初中数学知识点整理表格版

合集下载

初中数学知识点汇总(整理完全版)

初中数学知识点汇总(整理完全版)

第二章、整式加减1、整式:⑴单项式:只含有数或字母的积的式子叫单项式。

(单独一个字母或数字也是单项式);系数:单项式中的数字因数;次数:单项式中,所有字母的指数和。

⑵多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

①项:每一个单项式(注意带符号)。

②次数:多项式里次数最高的项的次数。

2、同类项:所含字母相同,并且相同字母的指数也相同的项。

几个常数项也是同类项。

3、合并同类项:系数相加,字母和字母的指数不变。

4、去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章、一元一次方程含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。

只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。

1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2、一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化为1。

注意:①去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。

②去括号:“去正不变,去负全变”。

③移项:是从等号一端移到另一端,移项要变号。

④合并同类项:系数相加减做系数,字母和字母的指数不变。

⑤系数化为一列方程解应用题:(1)设未知数。

(2)找出相等的数量关系,(3)根据相等关系列几何图形:我们把从实物中抽象出的各种图形统称为几何图形。

立体图形:各部分不都在同一平面内,这种图形叫做立体图形。

平面图形:各部分都在同一平面内,这种图形叫做平面图形。

平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

三视图:指主视图、左视图、俯视图。

初中数学知识点思维导图

初中数学知识点思维导图

初中数学知识点思维导图1. 数与式1.1. 有理数- 定义:可以表示为两个整数的比的数。

- 性质:包括正有理数、负有理数和零。

- 运算:加法、减法、乘法、除法。

1.2. 无理数- 定义:不能表示为两个整数比的实数。

- 例子:π、√2等。

1.3. 代数式- 单项式:由数字和字母的乘积组成。

- 多项式:由多个单项式相加组成。

- 运算:合并同类项、分配律等。

2. 方程与不等式2.1. 一元一次方程- 形式:ax + b = 0。

- 解法:移项、合并同类项。

2.2. 二元一次方程组- 形式:ax + by = e, cx + dy = f。

- 解法:代入法、消元法。

2.3. 不等式- 性质:传递性、可加性、乘法性。

- 解法:移项、合并同类项、取交集。

3. 函数3.1. 一次函数- 形式:y = mx + b。

- 图像:直线。

3.2. 二次函数- 形式:y = ax^2 + bx + c。

- 图像:抛物线。

3.3. 反比例函数- 形式:y = k/x。

- 图像:双曲线。

4. 几何4.1. 点、线、面- 点:几何图形的基本元素。

- 线:由无数点组成。

- 面:由无数线组成。

4.2. 角- 锐角:小于90°。

- 直角:等于90°。

- 钝角:大于90°小于180°。

4.3. 三角形- 等边三角形:三边相等。

- 等腰三角形:两边相等。

- 直角三角形:一个角为90°。

4.4. 四边形- 正方形:四边相等且四个角都是直角。

- 矩形:对边相等且四个角都是直角。

- 平行四边形:对边平行。

4.5. 圆- 定义:所有点到中心点距离相等的点的集合。

- 性质:周长、面积、直径、半径。

5. 统计与概率5.1. 数据收集与处理- 收集:通过调查、实验等方式。

- 处理:数据整理、分类。

5.2. 统计图表- 条形图:表示数量的多少。

- 折线图:表示数量的变化趋势。

- 饼图:表示各部分占总体的比例。

初中数学知识点总结表格

初中数学知识点总结表格

初中数学知识点总结表格
摘要:
1.初中数学知识点总结表格的意义和价值
2.初中数学知识点的总结内容
3.如何有效地学习和掌握初中数学知识点
4.总结表格在初中数学教学中的应用
正文:
【初中数学知识点总结表格的意义和价值】
初中数学知识点总结表格对于初中生来说具有重要的意义和价值。

初中数学知识点总结表格能够将数学知识点进行系统性的整理和归纳,帮助学生更好地理解数学知识,提高学习效率,培养良好的学习习惯和思维方式。

【初中数学知识点的总结内容】
初中数学知识点总结表格主要包括有理数、整式与分式、一元一次方程、平面直角坐标系、不等式、函数等知识点。

这些知识点是初中数学学习的基础和核心,对于学生掌握数学知识和解决实际问题具有重要的作用。

【如何有效地学习和掌握初中数学知识点】
要想有效地学习和掌握初中数学知识点,首先要对数学知识点进行系统的学习和理解,将数学知识点进行归纳和总结,形成自己的知识体系。

