眼图基础知识
信号完整性分析基础系列之一——眼图测量
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
02-PPT(眼图)
程
·
主讲人:乔琪程
Contents 目录
观察眼图的方法01眼图的相关参数02
1观察眼图
的方法观察眼图的方法
将待测的基带信号加至示波器的(Y 轴)输入端,同时把位定时脉冲加至外同步输入端,使示波器水平扫描周期与码元同步(码元周期的整数倍),则示波器显示出类似人眼的图案。
2眼图的
相关参数
①最佳抽样时刻:眼图中间的垂直线。
②判决门限电平:眼图中央的水平线。
③定时抖动灵敏度:眼图斜边的斜率。
④噪声容限:在抽样时刻,上下两阴影区的间隔距离之半为噪声的容限。
⑤信号畸变范围:阴影区的垂直高度即“眼皮”厚度表示信号畸变的范围。
⑥过零点畸变:图中倾斜阴影带与横轴相交的区间表示了接收波形零点位置的变化范围。
基本
知识
01
观察眼图的方法02
眼图的相关参数。
眼图
在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,信号通过信道后,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间干扰的。
在码间干扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于实际评价系统的性能,常用所谓“眼图”。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
所谓“眼图”,就是由解调后经过低通滤波器输出的基带信号,以码元定时作为同步信号在示波器屏幕上显示的波形。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很象一只人的眼睛。
在图1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,在取样时刻信号取值分布在小于+1或大于-1附近,“眼睛”部分闭合。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就指明失真的严重程度。
为便于说明眼图和系统性能的关系,我们将它简化成图2的形状。
由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感;(3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5)阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。
衡量眼图质量的几个重要参数有:1.眼图开启度(U-2ΔU)/U指在最佳抽样点处眼图幅度“张开”的程度。
无畸变眼图的开启度应为100%。
眼图测量基础知识
—“眼图就是象眼睛一样形状的图形。
”眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。
眼睛的形状各种各样,眼图的形状也各种各样。
通过眼图的形状特点可以快速地判断信号的质量。
图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。
图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。
图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。
图五眼图定义图六“双眼皮”眼图由于眼图是用一张图形就完整地表征了串行信号的比特位信息,所以成为了衡量信号质量的最重要工具,眼图测量有时侯就叫“信号质量测试(Signal Qu ality Test,SQ Test)”。
此外,眼图测量的结果是合格还是不合格,其判断依据通常是相对于“模板(Mask)”而言的。
模板规定了串行信号“1”电平的容限,“0”电平的容限,上升时间、下降时间的容限。
所以眼图测量有时侯又被称为“模板测试(Mask Test)”。
模板的形状也各种各样,通常的NRZ信号的模板如图五和图八蓝色部分所示。
在串行数据传输的不同节点,眼图的模板是不一样的,所以在选择模板时要注意具体的子模板类型。
如果用发送端的模板来作为接收端眼图模板,可能会一直碰模板。
但象以太网信号、E1/T1的信号,不是NRZ码形,其模板比较特别。
