用递推公式计算定积分(matlab版)
欧拉法matlab程序
![欧拉法matlab程序](https://img.taocdn.com/s3/m/a06f80c205a1b0717fd5360cba1aa81144318f91.png)
欧拉法matlab程序1. 介绍在数学和工程领域中,欧拉法(Euler’s Method)是一种用于数值求解常微分方程的方法。
它是一种简单而有效的方法,通过离散化时间和空间,将微分方程转化为差分方程,在计算机程序中实现求解。
由于其易于理解和实现,欧拉法被广泛用于教学和工程实践中。
在本文中,我们将详细讨论如何使用MATLAB编写欧拉法程序。
我们将探讨欧拉法的原理、步骤、程序实现以及示例应用。
2. 欧拉法的原理欧拉法基于微分方程的初值问题,通过近似求解微分方程得到数值解。
它将连续的问题离散化为离散的差分问题。
对于一阶常微分方程,具有以下形式:dy=f(t,y)dt其中,t是自变量,y是因变量,f(t,y)是给定的函数。
假设我们已经知道初值条件t0和y(t0),以及步长ℎ,则欧拉法通过以下递推公式求解数值解:y n+1=y n+ℎ⋅f(t n,y n)其中,y n是第n步的数值解,t n=t0+n⋅ℎ。
欧拉法的基本原理是通过在每个时间步长上使用切线来逼近函数曲线,从而得到数值解。
该方法的准确性取决于步长的选择,较小的步长可以提高准确性,但增加了计算复杂度。
3. MATLAB实现欧拉法程序的步骤3.1 定义微分方程首先,我们需要定义要求解的微分方程。
在MATLAB中,可以使用一个匿名函数来=−αy,可以定义如下:表示微分方程。
例如,对于一个简单的线性微分方程dydtf = @(t, y) -alpha * y;3.2 设置初始条件和步长接下来,我们需要设置初始条件和步长。
初始条件包括t0和y(t0),步长ℎ表示每个时间步长的间隔。
t0 = 0;y0 = 1;h = 0.1;3.3 迭代计算使用欧拉法进行迭代计算,直到达到所需的终止条件。
在每个时间步长上,根据欧拉法的递推公式,更新数值解。
t = t0;y = y0;while t <= tf % 终止条件为t <= tfy = y + h * f(t, y);t = t + h;end3.4 可视化结果最后,我们可以使用MATLAB的绘图功能将结果可视化。
matlab微分与积分
![matlab微分与积分](https://img.taocdn.com/s3/m/815d22af5727a5e9856a61a4.png)
[I,n]=quadl('fname',a,b,tol,trace) 其中参数的含义和quad函数相似,只是用高
阶自适应递推法,该函数可以更精确地求 出定积分的值,且一般情况下函数调用的 步数明显小于quad函数,从而保证能以更 高的效率求出所需的定积分值。
(3) fft(X,[],dim)或fft(X,N,dim):这是对于矩 阵而言的函数调用格式,前者的功能与 FFT(X)基本相同,而后者则与FFT(X,N) 基本相同。只是当参数dim=1时,该函数 作用于X的每一列;当dim=2时,则作用于 X的每一行。
数值微积分以及数值分析
2020/5/17
1
数值微分
数值微分的实现 两种方式计算函数f(x)在给定点的数值导数:1.用多项式或
者样条函数 2. 利用数据的有限差分
在MATLAB中,没有直接提供求数值导数的函数,只有计 算向前差分的函数diff,其调用格式为:
DX=diff(X):计算向量X的向前差分,DX(i)=X(i+1)-X(i), i=1,2,…,n-1。
I=
2.4674
2020/5/17
8
3.Trapz : 计算梯形面积的和来计算定积分 在MATLAB中,对由表格形式定义的函数关系的求定积分
问题用trapz(X,Y)函数。其中向量X,Y定义函数关系 Y=f(X)。
例 用trapz函数计算定积分。 命令如下:
X=1:0.01:2.5; Y=exp(-X); %生成函数关系数据向量 trapz(X,Y) ans =
• Help dell2
2020/5/17
3
数值积分
数值积分基本原理 求解定积分的数值方法多种多样,如简单 的梯形法、辛普生(Simpson)•法、牛顿- 柯特斯(Newton-Cotes)法等都是经常采用 的方法。它们的基本思想都是将整个积分 区i积=1间分,2[问,a…,题b,n]分就,成分其n解中个为x子1=求区a和,间问x[nx+题1i,=x。bi+。1],这样求定
Matlab的实际应用设计(经典)
![Matlab的实际应用设计(经典)](https://img.taocdn.com/s3/m/05101941f7ec4afe04a1dfe7.png)
课程设计学院:数学学院学号:********姓名:***辅导老师:陈晓红殷明题目一二三四五六七八总具体题目1.11.21.32.12.33.13.23.34.14.24.35.15.25.36.16.27.47.58.18.420题实验一1.1 水手、猴子和椰子问题一、问题描述1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。
由于旅途的颠簸,大家都很疲惫,很快就入睡了。
第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。
第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子?二、思考与实验试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题。
三、问题分析用递推算法。
首先分析椰子数目的变化规律,设最初的椰子数为p 0,即第一个水手所处理之前的椰子数,用p 1、p 2、p 3、p4、p 5分别表示五个水手对椰子动了手脚以后剩余的椰子数目,则根据问题有所以p5 = 5x +1利用逆向递推的方法,有但由于椰子数为一正整数,用任意的x作为初值递推出的p0数据不一定是合适的。
在实验中可以用for 循环语句结合break语句来寻找合适的x和p0,对任意的x递推计算出p0,当计算结果为正整数时,结果正确,否则选取另外的x再次重新递推计算,直到计算出的结果p0为正整数为止。
再用x表示最后每个水手平分得到的椰子数,于是有四、源程序n=input('input n:');for x=1:np=5*x+1;for k=1:5p=5*p/4+1;endif p==fix(p)break;endenddisp([x,p]);五、实验结果六、结果分析从理论上分析,由于所以要使得最初的椰子数p 0为整数,必须取 (x +1) 为 4 5( =1024)的倍数,一种简单的处理可取 x = 1023。
matlab梯形法求定积分例题