其次,要注重练习和巩固,通过做题和实践来加深对数学知识的理解和掌握。

最后,要及时反馈和总结,及时发现和解决学习中存在的问题和困难。

【总结表格在初中数学教学中的应用】
总结表格在初中数学教学中具有广泛的应用。

教师可以通过总结表格对数学知识点进行系统的讲解和归纳,帮助学生更好地理解和掌握数学知识。

学生可以通过总结表格对数学知识点进行自主学习和复习,提高学习效率和成绩。

初中数学知识点考试双向细目表

初中数学知识点考试双向细目表

√ √
初中数学知识点考试双向细目表
知 识 领 域 知识与技能 过程与方法 题型 分值 难度及系数7:2:1 知 识 编 知识内容 灵活 单 了解 理解 掌握 经历 体验 探索 选择题 填空题 解答题 24分 21分 75分 基础题 稍难题 难题 角 号 应用 元 86 补角、余角、对顶角 √ 等角的余角相等、等角的补 87 √ 角相等、对顶角相等 88 垂线、垂线段 √ 89 垂线段最短的性质 √ √ 90 点到直线距离的意义 √ 过一点有且仅有直线垂直于 91 √ √ 已知直线 相 用三角尺或量角器过一点画 交 92 √ 一条直线的垂线 线 93 线段垂直平分线及其性质 √ 与 94 两直线平行,同位角相等 √ √ √ 平 过直线外一点有且仅有一条 行 95 √ 直线平行于已知直线 线 用三角尺和直尺过已知直线 96 √ 外一点画这条直线的平行线 两条平行直线之间距离的意 97 √ √ 义 98 度量两条平行线之间的距离 √ 三角形有关概念(内角、外 99 √ 角、中线、高、角平分线) 画任意三角形的角平分线、 ## √ √ 中线和高 ## 三角形的稳定性 √ ## 三角形中位线的性质 √ √ ## 全等三角形的概念 √ 三 ## 两个三角形全等的判定 √ √ √ √ 角 ## 等腰三角形的有关概念 √ 形 ## 等腰三角形性质和判定 √ √ 第 5 页,共 13 页
45 不等式的基本性质 46 一元一次不等式的解法 在数轴上表示不等式(组) 47 的解集 48 解一元一次不等式组 根据具体问题中的数量关 系,列出一元一次不等式或 49 一元一次不等式组,解决简 单的问题 具体问题中的两个变量之间 50 的关系 从表格、图象中分析某些变 51 量之间的关系 用表格或关系式表示某些变 52 量之间的关系 53 常量、变量的意义 √ 54 函数的概念及其表示方法 √ 函 对简单实际问题中的函数关 数 55 系进行分析 56 确定函数的自变量取值范围 57 求函数值 用适当的函数表示法刻画某 58 些实际问题中变量之间的关 系 对变量的变化规律进行初步 59 预测 60 一次函数的意义 61 确定一次函数表达式 一 62 画一次函数的图象 函 次 数 函 数

初中全部数学知识点归纳总结

初中全部数学知识点归纳总结

初中全部数学知识点归纳总结初中数学知识点归纳总结一、数与代数1. 有理数- 整数:正整数、零、负整数- 有理数的定义:整数和分数统称为有理数- 有理数的加法、减法、乘法、除法运算法则- 有理数的大小比较2. 整式与分式- 单项式:定义、同类项、合并同类项- 多项式:定义、加减法、乘法- 因式分解:提公因式、公式法、分组分解法- 分式:定义、基本性质、分式的乘除法和加减法3. 一元一次方程与不等式- 一元一次方程的定义、解法- 不等式的概念、性质、解集表示- 一元一次不等式和不等式组的解法4. 二元一次方程组- 代入法、消元法解二元一次方程组- 三元一次方程组的解法5. 函数及其图像- 函数的概念:定义、函数关系式- 一次函数、反比例函数的图像和性质- 二次函数的图像(抛物线)和性质- 函数的应用题二、几何1. 平面图形- 点、线、面的基本性质- 角的概念:邻角、对角、平行线、垂直- 三角形:分类、性质、内角和定理- 四边形:分类、性质- 圆的基本性质、圆周角、圆心角、弦、弧、切线2. 几何图形的计算- 三角形、四边形的面积计算公式- 圆的周长和面积公式- 多边形的内角和外角和公式- 相似三角形的性质和判定- 勾股定理及其应用3. 空间几何- 立体图形的基本概念:点、线、面、体- 常见立体图形(长方体、正方体、圆柱、圆锥、球)的性质 - 立体图形的表面积和体积计算公式4. 坐标系与图形变换- 平面直角坐标系的定义和性质- 点在坐标系中的位置表示- 图形的平移、旋转、对称变换三、统计与概率1. 统计- 数据的收集、整理和描述- 频数、频率、频数分布表- 统计图表(条形图、折线图、饼图)的绘制和解读2. 概率- 随机事件的概念- 概率的定义和计算- 简单事件和复合事件的概率以上是初中数学的主要知识点归纳总结。

在实际学习过程中,学生应该通过大量的练习题来巩固和深化对这些知识点的理解和应用。

同时,解题过程中要注意培养逻辑思维能力和解题技巧,以提高解题效率和准确率。

初一到初三数学所有知识点

初一到初三数学所有知识点

初一到初三数学所有知识点初一数学:1.数的概念:自然数、整数、有理数、实数2.数的运算:加减法、乘除法,混合运算,分数的加减乘除3.算术基本定理:素数与合数,质因数分解,最大公因数与最小公倍数4.约分与通分:分数的约分与通分,化简真分数与带分数5.小数的概念与运算:小数的加减乘除,小数、分数、百分数的相互转化6.数轴与坐标系:数轴的表示法,坐标系的概念,平面直角坐标系的表示法7.基本图形的认识:点、线、面的认识,正方形、长方形、圆、三角形的概念8.数学语言的运用:数学语言与符号的运用,数学问题的表述和解决初二数学:1.整式的知识:整式的定义,同类项的概念,整式的加减乘除,公式的应用2.分式的知识:分式的定义,基本性质,分式的约分、通分、加减、乘除法3.二次根式的知识:二次根式的化简、加减、乘除法,含有二次根式的方程4.平面图形的认识:多边形的概念、性质及全等条件,相似图形的概念及应用5.圆的知识:圆的概念、性质及判定方法,圆上的重要点、弧和角6.三角形和四边形的知识:三角形的角度和边长关系、中线、中位线、高,四边形的性质、面积公式7.比例和增减比:比例的定义、性质及应用,增减比的概念及应用8.百分数和利率:百分数的概念、性质及应用,利率的概念、计算方法及应用初三数学:1.函数与方程:函数的概念、性质及图像,方程及方程组的解法和应用2.数列与指数函数:等差数列、等比数列的概念、性质及求和公式,指数函数的概念、性质及图像3.立体图形的认识:正方体、长方体、正棱柱、正棱锥的概念及性质,体积及表面积的计算公式4.三角函数和解三角形:三角函数的概念、性质及图像,解三角形(利用正弦、余弦、正切函数及海伦公式)5.平面向量的概念及运算:向量的概念和运算、向量的加减、数量积及其应用6.概率与统计:随机事件的概念、基本概率公式,频率、概率密度、方差和标准差的概念及计算7.解析几何:点、直线、平面的坐标表示,直线的斜率及方程,平面上的圆的方程8.数学思维的拓展:数学论证、数学建模、数学思维方法与技巧的培养。

