七年级三角形四大模型

合集下载

初中数学三角形的模型-概念解析以及定义

初中数学三角形的模型-概念解析以及定义

初中数学三角形的模型-概述说明以及解释1.引言1.1 概述三角形作为数学中的重要概念,在初中阶段是数学学习的基础之一。

它不仅具有一定的几何形态,而且具有丰富的性质和应用。

通过研究三角形的模型,我们可以更加深入地了解三角形的特点和变化规律,提高数学学习的效果。

本文将从三个方面对初中数学中的三角形模型进行探讨。

首先,我们将介绍三角形的定义和性质。

通过学习三角形的构成要素和相关性质,我们可以更好地理解三角形的基本特征,为后续的模型应用打下坚实的基础。

其次,我们将对三角形进行分类。

根据边长和角度大小,三角形可以分为等边三角形、等腰三角形、直角三角形等多种类型。

通过对这些特殊类型三角形的研究,我们可以进一步认识三角形的特殊性质,深化对三角形模型的理解。

最后,我们将介绍三角形模型在实际生活中的应用。

三角形的应用广泛涉及建筑、工程、航空、计算机图像等多个领域。

通过具体的案例分析,我们可以发现三角形模型在解决实际问题时的重要性和实用性。

总之,初中数学中的三角形模型是数学学习中不可或缺的一部分。

通过深入学习和研究三角形的定义、分类以及应用,我们可以更好地理解和掌握数学知识,提高数学解决问题的能力。

此外,对于培养我们的逻辑思维和推理能力也有重要意义。

展望未来,随着科学技术的不断发展,三角形模型在数学和其他领域的应用将更加广泛。

因此,加强对三角形模型的研究和应用,对于我们的学术发展和创新能力的培养具有重要意义。

1.2 文章结构文章结构:本文总共分为三个部分,包括引言、正文和结论。

在引言部分,首先对文章的主题进行了概述,简要介绍了初中数学中三角形的模型。

接着通过说明文章结构,给读者明确了文章的框架和内容。

然后明确了本文的目的,即探讨三角形模型在数学学习中的应用和重要性。

最后进行总结,概括了本文所包含的内容和主要观点。

正文部分则进一步展开了对三角形的定义和性质的讨论,介绍了三角形的分类方法,并详细描述了三角形的模型应用。

三角形的四大模型

三角形的四大模型

三角形的四大模型三角形是几何学中最基本的形状之一,它具有许多重要的性质和特点。

在研究三角形时,我们可以采用不同的模型来帮助我们理解和解决问题。

下面将介绍三角形的四大模型:欧拉模型、特里希亚特中心模型、边-角模型和向量模型。

一、欧拉模型欧拉模型通过研究三角形的顶点、边和面之间的关系来理解三角形的性质。

欧拉公式是欧拉模型中的重要定理之一,它表达了三角形的顶点数、边数和面数之间的关系。

根据欧拉公式,三角形的顶点数加上面数减去边数等于2。

这个定理可以用来验证三角形是否构成一个封闭的几何图形。

欧拉模型还可以帮助我们研究三角形的垂心、重心、外心和内心等特殊点的性质。

这些特殊点有助于我们理解三角形的对称性、平衡性和内切性质。

二、特里希亚特中心模型特里希亚特中心模型是通过研究三角形的三个特殊点来理解三角形的性质。

特里希亚特中心包括三角形的重心、外心和内心。

重心是三角形三条中线的交点,外心是三角形三条外接圆的交点,内心是三角形三条内切圆的交点。

特里希亚特中心模型可以帮助我们研究三角形的平衡性、外接性和内切性质。

例如,通过研究重心,我们可以了解三角形的平衡点和质心的性质;通过研究外心,我们可以了解三角形的外接圆和外心角的性质;通过研究内心,我们可以了解三角形的内切圆和内心角的性质。

