数据分析中的变量分类

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据分析中的变量分类

数据分析工作每天要面对各种各样的数据,每种数据都有其特定的含义、使用范围和分析方法,同一个数据在不同环境下的意义也不一样,因此我们想要选择正确的分析方法,得出正确的结论,首先要明确分析目的,并准确理解当前的数据类型及含义。统计学中的变量指的是研究对象的特征,我们有时也称为属性,例如身高、性别等。每个变量都有变量值,变量值就是我们分析的内容,它是没有含义的,只是一个参与计算的数字,所以我们主要关注变量的类型,不同的变量类型有不同的分析方法。

变量主要是用来描述事物特征,那么按照描述的粗劣,有以下两种划分方法:

按基本描述划分

【定性变量】:也称为名称变量、品质变量、分类变量,总之就是描述事物特性的变量,目的是将事物区分成互不相容的不同组别,变量值多为文字或符号,在分析时,需要转化为特定含义的数字。

定性变量可以再细分为:

有序分类变量:描述事物等级或顺序,变量值可以是数值型或字符型,可以进而比较优劣,如喜欢的程度:很喜欢、一般、不喜欢

无序分类变量:取值之间没有顺序差别,仅做分类,又可分为二分类变量和多分类变量二分类变量是指将全部数据分成两个类别,如男、女,对、错,阴、阳等,二分类变量是一种特殊的分类变量,有其特有的分析方法。多分类变量是指两个以上类别,如血型分为A、B、AB、O

【定量变量】:也称为数值型变量,是描述事物数字信息的变量,变量值就是数字,如长度、重量、产量、人口、速度和温度。

定量变量可以再细分

连续型变量:在一定区间内可以任意取值,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。如身高、绳子的长度等。

离散型变量:值只能用自然数或整数单位计算,其数值是间断的,相邻两个数值之间不再有其他数值,这种变量的取值一般使用计数方法取得。

按照精确描述划分

【定类变量】

测量事物类别或属性,各类支架没有顺序或等级,实际上也就是上面说的无序分类变量,所包含的数据信息很少,只能计算频数和频率,是最低层次的一种变量

【定序变量】

测量事物之间的等级或顺序,就是上述的有序分类变量,由于它的变量值可以是数值型或字符型,并且可以反映等级之间的优劣,除了可以计算频数和频率之外,还可以计算累计频率,因此数据包含的信息多于定类变量。

【定距变量】

测量事物的类别或顺序之间的间距,它不但具有定类和定序变量的特点,还能计算类别之间的差距,可以进行加减运算,数据包含的信息高于前两种

【定比变量】测量事物类别比值,和定距变量相比,它不但可以进行加减运算,还可以进行乘除运算,包含的数据信息最多,是最高级的变量。

上面这四种变量可以从浅到深精确的描述事物,四种变量级别从低到高,高层次变量可以向低层次转化,代价是损失部分数据信息,但是低层次变量无法向高层次转化,这会得出错误结果。

按照变量的取值划分

前面两种分类方法都是从变量对事物的描述角度出发进行分类,一旦对事物描述确定下来,那么变量的取值也就相应确定下来了,比如定性变量的取值只能是某属性下的计数,比如人数、客户数等,因此只能取特定的值,数值是离散的。而定量变量可以取某属性下的任意值,变量值即可连续也可离散,比如身高、体重、销售额等。连续型数值和离散型数值的分析方法是不同的,因此从统计学角度,又经常划分为连续型变量和定性变量(分类变量)

关于变量的类型及取值方法,可以归纳为下表

【编辑推荐】

优秀数据分析师应该具备的5点素质

大数据百科:传统分析vs 大数据分析

国内数据分析“七宗罪”

变量改变时PHP内核做了些什么?

Spark是什么?用Spark进行数据分析

相关文档
最新文档