(完整版)初中数学知识点双向细目表

(完整版)初中数学知识点双向细目表


90 点到直线距离的意义

g a 91 过一点有且仅有直线垂直于 √
已知直线
in 相 e 交
92
用三角尺或量角器过一点画 一条直线的垂线

b 线
ir 与 e 平
93 线段垂直平分线及其性质 94 两直线平行,同位角相等
√ √
th 过直线外一点有且仅有一条

in 线
95 直线平行于已知直线 用三角尺和直尺过已知直线
a 与 提公因式法、公式法(直接
√√ √
g 分 28 用公式不超过2次)进行因
√√
in 式 式分解
e 29 分式的概念

ir b 30 分式的基本性质 e 31 约分和通分
√√ √ √ √√
th 32 分式加、减、乘、除运算
√√√

in 33
根据具体问题中的数量关系 列方程



gs 方
34
用观察、画图或计算器等手 段估计方程的解
知识内容
知识与技能
过程与方法
题型
分值
难度及系数7:2:1
了解 理解 掌握
灵活 应用
经历 体验 探索 选择题 填空题 解答题
24分 21分 75分
基础题
稍难题
难题

d 图
##
根据展开图判断立体模型制 作立体模型

oo 与 基本几何体与其三视图,展
g 投 ## 开图(球除外)之间的关系 √

re 影 及其应用
初中数学知识点考试双向细目表 methin 知 知 o 识 识 编 s 领 单 号 for 域 元
知识内容
知识与技能

初中数学:全年级26个专题知识点思维导图!替孩子转发

初中数学:全年级26个专题知识点思维导图!替孩子转发

初中数学:全年级26个专题知识点思维导图!替孩子转发
进入初中,同学们的学习压力也在不断增大。

特别是数学这门科目,很多小学数学成绩还不错的同学,进入初中之后成绩却一落千丈,这就是因为没有掌握正确的学习方法。

初中数学要求同学们掌握的知识点比较多,所以在学习过程中一定要理清知识网络,这样才能更好的学习。

为了帮助同学们学好数学这门科目,今天为大家整理了一份数学思维导图,囊获了初中数学所有重点考点,有需要的可以收藏一份。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26。

初中数学所有知识点归纳

初中数学所有知识点归纳

初中数学所有知识点归纳初中数学知识点归纳一、数与代数1. 有理数- 整数与分数- 正数、负数、零- 绝对值- 有理数的加法、减法、乘法、除法- 有理数的比较大小2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 合并同类项- 代数式的加减乘除- 代数式的化简与变形4. 一元一次方程- 方程的建立与解法- 方程的解的含义- 解一元一次方程的应用问题5. 二元一次方程组- 代入法- 加减消元法- 方程组的解的几何意义6. 不等式与不等式组- 不等式的基本性质- 解一元一次不等式- 解一元一次不等式组- 不等式的应用7. 函数- 函数的概念- 函数的表示方法:表格、图像、解析式 - 正比例函数与反比例函数- 函数的简单性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念及分类- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质2. 直线与角- 直线的表示与性质- 角的度量与比较- 平行线的性质与判定- 垂线的性质与判定3. 图形的变换- 平移- 旋转- 轴对称- 相似变换4. 面积与体积- 平行四边形、三角形、梯形的面积计算- 圆的面积计算- 长方体、立方体、圆柱、圆锥的体积计算5. 解析几何- 坐标系的基本概念- 点的位置由坐标确定- 距离公式、中点公式- 直线与圆的方程三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图 - 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的初步认识- 可能性的判断与计算- 简单事件的概率计算四、综合应用题1. 数列- 等差数列的概念与性质- 等比数列的概念与性质- 数列的求和2. 应用问题- 利用数学知识解决实际问题- 列方程(组)解应用题- 利用函数知识解决实际问题3. 综合题- 数学知识的综合运用- 逻辑推理与证明- 解决复杂的数学问题以上是初中数学的主要知识点归纳,每个部分都有其详细的解释和应用,学生应该掌握每个知识点的概念、性质、计算方法,并能够将这些知识应用于解决实际问题中。

初中数学知识点总结完整版

初中数学知识点总结完整版

初中数学知识点总结完整版一、数与代数1、有理数有理数包括整数和分数。

整数又包括正整数、零和负整数;分数包括正分数和负分数。

有理数的运算包括加、减、乘、除、乘方。

加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得 0。

减法法则:减去一个数,等于加上这个数的相反数。

乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘都得 0。

除法法则:除以一个数等于乘以这个数的倒数;0 除以任何一个不等于 0 的数都得 0。

乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

2、实数实数包括有理数和无理数。

无理数是无限不循环小数,常见的无理数有π、\(\sqrt{2}\)等。

实数的运算性质和有理数的运算性质相同。

平方根:如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。

算术平方根:正数 a 的正的平方根叫做 a 的算术平方根。

立方根:如果一个数的立方等于 a,那么这个数叫做 a 的立方根。

正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。

3、代数式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

代数式的求值:把代数式中的字母用给定的值代入计算,求出代数式的值。

4、整式单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数,单项式中所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的和叫做多项式。

在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。

多项式里次数最高项的次数,叫做这个多项式的次数。

整式的加减:整式加减的实质是合并同类项。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

(2021年整理)初中数学知识点整理表格版

(2021年整理)初中数学知识点整理表格版

(完整版)初中数学知识点整理表格版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)初中数学知识点整理表格版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)初中数学知识点整理表格版的全部内容。

(完整版)初中数学知识点整理表格版编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)初中数学知识点整理表格版这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)初中数学知识点整理表格版〉这篇文档的全部内容。

初中数学教材知识梳理·系统复习第一单元数与式第1讲实数(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到(1)概念:乘积为1的两个数互为倒数。