三、边-角模型边-角模型是通过研究三角形的边和角之间的关系来理解三角形的性质。

边-角模型可以帮助我们研究三角形的角度关系、边长关系和面积关系。

在边-角模型中,我们可以利用三角函数来计算三角形的角度、边长和面积。

例如,正弦定理可以用来计算三角形的边长,余弦定理可以用来计算三角形的角度,海伦公式可以用来计算三角形的面积。

四、向量模型向量模型是通过利用向量的特性来理解三角形的性质。

向量模型可以帮助我们研究三角形的平行性、共线性和向量运算等。

在向量模型中,我们可以用向量的减法来计算两个向量之间的夹角,用向量的叉乘来计算两个向量构成的平行四边形的面积。

三角形的三大模型

三角形的三大模型

三角形的三大模型三角形,这看似简单的几何图形,其实藏着不少有趣的秘密和模型呢!咱们今天就来好好聊聊三角形的三大模型,保准让你对三角形有全新的认识。

先来说说第一个模型——等腰三角形模型。

等腰三角形,顾名思义,就是两条边长度相等的三角形。

这在我们的生活中可不少见,就像我上次去公园看到的风筝,它的形状就是一个等腰三角形。

那风筝飞得高高的,在空中随风飘动,特别漂亮。

仔细一看,它的两个翅膀长度一模一样,这就是等腰三角形的特点呀!在数学中,等腰三角形的性质可重要啦!它的两个底角相等,这就像是双胞胎兄弟,长得一样,性格也差不多。

而且等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,这被称为“三线合一”。

想象一下,这三条线就像三个好朋友,手牵手在等腰三角形里一起玩耍,多有意思!再来讲讲第二个模型——直角三角形模型。

一提到直角三角形,大家是不是马上就想到了勾股定理?没错,就是那个“a² + b²=c²”。

有一次我在家装修的时候,就用到了这个定理。

我想在墙上挂一幅画,需要确定钉子的位置。

我把画的两个角和墙的两个角构成了一个直角三角形,然后用尺子量出了两条直角边的长度,通过勾股定理算出了斜边的长度,顺利地找到了挂钉子的准确位置。

那种成就感,别提多棒了!直角三角形还有一个很有趣的性质,就是它的斜边永远是最长的边。

这就好像在一个小团队里,总有一个老大,在直角三角形里,斜边就是那个“老大”,威风凛凛地占据着最长的位置。

最后要说的是等边三角形模型。

等边三角形,那可是三角形中的“小明星”,因为它的三条边都相等,三个角也都相等,都是 60 度。

有一回我在操场上跑步,看到地上画着的一个等边三角形的标记,突然就想到了它的这些特点。

等边三角形的稳定性也特别好。

比如我们常见的三脚架,很多就是做成等边三角形的形状,这样不管怎么放都稳稳当当的,不会轻易摇晃。

总之,三角形的这三大模型就像是三把神奇的钥匙,能帮助我们打开数学世界的大门,解决各种各样的问题。

七年级数学几何模型大全

七年级数学几何模型大全

七年级数学几何模型大全七年级的小伙伴们,今天咱们来唠唠七年级数学里那些超有趣的几何模型。

一、角平分线模型1. 双角平分线模型- 想象一下,有一个角,然后从这个角的顶点引出两条角平分线。

比如说∠AOB,OC平分∠AOB,OD平分∠AOC。

这里面就有很多好玩的关系哦。

- 如果设∠AOB = 2α,那么∠AOC=α,∠AOD = α/2。

这里面的关键就是根据角平分线的定义,把角之间的关系找出来。

就像分蛋糕一样,角平分线就是把角这个“大蛋糕”分成相等的“小蛋糕”。

- 而且还有个重要的结论呢,如果两个角平分线所夹的角是β,那么β = 1/2∠AOB或者β = 1/2 (∠AOB - ∠COD),这就看具体的图形情况啦。

2. 邻补角角平分线模型- 当有两个邻补角的时候,它们的角平分线可是很特别的。

比如说∠AOC和∠BOC是邻补角,OE平分∠AOC,OF平分∠BOC。

- 因为∠AOC+∠BOC = 180°,又因为OE和OF是角平分线,所以∠EOC+∠FOC=1/2(∠AOC + ∠BOC)=90°。

这就像两个小伙伴,把相邻的两块“角蛋糕”各自分一半,然后这两半加起来正好是个直角呢。

二、平行线模型1. “Z”字形模型(内错角模型)- 当有两条平行线被第三条直线所截的时候,就会出现像“Z”字一样的图形。

比如说直线a∥b,直线c与a、b相交。

- 这里面的内错角是相等的哦。

就好像在两条平行的铁轨(a和b)上,有一根枕木(c)横过来,形成的内错角就像在铁轨两边对称的位置,它们的大小是一样的。

- 如果∠1和∠2是内错角,那么∠1 = ∠2。

这个结论在证明角相等或者计算角的度数的时候可太有用啦。

2. “F”字形模型(同位角模型)- 还是两条平行线被第三条直线所截,不过这个时候是同位角的关系。

就像“F”字的形状。

- 同位角也是相等的呢。

比如说∠3和∠4是同位角,只要a∥b,那么∠3 = ∠4。

可以想象成在平行的道路(a和b)上,同样位置的标记(∠3和∠4),它们的角度肯定是一样的呀。

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版)

初中几何常见九大模型解析(完美版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中几何常见九大模型解析模型一:手拉手模型-旋转型全等(1)等边三角形➢条件:均为等边三角形➢结论:①;②;③平分。

(2)等腰➢条件:均为等腰直角三角形➢结论:①;②;➢③平分。

(3)任意等腰三角形➢条件:均为等腰三角形➢结论:①;②;➢③平分模型二:手拉手模型-旋转型相似(1)一般情况➢条件:,将旋转至右图位置➢结论:➢右图中①;➢②延长AC交BD于点E,必有(2)特殊情况➢条件:,,将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E,必有;③;④;⑤连接AD、BC,必有;⑥(对角线互相垂直的四边形)模型三:对角互补模型(1)全等型-90°➢条件:①;②OC平分➢结论:①CD=CE;②;③➢证明提示:①作垂直,如图,证明;②过点C作,如上图(右),证明;➢当的一边交AO的延长线于点D时:以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120°➢条件:①;➢②平分;➢结论:①;②;➢③➢证明提示:①可参考“全等型-90°”证法一;②如图:在OB上取一点F,使OF=OC,证明为等边三角形。

(3)全等型-任意角➢条件:①;②;➢结论:①平分;②;➢③.➢当的一边交AO的延长线于点D时(如右上图):原结论变成:①;②;③;可参考上述第②种方法进行证明。

请思考初始条件的变化对模型的影响。

➢对角互补模型总结:①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③两种常见的辅助线作法;④注意平分时,相等如何推导?模型四:角含半角模型90°(1)角含半角模型90°-1➢条件:①正方形;②;➢结论:①;②的周长为正方形周长的一半;也可以这样:➢条件:①正方形;②➢结论:(2)角含半角模型90°-2➢条件:①正方形;②;➢结论:➢辅助线如下图所示:(3)角含半角模型90°-3➢条件:①;②;➢结论:若旋转到外部时,结论仍然成立。

初中数学三角形相似模型大总结

初中数学三角形相似模型大总结

初中数学三角形相似模型大总结三角形相似是初中数学里非常重要的知识点,是中考中一定会涉及的考点之一。

三角形相似的判定和应用题型千变万化,但“万变不离其宗”,常用的一共有以下8种模型。

1、8字形模型2、反8字形模型3、A字形模型4、反A字形模型5、共边反A字形模型6、剪刀反A字形模型7、一线三等角模型8、一线三垂直模型【模型总结】8种具体模型实际上可以分为三个大类,如下面表格所示:【应用提示】三角形相似的实际应用中遇到的模型基本上是属于上面8种模型的变化。

