2014下苏教版8年级数学第九章(中心对称图形)讲义及答案

合集下载

苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,已知△ABC的面积为15,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.52、如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A.14B.16C.17D.183、矩形具有而平行四边形不一定具有的性质是()A.对边平行且相等B.对角相等C.对角线互相平分D.对角线相等4、下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A.赵爽弦图B.笛卡尔心形线C.斐波那契螺旋线D.科g曲线5、如图,若要使平行四边形ABCD成为菱形,需添加的条件是()A. B. C. D.互相垂直6、下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形7、如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π8、如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1B.2C.3D.49、如图,把边长为4的正方形ABCD绕A点顺时针旋转30°得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是( ).A.12B.8+C.8+D.8+10、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合? AB∥CD BC∥AD AB=CD BC=AD()A.2组B.3组C.4组D.6组11、如图,四边形ABCD中,点E,F,G分别为边AB,BC,CD的中点,若△EFG 的面积为4,则四边形ABCD的面积为()A.8B.12C.16D.1812、如图,边长为2的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A. B.6 C. D.2+13、如下所示的4组图形中,左边图形与右边图形成中心对称的有( )A.1组B.2组C.3组D.4组14、下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.15、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH 上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB 与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE 重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm,最大值为________cm.17、如图,在正方形中,,E为的中点,将沿折叠,使点B落在正方形内点F处,连接,则的长为________.18、如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是________.19、如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________.20、如图,将平行四边形沿对角线折叠,使点落在点处,,则的度数为________.21、已知△ABC的3条中位线分别为 3 cm、4 cm、5 cm,则△ABC的周长为________cm.22、如图,矩形ABCD中,AB=2,BC=3,以A为圆心,1为半径画圆,E是⊙A 上一动点,P是BC上的一动点,则PE+PD的最小值是________.23、如图,已知点P是正方形ABCD的对角线BD上的一点,且BP=BC,则∠PCD的度数是________.24、如图,已知,点分别在上,且,将射线绕点逆时针旋转得到,旋转角为,作点关于直线的对称点,画直线交于点,连接,,有下列结论:①;②的大小随着的变化而变化;③当时,四边形为菱形;④面积的最大值为;其中正确的是________.(把你认为正确结论的序号都填上).25、如图所示,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,DF=BE,则∠1=________.三、解答题(共5题,共计25分)26、如图,在每个小正方形的边长为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上。

苏科版八年级数学下册期末复习讲义第9章《中心对称图形-平行四边形》(含答案解析)

苏科版八年级数学下册期末复习讲义第9章《中心对称图形-平行四边形》(含答案解析)

(2)直角三角形中,30 度角所对应的直角边等于斜边的一半.
五、菱形
1. 定义:有一组邻边相等的平行四边形叫做菱形.
2.性质:(1)具有平行四边形的一切性质;
(2)四条边相等;
(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对
角;
(4)中心对称图形,轴对称图形.
3.面积:
S
菱形=底

高=
对角线
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形 ABCD 改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=
度.
10
39.在数学活动课中,小辉将边长为 和 3 的两个正方形放置在直线 l 上,如图 1,他连结 AD、CF,经 测量发现 AD=CF. (1)他将正方形 ODEF 绕 O 点逆时针旋转一定的角度,如图 2,试判断 AD 与 CF 还相等吗?说明你的理由; (2)他将正方形 ODEF 绕 O 点逆时针旋转,使点 E 旋转至直线 l 上,如图 3,请你求出 CF 的长.
的面积是( )
A.12 B.24 C.12 D.16 8.如图,在菱形 ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线 AC 于点 F,垂足为 E,连接 DF,则∠ CDF 等于( )
A.50° B.60° C.70° D.80° 9.如图,在口 ABCD 中,用直尺和圆规作∠BAD 的平分线 AG 交 BC 于点 E.若 BF=6,AB=5,则 AE 的长为( )
A.当 AB=BC 时,它是菱形
B.当 AC⊥BD 时,它是菱形
C.当∠ABC=90°时,它是矩形 D.当 AC=BD 时,它是正方形
4.顺次连接任意四边形四边中点所得的四边形一定是( )