a的倒数为1/a(a≠0)(2)代数意义:ab=1a,b互为倒数(1)数轴比较法:数轴上的两个数,右边的数总比左边的数大。

(2)性质比较法:正数>0>负数;两个负数比较大小,绝对值大的反而小.(3)作差比较法:a—b>0a>b;a-b=0a=b;a-b <0a<b。

(4)平方法:a>b≥0a2>b2.第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子。

(完整版)初中数学知识点双向细目表

(完整版)初中数学知识点双向细目表

知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题数与代数有理数1有理数的概念√2用数轴上的点表示有理数√3相反数√√√4绝对值√√√5比较有理数的大小√√6乘方的意义√7有理数的加、减、乘、除、乘方运算√√√8有理数的混合运算√9有理数的运算律√√√10对含有较大数字的信息作出合理的解释和推断√实数11平方根、算术平方根、立方根的概念√√√√12用计算器求平方根和立方根√13无理数和实数的概念√14用有理数估计无理数的大致范围√√15近似数与有效数字的概念√16用计算器进行近似计算√17二次根式的概念√18二次根式的加、减、乘、除运算法则√√√代数式19用字母表示数的意义√20用代数式表示简单问题的数量关系√√21解释一些简单代数式的实际背景或几何意义√22求代数式的值√√方程与不等式整式与分式23整数指数幂的意义和基本性质√√24用科学记数法√√25整式的概念√26整式加、减、乘、除运算√27乘法公式:完全平方√√√28提公因式法、公式法(直接用公式不超过2次)进行因式分解√√29分式的概念√30分式的基本性质√√√√31约分和通分√√32分式加、减、乘、除运算√√√√方程与方程组33根据具体问题中的数量关系列方程√√√34用观察、画图或计算器等手段估计方程的解√35一元一次方程及相关概念√36解一元一次方程√√√37二元一次方程组及其解法√√√38分式方程的概念√√√39解可化为一元一次方程的分式方程√√40一元二次方程及其相关概念√√√41配方法√√√√42因式分解法、公式法√√√43根据具体问题的实际意义检验结果是否合理√44不等式的意义√知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题45不等式的基本性质√√√46一元一次不等式的解法√√√√√47在数轴上表示不等式(组)的解集√√48解一元一次不等式组√√√√49根据具体问题中的数量关系,列出一元一次不等式或一元一次不等式组,解决简单的问题√√√函数50具体问题中的两个变量之间的关系√√√51从表格、图象中分析某些变量之间的关系√52用表格或关系式表示某些变量之间的关系√53常量、变量的意义√54函数的概念及其表示方法√√55对简单实际问题中的函数关系进行分析√56确定函数的自变量取值范围√√57求函数值√58用适当的函数表示法刻画某些实际问题中变量之间的关系√59对变量的变化规律进行初步预测√一60一次函数的意义√√61确定一次函数表达式√√62画一次函数的图象√等式不等式与不等式组初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题63一次函数的性质√√64正比例函数√√65根据一次函数的图象求二元一次方程组的近似解√66用一次函数解决实际问题√√反比例函数67反比例函数的意义√68确定反比例函数的表达式√√69画反比例函数的图像√70反比例函数的性质√71用反比例函数解决某些实际问题√√√二次函数72二次函数的意义√73确定二次函数的表达式√√√74用描点法画出二次函数的图像√75二次函数的性质√√√76根据解析式确定图像的顶点、开口方向和对称轴√77利用二次函数的图像求一元二次方程的近似解√78利用二次函数解决简单的实际问题√√79点、线、面√角80角√81比较角的大小√82估计一个角的大小√83计算角度的和与差√84度、分、秒及其简单换算√√85角平分线及其性质√函数一次函数知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题86补角、余角、对顶角√87等角的余角相等、等角的补角相等、对顶角相等√相交线与平行线88垂线、垂线段√89垂线段最短的性质√√90点到直线距离的意义√91过一点有且仅有直线垂直于已知直线√√92用三角尺或量角器过一点画一条直线的垂线√93线段垂直平分线及其性质√94两直线平行,同位角相等√√√95过直线外一点有且仅有一条直线平行于已知直线√96用三角尺和直尺过已知直线外一点画这条直线的平行线√97两条平行直线之间距离的意义√√98度量两条平行线之间的距离√三角形99三角形有关概念(内角、外角、中线、高、角平分线)√##画任意三角形的角平分线、中线和高√√##三角形的稳定性√##三角形中位线的性质√√##全等三角形的概念√##两个三角形全等的判定√√√√##等腰三角形的有关概念√##等腰三角形性质和判定√√知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##等边三角形的概念√##等边三角形的性质√√##直角三角形的概念√##直角三角形的性质和判定√√√√##勾股定理√√√√√##用勾股定理的逆定理判定直角三角形√√四边形##多边形的内角和外角和公式√√##正多边形的概念√##平行四边形、矩形、菱形、正方形、梯形的概念和性质√√√##四边形的不稳定性√##平行四边形的性质和判定√√√##矩形、菱形、正方形的性质和判定√√√##等腰梯形及直角梯形的有关性质和判定√√√##线段、矩形、平行四边形、三角形的重心及物理意义√√##平面图形的镶嵌√##任意一个三角形、四边形或正六边形可以镶嵌平面√##简单的镶嵌设计√##圆及其有关概念√##弧、弦、圆心角的关系,√√##点与圆、直线与圆以及圆与圆的位置关系√√##圆的性质√√##圆周角与圆心角的关系√√图形的认识角形知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##直径所对圆周角的特征√##三角形的内心和外心√##切线的概念√##切线与过切点的半径之间的关系√√##切线的判定√##画圆的切线√##计算弧长及扇形的面积,√##计算圆锥的侧面积和全面积√√##圆及其有关概念√√##作一条线段等于已知线段√##作一个角等于已知角√##作角平分线√√##作线段的垂直平分线√##已知三边作三角形√尺规作图##已知两边及其夹角作三角形√##已知两角及其夹边作三角形√##已知底边及底边上的高作等腰三角形√##过一点、两点和笔在同一条直线上的三点作圆√##尺规作图的步骤√√##画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,√##能根据三视图描述基本几何体或实物原型√√##直棱柱、圆锥的侧面积展开图√圆知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##根据展开图判断立体模型制作立体模型√##基本几何体与其三视图,展开图(球除外)之间的关系及其应用√√##一些有趣的图形(如雪花曲线、莫比乌斯带)√##物体阴影的形成√##根据光线的方向辨认实物的阴影√##视点视角及盲区的含义√√##中心投影和平行投影√图形的轴对称##轴对称√√##轴对称的基本性质√√##要求作简单平面图形的轴对称关系√##简单图形之间的轴对称关系√##基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质√##利用轴对称进行图案设计√##现实生活中的轴对称图形√图形的平移##认识平移√##平移的对应点连线平行且相等的性质√√##按要求作简单平面图形平移后的图形√##利用平移进行图案设计√√视图与投影知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##平移在生活中的应用√图形的旋转##旋转√##旋转的基本性质√√##平行四边形、圆是中心对称图形√##作简单平面图形旋转后的图形√√##旋转在现实生活中的应用√##图形之间的变换关系(轴对称、平移、旋转及其组合)√√√##用轴对称、平移和旋转的组合进行图案设计√√图形的相似##比例基本性质√##线段的比、成比例线段、黄金分割√##图形的相似√##相似图形的性质√√√##三角形相似的概念√##两个三角形相似的条件√√##图形的位似√##利用位似将一个图形放大或缩小√##利用图形的相似解决实际问题√√√##锐角三角函数(sinA,cosA,tanA)√√##30°,45°,60°角的三角函数值√图形与变换形的平移知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##使用计算器求三角函数值;由已知三角函数值求它对应的锐角√##用三角函数解决与直角三角形有关的简单实际问题√√√√图形与坐标图形与坐标##平面直角坐标系√##根据坐标描点的位置、由点的位置写出它的坐标√√##在方格纸上建立适当的直角坐标系,描述物体的位置√##在同一直角坐标系中,图形变换后点的坐标的变化√√##确定物体的位置√证明的含义##证明的含义√##证明的必要性√##定义、命题、定理的含义√##命题的条件(题设)和结论√√##逆命题的概念√##互逆命题√√##反证法的含义√##综合证明法√√证明的##一条直线截两条平行直线所得的同位角相等√##两条直线被第三条直线所截,若同位角相等,那么这两条直线平行√形的相似初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##若两个三角形的两边及其夹角(或两角及其夹边或三边)对应相等,则这两个三角形全等√##全等三角形的对应边、对应角分别相等√证明命题##平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线相等√##三角形的内角和定理及推论√##直角三角形全等的判定定理√##角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心)√##垂直平分线性质定理及其逆定理;三角形的三边的垂直平分线交于一点(外心)√##三角形中位线定理√##等腰三角形、等边三角形、直角三角形的性质和判定定理√##平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理√图形与证明证明的依据初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##几何的演绎体系对数学发展和人类文明的价值√统计与概率统计##收集、整理、描述和分析数据√##用计算器处理较为复杂的统计数据√##抽样的必要性√√√##总体、个体、样本√√##用条形、扇形统计图表示数据√√##计算加权平均数√√##选择合适的统计量表示数据的集中程度√##表示一组数据的离散 程度√√√##计算极差和方差√√##频数、频率的概念√##频数分布的意义和作用√##列频数分布表,画频数分布直方图和频数折线图,解决简单的实际问题√##用样本估计总体的思想√##用样本的平均数\方差来估计总体的平均数和方差√##根据统计结果作出合理的判断和预测√##统计对决策的作用√##根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法√题初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题##统计在社会生活及科学领域中的应用√√√概率##概率的意义√##用列举法(包括列表\画树状图)计算简单事件发生的概率√√√##频率√##大量重复实验时频率可作为事件发生概率的估计值√##解决一些实际问题√课题学习课题学习##"问题情境--建立模型--求解--解释与应用"的基本过程√##数学知识之间的内在联系√√##一些研究问题的方法和经验√√##成功的体验和克服困难的经历√##增强应用数学的自信心√与概率初中数学知识点考试双向细目表知识领域知识单元编号知识内容知识与技能过程与方法题型分值难度及系数7:2:1了解理解掌握灵活应用经历体验探索选择题填空题解答题24分21分75分基础题稍难题难题。