当有比特位碰到模板时,我们就认为信号质量不好,需要调试电路。
有的产品要求100%不能碰模板,有的产品是允许碰模板的次数在一定的概率以内。
(有趣的是,眼图85%通过模板的产品,功能测试往往是没有问题的,譬如我在用的电脑网口总是测试不能通过,但我上网一直没有问题。
这让很多公司觉得不用买示波器做信号完整性测试以一样可以做出好产品来,至于山寨版的,更不会去买示波器测眼图了。
)示波器中有测量参数可自动统计出碰到模板的次数。
眼图常识
眼图常用知识介绍关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著以及色散对长距离传输后的眼图的影响如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣现在我们公司常用的测量眼图的仪器为CSA80001眼图与常用指标介绍下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光功率Rise下降时间峰值抖动RMSJ消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议衡量器件是否符合要求除了满足建议要求之外一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBµ«ÊÇÕâ²¢²»Òâζ×ÅÏû¹â±È可以无限大将导致激光器的啁啾系数太大不利于长距传输与速率的最低要求消光比大0.5~1.5dBÖ®ËùÒÔ¸ø³öÕâôһ¸öÊýÖµÊǺ¦ÅÂÏû¹â±ÈÌ«¸ßÁ˵¼ÖÂÎóÂë²úÉú»òͨµÀ´ú¼Û³¬±êûÓвúÉúÎóÂë²¢ÇÒͨµÀ´ú¼ÛÂú×ãÖ¸±êÒªÇó¶à´ó¶¼¿ÉÒÔÓÉÓÚ´«Êä¹ý³ÌÖе¼Ö½ÓÊÕ²àµÄ½»²æµãÏà¶ÔÓÚ·¢ËͲàÉÏÒƱ£Ö¤½ÓÊÕ²àµÄ½»²æµã±ÈÀýÔÚ´óÔ¼50ʹµÃ½ÓÊÕ²àµÄÁéÃô¶È×î¼ÑÒ»°ã·¢ËͲཻ²æµã±ÈÀý½¨Òé¿ØÖÆÔÚ4045Q因子综合反映眼图的质量问题表明眼图的质量越好光功率一般来说1Խƽ»¬ÔÚ²»¼Ó¹âË¥¼õµÄÇé¿öÏÂ越高越好越高越好如果需要准确地测量光功率信号的上升时间下降的快慢的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718在测量抖动的时候才能保证测量值相对准确做为一个比较参考一般在发送侧的测量值都大于30dB2典型的眼图介绍接下来我们来看一些典型的较好的眼图和一些有问题的眼图以下的为一个较好的622M的眼图眼线很细Q因子很高以下为不加STM-4滤波器的622M的眼图特别是上升电平有点波纹信号的高频谐波没有被虑掉我们看到即使电平不平坦以下为一个较好的2.5G的眼线比较细0电平都比较平滑Q因子较高以下为较好的10G的眼图眼图比较细0电平下降沿稍粗一点消光比适中交叉点稍高可以将交叉点调低一点点总的来说眼图质量将越差第一是抖动抖动越难控制由于测试过程一般都要加相应的低通滤波器622M信号的低通滤波器的带宽大约为500MHz8GHz这个频率范围的噪声却没有被10G信号的滤波器滤掉10G信号的噪声更大一下3有问题的眼图分析以下为一个有问题的622M眼图我们来一一分析眼图有非常明显的两个上升俗称双眼皮电平1ÐźÅÓйý³åÏû¹â±ÈÆ«µÍÖ»ÓÐ4.1dBµ¼ÖÂÐźŵĹý³åÕâ¸öÑÛͼ»¹ËµÃ÷ÁËÁíÒ»¸öÎÊÌâ¶ø²»ÊÇΨһµÄÒªÇóÕâ¸öÑÛͼµÄ±ßµÄÀëÄ£°å»¹ÊÇÓÐÒ»¶¨µÄÓàÁ¿µÄÎÒÃÇÔÙÀ´¿´¿´ÒÔÏÂ622M眼图估计是信号的滤波没有处理好以下为2.5G 眼图存在的问题是眼图有点歪这个跟激光器的调制特性有一定的关系以下2.5G 眼图注意与上一个眼图比较下降沿都较粗均方根抖动部门内公开眼图常用知识介绍以下2.5G的眼图就比较糟糕上升信号质量不好消光比也很低其原因可能是驱动器或者阻抗非常不匹配以下一个为2.5G眼图可能两个原因引起的第二是直调激光器的张驰振荡引起的振铃以下为10G 眼图第一消光比太低眼图电平很粗可能的原因是以下10G 