比如当三角形为直角三角形时的反A字形。

【应用举例】思路分析:通常来讲,题目中遇到线段成某个比例的已知条件,往往会和三角形相似结合起来。

因为三角形相似就能利用线段的比例。

本题中,△CEF和△EFD是对折关系,所以∠EDF=∠C=60度。

进而得到∠A=∠B=∠EDF=60度,一线三等角模型太明显不过了。

因此:△AED∽△DBF。

虽然,解题过程中还用到了设未知数解方程的代数思想,但是如果不能及时发现一线三等角模型,然利用相似比例列出2个方程,此题难度也不小。

【总结】三角形相似就意味着对应线段的比值相等,所以就能建立等式关系。

因此,题目中只要看到线段比例已知,就要首先考虑构建三角形相似来利用这个已知条件,为进一步完成解题创下基础。

口诀:线段比例若知道,三角相似解题巧。

有些同学相似三角形的判定方法明明都知道,却还是不会证三角形相似,在有些图形中甚至找不到谁和谁相似,完全无从下手。

这种情况,其中一个很大的原因就是——对相似的基本模型不熟悉。

本文就来说说相似的几种基本模型,让你能在复杂的图形中快速识别,迅速上手。

1、A字型(金字塔形)A字型分两种,一种上下平行的,一种上下不平行的。

注意两种A字型对应关系不同。

2、8字型(沙漏型)同A字型一样,8字型也有两种,一种上下平行,一种上下不平行,对应关系也不同。

3、子母型子母型相似可看作由非平行的A字型相似变化而来。

子母型相似的对应关系比较容易写错,为了避免出错可采用两种书写习惯:①仿照A字型写法,从公共点写起,△BAD∽△BCA;②按角的大小排序来写,小中大,△ABD∽△CBA.推荐第一种,更不容易错。

三角形计算四大模型

三角形计算四大模型

三角形计算四大模型三角形是数学中的一种基本几何形状,拥有三边和三个内角。

在数学中,有四种常见的三角形计算模型:余弦定理、正弦定理、海伦公式和面积公式。

这些模型可以用于计算三角形的各种属性,例如边长、角度和面积。

下面将详细介绍这四个模型。

1.余弦定理:余弦定理表达了一个三角形的任意一条边的平方与其余两条边的平方之间的关系。

设三角形的三边长度分别为a、b、c,内角对应的顶点分别为A、B、C,那么余弦定理可以表达为:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC2.正弦定理:正弦定理利用了角度和边长之间的关系。

设三角形的三边长度分别为a、b、c,内角对应的顶点分别为A、B、C,那么正弦定理可以表达为:a/sinA = b/sinB = c/sinC3.海伦公式:海伦公式可以用来计算三角形的面积。

设三角形的三边长度分别为a、b、c,令s为半周长(即s=(a+b+c)/2),那么海伦公式可以表达为:面积 = sqrt(s*(s-a)*(s-b)*(s-c))4.面积公式:面积公式也可以用来计算三角形的面积。