北师大版初中七上数学公式(表格)

北师大版初中七上数学公式(表格)

(七上)第一章 丰富的图形世界项目概念及例题 解析|思考知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 定理投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

补充本章书涉及的数学思想:1.分类讨论思想。

在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

2.方程思想。

在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。

在研究角的概念时,要充分体会对射线旋转的认识。

在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。

在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。

学生正确认识有理数的概念,在实际生活和上,理解正负数、相反数、绝对值的意义所在。

重点利用有理数的运算法则解决实际问题。

初中数学知识点总结表格

初中数学知识点总结表格
分数
- 分数的基本性质和运算 - 小数与百分数
几何基础
- 点、线、面 - 角 - 三角形 - 四边形 - 圆
三角函数
- 正弦、余弦、正切的定义与性质 - 特殊角(如30°、45°、60°)的三角函数值
平面几何
- 平行线与相交线 - 轴对称与中心对称
一元一次方程
- 解法与应用题
二元一次方程组
- 解法与应用题
不等式与不等式组
- 解法与应用题
一元二次方程
- 解法与应用题 - 根的判别式(Δ=b²-4ac)
分式方程
- 解法与应用题
函数与图像
- 函数的概念与性质 - 正比例函数、一次函数、反比例函数、二次函数的图像与性质
统计初步
- 数据收集与整理 - 平均数、中位数、众数、方差与标准差
初中数学知识点总结表格
以下是一个简化的初中数学知识点总结表格,涵盖了一些主要的数学概念和公式。请注意,这个表格可能不完整,具体内容可能与常数 - 代数表达式 - 代数方程 - 方程组 - 代数不等式
整数
- 正整数、零和负整数的性质和运算 - 整数的四则运算 - 绝对值