![matlab梯形法求定积分例题](https://img.taocdn.com/s3/m/7382d551876fb84ae45c3b3567ec102de3bddf6c.png)
一、介绍在数值计算领域中,求解定积分是一个常见的问题。
定积分的求解可以通过多种方法,其中梯形法是一种常用的数值积分计算方法。
本文将以MATLAB为工具,通过一个具体的例题来介绍使用梯形法求解定积分的步骤和过程。
二、梯形法原理梯形法是一种利用梯形逼近曲线下面积的数值积分方法。
其原理是将积分区间分成若干小段,然后用每一小段上的函数值来逼近这一小段上的曲线下面积,最后将所有小段上的梯形面积相加得到整个积分的近似值。
三、MATLAB代码实现下面我们通过一个具体的例题来演示如何使用MATLAB来实现梯形法求解定积分。
假设我们要求解如下定积分:\[ \int_{0}^{1} 3x^2 dx \]我们定义被积函数,并选择积分区间及分段数。
在MATLAB中,可以通过以下代码来实现:```matlabf = (x) 3*x^2; 定义被积函数a = 0; 积分下限b = 1; 积分上限n = 100; 分段数```我们通过循环计算每一小段上的梯形面积,并将其相加得到定积分的近似值。
具体实现代码如下:```matlabh = (b - a) / n; 计算每一小段的长度x = a:h:b; 生成积分节点y = f(x); 计算积分节点上的函数值T = h * (sum(y) - (y(1) + y(end)) / 2); 使用梯形法计算定积分近似值```我们输出计算结果并进行比较:```matlabexact_value = integral(f, a, b); 精确值error = abs(exact_value - T); 误差fprintf('定积分的近似值为:f\n', T);fprintf('定积分的精确值为:f\n', exact_value);fprintf('计算误差为:f\n', error);```四、结果分析通过上述代码的计算,我们可以得到定积分的近似值以及与精确值的比较。
MATLAB数学实验答案(全)
![MATLAB数学实验答案(全)](https://img.taocdn.com/s3/m/b19b98a8fc0a79563c1ec5da50e2524de518d03a.png)
MATLAB数学实验答案(全)第⼀次练习教学要求:熟练掌握Matlab 软件的基本命令和操作,会作⼆维、三维⼏何图形,能够⽤Matlab 软件解决微积分、线性代数与解析⼏何中的计算问题。
补充命令vpa(x,n) 显⽰x 的n 位有效数字,教材102页fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形在下⾯的题⽬中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin limx mx mx x →-与3sin lim x mx mxx →∞-syms xlimit((902*x-sin(902*x))/x^3) ans =366935404/3limit((902*x-sin(902*x))/x^3,inf)//inf 的意思 ans = 0 1.2 cos1000xmxy e =,求''y syms xdiff(exp(x)*cos(902*x/1000),2)//diff 及其后的2的意思 ans =(46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算221100x y edxdy +??dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)//双重积分 ans = 2.13941.4 计算4224x dx m x +? syms xint(x^4/(902^2+4*x^2))//不定积分 ans =(91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求//⾼阶导数syms xdiff(exp(x)*cos(902*x),10) ans =-356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 0x =的泰勒展式(最⾼次幂为4).syms xtaylor(sqrt(902/1000+x),5,x)//泰勒展式 ans =-(9765625*451^(1/2)*500^(1/2)*x^4)/82743933602 +(15625*451^(1/2)*500^(1/2)*x^3)/91733851-(125*451^(1/2)*500^(1/2)*x^2)/406802 + (451^(1/2)*500^(1/2)*x)/902 +(451^(1/2)*500^(1/2))/500 1.7 Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4,)n n n x x x n --=+=⽤循环语句编程给出该数列的前20项(要求将结果⽤向量的形式给出)。
计算方法与计算 实验一误差分析
![计算方法与计算 实验一误差分析](https://img.taocdn.com/s3/m/34d2580a79563c1ec5da716f.png)
% 输出的量--每次迭代次数k和迭代值xk,
%
--每次迭代的绝对误差juecha和相对误差xiangcha,
误差分析
误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算 中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。 因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时, 由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法 的好坏会影响到数值结果的精度。 一、实验目的
因为运行后输出结果为: y 1.370 762 168 154 49, yˆ =1.370 744 664 189
38, R 1.750 396 510 491 47e-005, WU= 1.782 679 830 970 664e-005 104 . 所
以, yˆ 的绝对误差为 10 4 ,故 y
③ 运行后输出计算结果列入表 1–1 和表 1-2 中。
④ 将算法 2 的 MATLAB 调用函数程序的函数分别用 y1=15-2*x^2 和
y1=x-(2*x^2+x-15)/(4*x+1)代替,得到算法 1 和算法 3 的调用函数程序,将其保
存,运行后将三种算法的前 8 个迭代值 x1, x2 ,, x8 列在一起(见表 1-1),进行
的精确解 x* 2.5 比较,观察误差的传播.