面积=(1/2)*b*h这四大模型都能够为我们提供计算三角形属性的方法。

余弦定理和正弦定理适用于计算三角形边长和角度的情况,而海伦公式和面积公式则适用于计算三角形的面积。

根据具体的问题,我们可以选择合适的模型来计算三角形的属性。

除了上述四大模型之外,三角形的属性还可以通过其他方法来计算,例如勾股定理、角平分线定理等。

每个模型在不同的问题中都有其特定的适用场景,因此了解并掌握这些模型可以帮助我们更好地解决各种三角形计算问题。

66个常用几何模型分类汇编

66个常用几何模型分类汇编

66个常用几何模型分类汇编一、三角形模型1. 等边三角形:三条边长度相等的三角形。

2. 直角三角形:其中一个角为直角的三角形。

3. 等腰三角形:两条边长度相等的三角形。

4. 锐角三角形:三个内角都小于90度的三角形。

5. 钝角三角形:其中一个内角大于90度的三角形。

6. 等腰锐角三角形:两个角为锐角,且两条边长度相等的三角形。

7. 直角等腰三角形:一个角为直角,两条边长度相等的三角形。

8. 等腰钝角三角形:一个角为钝角,两条边长度相等的三角形。

9. 等边锐角三角形:三个内角都小于90度,三条边长度相等的三角形。

二、四边形模型10. 矩形:四个角都是直角的四边形。

11. 正方形:四条边长度相等,四个角都是直角的四边形。

12. 平行四边形:对角线相互平分,两对边平行的四边形。

13. 菱形:四个边长度相等,对角线相等的四边形。

14. 梯形:有且仅有一对对边平行的四边形。

15. 阳角梯形:其中一对边为直角的梯形。

16. 等腰梯形:有两边相等的梯形。

三、圆模型17. 圆:平面上所有到圆心距离相等的点的集合。

18. 圆环:由两个同心圆构成的几何图形。

四、多边形模型19. 六边形:有六条边的多边形。

20. 正六边形:六个角都是直角的六边形。

21. 正多边形:所有边和角都相等的多边形,如正三角形、正四边形等。

22. 不规则多边形:边长度或者角度不相等的多边形。

五、体积与表面积模型23. 正方体:六个面都是正方形的立体。

24. 长方体:六个面都是矩形的立体。

25. 正圆柱:底面为圆的圆柱。

26. 正圆锥:底面为圆的圆锥。

27. 正棱柱:底面为正多边形的棱柱。

28. 正棱锥:底面为正多边形的棱锥。

29. 正四面体:四个面都是三角形的立体。

30. 正六面体:六个面都是正方形的立体。

六、相似模型31. 相似三角形:对应角相等,对应边成比例的三角形。

32. 相似四边形:对应角相等,对应边成比例的四边形。

七、坐标几何模型33. 点:一个位置的坐标表示。

微专题 三角形四大常考全等模型

微专题  三角形四大常考全等模型

基本模型
图示
模型总结
有三个直角,常利用同角(等角)的余角相等证明角相等
针对训练 3.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D, BE⊥MN于E. 求证:DE=AD+BE.
第3题图
证明:∵∠ACB=90°,AC=BC, ∴∠ACD+∠BCE=90°, 又∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°, ∴∠ACD+∠DAC=90°, ∴∠BCE=∠CAD. 在△ADC和△CEB中,
ቤተ መጻሕፍቲ ባይዱ
第4题图
∠A=∠ACF AD=CF , ∠A DF =∠F ∴△ADE≌△CFE(ASA).
W
点击链接至综合提升
例2题图
解:全等.
理由如下:∵∠1=∠2,∴DB=DC.
∵AB=AC,∴∠ABC=∠ACB.
∴∠ABC-∠1=∠ACB-∠2,
∴∠ABD=∠ACD,
在△ABD和△ACD中, AB=AC ∠ABD=∠ACD, BD=CD ∴△ABD≌△ACD(SAS).
基本模型
图示
所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶 模型总结 点就是全等三角形的对应顶点,解题时要注意其隐含条件,即公共边
【思维教练】要证△ABC≌△DEC, 题干已知BC=CE,AB=DE,∠BAE =∠BCE=90°,只需证明∠B= ∠CED即可.
例4题图
证明:∵∠BAE=∠BCE=90°, ∴∠ABC+∠AEC=180°. ∵∠AEC+∠DEC=180°, ∴∠DEC=∠B. 在△ABC和△DEC中, AB=DE ∠B=∠DEC, BC=EC ∴△ABC≌△DEC(SAS).
微专题 四大常考全等模型
(必考,均在几何图形的证明与计算中涉及考查) 模型一 平移模型 例1 如图,已知BC∥EF,∠B=∠DGC,点D、C在AF上,且AB=DE. 求证:AD=CF. 【找一找】

七年级下册数学全等三角形的模型及应用(知识点串讲)(解析版)

七年级下册数学全等三角形的模型及应用(知识点串讲)(解析版)