苏科版八年级数学下册第9章 9.2 中心对称与中心对称图形

苏科版八年级数学下册第9章 9.2 中心对称与中心对称图形

题型三 根据中心对称的性质求解 【变式1】如图,△ABC与△A′B′C′是成中心对称的两个图 形,点O是对称中心,则下列说法不正确的是( D ) A.AB=A′B′,BC=B′C′ B.AB∥A′B′,BC∥B′C′ C.S△ABC=S△A′B′C′ D.△ABC≌△A′OC′
题型三 根据中心对称的性质求解
中心的距离和关键点与对称中心的距离相等; (3)连接:将对称点按原图形的形状顺次连接起来,即可
得出关于对称中心对称的图形.
题型二 根据中心对称的性质作图 【变式】如图,点O是线段AE的中点, 以点O为对称中心,画出 与五边形ABCDE成中心对称的图形.
C
D
题型二 根据中心对称的性质作图 如图, 连接BO并延长至B′,使 得OB′ =OB ; 连接CO并延长至C',使得OC′ =OC ; 连接DO并延长至D′,使得OD′ =OD ; 顺次连接E, B′, C′, D′, A. 图形EB′C′D′A就是以点 O为对称中心、与 五边 形ABCDE成中心对称的图形.
是对称中心.
题型一 中心对称的识别 【例1】下列各组图形中,△ A'B'C' 与△ ABC 成中心对称的 是( D )
题型一 中心对称的识别 【变式】如下所示的4组图形中,左边数字与右边数字成中心对 称的有( D )
A.1组 B.2组 C.3组 D.4组
题型二 根据中心对称的性质作图 【例2】如图,已知四边形ABCD和点O,试画出四边形 ABCD关于点O成中心对称的图形A'B'C'D'.
知识一 中心对称及性质 中心对称的性质 成中心对称的两个图形,对应点的连线都经过对称中心,
而且被对称中心所平分;
中心对称的两个图形是全等图形,对应角相等,对应 线段平行(或在同一直线上)且相等.

完整版苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案

完整版苏科版八年级下册数学第9章 中心对称图形——平行四边形含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐标系。

将矩形OABC绕点O逆时针旋转30°,得到矩形ODEF,若当点A的坐标为(-,0)时,反比例函数的图象恰好经过B、F两点,则此时k的值为().A. B.-6 C. D.-32、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A.20cmB. cmC.10πcmD. πcm3、已知▱ABCD中,若∠A+∠C=120°,则∠B的度数是()A.100°B.120°C.80°D.60°4、如图,在边长为的正方形中,把边绕点逆时针旋转,得到线段.连接并延长交于点,连接,则的面积为()A. B. C. D.5、下列几何图形是中心对称图形的是()A. B. C. D.6、已知:在平面直角坐标系中,菱形ABCD三个顶点的坐标分别是A(﹣2,0)、B(0,1)、C(2,0),则点D的坐标是()A.(﹣4,﹣1)B.(4,﹣1)C.(0,﹣1)D.(0,﹣2)7、如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=AO,④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个B.4个C.3个D.2个8、如图,▱ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cmB.8cmC.10cmD.12cm9、下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.10、如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°11、如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结若,,则的度数为( )A. B. C. D.12、下列语句中正确的个数是()①矩形的四边中点在同一个圆上;②菱形的四边中点在同一个圆上;③等腰梯形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A.1B.2C.3D.413、下列四个命题:①对角线互相垂直的平行四边形是正方形;② ,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1B.2C.3D.414、下列关于矩形的说法中正确的是( )A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分15、下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,AB=AC ,将△ABC绕点C旋转180°得到△FEC ,连接AE、BF .当∠ACB为________ 度时,四边形ABFE为矩形.17、四边形ABCD为菱形,该菱形的周长为16,面积为8,则∠ABC为________度.18、如图,在等腰Rt△ABC中,∠C=90°,AC=7.点O在BC上,且CO=1,点M 是AC上一动点,连接OM,将线段OM绕点O逆时针旋转90°,得到线段OD,要使点D恰好落在AB上,CM的长度为________19、用反证法证明:已知直线a、b被直线c所截,∠1+∠2≠180°.求证:a 与b不平行.证明:假设________,则:∠1+∠2=180°(________)这与________矛盾,故假设不成立.所以a与b不平行.20、如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.21、如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE +S△ADF=S△CEF,其中正确的是________(只填写序号).22、已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为________,面积为________.23、如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.24、如图,在△ABC中,AB=2,BC=4,∠B=45°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为________.25、如图,在矩形ABCD中,AB=3,AD=4,点E是AD边上一动点,将△ABE 沿BE折叠,使点A的对应点A′恰好落在矩形ABCD的对角线上,则AE的长为________.三、解答题(共5题,共计25分)26、如图,方格纸上每个小正方形的面积为1.⑴在方格纸上,以线段AB为边画正方形ABCD,并计算所画正方形ABCD的面积.⑵请你在图上分别画出面积为5正方形A1B1C1D1和面积为10的正方形A 2B2C2D2,正方形的各个顶点都在方格纸的格点上.27、如图,矩形ABCD中,AB=10,AD=4,点P在边DC上,且△PAB是直角三角形,请在图中标出符合题意的点P,并直接写出PC的长.28、如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.29、如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.30、如图,平行四边形中,、分别是边、的中点,求证:.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、C5、D6、C7、B8、C9、A10、C11、B13、C14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。