算法 1 将已知方程化为同解方程 x 15 2x2 .取初值 x0 2 ,按迭代公式
xk1 15 2xk2
三用MATLAB实现定积分计算
![三用MATLAB实现定积分计算](https://img.taocdn.com/s3/m/0f936348bd64783e09122b97.png)
形的公求式积代公数式精。度为对于1,f 辛(x)甫=1森, x公, 式x 2的, x代3,数应精该度有为 3。
节成点立我x,ba下i和们依f面系先(次介x数考11)将绍dfA虑f(x的i(,xx节))是d=使点x1取t代数, (x消数xAb,为1对xaa精f22)(2区/bx,度而21x间)尽使3代等可用Ab入2分2能(fa1,(的1高1x1)即2限计的)f可制(算所得a,的谓2b到n积高确给分斯b定定近2公aA后似t式1,)同A值d。2时t有,x确1代,x定数2
n
In Ai f (xi )
(11)
i1
如何选择节点xi 和系数Ai ,使(11)计算的精度更高?
令我f们(x不)=妨xk只,考用虑(11)I式计11算f (
Ix)dx
b a
f而( x构)d造x,代若数对精于度k为=03,的1,.形..,m如都
有In = I ,而G当2=kA=1mf(+x11)时+ A,2Ifn(x≠2)I ,则称In 的代数精度为m(1。2)梯
s1=s1+y(2*i); end for j=1:m-1
s2=s2+y(2*j+1); end s=(y(1)+y(n)+4*s1+2*s2)*h/3;
当被积函数不是解析表示时, 比如离散数据表表示的函数 通常就用这个函数按辛甫森 公式计算积分。
二 高斯(Gauss)求积公式
各种近似求积公式都可以表示为
tqruaapdz(('yf)un',a(按b,b-)a梯)/形n(公参用式考辛计书甫算P森定22(积3)2分阶()单公位式步计长算)函。数fun在区间 trapz(x,y) x , y同长[ 度a, ,b]的输积出分y ,对自x动的选按择梯步形长公。式计算的积分 quad('fun',a(,b变,to步l) 长)与。上同,但指定了相对误差 tol。 quadl(‘fun’,a,b,tol) 用自适应Gauss-Lobatto公式计算,精度 更高。
数值分析方法计算定积分
![数值分析方法计算定积分](https://img.taocdn.com/s3/m/dc57c0264a73f242336c1eb91a37f111f1850d68.png)
数值分析⽅法计算定积分⽤C语⾔实现⼏种常⽤的数值分析⽅法计算定积分,代码如下:1 #include <stdio.h>2 #include <string.h>3 #include <stdlib.h>4 #include <math.h>56#define EPS 1.0E-14 //计算精度7#define DIV 1000 //分割区间,值越⼤,精确值越⾼8#define ITERATE 20 //⼆分区间迭代次数,区间分割为2^n,初始化应该⼩⼀点,否则会溢出910#define RECTANGLE 0 //矩形近似11#define TRAPEZOID 1 //梯形近似12#define TRAPEZOID_FORMULA 2 //递推梯形公式13#define SIMPSON_FORMULA 3 //⾟普森公式14#define BOOL_FORMULA 4 //布尔公式1516double function1(double);17double function2(double);18double function3(double);19void Integral(int, double f(double), double, double); //矩形, 梯形逼近求定积分公式20void Trapezoid_Formula(double f(double), double a, double b); //递推梯形公式21void Simpson_Formula(double f(double), double a, double b); //⾟普森公式22void Bool_Formula(double f(double), double a, double b); //布尔公式23void Formula(int, double f(double), double, double);2425double function1(double x)26 {27double y;28 y = cos(x);29return y;30 }3132double function2(double x)33 {34double y;35 y=1/x;36// y = 2+sin(2 * sqrt(x));37return y;38 }3940double function3(double x)41 {42double y;43 y = exp(x);44return y;45 }4647int main()48 {49 printf("y=cos(x) , x=[0, 1]\n");50 printf("Rectangle : "); Integral(RECTANGLE, function1, 0, 1);51 printf("Trapezoid : "); Integral(TRAPEZOID, function1, 0, 1);52 Formula(TRAPEZOID_FORMULA, function1, 0, 1);53 Formula(SIMPSON_FORMULA, function1, 0, 1);54 Formula(BOOL_FORMULA, function1, 0, 1);55 printf("\n");5657 printf("y=1/x , x=[1, 5]\n");58 printf("Rectangle : "); Integral(RECTANGLE, function2, 1, 5);59 printf("Trapezoid : "); Integral(TRAPEZOID, function2, 1, 5);60 Formula(TRAPEZOID_FORMULA, function2, 1, 5);61 Formula(SIMPSON_FORMULA, function2, 1, 5);62 Formula(BOOL_FORMULA, function2, 1, 5);63 printf("\n");6465 printf("y=exp(x) , x=[0, 1]\n");66 printf("Rectangle : "); Integral(RECTANGLE, function3, 0, 1);67 printf("Trapezoid : "); Integral(TRAPEZOID, function3, 0, 1);68 