人教版初中数学目录表格清晰版

人教版初中数学目录表格清晰版

七年级上七年级下第1章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减1.4 有理数的乘除1.5 有理数的乘方第5章相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移第2章整式的加减2.1 整式2.2 整式的加减第6章平面直角坐标系6.1平面直角坐标系6.2 坐标方法的简单应用第3章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)----合并同类项与移项3.3 解一元一次方程(二)----去括号与去分母3.4 实际问题与一元一次方程第7章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形的内角和7.4 课题学习----镶嵌第4章图形认识实步4.1 多姿多彩的图形4.2 直线、射线、线段4.3 角4.4 课题学习---设计制作长方体形状的包装纸盒第8章二元一次方程组8.1 二元一次方程组8.2 消元---二元一次方程组的解法8.3 实际问题与二元一次方程组*8.4 三元一次方程组解法举例第9章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组第10章数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习--从数据谈节水八年级上八年级下第11章全等三角形11.1 全等三角形11.2 三角形全等的判定11.3 角的平分线的性质第16章分式16.1 分式16.2 分式的运算16.3 分式方程第12章轴对称12.1 轴对称12.2 作轴对称图形12.3 等腰三角形第17章反比例函数17.1 反比例函数17.2 实际问题与反比例函数第13章实数13.1 平方根13.2 立方根13.3 实数第18章勾股定理18.1 勾股定理18.2 勾股定理的逆定理第14章一次函数14.1 变量与函数14.2 一次函数第19章四边形19.1 平行四边形19.2 特殊的平行四边形14.3 用函数的观点看方程(组)与不等式14.4 课题学习—选择方案19.3 梯形19.4 课题学习—重心第15章整式的乘除与因式分解15.1 整式的乘法15.2 乘法公式15.3 整式的除法15.4 因式分解第20章数据的分析20.1 数据的代表20.2 数据的波动20.3 课题学习---体质健康测试中的数据分析九年级上九年级下第21章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减第26章二次函数26.1 二次函数26.2 用函数的观点看一元二次方程26.3 实际问题与二次函数第22章一元二次方程22.1 一元二次方程22.2 降次解—解一元一元二二次方程(黄金分割数)22.3 实际问题与一元二次方程第27章相似27.1 图形的相似27.2 相似三角形27.3 位似第23章旋转23.1 图形的旋转第28章锐角三角函数28.1 锐角三角函数23.2 中心对称23.3 课题学习28.2 解直角三角形第24章圆24.1 圆24.2 点、直线与圆有关的位置关系24.3 正多边形和圆24.2 弧长和扇形面积第29章投影与视图29.1 投影29.2 三视图29.3 课题学习--制作立体模型第25章概率初步25.1 随机事件与概率25.2 用例举法求概率25.3 利用频率估计概率25.4 课题学习--键盘上字母的排列规律。

初中数学知识点整理表格版

初中数学知识点整理表格版

初中数学教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程3.增根使分式方程中的分母为0的根即为增根. 例:若分式方程11x=-有增根,则增根为1.知识点二:分式方程的应用4.列分式方程解应用题的一般步骤(1)审题;(2)设未知数;(3) 列分式方程;(4)解分式方程;(5)检验: (6)作答.在检验这一步中,既要检验所求未知数的值是不是所列分式方程的解,又要检验所求未知数的值是不是符合题目的实际意义.第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则 a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大的类型x a x b≤⎧⎨≤⎩ x ≤a 小小取小 等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x <1-a 的解集是x >-1,则a 的取值范围是a <1.x a x b≥⎧⎨≤⎩ a ≤x ≤b大小,小大中间找 x a x b≤⎧⎨≥⎩无解大大,小小取不了知识点四 :列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况: a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等; b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案 注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲 平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系. (2)几何意义:坐标平面内任意一点M 与有序实数对(x ,y )的关系是一一对应. 点的坐标先读横坐标(x 轴),再读纵坐标(y 轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示): 点P (x,y)在第一象限⇔x >0,y >0; 点P (x,y)在第二象限⇔x <0,y >0; 点P (x,y )在第三象限⇔x <0,y <0; 点P (x,y )在第四象限⇔x >0,y <0. (2)坐标轴上点的坐标特征:①在横轴上⇔y =0;②在纵轴上⇔x =0;③原点⇔x =0,y =0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数 (4)点P (a ,b )的对称点的坐标特征:①关于x 轴对称的点P 1的坐标为(a ,-b );②关于y 轴对称的点P 2的坐标为(-a ,b ); ③关于原点对称的点P 3的坐标为(-a ,-b ). (5)点M (x,y )平移的坐标特征:M (x,y ) M 1(x+a ,y ) M 2(x+a ,y+b )(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同. (3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x 轴、y 轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x 轴,y 轴的距离:到x 轴的距离为|b |;)到y 轴的距离为|a |. (2)平行于x 轴,y 轴直线上的两点间的距离:点M 1(x 1,0),M 2(x 2,0)之间的距离为|x 1-x 2|,点M 1(x 1,y ),M 2(x 2,y )间的距离为|x 1-x 2|; 点M 1(0,y 1),M 2(0,y 2)间的距离为|y 1-y 2|,点M 1(x ,y 1),M 2(x ,y 2)间的距离为|y 1-y 2|. 平行于x 轴的直线上的点纵坐标相等;平行于y 轴的直线上的点的横坐标相等.知识点二:函 数xy第四象限 (+,-)第三象限 (-,-)第二象限(-,+)第一象限 (+,+)–1–2–3123–1–2–3123O4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式第11讲反比例函数的图象和性质数的图象和性质k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx=的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第15讲一般三角形及其性质3.角的关系(1)内角和定理:①三角形的内角和等180°;②推论:直角三角形的两锐角互余. (2)外角的性质:①三角形的一个外角等于与它不相邻的两个内角和. ②三角形的任意一个外角大于任何和它不相邻的内角.利用三角形的内、外角的性质求角度时,若所给条件含比例,倍分关系等,列方程求解会更简便.有时也会结合平行、折叠、等腰(边)三角形的性质求解.4.三角形中的重要线段 四线性 质 (1)角平分线、高结合求角度时,注意运用三角形的内角和为180°这一隐含条件.(2)当同一个三角形中出现两条高,求长度时,注意运用面积这个中间量来列方才能够求解.角平分线(1) 角平线上的点到角两边的距离相等(2) 三角形的三条角平分线的相交于一点(内心) 中线(1) 将三角形的面积等分(2) 直角三角形斜边上的中线等于斜边的一半高锐角三角形的三条高相交于三角形内部;直角三角形的三条高相交于直角顶点;钝角三角形的三条高相交于三角形的外部 中位线平行于第三边,且等于第三边的一半5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°; 如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果. 知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用形全等SAS,ASA和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件.(2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS可得△ACD≌△EBD,则AC=BE.在△ABE中,AB+BE>AE,即AB+AC>2AD.③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立.如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论.如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.21P COBAPCO BADABC abcDABC abcFEDCBAl5l4l3l2l1例定理(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金分割点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.例:把长为10cm的线段进行黄金分割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.ODCBAEDCBAFEDCBAFEDCBAFEDCBA第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.第五单元四边形第19讲多边形与平行四边形,每一个外角为为奇数时,是轴对称图形;当6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)根据平行四边形的面积的求法,可得AE·BC=AF·CD.称中心的任一直线等分平行四边形的面积及周长.例:如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.知识点三:平行四边形的判定7.平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.即若AB∥CD,AD∥BC,则四边形ABCD是□.(2)方法二:两组对边分别相等的四边形是平行四边形.即若AB=CD,AD=BC,则四边形ABCD是□.(3)方法三:有一组对边平行且相等的四边形是平行四边形.即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.(4)方法四:对角线互相平分的四边形是平行四边形.即若OA=OC,OB=OD,则四边形ABCD是□.(5)方法五:两组对角分别相等的四边形是平行四边形若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.例:如图四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件BO=DO或AD∥BC或AB∥CD(只添加一个即可),使四边形ABCD为平行四边形.第20讲特殊的平行四边形知识点一:特殊平行四边形的性质与判定关键点拨及对应举例1.性质(具有平行四边形的一切性质,对边平行且相等)矩形菱形正方形(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; _两对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,OD CBA。

