率。
在钢筋砼结构中,钢筋的总截面积与所设计的砼结构面的有效高度与宽度的积的比值,称之为配筋率,根据配筋率的大小,其结构分为超筋、适筋、少筋截面。
钢筋面积/构件截面面积(全面积or全面积-受压翼缘面积)梁的配筋率是梁的受压和受拉钢筋的总截面积除以梁的有效截面,有效截面是钢筋合力点到砼上面的距离。
合力点:是梁宽乘有效高度,有效高度指梁下部筋为一排筋时用高减35,下部筋为两排筋时减601、“柱外侧纵筋配筋率”为:柱外侧纵筋(包括两根角筋)的截面积,除以整个柱的截面积所得到的比率。
2、屋面框架梁(WKL)“上部纵筋配筋率”为:梁上部纵筋的总的截面积,除以梁的有效截面积所得到的比率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配筋(计算规则)率是钢筋混凝土构件中纵向受力(拉或压)钢筋的面积与构件的有效面积之比(轴心受压构件为全截面的面积)。
柱子为轴心受压构件!受拉钢筋配筋率、受压钢筋配筋率分别计算。
计算公式:ρ=A(s)/bh(0)。
此处括号内实为角标,,下同。
式中:A(s)为受拉或受压区纵向钢筋的截面面积;b为矩形截面的宽度;h(0)为截面的有效高度。
配筋率是反映配筋数量的一个参数。
最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρ(min)。
最小配筋率是根据构件截面的极限抗弯承载力M (u)与使混凝土构件受拉区正好开裂的弯矩M(cr)相等的原则确定。
最小配筋率取0.2%和0.45f(t)/f(y)二者中的较大值!最大配筋率ρ (max)=ξ(b)f(c)/f(y),结构设计的时候要满足最大配筋率的要求,当构件配筋超过最大配筋率时塑性变小,不利于抗震。
配筋率是影响构件受力特征的一个参数,控制配筋率可以控制结构构件的破坏形态,不发生超筋破坏和少筋破坏,配筋率又是反映经济效果的主要指标。
控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。
钢筋的截面积与所设计的砼结构面的有效面积的比值,称之为配筋率。
在钢筋砼结构中,钢筋的总截面积与所设计的砼结构面的有效高度与宽度的积的比值,称之为配筋率,根据配筋率的大小,其结构分为超筋、适筋、少筋截面。
钢筋面积/构件截面面积(全面积or全面积-受压翼缘面积)梁的配筋率是梁的受压和受拉钢筋的总截面积除以梁的有效截面,有效截面是钢筋合力点到砼上面的距离。
合力点:是梁宽乘有效高度,有效高度指梁下部筋为一排筋时用高减35,下部筋为两排筋时减601、“柱外侧纵筋配筋率”为:柱外侧纵筋(包括两根角筋)的截面积,除以整个柱的截面积所得到的比率。
2、屋面框架梁(WKL)“上部纵筋配筋率”为:梁上部纵筋的总的截面积,除以梁的有效截面积所得到的比率。
梁的有效截面积为梁的截面宽度乘以梁的有效高度。
而梁的有效高度为:梁的截面高度-35 (当梁上部纵筋为一排筋时)梁的截面高度-60 (当梁上部纵筋为两排筋时)一般设计上计算时as是纵向受拉钢筋合力点到截面受拉区边缘的距离,因此按受拉钢筋排数区域决定H-35或H-60(梁)而板H-20mm;受拉和受压要取决于梁或板的受力情况,同一条梁在梁中、梁端就不一样(连续多跨梁)单筋截面:忽略受压区钢筋的影响,只考虑受拉区钢筋。
这样计算简单。
通常用于受弯不是很大的截面。
超筋构建或考虑延性才采用受压区钢筋的作用。
最小配筋率、配筋率、超筋率定义与分析【问】关于配筋率的定义钢筋混凝土结构设计规程等规程上,语焉不详的地方很多。
就拿配筋率来说,1. 梁的配筋率:是采用钢筋面积除以梁宽与有效高度的成绩。
但是梁的最低配筋率却不采用有效高度,而采用包含混凝土保护层厚度在内的梁高。
而梁的最高配筋率(防止梁超筋)则又是采用有效高度。
感觉很混乱。