Formula(TRAPEZOID_FORMULA, function3, 0, 1);69 Formula(SIMPSON_FORMULA, function3, 0, 1);70 Formula(BOOL_FORMULA, function3, 0, 1);7172return0;73 }74//积分:分割-近似-求和-取极限75//利⽤黎曼和求解定积分76void Integral(int method, double f(double),double a,double b) //f(double),f(x), double a,float b,区间两点77 {79double x;80double sum = 0; //矩形总⾯积81double h; //矩形宽度82double t = 0; //单个矩形⾯积8384 h = (b-a) / DIV;8586for(i=1; i <= DIV; i++)87 {88 x = a + h * i;89switch(method)90 {91case RECTANGLE :92 t = f(x) * h;93break;94case TRAPEZOID :95 t = (f(x) + f(x - h)) * h / 2;96break;97default:98break;99 }100 sum = sum + t; //各个矩形⾯积相加101 }102103 printf("the value of function is %.10f\n", sum);104 }105106//递推梯形公式107void Trapezoid_Formula(double f(double), double a, double b)//递推梯形公式108 {109 unsigned int i, j, M, J=1;110double h;111double F_2k_1 = 0;112double T[32];113double res = 0;114115 T[0] = (f(a) + f(b)) * (b-a)/2;116for(i=0; i<ITERATE; i++)117 {118 F_2k_1 = 0;119 J = 1;120121for(j=0; j<=i; j++) //区间划分122 J <<= 1; //2^J123 h = (b - a) /J; //步长124//M = J/2; //2M表⽰将积分区域划分的块数125for(j=1; j <= J; j += 2) //126 {127 F_2k_1 += f(a + j*h); //f(2k-1)累加和128 }129 T[i+1] = T[i]/2 + h * F_2k_1; //递推公式130 res = T[i+1];131132if(fabs(T[i+1] - T[i]) < EPS)133if(i < 3) continue;134else break;135 }136137 printf("Trapezoid_Formula : the value of function is %.10f\n", res);138//return res;139 }140//⾟普森公式141void Simpson_Formula(double f(double), double a, double b) //⾟普森公式142 {143 unsigned int i, j, M, J=1;144double h;145double F_2k_1 = 0;146double T[32], S[32];147double res_T = 0, res_S = 0;148149 T[0] = (f(a) + f(b)) * (b-a)/2;150for(i=0; i<ITERATE; i++)151 {152 F_2k_1 = 0;153 J = 1;154155for(j=0; j<=i; j++) //区间划分156 J <<= 1; //2^J157 h = (b - a) /J; //步长158//M = J/2; //2M表⽰将积分区域划分的块数159for(j=1; j <= J; j += 2) //160 {161 F_2k_1 += f(a + j*h); //f(2k-1)累加和163 T[i+1] = T[i]/2 + h * F_2k_1; //递推梯形公式164 res_T = T[i+1];165166if(fabs(T[i+1] - T[i]) < EPS)167if(i < 3) continue;168else break;169 }170171for(i=1; i<ITERATE; i++)172 {173 S[i] = (4 * T[i] - T[i-1]) / 3; //递推⾟普森公式174 res_S = S[i];175if(fabs(S[i] - S[i-1]) < EPS)176if(i < 3) continue;177else break;178 }179180 printf("Simpson_Formula : the value of function is %.10f\n", res_S);181//return res_S;182 }183184//布尔公式185void Bool_Formula(double f(double), double a, double b) //布尔公式186 {187 unsigned int i, j, M, J=1;188double h;189double F_2k_1 = 0;190double T[32], S[32], B[32];191double res_T = 0, res_S = 0, res_B;192193 T[0] = (f(a) + f(b)) * (b-a)/2;194for(i=0; i<ITERATE; i++)195 {196 F_2k_1 = 0;197 J = 1;198199for(j=0; j<=i; j++) //区间划分200 J <<= 1; //2^J201 h = (b - a) /J; //步长202//M = J/2; //2M表⽰将积分区域划分的块数203for(j=1; j <= J; j += 2) //204 {205 F_2k_1 += f(a + j*h); //f(2k-1)累加和206 }207 T[i+1] = T[i]/2 + h * F_2k_1; //递推公式208 res_T = T[i+1];209210if(fabs(T[i+1] - T[i]) < EPS)211if(i < 3) continue;212else break;213 }214215for(i=1; i<ITERATE; i++)216 {217 S[i] = (4 * T[i] - T[i-1]) / 3; //递推⾟普森公式218 res_S = S[i];219if(fabs(S[i] - S[i-1]) < EPS)220if(i < 3) continue;221else break;222 }223224for(i=1; i<ITERATE; i++)225 {226 B[i] = (16 * S[i] - S[i-1]) / 15; //递推布尔公式227 res_B = B[i];228if(fabs(B[i] - B[i-1]) < EPS)229if(i < 3) continue;230else break;231 }232233 printf("Bool_Formula : the value of function is %.10f\n", res_B);234//return res_B;235 }236237//采⽤⼆分区间的⽅法迭代,实际运⾏速度很慢238void Formula(int method, double f(double), double a, double b)//递推梯形公式239 {240 unsigned int i, j, M, J=1;241double h;242double F_2k_1 = 0;243double T[32], S[32], B[32];244double res_B = 0, res_S = 0, res_T = 0;247for(i=0; i<ITERATE; i++)248 {249 F_2k_1 = 0;250 J = 1;251252for(j=0; j<=i; j++) //区间划分253 J <<= 1; //2^J254 h = (b - a) /J; //步长255//M = J/2; //2M表⽰将积分区域划分的块数256for(j=1; j <= J; j += 2) //257 {258 F_2k_1 += f(a + j*h); //f(2k-1)累加和259 }260 T[i+1] = T[i]/2 + h * F_2k_1; //递推公式261 res_T = T[i+1];262263if(fabs(T[i+1] - T[i]) < EPS)264if(i < 3) continue;265else break;266 }267268switch(method)269 {270default :271case TRAPEZOID_FORMULA :272 printf("Trapezoid_Formula : the value of function is %.10f\n", res_T); 273//return res_T;274break;275case SIMPSON_FORMULA :276for(i=1; i<ITERATE; i++)277 {278 S[i] = (4 * T[i] - T[i-1]) / 3;279 res_S = S[i];280if(fabs(S[i] - S[i-1]) < EPS)281if(i < 3) continue;282else break;283 }284 printf("Simpson_Formula : the value of function is %.10f\n", res_S); 285//return res_S;286break;287case BOOL_FORMULA :288for(i=1; i<ITERATE; i++)289 {290 S[i] = (4 * T[i] - T[i-1]) / 3;291 res_S = S[i];292if(fabs(S[i] - S[i-1]) < EPS)293if(i < 3) continue;294else break;295 }296for(i=1; i<ITERATE; i++)297 {298 B[i] = (16 * S[i] - S[i-1]) / 15;299 res_B = B[i];300if(fabs(B[i] - B[i-1]) < EPS)301if(i < 3) continue;302else break;303 }304305 printf("Bool_Formula : the value of function is %.10f\n", res_B); 306//return res_B;307break;308 }309310 }测试结果:。
三用MATLAB实现定积分计算
![三用MATLAB实现定积分计算](https://img.taocdn.com/s3/m/0f936348bd64783e09122b97.png)
s=s+feval(f,z1(j))+feval(f,z2(j));
0,2*pi,1000)
end
s=
s=s*h/2;
-267.2458
Gauss-lobatto是改进的高斯积分方法,采取自适应求积方法
三 用MATLAB实现定积分计算: 2 sin xdx 0
⑴ 矩形公式与梯形公式 z1 =
形的公求式积代公数式精。度为对于1,f 辛(x)甫=1森, x公, 式x 2的, x代3,数应精该度有为 3。
节成点立我x,ba下i和们依f面系先(次介x数考11)将绍dfA虑f(x的i(,xx节))是d=使点x1取t代数, (x消数xAb,为1对xaa精f22)(2区/bx,度而21x间)尽使3代等可用Ab入2分2能(fa1,(的1高1x1)即2限计的)f可制(算所得a,的谓2b到n积高确给分斯b定定近2公aA后似t式1,)同A值d。2时t有,x确1代,x定数2
这两种用随机模拟的方式求积分近似值的方法 z=sum(y)*pi/2/n
/2
z=
蒙特卡罗方法
sin xdx
1.0010
0
3、蒙特卡罗方法的通用函数与调用格式
均值估计法
随机投点法 (设0≤ f(x) ≤1)
b
a
f
( x)dx
ba n
n i1
f
(a (b a)ui )
直接调用。这里被积函数为内部函数,无需另外定义。
s=gaussinteg(‘sin', 0, pi/2,1000) s=
1.0000
6000
§2 数值积分应用问题举例4000
2000
0
一 求卫星轨道长度
用递推公式计算定积分(matlab版)上课讲义
![用递推公式计算定积分(matlab版)上课讲义](https://img.taocdn.com/s3/m/92e9bd2483d049649a66589c.png)
0.1823 -0.4116 2.3914 -11.7069 58.7346 -293.5063
仅供学习与交流,如有侵权请联系网站删除 谢谢4
精品资料
%再显示 y(7)—y(11) ans =
1.0e+005 * 0.0147
的公式。
仅供学习与交流,如有侵权请联系网站删除 谢谢8
利用递推公式:y(n-1)= - *y(n),n=20,19,…,1.
而且,由 = *
≤
≤*
=
可取:y(20)≈ *(
)≈0.008730.