苏科版八年级下册数学第9章中心对称图形复习讲义

苏科版八年级下册数学第9章中心对称图形复习讲义
( 1)求证:四边形 GEHF是平行四边形; ( 2)若点 G、 H 分别在线段 BA 和 DC 上,其余条件不变,则( 1)中的结论是 否成立?(不用说明理由)
2:例 1:如图,在 □ABCD中,点 E 在 AD 上,连接 BE, DF∥ BE 交 BC 于点 F, AF 与 BE 交与点 M , CE与 DF 交于点 N.求证:四边形 MFNE 是平行四边形.
中心对称图形复习
一、平行四边形的性质与判定
Байду номын сангаас
【知识梳理】
知识点 1:平行四边形的定义 两组对边分别平行的四边形叫做平行四边形,在四边形
ABCD中, AB∥ DC, AD∥ BC,那么四
边形 ABCD是平行四边形。 定义的作用:( 1)给出一种判定四边形是平行四边形的方法,
如果所给四边形的两组对边分
别平行,那么它一定是平行四边形; 平行。 知识点 2:平行四边形的性质
【例题精讲】 例 1:如图,将矩形纸片 ABCD沿对角线 AC 折叠,使点 B 落到点 B′的位置, AB′与 CD交于 点 E. (1)试找出一个与△ AED全等的三角形,并加以证明; (2)若 AB=8,DE=3,P 为线段 AC 上的任意一点, PG⊥ AE 于 G,PH⊥ EC于 H,试求 PG+PH 的值,并说明理由.
2:如图,在 △ABC 中, D 是 BC 边上的一点, E 是 AD 的中点,过点 A 作 BC的平行线交 BE 的延长线于 F,且 AF= DC,连结 CF. (1)求证: D 是 BC的中点; (2)如果 AB= AC,试猜测四边形 ADCF的形状,并证明你的结论
( 2)给出了平行四边形的一个重要性质
: 两组对边分别
(1)
定义性质:平行四边形的两组对边分别平行。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿QC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()A. B.2 C. D.32、如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:( )A.1:4B.1:3C.1:2D.2:13、剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE= DCB.OA=OCC.∠BOE=∠OBAD.∠OBE=∠OCE5、在▱ABCD中,∠A=50°,则∠C=()A.130°B.50°C.40°D.25°6、正方形具有而菱形不具有的性质是( )A.四边相等B.对角线互相垂直C.对角线相等D.对角线互相平分7、下列说法中不正确的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.四个角都相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形8、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有()A.4个B.6个C.8个D.10个10、下列图形中,是中心对称图形的是()A. B. C. D.11、如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.7B.6C.8D.8 ﹣412、如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOCB.∠AODC.∠AOBD.∠BOC13、下列图案中,不是中心对称图形的是()A. B. C. D.14、已知△ABC的面积为36,将△ABC沿BC的方向平移到△A'B 'C '的位置,使B '和C重合,连结AC '交A'C于D,则△C'DC的面积为()A.6B.9C.12D.1815、菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直二、填空题(共10题,共计30分)16、如图,已知反比例函数y= (x>0)与正比例函数y=x(x≥0)的图象,点A(1,5)、点A′(5,b)与点B′均在反比例函数的图象上,点B在直线y=x上,四边形AA′B′B是平行四边形,则B点的坐标为________.17、如图,在平面直角坐标系中,,,,,…,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,…,如果所作正方形的对角线都在轴上,且的长度依次增加1个单位长度,顶点都在第一象限内(,且为整数)那么的纵坐标为________;用的代数式表示的纵坐标________.18、已知菱形 ABCD的边长是4cm,对角线 AC=4cm,则菱形的面积是________cm2.19、如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别是2 m和4m,上部是圆心为0的劣弧CD,圆心角∠COD=120°.现欲以B点为支点将拱门放倒;放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示记拱门上的点到地面的最大距离hm,则h的最大值为________m。