专题12 全等三角形的模型及应用知识网络重难突破知识点一全等三角形常见模型(1)一线三等角常见图形如下:(含特殊的一线三垂直)(2)手拉手模型常见图形如下:(等腰三角形、等边三角形、等腰直角三角形)(2)半角模型常见图形如下:(正方形、一般四边形)(1)一线三等角典例1(2019春•莲湖区期末)如图1,在ABC⊥∆中,90∠=︒,AB ACBAC=,过点A作直线DE,且满足BD DE 于点D,CE DE⊥于点E,当B,C在直线DE的同侧时,(1)求证:DE BD CE=+.(2)如果上面条件不变,当B,C在直线DE的异侧时,如图2,问BD、DE、CE之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C在直线DE的异侧时,如图3,问BD、DE、CE之间的数量关系如何?写出结论并证明.【解答】(1)证明:如图1,BD DE⊥,CE DE⊥,90D E ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒.90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠.在ADB ∆和CEA ∆中,D E ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆≅∆,BD AE ∴=,AD CE =,DE AD AE =+,DE CE BD ∴=+;(2)解:BD DE CE =+,理由:如图2,BD DE ⊥,CE DE ⊥,90ADB CEA ∴∠=∠=︒.90BAD ABD ∴∠+∠=︒.90BAD EAC ∠+∠=︒ABD EAC ∴∠=∠.在ADB ∆和CEA ∆中,ADB CEA ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆≅∆,BD AE ∴=,AD CE =.AE AD ED =+,BD DE CE ∴=+.(3)解:DE CE BD =-,理由是:如图3,同理易证得:()ABD CAE AAS ∆≅∆,BD AE ∴=,AD CE =,DE AD AE =-,DE CE BD ∴=-.典例2(2019春•长清区期末)CD 是经过BCA ∠顶点C 的一条直线,CA CB =,E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)如图(1),若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,当90BCA α∠=∠=︒时,线段BE与CF有怎样的大小关系?并说明理由.(2)如图(2),若直线CD经过BCA∠的外部,当90∠=∠>︒时,则EF、BE、AF三条线段之间BCAα有怎样的数量关系?并说明理由.【解答】解:(1)BE CF=,理由:FCA FAC∠+∠=︒,90∠+∠=︒,90BCE ACF∴∠=∠,(同角的余角相等)BCE FCA=,∠=∠,CA CBBEC CFA∴∆≅∆,Rt BCE Rt CAF(AAS)∴=;BE CF(2)EF AF BE=+,理由:CAF ACFα∠+∠=︒-∠,BCE ACFα∠+∠=︒-∠,180180∴∠=∠,(同角的补角相等)BCE CAF=,∠=∠,CA CBBEC CFA∴∆≅∆,BCE CAF AAS()=,∴=,BE CFCE AF∴=+=+.EF CE CF AF BE(2)手拉手全等典例1如图,等边ABC∆中,D是AB边上的一动点,以CD为一边,向上作等边EDC∆,连接AE.(1)求证:ACE BCD∆≅∆;(2)判断AE与BC的位置关系,并说明理由.【解答】证明:(1)ABC ∆和DCE ∆都是等边三角形,BC AC ∴=,DC CE =,60ACB DCE ∠=∠=︒,ACB DCA DCE DCA ∴∠-∠=∠-∠,即BCD ACE ∠=∠,在ACE ∆和BCD ∆中,BC AC BCD ACE DC CE =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆;(2)//AE BC ,理由是:ACE BCD ∆≅∆,CAE ABC ∴∠=∠,ABC ∆是等边三角形,ABC ACB ∴∠=∠,CAE ACB ∴∠=∠,//AE BC ∴.典例2(2019春•金牛区期末)如图.已知∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠F AB +∠DAE 的度数;(3)请问线段CE 、BF 、DE 之间有什么数量关系?请说明理由.【解答】(1)证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =90°,∠CAD +∠DAE =90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)解:∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠CAB=∠DAE,∠BCA=∠E=45°,∠F AB+∠DAE=∠F AB+∠CAB=∠F AC,∵∠AFC=90°,∠BCA=45°,∴∠F AC=45°,∴∠F AB+∠DAE=45°;(3)解:CE=2BF+2DE;理由如下:延长BF到G,使得FG=FB,连接AG,如图所示:∵AF⊥BG,∴AB=AG,∴∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE,∴CE=2BF+2DE.典例3(2019春•天桥区期末)如图1,在ABC ∆中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),以AD 为边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE ,设BAC α∠=,BCE β∠=.(1)线段BD 、CE 的数量关系是 ;并说明理由;(2)探究:当点D 在BC 边上移动时,α,β之间有怎样的数量关系?请说明理由;(3)如图2,若90BAC ∠=︒,CE 与BA 的延长线交于点F .求证:EF DC =.【解答】解:(1)结论:BD CE =.理由:如图1中,AB AC =,AD AE =,BAC DAE ∠=∠,BAD CAE ∴∠=∠,()BAD CAE SAS ∴∆≅∆,BD CE ∴=.(2)结论:180αβ+=︒.理由:如图1中,BAD CAE ∆≅∆(已证),ABD ACE ∴∠=∠,BCE ACB ABC ABC ACE β∴∠=∠+∠=∠+∠=,180BAC ABC ACB ∠+∠+∠=︒,BAC α∠=,180αβ∴+=︒.(3)如图2中,由(1)可知BAD CAE ∆≅∆,BD EC ∴=,B ACE ∠=∠,AB DC =,90BAC ∠=︒,45B ACB ACF ∴∠=∠=∠=︒,90BCF ∴∠=︒,45F ∠=︒,B F ∴∠=∠,CB CF ∴=,BD EC =,EF CD ∴=.(3)半角模型典例1(2019春•罗湖区期末)四边形ABCD 是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A 点重合,角的两边分别交BC 于E ,交CD 的延长线于F ,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE =15,DF=2,试求线段EF的长.【解答】证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE=∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.知识点二全等三角形的应用典例1(2019春•皇姑区期末)要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD CB=,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出10BD=,5ED=,则AB的长是()A.2.5B.10C.5D.以上都不对【解答】解:AB BD⊥,ED AB⊥,90ABC EDC∴∠=∠=︒,在ABC∆和EDC∆中,90ABC EDCBC DCACB ECD∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ABC EDC ASA∴∆≅∆,5AB ED∴==.故选:C.典例2(2019春•灵石县期末)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.【解答】解:O是AB、CD的中点,OA OB∴=,OC OD=,在AOD∆和BOC∆中,OA OBAOD BOC OC OD=⎧⎪∠=∠⎨⎪=⎩,()AOD BOC SAS∴∆≅∆,CB AD∴=,30AD cm=,30CB cm∴=.巩固训练一、单选题(共6小题)1.(2019春•罗湖区期末)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m【解答】解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.2.(2019春•市中区期末)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD CA =,连接BC 并延长至E ,使CE CB =,连接ED .若量出58DE =米,则A ,B 间的距离即可求.依据是( )A .SASB .SSSC .AASD .ASA【解答】解:在ABC ∆和DEC ∆中,AC CD ACB DCE BC CE =⎧⎪∠=∠⎨⎪=⎩,()ABC DEC SAS ∆≅∆,58AB DE ∴==米,故选:A .3.(2018春•槐荫区期末)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,詹姆斯在探究筝形的性质时,得到如下结论:①AC BD ⊥;②12AO CO AC ==;③ABD CBD ∆≅∆;④四边形ABCD 的面积12AC BD =⨯其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:在ABD ∆与CBD ∆中,AD CD AB BC DB DB =⎧⎪=⎨⎪=⎩,()ABD CBD SSS ∴∆≅∆,ADB CDB ∴∠=∠,在AOD ∆与COD ∆中,AD CD ADB CDB OD OD =⎧⎪∠=∠⎨⎪=⎩,()AOD COD SAS ∴∆≅∆,90AOD COD ∴∠=∠=︒,AO OC =,AC DB ∴⊥,故①②正确;四边形ABCD 的面积111222S ADB S BDC DB OA DB OC AC BD =∆+∆=⨯+⨯=, 故④正确;故选:D .4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【解答】解:带③去可以利用“角边角”得到全等的三角形.故选:C .5.(2019春•青羊区期末)如图,∠ACB =90°,AC =BC ,AE ⊥CE 于点E ,BD ⊥CE 于点D ,AE =5cm ,BD =2cm ,则DE 的长是( )A .8cmB .5cmC .3cmD .2cm【解答】解:∵AE ⊥CE 于点E ,BD ⊥CE 于点D ,∴∠AEC =∠D =∠ACB =90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=5﹣2=3cm.故选:C.6.(2019春•罗湖区期末)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1 B.2 C.3 D.4【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA ∥BC ,∴∠DAB =∠ABC =60°,∵∠BAC =90°,∴∠ACB =30°,∵∠ACE =60°,∴∠ECB =90°,∴BC ⊥CE ,④正确,综上所述,①②④正确,故选:C .二、填空题(共5小题)7.(2018春•历下区期中)如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知大树AB 的高为5m ,小华行走的速度为1/m s,小华走的时间是 .【解答】解:90AED ∠=︒,90AEB DEC ∴∠+∠=︒,90ABE =︒,90A AEB ∴∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和DCE ∆中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE ECD AAS ∴∆≅∆,5EC AB m ∴==,13BC m =,8BE m ∴=,∴小华走的时间是818()s ÷=,故答案为:8s .8.(2018春•槐荫区期末)如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD BC =,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明EDC ABC ∆≅∆,所以测得ED 的长就是A 、B 两点间的距离,这里判定EDC ABC ∆≅∆的理由是.【解答】解:AB BD ⊥,ED BD ⊥,90ABD EDC ∴∠=∠=︒,在EDC ∆和ABC ∆中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()EDC ABC ASA ∴∆≅∆.故答案为:ASA .9.(2019春•商河县期末)如图,要在湖两岸A ,B 两点之间修建一座观赏桥,由于条件限制,无法直接测量A 、B 两点间的距离,于是小明想出来这样一种做法:在AB 的垂线BF 上取两点C 、D ,使BC CD =,再定出BF 的垂线DE ,使A ,C ,E 三点在一条直线上,这时测得50DE =米,则AB = 米.【解答】解:根据题意可知90B D ∠=∠=︒,BC CD =,ACB ECD ∠=∠()ABC EDC ASA ∴∆≅∆50AB DE ∴==米.故答案为:5010.(2019春•平阴县期末)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②//PQ AE ;③AP BQ =;④DE DP =;⑤120AOE ∠=︒,其中正确结论有 (填序号).【解答】解:等边ABC ∆和等边CDE ∆,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB BCD DCE BCD ∴∠+∠=∠+∠,即ACD BCE ∠=∠,在ACD ∆与BCE ∆中,AC BC ACD BCECD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆, AD BE ∴=,①正确,ACD BCE ∆≅∆,CBE DAC ∴∠=∠, 又60ACB DCE ∠=∠=︒,60BCD ∴∠=︒,ACP BCQ ∴∠=∠,在CQB ∆和CPA ∆中,CBE DAC AC BCBCQ ACP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CQB CPA ASA ∴∆≅∆,CP CQ ∴=, 又60PCQ ∠=︒,PCQ ∴∆为等边三角形,60PQC DCE ∴∠=∠=︒,//PQ AE ∴,②正确,CQB CPA ∆≅∆,AP BQ ∴=③正确,AD BE =,AP BQ =,AD AP BE BQ ∴-=-,即DP QE =,60DQE ECQ CEQ CEQ ∠=∠+∠=︒+∠,60CDE ∠=︒,DQE CDE ∴∠≠∠,故④错误;//BC DE ,CBE BED ∴∠=∠,CBE DAE ∠=∠,60AOB OAE AEO ∴∠=∠+∠=︒,同理可得出120AOE ∠=︒,60DOE ∴∠=︒,故⑤正确;∴正确结论有:①②③⑤;故答案为:①②③⑤.11.(2019春•金牛区期末)如图,已知四边形ABCD 中,AB =12厘米,BC =8厘米,CD =14厘米,∠B =∠C ,点E 为线段AB 的中点.如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为 厘米/秒时,能够使△BPE 与以C 、P 、Q 三点所构成的三角形全等.【解答】解:设点P 运动的时间为t 秒,则BP =3t ,CP =8﹣3t ,∵∠B =∠C ,∴①当BE =CP =6,BP =CQ 时,△BPE 与△CQP 全等,此时,6=8﹣3t ,解得t,∴BP=CQ=2,此时,点Q的运动速度为23厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t,∴点Q的运动速度为6厘米/秒;故答案为:3或.三、解答题(共2小题)12.如图,Rt ABC⊥于D,CE AE∠=︒,直线l为经过点A的任一直线,BD l⊥,∆中,AB AC=,90BAC若BD CE>,试问:(1)AD与CE的大小关系如何?请说明理由;(2)线段BD,DE,CE之间的数量之间关系如何?并说明理由.【解答】解:(1)AD与CE的大小关系为AD CE=,理由是:90∠+∠=∠=︒,BAD EAC BAC又CE l⊥于E,90∴∠+∠=︒,ACE EAC∴∠=∠;BAD ACEBD l ⊥于D ,CE l ⊥于E ,90BDA AEC ∴∠=∠=︒;又AB AC =;()ABD CAE AAS ∴∆≅∆,AD CE ∴=.(2)线段BD ,DE ,CE 之间的数量之间关系为:BD DE CE =+,理由如下: ABD CAE ∆≅∆,BD AE ∴=,AD CE =,又AE DE AD =+,BD DE CE ∴=+.13.(2018秋•宿松县期末)(1)问题背景:如图1:在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC ,CD 上的点且EAF ∠=60︒,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG BE =.连结AG ,先证明ABE ADG ∆≅∆,再证明AEF AGF ∆≅∆,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒.E ,F 分别是BC ,CD 上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30︒的A 处,舰艇乙在指挥中心南偏东70︒的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70︒,试求此时两舰艇之间的距离.【解答】解:(1)EF BE DF =+,证明如下:DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ADG SAS ∴∆≅∆,AE AG ∴=,BAE DAG ∠=∠,12EAF BAD ∠=∠, GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠, EAF GAF ∴∠=∠,在AEF ∆和GAF ∆中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS ∴∆≅∆,EF FG ∴=,FG DG DF BE DF =+=+,EF BE DF ∴=+;故答案为EF BE DF =+.(2)结论EF BE DF =+仍然成立;理由:延长FD 到点G .使DG BE =.连结AG ,如图2,在ABE ∆和ADG ∆中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,AE AG∴=,BAE DAG∠=∠,12EAF BAD∠=∠,GAF DAG DAF BAE DAF BAD EAF EAF∴∠=∠+∠=∠+∠=∠-∠=∠,EAF GAF∴∠=∠,在AEF∆和GAF∆中,AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS∴∆≅∆,EF FG∴=,FG DG DF BE DF=+=+,EF BE DF∴=+;(3)如图3,连接EF,延长AE、BF相交于点C,3090(9070)140AOB∠=︒+︒+︒-︒=︒,70EOF∠=︒,12EOF AOB∴∠=∠,又OA OB=,(9030)(7050)180OAC OBC∠+∠=︒-︒+︒+︒=︒,∴符合探索延伸中的条件,∴结论EF AE BF=+成立,即2(4560)210EF=⨯+=(海里).答:此时两舰艇之间的距离是210海里.。