仅供学习与交流,如有侵权请联系网站删除 谢谢2
精品资料
实验内容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y 用来存储结果; function [y,n]=f(); syms k y_20; y=zeros(21,1); n=1;
Columns 12 through 20 -0.0000 0.0000 -0.0001 0.0006 -0.0029 0.0143 -0.0717 0.3583 -1.7916
n = 19
算法二结果: >> [y,b]=f
仅供学习与交流,如有侵权请联系网站删除 谢谢6
精品资料
y= 0.1823 0.0884 0.0580 0.0431 0.0343 0.0285 0.0243 0.0212 0.0188 0.0169 0.0154 0.0141 0.0130 0.0120 0.0112 0.0105 0.0099 0.0093 0.0089 0.0083 0.0087
MATLAB数值计算
![MATLAB数值计算](https://img.taocdn.com/s3/m/c3ee05015acfa1c7ab00cc1a.png)
实验报告实验6: 数值计算(2)该实验作业设计教会学生基本的数值计算方法。
一、实验目的:1.通过完成实验,掌握MATLAB的数值计算2.熟悉浮点数相等的判断方法、了解截断误差;3.熟悉数值拟合的实际运用;4.熟悉牛顿法求方程的根。
二、实验内容1.1) 设 delta = 5 - 4.8; 用关系运算查看 delta 是否等于 0.2;利用format longE 查看delta究竟是多少,注意,由于计算机在浮点运算时,总存在舍入误差,故理想的判断相等的方法是使用 eps,即 abs(delta - 0.2) < eps2)尝试利用 roundn(delta,-5)四舍五入到小数点后面5位后,再利用关系运算查看其是否等于 0.2。
注意拷贝时勿跳坑!delta=5-4.8;%定义delta的值if delta==0.2%判断delta是否等于0.2disp('yes')endformat longE;%设置数值精度deltadelta =2.000000000000002e-01if abs(delta-0.2)<epsdisp('yes')endyesroundn(delta,-5)ans =2.000000000000000e-01%将delta四舍五入到小数点后面5位if roundn(delta,-5)==0.2disp('yes')end2. 利用符号计算 taylor(f, x, 'Order', n) 对符号函数f进行n阶截断展开,绘图观察对分别进行3阶、8阶、12阶截断的泰勒展开,并利用fplot( [ 三阶截断, 8阶截断, 12阶截断, 真实值] ) 绘图,要求x轴限制在-5 到5,坐标轴紧贴图形,并显示如fplot中的图例以方便观察。
查看不同截断阶数造成的误差。
clf;syms f(t)f(t)=exp(t);format short;y1=taylor(f,t,'Order',3);%对符号函数f进行n阶截断展开y2=taylor(f,t,'Order',8);y3=taylor(f,t,'Order',12);ax.XTick = [-5,5];fplot (y1,'y-',[-5,5]);axis 'tight'hold on;fplot (y2,'r-',[-5,5]);hold on;fplot (y3,'g-',[-5,5]);hold on;fplot (f,'bo-',[-5,5]);xlim([-5,5])%要求x轴限制在 -5 到 53. x = 0:5; 实验测得 y = [15, 10, 9, 6, 2, 0]; 请就y对x进行线性回归,说说其拟合的基本原理。
用递推公式计算定积分(matlab版)
![用递推公式计算定积分(matlab版)](https://img.taocdn.com/s3/m/b1f64132ef06eff9aef8941ea76e58fafab04564.png)
用递推公式计算定积分实验目的:1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差.2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式.3.理解不稳定的计算公式造成误差积累的来源与具体过程;4.掌握简单的matlab语言进行数值计算的方法.实验题目:对n=0,1,2,…,20,计算定积分:实验原理:由于y<n>= = –在计算时有两种迭代方法,如下:方法一:y<n>=– 5*y<n-1>,n=1,2,3, (20)取y<0>= = ln6-ln5 ≈ 0.182322方法二:利用递推公式:y<n-1>=-*y<n>,n=20,19, (1)而且,由 = * ≤≤* =可取:y<20>≈*<>≈0.008730.实验内容:对算法一,程序代码如下:function [y,n]=funa<>syms k n t;t=0.182322;n=0;y=zeros<1,20>;y<1>=t;for k=2:20y<k>=1/k-5*y<k-1>;n=n+1;endy<1:6>y<7:11>对算法二,程序代码如下:%计算定积分;%n--表示迭代次数;%y用来存储结果;function [y,n]=f<>;syms k y_20;y=zeros<21,1>;n=1;y_20=<1/105+1/126>/2;y<21>=y_20;for k=21:-1:2y<k-1>=1/<5*<k-1>>-y<k>/5;n=n+1;end实验结果:由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了.