2014下苏教版8年级数学第九章(中心对称图形)讲义及答案

2014下苏教版8年级数学第九章(中心对称图形)讲义及答案

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式8年级下学期数学讲义05 ( 第九章中心对称图形)1.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。

9.2 中心对称和中心对称图形2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

9.3 平行四边形3.平行四边形的对边相等、对角相等、对角线互相平分。

4.一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

9.4 矩形、菱形、正方形5.矩形的四个角都是直角,对角线相等。

三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。

6.菱形的四条边相等,对角线互相垂直。

四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。

7.有一组领边相等的矩形是正方形;有一个角是直角的菱形是正方形。

9.5 三角形的中位线8.三角形的中位线平行于第三边,并且等于第三边的一半。

9.1 图形的旋转试题1.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()2.(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()3.(2011•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()A.30°B.40°C.50°D.60°5.(2008•庐阳区)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°6.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为___________.7.(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=___________度.8.(2008•厦门)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=___________cm,△ABC的面积=___________cm2.9.(2011•珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.10.(2006•三明)已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).(1)求角α;(2)说明四边形EBCD是等腰梯形.1.(2013•黔西南州)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有( )2.(2013•抚顺)下列图形中,不是中心对称图形的是( ).C3.(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( ) 4.把26个英文字母依照轴对称性和中心对称性分成5组:①FRPJLG□②HIO□③NS□④BCKE□⑤VATYWU□,现在还有5个字母D 、M 、Q 、X 、Z 请你按原规律补上,其顺序依次为 ( ) 5.下列的正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是( ).C6.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距___________公里.7.(1997•安徽)如右图,线段AB 关于点O (不在AB 上)的对称线段是A′B′;线段A′B′关于点O′(不在A′B′上)的对称线段是A″B″.那么线段AB 与线段A″B″的关系是___________.8.(2012•广陵区二模)如下图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是___________.9.(1)已知实数a ,b 满足a (a+1)-(a 2+2b )=1,求a 2-4ab+4b 2-2a+4b 的值.(2)如图是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长?10.已知:如图所示,E 是等腰梯形一腰CD 的中点,EF ⊥AB ,垂足为F ,求证:S 梯形ABCD =AB•EF.1.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()2.(2013•乐山)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()3.(2013•湖北)若平行四边形的一边长为2,面积为4根号6,则此边上的高介于()4.(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()5.(2009•桂林)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()6.(2012•眉山)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=___________.7.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于___________.9.(2013•玉溪)如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.10.2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.9.4 矩形、菱形、正方形试题1.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()2.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()4.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()5.(2012•西宁)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()6.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是___________.7.(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为___________cm.8.(2013•盐城)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.9.(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.10..(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.9.5 三角形的中位线试题1.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为()2.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()3.(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()4.(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()5.(2013•安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.6.(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.7.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.