眼图没有其测量数据下降沿比较粗可以看出来部门内公开眼图常用知识介绍以下为10G眼图这从那里看出来呢眼图的上升电平都比较粗很不干净以上三个眼图我们分析了导致眼图不好的三种情况抖动这三种情况如何从眼图看出来呢1²»Æ½Ì¹½â¾öÎÊÌâÒª´Ó±£Ö¤´Óʼ¶Ëµ½ÖÕ¶Ë×迹ƥÅä如果眼图的上升中间那么就是抖动引起的如合理设计锁相环如果眼图的都比较粗一般来说是电源噪声解决问题也是要从这几方面着手不能以一把尺子来衡量眼图质量越难保证要求的眼图质量也好时钟输入的光模块比只有数据输入的光模块的眼图质量会更好一些EA调制方式的眼图比直接调制方式的眼图表现会好一些4CSA8000简介与使用注意事项4.1CSA8000简介CSA8000为TEKTRONIX公司最新的通讯分析仪同时可以测量信号的其他一些指标消光比信噪比CSA8000为WINDOWS界面支持鼠标面板按键操作界面方便快捷拷贝CSA8000仪表包括主机以及测量模块80C01-CR光测量模块即带宽为20GHz²»ÐèÒªÍâ¼Ó´¥·¢Ê±ÖÓ 2.488G信号2.488G10.66G滤波器的可以选择622M9.95G三种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G信号或者以外触发方式测试10.66GÂ˲¨Æ÷Ö»ÓÐ9.95G一种输入光功率不能超过7dBm5mW在测量过程中输出光可以直接输入给测量模块可以以时钟恢复方式测量1.063G 2.488G滤波器的可以选择1.063G2.488G三种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G»òÕßÒÔÍâ´¥·¢·½Ê½²âÊÔ10.71G信号10.66G两种输入光功率不能超过7dBm5mW建议输入光功率在0dBm左右可以以时钟恢复方式测量9.95G»òÕßÒÔÍâ´¥·¢·½Ê½²âÊÔ 10.66G信号10.71G两种80C06为高带宽光测量模块80C07为多速率光测量模块622M这些模块我们暂时没有这里不做更进一步的介绍用与测量电信号眼图建议输入信号幅度为500mV左右带宽高达50GÌرð×¢ÒâµÄÊÇÐèҪרÃŵÄת½ÓÍ·²ÅÄÜʹÓÃÓÃÓë²âÁ¿µçÐźÅÑÛͼ建议输入信号幅度为500mV左右其带宽为20G80E04模块还有一个独特的功能另外还有80E02ÆäÄÜʵÏֵŦÄܲ»µ¥¶À½éÉÜ光测量模块的输入光功率不能超过允许的范围否则可能造成测量模块的永久损坏使用中要注意防静电特别是以外触发方式测量的时候为了测量的数据准确可靠包括暗电流校正和温度补偿校正首先把测量模块的光接口盖上首先要将测量仪表打开然后对仪表进行温度补偿校正注意校正过程较长具体操作如下 要选择选择好相应的速率的滤波器和模板GE信号就选择GE的滤波器与模板交叉点比例等数值时候选择滤波器操作步骤如下选择正确的滤波器Setup-->Mask-->选择正常的通道C8。
眼图有关知识详细解释
眼图综述报告-----------李洋目录1. 眼图的形成 (2)1.1 传统的眼图生成方法 (2)1.2 实时眼图生成方法 (3)1.3 两种方法比较 (4)2. 眼图的结构与参数介绍 (4)2.1 眼图的结构图 (4)2.2 眼图的主要参数 (5)2.2.1 消光比 (5)2.2.2 交叉点 (5)2.2.3 Q因子 (6)2.2.4 信号的上升时间、下降时间 (6)2.2.5 峰—峰值抖动和均方根值抖动 (6)2.2.6 信噪比 (6)3. 眼图与系统性能的关系 (7)4. 眼图与BER的关系 (7)4. 如何获得张开的眼图 (8)5. 阻抗匹配的相关知识 (9)5.1 串联终端匹配 (9)5.2 并联终端匹配 (10)6. 眼图常见问题分析 (10)7. 总结 (17)1.眼图的形成眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。
在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。
这种图形看起来象眼睛,称为数字信号的眼图。
示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。
而眼图则反映的是链路上传输的所有数字信号的整体特性。
如下图:1.1 传统的眼图生成方法采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.图:采样示波器眼图形成原理1.2 实时眼图生成方法实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。
图:实时示波器眼图形成原理另一种示意图:图:实时示波器眼图形成原理1.3 两种方法比较1.传统的方法比实时眼图生产方法测量的速度要慢100至1000倍。