算法一结果:[y,n]=funa%先显示一y<1>—y<6>ans =0.1823-0.41162.3914-11.706958.7346-293.5063%再显示y<7>—y<11>ans =1.0e+005 *0.0147-0.07340.3669-1.83469.1728y =1.0e+012 *Columns 1 through 11 0.0000-0.00000.0000-0.00000.0000-0.00000.0000-0.00000.0000-0.00000.0000Columns 12 through 20 -0.00000.0000-0.00010.0006-0.00290.0143-0.07170.3583-1.7916n = 19算法二结果:>> [y,b]=fy =0.18230.08840.05800.04310.03430.02850.02430.02120.01880.01690.01540.01410.01300.01200.01120.01050.00990.00930.00890.00830.0087b =21实验分析:从两题的计算结果可以看出来,算法一是不稳定的,而算法二是稳定的.对算法一:由于y<1>本身具有一定的误差 ,设为a_1,则由于y<n>=1/n-5y<n-1>=1/n-5<1/<n-1>-5y<n-1>>=……=1/n-5/<n-1>-5^2/<n-2>-…-<5^n>*y<0>所以经过多次迭代后会使误差增大很多倍.由此可知:在实际应用过程中应尽量避免使用数值不稳定的公式.。
matlab梯形法求定积分
![matlab梯形法求定积分](https://img.taocdn.com/s3/m/d3456fb5f71fb7360b4c2e3f5727a5e9856a2793.png)
matlab梯形法求定积分Matlab是一种强大的数学计算软件,广泛应用于各个领域的科学研究和工程计算中。
其中,梯形法是一种常用的数值积分方法,用于近似计算定积分的值。
梯形法的基本思想是将被积函数在积分区间上的图像划分为若干个小梯形,然后计算这些梯形的面积之和。
通过增加小梯形的数量,可以提高计算结果的精度。
具体而言,梯形法的步骤如下:1. 将积分区间[a, b]均匀划分为n个子区间,其中n为任意正整数。
每个子区间的长度为h=(b-a)/n。
2. 在每个子区间上,选取两个端点对应的函数值,即f(a), f(b),作为梯形的两个底边。
3. 计算每个子区间上的梯形面积,即S=(f(a)+f(b))*h/2。
4. 将所有子区间上的梯形面积相加,得到整个积分区间上的近似积分值。
在Matlab中,可以通过编写函数来实现梯形法的计算。
下面是一个简单的示例代码:```matlabfunction result = trapezoidal(f, a, b, n)h = (b - a) / n;x = a:h:b;y = f(x);result = (sum(y) - (y(1) + y(end)) / 2) * h;end```在这个示例代码中,`f`表示被积函数,`a`和`b`表示积分区间的上下限,`n`表示子区间的数量。
函数首先计算出每个子区间的长度`h`,然后生成一个等差数列`x`,用于表示各个子区间的起始点。
接下来,通过调用被积函数`f`,计算出每个子区间上的函数值`y`。
最后,根据梯形法的公式,将所有子区间上的梯形面积相加,并乘以子区间长度`h`,得到近似积分值。
使用这个函数,我们可以计算任意函数在给定积分区间上的定积分。
例如,我们可以计算函数f(x) = x^2在区间[0, 1]上的定积分,代码如下:```matlabf = @(x) x.^2;a = 0;b = 1;n = 1000;result = trapezoidal(f, a, b, n);disp(result);```运行这段代码,我们可以得到近似积分值为1/3。
matlab求定积分之实例说明
![matlab求定积分之实例说明](https://img.taocdn.com/s3/m/a9a04c4e453610661ed9f4e6.png)
一、符号积分符号积分由函数int来实现。
该函数的一般调用格式为:int(s):没有指定积分变量和积分阶数时,系统按findsym函数指示的默认变量对被积函数或符号表达式s求不定积分;int(s,v):以v为自变量,对被积函数或符号表达式s求不定积分;int(s,v,a,b):求定积分运算。
a,b分别表示定积分的下限和上限。
该函数求被积函数在区间[a,b]上的定积分。
a和b可以是两个具体的数,也可以是一个符号表达式,还可以是无穷(inf)。
当函数f关于变量x在闭区间[a,b]上可积时,函数返回一个定积分结果。
当a,b中有一个是inf时,函数返回一个广义积分。
当a,b中有一个符号表达式时,函数返回一个符号函数。
例:求函数x^2+y^2+z^2的三重积分。
内积分上下限都是函数,对z积分下限是sqrt(x*y),积分上限是x^2*y;对y积分下限是sqrt(x),积分上限是x^2;对x的积分下限1,上限是2,求解如下:>>syms x y z %定义符号变量>>F2=int(int(int(x^2+y^2+z^2,z,sqrt(x*y),x^2*y),y,sqrt(x),x^2),x,1,2) %注意定积分的书写格式F2 =1610027357/6563700-6072064/348075*2^(1/2)+14912/4641*2^(1/4)+64/225*2 ^(3/4) %给出有理数解>>VF2=vpa(F2) %给出默认精度的数值解VF2 =224.92153573331143159790710032805二、数值积分1.数值积分基本原理求解定积分的数值方法多种多样,如简单的梯形法、辛普生(Simpson)•法、牛顿-柯特斯(Newton-Cotes)法等都是经常采用的方法。
它们的基本思想都是将整个积分区间[a,b]分成n个子区间[xi,xi+1],i=1,2,…,n,其中x1=a,xn+1=b。
数值计算与MATLAB方法课后答案
![数值计算与MATLAB方法课后答案](https://img.taocdn.com/s3/m/5772201f172ded630a1cb6af.png)
第一章习题1. 序列满足递推关系,取及试分别计算,从而说明递推公式对于计算是不稳定的。
n1 1 0.01 0.00012 0.01 0.0001 0.0000013 0.0001 0.000001 0.000000014 0.000001 0.0000000110-105 0.00000001 10-10n1 1.000001 0.01 0.0000992 0.01 0.000099 -0.000099013 0.000099 -0.00009901-0.010000994 -0.00009901 -0.01000099-1.00015 -0.01000099-1.0001初始相差不大,而却相差那么远,计算是不稳定的。