答案9.11,解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.2,解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.3,解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.4,解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.5,解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选C.6,解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.7,解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=1/2(180°-∠BAB′)=1/2(180°-40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°-∠ABB′=90°-70°=20°.故答案为:20.8,解:∵点G是△ABC的重心,∴DE=GD=1/2GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,222∴S△ABC=S△ACD+S△BCD=2S△BCD=2×1/2×BG×CD=18cm2.填:2,18.9,(1)解:∵∠ABC=120°,∴∠CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.10,解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵△BDC与△ADE重合,∴∠DBC=∠A=36°,∠AED=∠C=72°,∴∠ADE=∠BDC=180°-(72°+36°)=72°,∴α=180°-∠BDC=180°-72°=108°.(2)由(1)∠ADE=∠C=72°,∴DE∥BC,又BE与CD不平行,∴四边形EBCD是梯形,∵∠ABC=∠C=72°,∴四边形EBCD是等腰梯形.9.21,解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:矩形、菱形.故选:B.2,解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A.3,解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.4,解:①不是对称图形,5个子母中不是对称图形的只有:Q;(2)有两条对称轴,并且两对称轴互相垂直,则规律相同的是:X;(3)是中心对称图形,则规律相同的是:Z;(4)是轴对称图形,对称轴是一条水平的直线,满足规律的是:D;(5)是轴对称图形,对称轴是竖直的直线,满足规律的是:M.故各个空,顺序依次为:Q,X,Z,D,M.故选D.5,解:A、不是轴对称图形,也不是中心对称图形;B、是中心对称图形,不是轴对称图形;6,解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.7,解:中心对称图形中的不在同一直线上的两条对应线段的关系是:平行且相等.故线段AB与线段A″B″的关系是:平行且相等.故答案为:平行且相等.8,解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为3.9,解:(1)∵a(a+1)-(a2+2b)=1,∴等式变形得:a-2b=1;原式=(a-2b)2-2(a-2b)=12-2=-1;(2)设AC=x,AB=2x,BB′=4x,在Rt△ABC中AB2=AC2+BC2,∴(2x)2=x2+12,解得:x=±√3/3(负数舍去),∴AB=2×√3/3=2√3/3,∴BB′=4√3/3.10,证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∠D=∠ECG;DE=EC;∠DEA=∠CEG∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.9.31,解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.2,解:∵四边形ABCD为平行四边形,∴DC∥=AB,AD∥=BC,∵E为CD的中点,∴DE为△FAB的中位线,∴AD=DF,DE=1/2AB,∵DF=3,DE=2,∴AD=3,AB=4,∴四边形ABCD的周长为:2(AD+AB)=14.故选D.3,解:根据四边形的面积公式可得:此边上的高=4√6÷2=2√6,2√6介于4与5之间,则则此边上的高介于4与5之间;故选B.4,解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;AD=BC,AB=CD,BD=DB∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选C.5,解:通过观察结合平行四边形性质得:S阴影=1/2×6×4=12.故选C.6,解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.7,解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.8,解:在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.9,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.10,(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,∠1=∠2,∠DEA=∠FEB,AE=BE∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.11,证明:∵梯形ABCD是等腰梯形,AD∥BC,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠GFC=∠B,∴AB∥GF,又∵AE=GF,∴四边形AEFG是平行四边形.9.41,解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.2,解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1/2BC=4,∵点E为AC的中点,∴DE=CE=1/2AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.3,解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4,解:如图,连接BE,在矩形ABCD中,AD∥BC,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°,∴∠AEB=∠AEF-∠BEF=120°-60°=60°,在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2√3,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2√3×8=16√3.故选D.5,解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°-45°-45°=90°,即旋转角是90°,故选D.6,解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=√62+82=10,故PB+PE的最小值是10.故答案为:10.7,解:设AB=x,则可得BC=10-x,∵E是BC的中点,∴BE=1/2BC=10−x/2,在Rt△ABE中,AB2+BE2=AE2,即x2+(10−x/2)2=52,解得:x=4.即AB的长为4cm.