2.传统的眼图生成方法测量精度没有实时眼图生成方法高。
角膜地形图基本知识
角膜地形图基本知识角膜地形图基本概念一、基础概念(1)角膜表面分区①中央光学区,正中央直径4mm面积的区域,非常近似于球面,曲率变化范围小于0.25D,具有最重要的屈光学意义。
②旁中央区,距角膜中央4mm至7~8mm直径环形区域,此处角膜曲率逐渐降低,逐渐呈非球面。
③周边区,距角膜中央7~8mm至11mm直径环形区域,此处角膜曲率明显降低,即变得扁平,呈非对称形。
④角膜缘区,角膜移行至巩膜约0.5~lmm的环形区域。
(2)角膜中心1)角膜瞳孔中心注视点与瞳孔中心连线在角膜表面的交点,通常用于角膜屈光手术前的定位。
2)角膜反射中心注视同轴光源时,同轴光线在角膜表面的反射点。
3)角膜视轴中心注视点与黄斑中心凹连线在角膜的交点,因难以精确定位,故临床上常以角膜反射中心替代之。
(3)角膜表面规则性指数,SRI评价角膜中央4.5mm范围内表面规则性的一个指标,SRI值越小,表示角膜中央表面规则性越好,中国人正常值为0.2±0.2。
(4)角膜表面非对称性指数,SAI。
反映角膜中央区相隔180度对应点角膜屈光力差值总和的一个指标,中国人正常值为0.3±0.1。
(5)模拟角膜镜读数,SimK。
中国人正常值为43.2±1.3D二、正常角膜地形图正常角膜地形图与年龄相关,并受生理周期、时间和睡眠的影响。
决定角膜形态的因素有:曲率半径、角膜上皮厚度、角膜基质厚度、上皮表面规则程度及作用于角膜的机械因素等。
正常角膜地形图常见类型:1)非对称领结形占32.1%,屈光度分布呈不对称领结形。
2)圆形占22.6%,屈光度分布均匀,自中央到周边逐渐递减。
3)椭圆形占20.8%,中央屈光度分布均匀,周边分布对称性不均匀,近似椭圆。
4)对称领结形占17.5%,屈光度分布呈对称领结形,有对称性角膜散光,且领结所在子午线上屈光力最强。
5)不规则形占7.1%,屈光度分布不规则,表明角膜表面形态不好,注意排除泪膜异常、聚焦不准或注视不良。
眼图形成及其基本知识归纳
* * 1眼图基本观点眼图的形成原理眼图是一系列数字信号在示波器上积累而显示的图形,它包含了丰富的信息,从眼图上能够察看出码间串扰和噪声的影响,表现了数字信号整体的特色,从而预计系统好坏程度,因此眼图剖析是高速互连系统信号完好性剖析的核心。
此外也能够用此图形对接收滤波器的特征加以调整,以减小码间串扰,改良系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,而后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般丈量的信号是一些位或某一段时间的波形,更多的反应的是细节信息,而眼图则反应的是链路上传输的全部数字信号的整体特色,以下列图所示:图示波器中的信号与眼图假如示波器的整个显示屏幕宽度为100ns ,则表示在示波器的有效频宽、取样率及记忆体配合下,获取了100ns 下的波形资料。
但是,对于一个系统而言,剖析这么短的时间* *内的信号其实不拥有代表性,比如信号在每一百万位元会出现一次突波(Spike ),但在这100ns 时间内,突波出现的机率很小,所以会错过某些重要的信息。
假如要权衡整个系统的性能,这么短的时间内丈量获取的数据明显是不够的。
假想,假如能够以重复叠加的方式,将新的信号不停的加入显示屏幕中,但却仍旧记录着上次的波形,只需积累时间够久,就能够形成眼图,从而能够认识到整个系统的性能,如串扰、噪声以及其余的一些参数,为整个系统性能的改良供给依照。
剖析实质眼图,再联合理论,一个完好的眼图应当包含从“000 ”到“ 111 ”的全部状态组,且每一个状态组发生的次数要尽量一致,不然有些信息将没法表此刻屏幕上,八种状态形成的眼图以下所示:图眼图形成表示图由上述的理论剖析,联合示波器实质眼图的生成原理,能够知道一般在示波器上观察到的眼图与理论剖析获取的眼图大概靠近(无串扰等影响),以下所示:* *图示波器实质观察到的眼图假如这八种状态组中缺失某种状态,获取的眼图会不完好,以下所示:图示波器观察到的不完好的眼图经过眼图能够反应出数字系统传输的整体性能,但是怎么样才能正确的掌握其判断方法呢?这里有必需对眼图中所波及到的各个参数进行定义,认识了各个参数此后,其判断方法很简单。
眼图——概念与测量
眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