初中数学三角形全等常用几何模型及构造方法大全

初中数学三角形全等常用几何模型及构造方法大全

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、 45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

初中数学十大模型

初中数学十大模型

初中数学中考总复习几何十大模型1、模型一:“12345”模型
2、模型二:“半角”模型
对称半角模型
旋转半角模型
3、模型三:“角平分线”模型
角平分线定理角平分线+垂线=等腰三角

角分线+平行线=等腰三角必呈现
角平分线+垂线=等腰三角形
4、模型四:“手拉手”模型
条件:1、两个等腰三角形;2、顶角相等;3、顶点重合。

结论:1、手相等;2、三角形全等;3、手的夹角相等;
4、顶点连手的交点得平分。

5、模型五:“将军饮马”模型
6、模型六:“中点”模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1.直接连接中点;
2.连对角线取中点再相连
7、模型七:“邻边相等的对角互补”模型
【模型1】
【条件】如图,四边形ABCD中,AB=AD,∠BAD+∠BCD=∠ABC+∠ADC=180°【结论】AC平分∠BCD
【模型2】
【条件】如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°
【结论】①∠ACB=∠ACD=45°②BC+CD=V2AC
8、模型八:“一线三角”模型
【条件】∠EDF=∠B=∠C,且DE=DF
【结论】△BDE=△CFD
9、模型九:“弦图”模型
【条件】正方形内或外互相垂直的四条线段
【结论】新构成了同心的正方形
10、模型十:费马点。