问题:混凝土规范11.3受拉钢筋配筋率的表格里,是采用梁的有效高度吗?“当梁的纵向受拉钢筋配筋率超过2%时候,箍筋的直径增加2毫米”,这里的配筋率也是采用梁的有效高度吗?2. 对于箍筋,《钢筋混凝土规范》上仅仅提到箍筋配筋率:拿箍筋的面积除以梁宽度和箍筋间距的乘积。
而在《高层混凝土结构技术规程》上,则分为箍筋的面积配筋率和箍筋的体积配筋率。
面积配筋率定义和《钢筋混凝土规范》的符号以及定义一致,此外又多出来一个箍筋的体积配筋率。
但是没有找到定义,一些一级注册考试辅导书上定义是采用Acor,即拿箍筋的体积除以除去保护层厚度的所谓核心区宽度与箍筋间距的乘积。
这样显然比前面的面积配筋率稍稍低一些,道理如同配筋率采用全高的结果比采用有效高度略微小一些一样。
如果是工程应用,有些时候这些细微的区别倒影响不大。
但是要命的是一级注册考试,这些细微的差别可能就会导致选项错误。
最近仔细钻研这些规程,发现很多地方用一个图能解释得很清楚的地方,这些老家伙们非要用语言来表达,而用的语言又之乎者也的,很难懂。
还有需要给出个定义的地方,偏偏不给定义,你虽然大致知道什么意思,但是你不知道准确的定义,应用就比较麻烦(譬如配筋率)。
此外,还有一些系数,也是很生僻的,因为前面有了,后面再用他就不说了,如果你规范不是特别熟悉,考试时候你查这一个系数,就够你忙个10分钟!我现在的办法是,在自己买的规范上最大量笔记。
对以上涉及到的各种配筋率的定义,谁很清楚,麻烦总结总结。
【答】对于箍筋,我的理解如下:1、梁类构件:因无轴向压力(或者说轴向压力很小),各类规范都是按面积配箍率计算的,主要是防止抗剪少筋破坏;2、柱类构件(包括剪力墙边缘构件):因此类构件轴向压力很大,配置箍筋的目的之一是为了增强对核心区混凝土的约束,满足地震作用下的延性要求。
因此各类规范都是按照体积配箍率控制的。
配筋率:桥梁工程中,一般指的是面积配筋率,即受拉钢筋面积与主梁面积之比。
箍筋面积配筋率:面积配筋率(ρsv):配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。
其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。
计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。
最小配筋率:梁:ρsv,min=0.24×ft/fyv;弯剪扭构件:ρsv,min=0.28×ft/fyv。
箍筋体积配筋率体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。
计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv=(4×Ass1)/(dcor×s)(见《混凝土结构设计规范GB50010-2002》第90页)。
式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度;计算复合箍的体积配筋率时,应扣除重叠部分的箍筋体积。
柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。
其中,fc≥16.7N/mm^2(《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》均有此规定),fyv≤360N/mm^2(《混凝土结构设计规范》无此规定,《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》有此规定)。
作用体积配箍率(ρv):体现柱端加密区箍筋对砼的约束作用。
超筋率:即主梁的配筋率如果达到或超过此参数后(一般为2.5),会产生超筋破坏的危险。