眼图--概念与测量
眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
眼图形成及其基本知识归纳
1眼图基本概念1.1 眼图的形成原理眼图是一系列数字信号在示波器上累积而显示的图形,它包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
示波器一般测量的信号是一些位或某一段时间的波形,更多的反映的是细节信息,而眼图则反映的是链路上传输的所有数字信号的整体特征,如下图所示:图示波器中的信号与眼图如果示波器的整个显示屏幕宽度为100ns,则表示在示波器的有效频宽、取样率及记忆体配合下,得到了100ns下的波形资料。
但是,对于一个系统而言,分析这么短的时间内的信号并不具有代表性,例如信号在每一百万位元会出现一次突波(Spike),但在这100ns时间内,突波出现的机率很小,因此会错过某些重要的信息。
如果要衡量整个系统的性能,这么短的时间内测量得到的数据显然是不够的。
设想,如果可以以重复叠加的方式,将新的信号不断的加入显示屏幕中,但却仍然记录着前次的波形,只要累积时间够久,就可以形成眼图,从而可以了解到整个系统的性能,如串扰、噪声以及其他的一些参数,为整个系统性能的改善提供依据。
分析实际眼图,再结合理论,一个完整的眼图应该包含从“000”到“111”的所有状态组,且每一个状态组发生的次数要尽量一致,否则有些信息将无法呈现在屏幕上,八种状态形成的眼图如下所示:图眼图形成示意图由上述的理论分析,结合示波器实际眼图的生成原理,可以知道一般在示波器上观测到的眼图与理论分析得到的眼图大致接近(无串扰等影响),如下所示:图示波器实际观测到的眼图如果这八种状态组中缺失某种状态,得到的眼图会不完整,如下所示:图示波器观测到的不完整的眼图通过眼图可以反映出数字系统传输的总体性能,可是怎么样才能正确的掌握其判断方法呢?这里有必要对眼图中所涉及到的各个参数进行定义,了解了各个参数以后,其判断方法很简单。
眼图的定义与测量方法
眼图的测量内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。
眼图(Eye Diagram)含义讲解
眼图(Eye Diagram)含义讲解什么是眼图?它用在什么场合?反映了波形的什么信息?眼图(Eye Diagram)可以显示出数字信号的传输质量,经常用于需要对电子设备、芯片中串行数字信号或者高速数字信号进行测试及验证的场合,归根结底是对数字信号质量的一种快速而又非常直观的观测手段。
消费电子中,芯片内部、芯片与芯片之间经常用到高速的信号传输,如果对应的信号质量不佳,将导致设备的不稳定、功能执行错误,甚至故障。
眼图反映的是数字信号受物理器件、信道的影响,工程师可以通过眼图,迅速得到待测产品中信号的实测参数,并且可以预判在现场可能发生的问题。
1、眼图的形成对于数字信号,其高电平与低电平的变化可以有多种序列组合。
以3个bit为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。
如图1。
对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。
图1. 眼图的形成2、眼图中包含的信息对于一幅真实的眼图,如图2,首先我们可以看出数字波形的平均上升时间(Rise Time)、下降时间(Fall Time)、上冲(Overshoot)、下冲(Undershoot)、门限电平(Threshold/Crossing Percent)等基本的电平变换的参数。
图2. 电平变换参数信号不可能每次高低电平的电压值都保持完全一致,也不能保证每次高低电平的上升沿、下降沿都在同一时刻。
如图3,由于多次信号的叠加,眼图的信号线变粗,出现模糊(Blur)的现象。
所以眼图也反映了信号的噪声和抖动:在纵轴电压轴上,体现为电压的噪声(Voltage Noise);在横轴时间轴上,体现为时域的抖动(Jitter)。
图3. 噪声和抖动由于噪声和抖动,眼图上的空白区域变小。
如图4,在除去抖动和噪声的基础上,眼图上空白的区域在横轴上的距离称为眼宽(Eye Width),在眼图上叠加的数据足够多时,眼宽很好的反映了传输线上信号的稳定时间;同理,眼图上空白的区域在纵轴上的距离称为眼高(Eye Height),在眼图上叠加的数据足够多时,眼高很好的反映了传输线上信号的噪声容限,同时,眼图中眼高最大的地方,即为最佳判决时刻。