七年级数学知识点表

七年级数学知识点表

七年级数学知识点表
数学是一门需要不断积累的学科,而在初中阶段,数学知识点
的积累显得尤为重要。

本文将为大家整理七年级数学相关知识点,方便同学们在学习过程中进行查阅。

一、实数
1.实数的定义
2.带绝对值的实数的加减法
3.实数的乘法和除法
二、整式
1.代数式的定义
2.同类项的合并
3.多项式的加减法
三、一次函数与一次方程
1.直线和坐标系的概念
2.一次函数的定义及其图像
3.解一次方程及其应用
四、分式
1.分式的定义与性质
2.分式的乘法与除法
3.分式的加减法
五、平面图形
1.平面图形的分类
2.直角三角形的性质及其应用
3.勾股定理及其应用
六、圆与圆的关系
1.圆的定义及其性质
2.圆心角与弧的关系
3.切线定理及其应用
七、立体图形
1.立体图形的概念及其分类
2.直方体、正方体和长方体的性质及其计算
3.球、圆柱、圆锥和棱锥的性质及其计算
八、统计与概率
1.统计调查的方法
2.频率分布表与直方图的画法
3.概率的概念及其计算
以上是七年级数学相关的知识点总结表,同学们可以根据自己
的学习进度及需要进行查阅。

学习数学需要多思多问,多练多想,相信通过不断努力和积累,同学们一定会在数学学科取得优异的
成绩。

初中数学知识点总结及公式大全

初中数学知识点总结及公式大全

初中数学知识点总结及公式大全一、数与代数1. 有理数- 整数: 正整数、0、负整数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 分式的基本性质- 分式的加减乘除3. 方程与不等式- 一元一次方程、二元一次方程- 不等式及其解集- 一元一次不等式及其解集- 一元二次方程4. 函数- 函数的概念- 函数的表示方法- 线性函数、二次函数- 函数的简单性质二、几何1. 图形初步- 点、线、面、体- 直线、射线、线段- 角的概念及分类- 角的度量2. 三角形- 三角形的基本性质- 三角形的分类- 三角形的内角和外角- 特殊三角形(等腰三角形、等边三角形、直角三角形)3. 四边形- 平行四边形的性质与判定- 矩形、菱形、正方形- 梯形的性质与判定- 四边形的面积计算4. 圆- 圆的基本性质- 圆的面积与周长- 扇形、弧长与弓形- 切线的性质与判定5. 几何变换- 平移- 旋转- 轴对称(镜像对称)三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的大小- 概率的计算四、公式大全1. 代数公式- 乘方公式: $a^n = a \times a \times \ldots \times a$ (n个a相乘)- 完全平方公式: $(a \pm b)^2 = a^2 \pm 2ab + b^2$- 一元一次方程: $ax + b = 0$- 二元一次方程组: $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$2. 几何公式- 矩形面积: $S = ab$- 三角形面积: $S = \frac{1}{2} \times base \times height$ - 圆的面积: $S = \pi r^2$- 扇形面积: $S = \frac{\theta}{360} \times \pi r^2$ (其中θ为扇形的圆心角)3. 统计公式- 平均数: $\bar{x} = \frac{\sum{x_i}}{n}$- 中位数: 将数据从小到大排序后位于中间位置的数- 众数: 一组数据中出现次数最多的数4. 概率公式- 加法原理: $P(A \cup B) = P(A) + P(B)$- 乘法原理: $P(A \cap B) = P(A) \times P(B)$ (当A、B为独立事件时)五、附录- 常用数学符号- 常见数学术语解释- 数学公式使用说明六、结束语本文总结了初中数学的主要知识点和常用公式,旨在为学生提供一个快速查阅和复习的参考。