故答案为:4.8,证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.9,证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,∠BCF=∠D,∠CBE=∠BFC=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.10,证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠C,AB=CB,∴△ABF≌△CBE(SAS),∴BF=BE.9.51,选A.2,解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=1/2(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.3,解:∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm,∵对角线AC、BD相交于O点,∴BO=DO,又∵E是AD的中点,∴OE是△ABD的中位线,∴OE=1/2AB=1/2×6=3cm.故选A.4,解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC=√BD2+CD2=5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=1/2BC=EF,EH=FG=1/2AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.5,(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2√3,∴菱形的面积为4×2√3=8√3.6,证明:∵点E,F分别为AB,AD的中点∴AE=1/2AB,AF=1/2AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、下列图形是中心对称图形的是( )A. B. C. D.2、下列四个图形中既是轴对称图形,又是中心称图形的是( )A. B. C. D.3、如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是( )A.18°B.36°C.45°D.72°4、下列图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.5、矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角6、如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是()A. B. C. D.7、四边形ABCD中,对角线AC、BD相交于点O,给出下列四个答案中,①AD∥BC,②AD=BC,③AO=OC,④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种8、如图,P是菱形ABCD对角线BD上一点,PE⊥AB于E,PE=4cm,则点P到BC 的距离是()A.2cmB.3cmC.4cmD.8cm9、下列命题中,逆命题是真命题的是()A.平行四边形的两组对角分别相等B.正多边形的每条边都相等C.成中心对称的两个图形一定全等D.矩形的两条对角线相等10、如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10°B.15°C.20°D.30°11、如图,在中,,点E在BD上,.如果,那么等于()A.20°B.25°C.30°D.35°12、如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1, S2.若S=3,则S1+S2的值为()A.24B.12C.6D.313、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.14、如图,在中,平分,交边于E,,,则的长为()A.8B.7C.6D.515、下列运动属于旋转的是()A.扶梯的上升B.一个图形沿某直线对折过程C.气球升空的运动 D.钟表的钟摆的摆动二、填空题(共10题,共计30分)16、如图,在正方形ABCD中,对角线BD的长为。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移2、如图,在矩形ABCD中,AB=6,BC=8,E是BC边上一点,将矩形沿AE折叠,点B落在点B'处,当△B'EC是直角三角形时,BE的长为()A.2B.6C.3或6D.2或3或63、将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形4、在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A.25 πB.65 πC.90 πD.130 π5、如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.6、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7、下列条件中,不能判断四边形ABCD是平行四边形的是()A.∠A=∠C,∠B=∠DB.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC8、下列常见的手机软件图标,其中是轴对称又是中心对称的是()A. B. C. D.9、菱形具有而一般矩形不具有的性质是()A.对边相等B.对角线相等C.对角线互相平分D.对角线互相垂直10、如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A. B. C.1﹣ D.1﹣11、已知如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形12、下列手机软件图标中,属于中心对称的是()A. B. C. D.13、下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相垂直且平分的四边形是菱形;③一个角为90°且一组邻边相等的四边形是正方形;④对角线相等的平行四边形是矩形.其中真命题的个数是()A.1B.2C.3D.414、如图,点P是Rt△ABC中斜边AC (不与A,C重合)上一动点,分别作PM⊥AB于点M,作PN⊥BC于点N,连接BP、MN,若AB=6,BC=8,当点P在斜边AC 上运动时,则MN的最小值是( )A.1.5B.2C.4.8D.2.415、下列图形是中心对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是________.17、如图,在□ABCD中,点E在边AD上,以BE为折痕将△ABE向上翻折,点A正好落在CD的点F处,若△FDE的周长为8,△FCB 的周长为22,则□ABCD 的周长为________.18、如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若,则3S△EDH =13S△DHC,其中结论正确的序号有________.19、如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=________.20、四边形ABCD中,AD∥BC,∠D=90°,如果再添加一个条件,可以得到四边形ABCD是矩形,那么可以添加的条件是________ (不再添加线或字母,写出一种情况即可)21、如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为________.22、如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是________.23、如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为________.24、如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=________.25、若四边形ABCD的边AB=CD,BC=DA,则这个四边形是________,理由是________.三、解答题(共5题,共计25分)26、四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.若BC=8,DE=3,求△AEF的面积.27、如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8年级下学期数学讲义05 ( 第九章中心对称图形)知识点:9.1 图形的旋转1.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。