眼图的名词解释
眼图的名词解释眼图(Eye diagram)是一种用于电信领域信号质量评估的图形分析工具。
它利用实际信号的采样数据绘制而成,通常呈现为上方为信号波形,下方为相关的信号参数。
眼图通过将连续波形的多个周期叠加在一起,形成多个瞬态过程的重叠,从而提供了信号的稳态和瞬态特征的直观展示。
它能够有效地反映信号的时域和频域特征,以及信号的抗干扰能力、传输质量和时钟恢复性能。
眼图的形状和特征对于信号的质量评估至关重要。
通过观察眼图,我们可以判断信号的完整性和稳定性。
一个清晰、稳定的眼图表示信号传输良好,存在较高的抗噪声和干扰能力。
相反,如果眼图模糊或变形,可能意味着信号存在时钟偏移、抖动、畸变或其他噪声问题。
眼图常用于高速数字通信系统的设计、调试和故障排除中。
它可以帮助工程师确定信号失真的原因,并调整系统参数以提高传输质量。
通过观察眼图,工程师可以识别出信号的主要问题,例如噪声、时钟偏移、串扰、 ISI(Inter-Symbol Interference,符号间干扰)等。
在信号调试中,工程师通常会根据眼图上的特征,对发送和接收端的设备进行相应的调整和优化。
眼图在不同应用领域具有广泛的应用。
在电信领域,眼图可以用于评估数字通信系统的性能,例如以太网、光纤通信、无线通信等。
在光学领域,眼图可以帮助工程师分析光信号的传输质量,以便改善光通信系统的性能。
在高频电路设计中,眼图可以用于评估高速信号的时钟恢复和数据传输能力。
综上所述,眼图是一种用于信号质量评估的重要工具,具有直观、全面的特点。
通过观察眼图,我们可以深入了解信号的稳态和瞬态特征,从而改进通信系统的性能。
眼图的应用范围广泛,对于电信、光学和电路设计等领域都具有重要意义。
随着通信技术的发展,眼图将继续发挥其重要的作用,帮助我们理解和优化信号传输的质量和性能。
眼图详解分析
眼图详解关于眼图的基本知识1、眼图的作用数字信号的眼图可以体现数字信号的整体特征,能够很好地评估数字信号的质量,因而眼图的分析是数字系统信号完整性分析的关键之一。
2、眼图的形成串行数据的传输由于通讯技术发展的需要,特别是以太网技术的爆炸式应用和发展,使得电子系统从传统的并行总线转为串行总线。
串行信号种类繁多,如PCI Express、SPI、USB 等,其传输信号类型时刻在增加。
相比并行数据传输,串行数据传输的整体特点如下:1)信号线的数量减少,成本降低2)消除了并行数据之间传输的延迟问题3)时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了4)传输线的PCB 设计也更容易些5)信号完整性测试也更容易实际中,描述串行数据的常用单位是波特率和UI,串行数据传输示例如下:串行数据传输示例例如,比特率为 3.125Gb/s 的信号表示为每秒传送的数据比特位是3.125G 比特,对应的一个单位间隔即为1UI。
1UI表示一个比特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。
现在比较常见的串行信号码形是NRZ 码,因此在一般的情况下对于串行数据信号,我们的工作均是针对NRZ 码进行的。
由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。
眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。
眼图实际上就是数字信号的一系列不同二进制码按一定的规律在示波器屏幕上累积后的显示,简单地说,由于示波器具有余辉功能,只要将捕获的所有波形按每三个比特分别地叠加累积(如上图所示),从而就形成了眼图。
目前,一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。
眼图基本原理
PCross1 PCross2
眼图测量特征量
TCross1
PTop
TCross2
PBase Eye Aperture
P Values
PTopmean , the mean value of PTop PTopsigma , the standard dev of PTop PBasemean , mean value within aperture PBasesigma , std dev of PBase in aperture Pcrossmean , vertical mean of crossing pt.