七年级数学知识点表图

七年级数学知识点表图

七年级数学知识点表图
在七年级数学中,学生们需要学会许多基础知识点。

下面是七年级数学知识点的表格和图表,希望能够帮助学生更好地理解和记忆这些知识点。

1. 整数
整数的定义是正整数、零、负整数。

整数的四则运算包括加、减、乘、除。

2. 小数
小数的定义是有限小数、无限循环小数、无限不循环小数。

小数的四则运算包括加、减、乘、除。

3. 分数
分数的定义是分子、分母。

分数的四则运算包括加、减、乘、除。

4. 百分数
百分数的定义是百分号表示的比例,如50%表示50/100=0.5。

百分数的四则运算可以转化为普通数的四则运算。

5. 代数式
代数式是由数字和字母组成的算式,可以进行加、减、乘、除、化简等操作。

6. 比例与比例方程
比例的定义是两个比值相等,比例的四则运算包括比例的乘、除。

比例方程是由比例组成的等式。

7. 图形的面积和周长
常见图形的面积和周长包括三角形、矩形、正方形、圆形等。

计算面积和周长需要掌握相应的公式。

综上所述,七年级数学知识点包括整数、小数、分数、百分数、代数式、比例与比例方程、图形的面积和周长等内容。

熟练掌握
这些知识点是理解和掌握高年级数学的基础。

初中数学知识点整理表格版

初中数学知识点整理表格版

初中数学教材知识梳理·系统复习第一单元数与式第1讲实数(1)概念:只有符号不同的两个数(2)代数意义:a、b互为相反数 a+b=0(3)几何意义:数轴上表示互为相反数的两个点到原点的距离相等第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.还需根据整数解,得出最佳方案第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围. 终是同一个常数,那么在这个区间上的函数图象是一条平行于x轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b=0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.y=k2x+by=k1x+b8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1;③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.开口向上向下对称轴x=2ba-第13讲二次函数的应用第四单元图形的初步认识与三角形第15讲一般三角形及其性质知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲 等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2.(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3)勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.21P COBAPCO BADABC abcDABC abc第17讲 相似三角形知识点一:比例线段关键点拨与对应举例1. 比例线段在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱. 2.比例的基本性质(1)基本性质:a c b d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd ±;(b 、d ≠0)(3)等比性质:a c b d ==…=mn =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b 、d 、···、n ≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中 的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k ,再代入所求式子,也可以把原式变形得a=3/5b 代入求解. 例:若35a b =,则a b b +=85. 3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线 段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=. 利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解. 例:如图,已知D ,E 分别是△ABC 的边BC 和AC 上的点,AE=2,CE=3,要使DE ∥AB ,那么BC :CD 应等于53.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE ∥BC ,则△ADE ∽△ABC.4.黄金分割点C 把线段AB 分成两条线段AC 和BC ,如果ACAB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例:把长为10cm 的线段进行黄金分割,那么较长线段长为5(5-1)cm .知识点二 :相似三角形的性质与判定5.相似三角形的判定 (1) 两角对应相等的两个三角形相似(AAA). 如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC AB DF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. F E D CB A l 5l 4l 3l 2l 1ODCBAED CBAFEDC B AFEDC BAFE DC BA6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.(2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元四边形第19讲多边形与平行四边形知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为()32n n-.多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和(1) 内角和:n边形内角和公式为(n-2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360°/n.( 3 ) 正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;b.隐含不等关系:如“更省钱”、“更划算”等方案决策问题,一般还需根据整数解,得出最佳方案注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:①设时间为t(或线段长为x),找因变量与t(或x)之间存在的函数关系,用含t(或x)的式子表示,再找相应的函数图象.要注意是否需要分类讨论自变量的取值范围.读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始终是同一个常数,那么在这个区间上的函数图象是一条xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O平行于x 轴的线段.第10讲一次函数知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0 k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是()-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程ax+b=0的解为x=1,则函数y=ax+b与x轴的交点坐标为(1,0).(2)一次函数y=-3x+12中,当x>4时,y的值为负数.7.一次函数与方程组二元一次方程组的解 两个一次函数y=k1x+b 和y=k2x+b图象的交点坐标.y=k2x+by=k1x+b8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集知识点四:一次函数的实际应用9.一般步骤(1)设出实际问题中的变量;(2)建立一次函数关系式;(3)利用待定系数法求出一次函数关系式;(4)确定自变量的取值范围;(5)利用一次函数的性质求相应的值,对所求的值进行检验,是否符合实际意义;(6)做答. 一次函数本身并没有最值,但在实际问题中,自变量的取值往往有一定的限制,其图象为射线或线段.涉及最值问题的一般思路:确定函数表达式→确定函数增减性→根据自变量的取值范围确定最值.10.常见题型(1)求一次函数的解析式.(2)利用一次函数的性质解决方案问题.第11讲反比例函数的图象和性质知识点一:反比例函数的概念及其图象、性质关键点拨与对应举例1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下三种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况(1)判断点是否在反比例函数图象上的方法:①把点的横、纵坐标代入看是否满足其解析式;②把点的横、纵坐标相乘,判断其乘积是否等于k.失分点警示(2)反比例函数值大小的比较时,首先要判断自变量的取值是否同号,即是否在同一个象限内,若不在则不能运用性质进行比较,可以画出草图,直观地判断.k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.例:若(a,b)在反比例函数kyx的图象上,则(-a,-b)在该函数图象上.(填“在"、"不在")4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x.知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-.6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.第12讲二次函数的图象与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.2.解析式(1)三种解析式:①一般式:y=ax2+bx+c;②顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k); ③交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.知识点二:二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第15讲一般三角形及其性质中位线 平行于第三边,且等于第三边的一半5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三角形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等. 失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等 SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两角和它们的夹角对应相等)AAS (两角和其中一个角的对边对应相等)失分点警示如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL )(2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS.8.全等三角形的运用(1)利用全等证明角、边相等或求线段长、求角度:将特征的边或角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件. (2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS 可得△ACD ≌△EBD ,则AC=BE.在△ABE 中,AB+BE >AE ,即AB+AC >2AD. ③截长补短法:适合证明线段的和差关系,如图③、④.例:如图,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.第16讲等腰、等边及直角三角形知识点一:等腰和等边三角形关键点拨与对应举例1.等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB=AC ∠B=∠C;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B=∠C,则△ABC是等腰三角形.(1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形.失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°.2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB=BC=AC,∠BAC=∠B=∠C=60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形.(1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质.(2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB.例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9.知识点二:角平分线和垂直平分线3.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.知识点三:直角三角形的判定与性质21P COBAPCO B A5.直角三角形的性质(1)两锐角互余.即∠A+∠B=90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=12AB;(3)斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=12AB.(4)勾股定理:两直角边a、b的平方和等于斜边c的平方.即a2+b2=c2 .(1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题.(2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论.(3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决.6.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△(3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△.第17讲相似三角形知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金分割点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割例:把长为10cm的线段进行黄金分割,那么较长线段长为5(5-1)cm.DABC abcDABC abcFEDCBAl5l4l3l2l1ODCBAEDCBA点,AC 与AB 的比叫做黄金比.知识点二 :相似三角形的性质与判定5.相似三角形的判定 (1) 两角对应相等的两个三角形相似(AAA). 如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF.判定三角形相似的思路:①条件中若有平行 线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中 若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证 明直角边和斜边对应成比例;⑤条件中若有 等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC AB DF DE=,则△ABC ∽△DEF. (3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC ∽△DEF. 6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为2,则△ABC 与△DEF 的面积之比为9:4.(2) 如图,DE ∥BC , AF ⊥BC,已知S △ADE:S △ABC=1:4,则AF:AG =1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍. (2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.第18讲 解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab .根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数 三角函数30°45°60°sinA1222 32FEDC B AFEDC BAFE DC BAcosA322212tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.第五单元四边形第19讲多边形与平行四边形知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为()32n n-.多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题。

相关文档
最新文档