9.2 中心对称和中心对称图形2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

9.3 平行四边形3.平行四边形的对边相等、对角相等、对角线互相平分。

4.一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

9.4 矩形、菱形、正方形5.矩形的四个角都是直角,对角线相等。

三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。

6.菱形的四条边相等,对角线互相垂直。

四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。

7.有一组领边相等的矩形是正方形;有一个角是直角的菱形是正方形。

9.5 三角形的中位线8.三角形的中位线平行于第三边,并且等于第三边的一半。

9.1 图形的旋转试题1.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°2.(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对C.3对D.2对3.(2011•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()A.45°B.30°C.25°D.15°4.(2009•漳州)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()A.30°B.40°C.50°D.60°5.(2008•庐阳区)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°6.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为___________.7.(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=___________度.8.(2008•厦门)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=___________cm,△ABC的面积=___________cm2.9.(2011•珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.10.(2006•三明)已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).(1)求角α;(2)说明四边形EBCD是等腰梯形.9.2 中心对称和中心对称图形试题1.(2013•黔西南州)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有()A.1个B.2个C.3个D.4个2.(2013•抚顺)下列图形中,不是中心对称图形的是()A.B.C.D.3.(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是()A.①②B.②③C.②④D.①④4.把26个英文字母依照轴对称性和中心对称性分成5组:①FRPJLG□②HIO□③NS□④BCKE□⑤VATYWU□,现在还有5个字母D、M、Q、X、Z请你按原规律补上,其顺序依次为()A.Q XZMD B.D MQZX C.Z XMDQ D.Q XZDM5.下列的正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是()A.B.C.D.6.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距___________公里.7.(1997•安徽)如右图,线段AB关于点O(不在AB上)的对称线段是A′B′;线段A′B′关于点O′(不在A′B′上)的对称线段是A″B″.那么线段AB与线段A″B″的关系是___________.8.(2012•广陵区二模)如下图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是___________.9.(1)已知实数a,b满足a(a+1)-(a2+2b)=1,求a2-4ab+4b2-2a+4b的值.(2)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长?10.已知:如图所示,E是等腰梯形一腰CD的中点,EF⊥AB,垂足为F,求证:S梯形ABCD=AB•EF.9.3 平行四边形试题1.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.A B∥DC,AD∥BC B.A B=DC,AD=BC C.A O=CO,BO=DO D.A B∥DC,AD=BC 2.(2013•乐山)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()A.5B.7C.10 D.143.(2013•湖北)若平行四边形的一边长为2,面积为4根号6,则此边上的高介于()A.3与4之间B.4与5之间C.5与6之间D.6与7之间4.(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.2S1=S25.(2009•桂林)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3B.6C.12 D.246.(2012•眉山)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=___________.7.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于___________.8.(2010•海南)如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=___________cm.9.(2013•玉溪)如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.10.2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.9.4 矩形、菱形、正方形试题1.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°2.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.133.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.对角线互相平分4.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12√3 D.16√35.(2012•西宁)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°6.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是___________.7.(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为___________cm.8.(2013•盐城)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.9.(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.10..(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.9.5 三角形的中位线试题1.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为()A.2B.4C.6D.82.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A.9B.10.5 C.12 D.153.(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A.3cm B.4cm C.2.5cm D.2cm4.(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10 D.115.(2013•安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.6.(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.7.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.答案9.11,解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.2,解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.3,解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.4,解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.5,解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选C.6,解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.7,解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=1/2(180°-∠BAB′)=1/2(180°-40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°-∠ABB′=90°-70°=20°.