TDS8200 ET Scope (20GHz 80E03)
TDS6154C RT w. DSP
眼图与CLK-时钟速率提高,眼图质量下降
125M CLK
250M CLK
500M CLK
示波器上的眼图
提供串行总线数据的丰富信息:通过比较发送端和接收端的眼图质量可 以分析出信号传输的问题
眼高,眼底,眼宽 上升时间 下降时间 模板测试
Tx + +
path
--
+ + Rcv --
Fast, sharp, edges at transmitter launch
Smeared edges at end of long interconnect.
Reference Maxim Note HFDN-27.0 (Rev. 0, 09/03)
高速串行总线-串扰
Tx + +
SI-list【中国】信号完整性基础▏眼图(EyeDiagram)
SI-list【中国】信号完整性基础▏眼图(EyeDiagram)眼图(Eye Diagram)可以显示出数字信号的传输质量,经常用于需要对电子设备、芯片中串行数字信号或者高速数字信号进行测试及验证的场合,归根结底是对数字信号质量的一种快速而又非常直观的观测手段。
消费电子中,芯片内部、芯片与芯片之间经常用到高速的信号传输,如果对应的信号质量不佳,将导致设备的不稳定、功能执行错误,甚至故障。
眼图反映的是数字信号受物理器件、信道的影响,工程师可以通过眼图,迅速得到待测产品中信号的实测参数,并且可以预判在现场可能发生的问题。
1.眼图的形成对于数字信号,其高电平与低电平的变化可以有多种序列组合。
以3个bit为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。
如图1。
对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。
图1. 眼图的形成2.眼图中包含的信息对于一幅真实的眼图,如图2,首先我们可以看出数字波形的平均上升时间(Rise Time)、下降时间(Fall Time)、上冲(Overshoot)、下冲(Undershoot)、门限电平(Threshold/Crossing Percent)等基本的电平变换的参数。
图2. 电平变换参数信号不可能每次高低电平的电压值都保持完全一致,也不能保证每次高低电平的上升沿、下降沿都在同一时刻。
如图3,由于多次信号的叠加,眼图的信号线变粗,出现模糊(Blur)的现象。
所以眼图也反映了信号的噪声和抖动:在纵轴电压轴上,体现为电压的噪声(Voltage Noise);在横轴时间轴上,体现为时域的抖动(Jitter)。
图3. 噪声和抖动由于噪声和抖动,眼图上的空白区域变小。
如图4,在除去抖动和噪声的基础上,眼图上空白的区域在横轴上的距离称为眼宽(Eye Width),在眼图上叠加的数据足够多时,眼宽很好的反映了传输线上信号的稳定时间;同理,眼图上空白的区域在纵轴上的距离称为眼高(Eye Height),在眼图上叠加的数据足够多时,眼高很好的反映了传输线上信号的噪声容限,同时,眼图中眼高最大的地方,即为最佳判决时刻。
眼图的基本概念介绍
眼图的简单图形分析:
眼图对于展示数字信号传输系统的性能提供了很多有 用的信息:可以从中看出码间串扰的大小和噪声的强弱, 有助于直观地了解码间串扰和噪声的影响,评价一个系统 的性能优劣;可以指示接收滤波器的调整,以减小码间串 扰。
眼图的形状各种各样,通过眼图的形状特点可以快速地判断信号 的质量。可以根据眼图的相关参数来判别眼图的好坏,从而可以衡量 系统的性能。眼图相关的参数有很多,如眼高、眼宽、眼幅度、眼交 叉比、“1”电平,“0”电平,等。
眼图 的 “眼睛” 张开的大小反映着码间串扰的强弱。 “眼睛” 张的 越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越 大。
当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变 得模糊不清。若同时存在码间串扰 , “眼睛”将 张开得更小。与无 码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的 带状线,而且不很端正。噪声越大,线迹越宽,越模糊;码间串扰越 大,眼图越不端正。
( 1 )最佳抽样时刻应 在 “眼睛” 张开最大的时刻。 ( 2 )对定时误差的灵敏度可由眼图斜边的斜率决定。斜率越大,对定时误差就 越灵敏。 ( 3 )在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。 ( 4 )眼图中央的横轴位置应对应判决门限电平。 ( 5 )在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相 应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。 ( 6 )对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与 横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时 信息有重要的影响。