专题07 全等三角形经典模型一线三等角模型(四大类型)(原卷版)

专题07  全等三角形经典模型一线三等角模型(四大类型)(原卷版)

专题07 全等三角形经典模型一线三等角模型(四大类型)【题型一:标准“K”型图】【题型二:做辅助线构造“K”型图】【题型三:“K”型图与平面直角坐标综合】【题型四:特殊“K”型图】【方法技巧】模型一一线三垂直全等模型如图一,∠D=∠BCA=∠E=90°,BC=AC。

结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。

结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解【类型一:标准“K”型图】【典例1】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;CD EBA(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE 之间的等量关系.【变式1-1】如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE ⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.【变式1-2】在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE .=1,求S△BFC【类型二:做辅助线构造“K”型图】【典例2】如图,△ABC为等腰直角三角形,∠ABC=90°,△ABD为等腰三角形,AD=AB=BC,E为DB延长线上一点,∠BAD=2∠CAE.(1)若∠CAE=20°,求∠CBE的度数;(2)求证:∠BEC=135°;(3)若AE=a,BE=b,CE=c.则△ABC的面积为.(用含a,b,c的式子表示)【变式2-1】已知Rt△ABC和Rt△ADE,AB=AC,AD=AE.连接BD、CE,过点A作AH⊥CE于点H,反向延长线段AH交BD于点F.(1)如图1,当AB=AD时①请直接写出BF与DF的数量关系:BF=DF(填“>”、“<”、“=”)②求证:CE=2AF(2)如图2,当AB≠AD时,上述①②结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【变式2-2】直线l经过点A,△ABC在直线l上方,AB=AC.(1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;(2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;(3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF 延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.【类型三:“K”型图与平面直角坐标综合】【典例3】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【变式3-1】如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(0,3),把线段BA绕点B逆时针旋转90°后得到线段BC,则点C的坐标是()A.(3,4)B.(4,3)C.(4,7)D.(3,7)【变式3-4】问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,请直接写出BD、CE、DE的数量关系.拓展延伸:(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC请写出DE、BD、CE三条线段的数量关系,并说明理由.实际应用:(3)如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求B点的坐标.【变式3-5】(1)如图1,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线DE,AD⊥DE于点D,BE⊥DE于点E,求证:△ADC≌△CEB;(2)如图2,在等腰直角△ABC中,∠ACB=90°,AC=BC,过点C作直线CE,AD⊥CE于点D,BE⊥CE于点E,AD=2.5cm,DE=1.7cm,求BE 的长;(3)如图3,在平面直角坐标系中,A(﹣1,0),C(1,3),△ABC为等腰直角三角形,∠ACB=90°,AC=BC,求点B坐标.【变式3-6】在直角坐标平面内,点A(3,0),点B是第二象限内任意一点(如图所示).线段AB绕点A旋转90°后的图形为AC,连接BC.(1)当线段AB绕点A顺时针旋转时,①如果点B的坐标为(﹣1,2),过点B作BH⊥OA,垂足为点H,直接写出线段AH的长;②如果点B的横坐标为a,且BC∥OA,求点B的纵坐标;(用含a的代数式表示)(2)设点B的坐标为(m,n),直接写出点C的坐标.(用含m、n的代数式表示)【变式3-7】如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,P A与CQ有何位置和数量关系,猜想并证明;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.【变式3-8】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【类型四:特殊“K”型图】【典例4】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【变式4-1】如图,△ABC为等边三角形,点D为BC边上一点,先将三角板60°角的顶点与D点重合,平放三角板,再绕点D转动三角板,三角板60°角的两边分别与边AB、AC交于点E、点F,当DE=DF时,如图(2)所示.求证:△BDE≌△CFD.【变式4-2】如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.【变式4-3】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.。

初中数学三角形全等常用几何模型及构造方法大全

初中数学三角形全等常用几何模型及构造方法大全

初二数学三角形全等常用几何模型及构造方法大全掌握它轻松搞定全等题!全等是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,这次整理了常用的各大模型,一定要认真掌握~全等变换类型:(一)平移全等:平行等线段(平行四边形)(二)对称全等模型:角平分线或垂直或半角1:角平分线模型;2:对称半角模型;(三)旋转全等模型:相邻等线段绕公共顶点旋转1.旋转半角模型2.自旋转模型3.共旋转模型4.中点旋转如图,在△ABC的边上取两点D、E,且BD=CE,求证:AB+AC>AD+AE分析:将△ACE平移使EC与BD重合。

B\D,上方交点,左右两个三角形,两边和大于第三边!1:角平分线模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

2:对称半角模型说明:上图依次是45°、30°、 45+ 22.5°、对称(翻折)15°+30°直角三角形对称(翻折) 30+60+90直角三角形对称(翻折)翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

1.半角:有一个角含1/2角及相邻线段2.自旋转:有一对相邻等线段,需要构造旋转全等3.共旋转:有两对相邻等线段,直接寻找旋转全等(共顶点)4.中点旋转:倍长中点相关线段转换成旋转全等问题(专题七)1、旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

2、自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称3、共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