故答案为:20.8,解:∵点G是△ABC的重心,∴DE=GD=1/2GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,∴BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,∴S△ACD=S△BCD,∴S△ABC=S△ACD+S△BCD=2S△BCD=2×1/2×BG×CD=18cm2.填:2,18.9,(1)解:∵∠ABC=120°,∴∠CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.10,解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵△BDC与△ADE重合,∴∠DBC=∠A=36°,∠AED=∠C=72°,∴∠ADE=∠BDC=180°-(72°+36°)=72°,∴α=180°-∠BDC=180°-72°=108°.(2)由(1)∠ADE=∠C=72°,∴DE∥BC,又BE与CD不平行,∴四边形EBCD是梯形,∵∠ABC=∠C=72°,∴四边形EBCD是等腰梯形.9.21,解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:矩形、菱形.故选:B.2,解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A.3,解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.4,解:①不是对称图形,5个子母中不是对称图形的只有:Q;(2)有两条对称轴,并且两对称轴互相垂直,则规律相同的是:X;(3)是中心对称图形,则规律相同的是:Z;(4)是轴对称图形,对称轴是一条水平的直线,满足规律的是:D;(5)是轴对称图形,对称轴是竖直的直线,满足规律的是:M.故各个空,顺序依次为:Q,X,Z,D,M.故选D.5,解:A、不是轴对称图形,也不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,但不是轴对称图形;D、不是中心对称图形,是轴对称图形.故选A.6,解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.7,解:中心对称图形中的不在同一直线上的两条对应线段的关系是:平行且相等.故线段AB与线段A″B″的关系是:平行且相等.故答案为:平行且相等.8,解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为3.9,解:(1)∵a(a+1)-(a2+2b)=1,∴等式变形得:a-2b=1;原式=(a-2b)2-2(a-2b)=12-2=-1;(2)设AC=x,AB=2x,BB′=4x,在Rt△ABC中AB2=AC2+BC2,∴(2x)2=x2+12,解得:x=±√3/3(负数舍去),∴AB=2×√3/3=2√3/3,∴BB′=4√3/3.10,证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∠D=∠ECG;DE=EC;∠DEA=∠CEG∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.9.31,解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.2,解:∵四边形ABCD为平行四边形,∴DC∥=AB,AD∥=BC,∵E为CD的中点,∴DE为△FAB的中位线,∴AD=DF,DE=1/2AB,∵DF=3,DE=2,∴AD=3,AB=4,∴四边形ABCD的周长为:2(AD+AB)=14.故选D.3,解:根据四边形的面积公式可得:此边上的高=4√6÷2=2√6,2√6介于4与5之间,则则此边上的高介于4与5之间;故选B.4,解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;AD=BC,AB=CD,BD=DB∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选C.5,解:通过观察结合平行四边形性质得:S阴影=1/2×6×4=12.故选C.6,解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.7,解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.8,解:在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.9,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.10,(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,∠1=∠2,∠DEA=∠FEB,AE=BE∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.11,证明:∵梯形ABCD是等腰梯形,AD∥BC,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠GFC=∠B,∴AB∥GF,又∵AE=GF,∴四边形AEFG是平行四边形.9.41,解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.2,解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1/2BC=4,∵点E为AC的中点,∴DE=CE=1/2AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.3,解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4,解:如图,连接BE,在矩形ABCD中,AD∥BC,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°,∴∠AEB=∠AEF-∠BEF=120°-60°=60°,在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2√3,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2√3×8=16√3.故选D.5,解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°-45°-45°=90°,即旋转角是90°,故选D.6,解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=√62+82=10,故PB+PE的最小值是10.故答案为:10.7,解:设AB=x,则可得BC=10-x,∵E是BC的中点,∴BE=1/2BC=10−x/2,在Rt△ABE中,AB2+BE2=AE2,即x2+(10−x/2)2=52,解得:x=4.即AB的长为4cm.故答案为:4.8,证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.9,证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,∠BCF=∠D,∠CBE=∠BFC=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.10,证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠C,AB=CB,∴△ABF≌△CBE(SAS),∴BF=BE.9.51,选A.2,解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=1/2(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.3,解:∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm,∵对角线AC、BD相交于O点,∴BO=DO,又∵E是AD的中点,∴OE是△ABD的中位线,∴OE=1/2AB=1/2×6=3cm.故选A.4,解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC=√BD2+CD2=5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=1/2BC=EF,EH=FG=1/2AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.5,(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2√3,∴菱形的面积为4×2√3=8√3.6,证明:∵点E,F分别为AB,AD的中点∴AE=1/2AB,AF=1/2AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O ∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.7,(1)证明:∵AD∥BC,(AD∥BG)∴∠D=∠FCG,∠DAF=∠G.(2分)∵DF=CF,∴△ADF≌△GCF.(4分)(2)解法一:由(1)得△ADF≌△GCF,∴AF=FG,AD=CG.(5分)∵AE=BE,∴EF为△ABG的中位线.∴EF=1/2BG.(6分)∴BG=2×7.5=15.(7分)∴AD=CG=BG-BC=15-10=5.(8分)。

相关文档
最新文档