眼图的基本概念介绍
张啸康
眼图基础知识ppt课件
辅助设备 待测设备
转接
小板
HUB
PC
探头1 探头2 探头3
示波器
高速
示波器
探头1
转接 小板
HOST
ppt课件完整
12
眼图测试-模板
高速
ppt课件完整
全速
13
案例分析-串22欧电阻
1.5m
6.5m
PASS
NG
ppt课件完整
14
案例分析-串共模电感
1.5m
3.5m
6.5m
PASS
PASS
ppt课件完整
眼图基础知识分享
ppt课件完整
1
目录
1. 关于USB
2. 眼图的定义
3. 眼图测试方法
4. 如何获得张开大的眼图
5. 眼图常见问题
ppt课件完整
2
USB-电气特性
速率 输出电流 幅度 上升时间
低速 1.5Mbps 500mA 3.3V 75-300ns
全速 12Mbps 500mA
3.3V
4-20ns
高速 480Mbps 500mA 400mV 500ps
应用 键盘、鼠标
触摸框 U盘、硬盘
ppt课件完整
3
USB--物理特性
ppt课件完整
4
USB-接口定义
引脚编号 信号名称 缆线颜色
1
Vcc
红
2 Date-(D-) 白
3 Date+(D+) 绿
4
Ground
黑
ppt课件完整
5
USB-全速和低速设备识别
反映波形的细节
体现信号的整体特征
ppt课件完整
9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
USB--物理特性
设备识别 接口类型 差分信号
物理 特性
USB-接口定义
引脚编号 1 2 信号名称 Vcc Date-(D-) 缆线颜色 红 白
3
4
Date+(D+)
Ground
绿
黑
USB-全速和低速设备识别
USB-高速设备识别
驱动方式 全/低速 高速 电压 电流 大小 3.3V 17.78mA D+ 主机 DD+
PASS
PASS
PASS
案例分析-加6.5m延长线
无电阻和共感 电阻+共感 共感
NG
NG
PASS
损耗速率越高互连距离越长,损耗越大
Clean, open, logical 1 & 0 at launch from transmitter Logical 1 & 0 can be hard to distinguish at end of long interconnects; (this is often called a “closed eye”)
眼图基础知识分享
目录
1. 关于USB
2. 眼图的定义 3. 眼图测试方法
4. 如何获得张开大的眼图
5. 眼图常见问题
USB-电气特性
速率 低速 全速 高速 1.5Mbps 12Mbps 480Mbps 输出电流 500mA 500mA 500mA 幅度 3.3V 3.3V 400mV 上升时间 75-300ns 4-20ns 500ps 应用 键盘、鼠标 触摸框 U盘、硬盘
上升 下降 时间
眼睛 张开
抖动
3、眼图张开越大,接收 器判断信号的准确度越好
如何获得张开的眼图
• • • • 走线长度 短走线意味低损耗. 走线宽度 宽走线可以降低趋肤效应. 减小板材的介电常数 即降低介电损耗(Dielectric Loss),但将增加成本 信号预加重和均衡处理
常见眼图问题分析
Mask test
眼图测试—设备
DSA90804A
转接板
示波器探头
信号探头
眼图测试-接线
辅助设备
全速
待测设备
转接 小板
HUB
PC
探头1
探头2
探1
转接 小板
HOST
眼图测试-模板
高速
全速
案例分析-串22欧电阻
1.5m 6.5m
PASS
NG
案例分析-串共模电感
1.5m 3.5m 6.5m
1.5K
+3.3V
高速 设备
D-
眼图-定义
一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图 是高速系统信号完整性分析的核心
眼图与波形区别
反映波形的细节
体现信号的整体特征
眼图—示波器生成
voltage
Data
time Clock
Precision variable delay
Tx
+ + - -
path
+ + -
Rcv
Fast, sharp, edges at transmitter launch
Smeared edges at end of long interconnect.
眼图—信号品质
噪声
1、眼图显示被测信号的 综合特征 2、眼图张开越大,对噪 声和抖动的容许误差越大
噪声
常见眼图问题分析
抖动
常见眼图问题分析
阻抗不匹配
总结
1:USB不同速度设备识别 2:眼图是如何生成的 3:眼图测试方法 4:获得张开眼图有哪些方法 5:眼图常见问题