钢筋砼重量:素砼密度设计一般采用25(kN/m3),钢筋为78(kN/m3),计算梁重时,一般综合采用26(kN/m3)。
箍筋面积配筋率和箍筋体积配筋率配箍率是对箍筋而言,分箍筋面积配筋率和箍筋体积配筋率。
一般情况下,面积配筋率是对受弯构件而言,体积配箍率是对受压构件而言。
Ⅰ. 箍筋的面积配筋率面积配筋率(ρsv):配置在同一截面(b×s,b为矩形截面构件宽度,s为箍筋间距)内箍筋各肢的全部截面面积与该截面面积的的比率。
其中,箍筋面积Asv=单肢箍筋的截面面积Asv1×肢数n。
计算公式为:ρsv=Asv/(bs)=(n×Asv1)/(b×s)。
最小配筋率:梁:ρsv,min=0.24×ft/fyv;弯剪扭构件:ρsv,min=0.28×ft/fyv。
Ⅱ. 箍筋的体积配筋率体积配箍率(ρv):箍筋体积与相应的混凝土构件体积的比率。
计算公式为:方格网式配筋:ρv=(n1×As1×l1+n2×As2×l2)/(Acor×s);螺旋式配筋:ρv =(4×Ass1)/(dcor×s)。
式中,l1和l2为混凝土核心面积内的长度,即需减去保护层厚度;计算复合箍的体积配筋率时,应扣除重叠部分的箍筋体积。
柱箍筋加密区最小配筋率计算公式为:ρv,min=λv×fc/fyv;λv为最小配箍特征值,fc 为混凝土轴心抗压强度设计值,fyv为箍筋及拉筋抗拉强度设计值。
其中,fc≥16.7N/mm^2(《混凝土结构设计规范》、《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》均有此规定),fyv≤360N/mm^2(《混凝土结构设计规范》无此规定,《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》有此规定)。
相关规范条文:A. 面积配箍率(ρsv):《混凝土结构设计规范》(GB 50010-2002) 第10.2.10条、第10.2.12条、第11.3.9条;《高层建筑混凝土结构技术规程》(JGJ 3-2002,J 186-2002) 第6.3.4条、第6.3.5条。
B. 体积配箍率(ρv):《混凝土结构设计规范》(GB 50010-2002) 第7.8.3条、第11.4.17条、第11.4.18条;《建筑抗震设计规范》(GB 50011-2001) 第6.3.12条;《高层建筑混凝土结构技术规程》(JGJ 3-2002,J 186-2002) 第6.4.7条。
【答】1.面积配筋率与体积配筋率:面积配筋率是算梁类构件的一个指标,体积配筋率是算柱类构件的指标,分开了就好理解了;面积配筋率用的是全截面面积,体积配筋率用的是核心区的体积2.最小配筋率与最大配筋率:按不利来确定是计算全截面还是有效截面,谁不利用谁;最小配筋率,是防止少筋破坏,钢筋用的少不好,于是用全截面算的最小配筋要多,就选全截面;最大配筋率,是防止超筋破坏,钢筋用的多反而不好,用有效截面截面算的钢筋少,选有效截面【答】在钢筋混凝土构件的设计中,提起“配筋率”,行内人士想必都不陌生,这里我主要说的配筋率是钢筋混凝土结构构件中纵向受力钢筋的配筋百分率。
在设计过程中,最初本人对它的概念比较模糊,并发现工作多年的同行朋友对此理解也有误区,所以在这里整理一下自己的理解,和大家分享。
在《混凝土结构设计规范》中9.5.1注解第3条,受压构件的全部纵向钢筋和一侧纵向钢筋的配筋率以及轴心受拉构件和小偏心受拉构件一侧受拉钢筋的配筋率应按构件的全截面面积计算。
这句话我读了几十遍,照字面理解,我们计算配筋率的时候,分母应该取全截面面积,即b·h,但是我看校对人员帮我看图的时候,验算配筋率,用As/(b·h。
)。
有人说h和h。
的差距在实际工程中的意义不大,我看未必,单排配筋时h。
=h-35,差距还不算大,而双排或双排以上配筋时h。