(接上------共旋转模型)模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形混用。

初中数学三角形相似6大模型教你秒杀初中几何

初中数学三角形相似6大模型教你秒杀初中几何

初中数学三角形相似6大模型教
你秒杀初中几何
初中数学:三角形相似6大模型(带例题)教你秒杀初中几何-
三角形的相似问题是几何里最基础最重要的一部分。

很多同学无从下手,老师特地找来了网上整理的相似三角形6类模型,读懂这些就读懂相似问题了。

其实从我个人的教育经历来看,高中数学并不是太难。

很多学生学不好数学的根本原因是没有掌握好学习方法。

老师一直强调有两个方法可以帮助你快速提高成绩,就是狠抓基础,注意方法。

狠抓基础,就是要求学生吃透书本上的基础知识,悲观地多次总结自己容易出错的知识点。

老师相信,只要你做到了这一点,就离你的考试高分不远了。

如需打印版请至文末获取。

由于篇幅限制,完整打印版可关注后发送私信“学习”或在评论区留言即可免费获取。

初中关于超难三角形几何模型

初中关于超难三角形几何模型
三角形几何模型有许多种,其中有些较难,需要一定的几何知识和技巧才能解决。以下是一些较难的三角形几何模型:
带有垂线的三角形:这种三角形几何模型通常需要应用垂线定理或相似三角形定理,例如求出三角形内角平分线、高、中线等。
带有内切圆和外接圆的三角形:这种三角形几何模型通常需要应用圆的性质,如切线定理、弧度定理等。例如求出三角形内切圆、外接的半径、圆心、切点等。
带有相似三角形和比例的三角形:这种三角形几何模型需要应用相似三角形定理和比例关系,例如求出两个三角形的边长、角度、面积等。
这些三角形几何模型需要一定的几何知识和技巧,建议学生们多做练习,加强对几何知识的理解和应用。

初中数学几何经典模型精编版

初中数学几何经典模型精编版

初中数学几何经典模型精编版几何经典模型在初中数学中占有重要的地位,通过这些模型的学习,可以帮助学生更好地理解几何图形的性质及其变化规律,提高几何思维能力。

下面是初中数学几何经典模型精编版。

一、相似三角形模型1、比例模型:在一个园中,如何取一个点,使得从这个点出发,分别向圆上和圆外伸出两条射线,使得这两条射线的长度之比最大?求出这个比例。

说明:这是相似三角形模型中比例模型的典型问题。

解答:设这个点为P,圆心为O,射线与圆相交于A、B两点,如图所示。

设OP=r,则PA=x,PB=y,由于PA、OP、OB与PB、OP、OA相似,因此有:PA:OP=OP:OB即:x:r=r:y化简得:x:y=r²:(OE²-r²)当x+y最大时,OE=√(r²+xy),代入得x∶y=r²∶(r²+xy),即:x+y=√(r²+xy)=r√(1+(x∶r)·(y∶r)),因此,此时x∶y=r²∶2r²=1∶2。

(注:该问题也可通过悬臂悬链线模型求解)2、面积模型1:已知ABC内接于⊙O,求AO∶OC。

解答:利用相似性质得:AB∶BC=AO∶CO,AB∶AC=AO∶OA即:AB²=AO·OC,AB²=AO²+OC²-2AO·OCcos∠AOC化简得:AO(OC-2r)=(r+AO)(r-AO)因为r>AO,所以有AO∶CO=r-AO∶r+AO3、面积模型2:已知三角形ABC中∠A=60°, AC=2,AB=a,BC=b,则COSB=log⁡[(a²+b²-4)/6],计算 COSB。

解答:应用余弦定理和海龙公式,得:①cosB=(4-b²-a²)/(4a)②S(ABC)=[a²√3]/4③S(ABC)=bhA/2|hA=√(a²-1)∵S(ABC)=S(A′B′C′)∴a′b′/A′B′=(√3a/4)/(a/2)=√3/2设h′是A′B′上的高,由相似关系得:=[S(ABC)/2+√3S(ABC)/2]/2=3S(ABC)/4∵A′B′=a/2,设A′O=x∴B′O^2+AO^2=(a/2)^2;AO+x=b;Hence,x=(b²-a²+1)/2b∴cosB′=2x/a=(b²-a²-1)/ab,∴cosB=log⁡[(a²+b²-4)/6]二、圆1、切线定理:如图,⊙O的两条切线AP、BP(AP>BP),AB的中点为C,OC与BP交于K,求证:AK=KC。

七下三角形模型及公式

七下三角形模型及公式

七下三角形模型及公式你知道吗,三角形可不止是好看那么简单,它还有很多惊人的秘密。

它的稳定性可是一流的,想想看,建筑物的设计师们可是特别偏爱它的。

就像一座摩天大楼,要是没有那些三角形的支撑,可能早就摇摇欲坠了。

所以,三角形在我们生活中可是非常重要的,听说建筑师们会说,三角形是“结构的基石”,这可是相当高的评价哦!说到三角形的公式,很多人可能就皱眉头了,觉得这些公式像是一道道难关。

其实呀,三角形的面积计算就简单得很。

只要记住一个小公式,面积等于底乘以高再除以二,嘿,这就是你打开三角形世界的金钥匙。

底边就像三角形的脚,而高就是从脚往上数的那根线,直接指向天花板。

听起来简单吧?只要你不迷失在复杂的数字里,三角形就会变得亲切无比。

三角形还有很多种类呢,等我给你介绍介绍。

等腰三角形,那是两条边一样长,听起来是不是像对称的情侣?再说说直角三角形,那个有一个角是90度的小家伙,简直是数学课上的明星,真是个聪明的角,懂得利用直线的力量!还有那个神秘的锐角三角形,角度都小于90度,像极了一个小猫咪,活泼可爱,真让人喜欢。

哎,你知道吗,三角形的周长计算也没那么难。

只要把三条边加起来,哦,没错,就是这样简单!有人可能会觉得这有什么了不起的,其实吧,这个小动作背后藏着大智慧。

它教会我们,生活中有些事情就是这么直接,越简单越有效。

正如老话所说,“简单就是美”,不需要花里胡哨的计算,实打实的就能算出来。

三角形的应用可真是无处不在。

比如在航海中,三角形用来计算船只的位置;在测量土地时,三角形又成了测量师的好朋友;甚至在天文学中,三角形也能帮助我们理解星星的位置,真是太神奇了,简直是无所不能的三角形!想象一下,在星空下,你用三角形来导航,听起来就像在探险故事里一样刺激。

除了这些,三角形还跟我们生活中的许多东西有关系,比如三角形的标志,像是交通标志、警告标志,它们都在用三角形传递信息,提醒我们注意安全。

这种形状不仅仅是为了好看,更是为了让人们能够快速反应,真是个聪明的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档