2. 取y0=28,按递推公式,去计算y100,若取(五位有效数字),试问计算y100将有多大误差?y100中尚留有几位有效数字?解:每递推一次有误差因此,尚留有二位有效数字。
3.函数,求f(30)的值。
若开方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?设z=ln(30-y),,y*, |E(y)| 10-4z*=ln(30-y*)=ln(0.0167)=-4.09235若改用等价公式设z=-ln(30+y),,y*, |E(y)|⨯10-4z*=-ln(30+y*)=-ln(59.9833)=-4.094074.下列各数都按有效数字给出,试估计f的绝对误差限和相对误差限。
1)f=sin[(3.14)(2.685)]设f=sin xyx*=3.14, E(x)⨯10-2, y*=2.685, E(y)⨯10-3,sin(x*y*)=0.838147484, cos(x*y*)=-0.545443667⨯(-0.5454) ⨯⨯10-2+3.14(-0.5454) ⨯⨯10-3|⨯10-2⨯10-2|E r(f)| ⨯10-2⨯10-2<10-22)f=(1.56)设f = x y ,x*=1.56, E(x)⨯10-2, y*=3.414, E(y)⨯10-3,⨯⨯⨯10-2⨯⨯⨯10-3|⨯⨯⨯10-2⨯⨯⨯10-3|=0.051|E r(f)| =0.01125.计算,利用下列等式计算,哪一个得到的结果最好,为什么?6.下列各式怎样计算才能减少误差?7. 求方程x2-56x+1=0的二个根,问要使它们具有四位有效数字,至少要取几位有效数字?如果利用伟达定理, 又该取几位有效数字呢?解一:若要取到四位有效数字,如果利用伟达定理,解二:由定理二,欲使x1,x2有四位有效数字,必须使由定理一知,∆至少要取7位有效数字。
求解递推数列第n项的MATLAB实现
![求解递推数列第n项的MATLAB实现](https://img.taocdn.com/s3/m/d6cb132e580216fc700afd5a.png)
求解递推数列第n项的MATLAB实现1 绪论1.1 MATLAB简介随着计算机技术的不断发展,计算机已成为应用数学工作者解决数学问题的主要运算工具,数学运算软件如:MATLAB,Mathematica,Maple等,已经被广泛使用。
MATLAB是面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须要进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的的编辑模式。
MATLAB可以进行矩阵运算、绘制函数和数学、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
1.2 课题的背景在生活中,很多计数问题到最后都归结为一些递推公式,如果单依赖数学的方法,有些递推公式按照如今的数学发展水平是很难找出通项公式的,在解决实际问题中,不免涉及到求解第n项的值,如果n比较大,手算的话得从第一项一直计算到第n项,也许算到其中的某一项突然算错了,最后得到的值和预估的值不一样,又得从头算起,这样费时费力。
数学软件的形成为这一计算提供了很大的方便,只需要根据递推关系编一个程序,很快就能得出计算结果。
本文选了特殊的并且很有代表性的四个递推数列,给出求解其第n项的算法,解决和递推数列相关的应用型问题。
1.3 MATLAB相比于其他程序设计语言的优点MATLAB作为一个数学运算工具,它将矩阵作为基本的存储单元。
矩阵运算很快,代码复杂度小。
它定义数据时无需声明数据类型,各种函数的运算可以直接进行符号运算,更加的面向于用户。
MATLAB的工具箱也很丰富,在图像处理、信号处理、仿真等方面的工具箱里的工具、示例非常多,功能非常强大。
2 用MATLAB求解递推数列第n项数列是按一定次序排列的一列数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用递推公式计算定积分
实验目的:
1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。
2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。
3.理解不稳定的计算公式造成误差积累的来源及具体过程;
4.掌握简单的matlab语言进行数值计算的方法。
实验题目:
对n=0,1,2,…,20,计算定积分:
实验原理:
由于y(n)= = –
在计算时有两种迭代方法,如下:
方法一:
y(n)=– 5*y(n-1),n=1,2,3, (20)
取y(0)= = ln6-ln5 ≈ 0.182322
方法二:
利用递推公式:y(n-1)=-*y(n),n=20,19, (1)
而且,由 = * ≤≤* =
可取:y(20)≈*()≈0.008730.
实验容:
对算法一,程序代码如下:
function [y,n]=funa()
syms k n t;
t=0.182322;
n=0;
y=zeros(1,20);
y(1)=t;
for k=2:20
y(k)=1/k-5*y(k-1);
n=n+1;
end
y(1:6)
y(7:11)
对算法二,程序代码如下:
%计算定积分;
%n--表示迭代次数;
%y用来存储结果;
function [y,n]=f();
syms k y_20;
y=zeros(21,1);
n=1;
y_20=(1/105+1/126)/2;
y(21)=y_20;
for k=21:-1:2
y(k-1)=1/(5*(k-1))-y(k)/5;
n=n+1;
end
实验结果:
由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。
算法一结果:
[y,n]=funa
%先显示一y(1)—y(6)
ans =
0.1823
-0.4116
2.3914
-11.7069
58.7346
-293.5063
%再显示y(7)—y(11)
ans =
1.0e+005 *
0.0147
-0.0734
0.3669
-1.8346
9.1728
y =
1.0e+012 *
Columns 1 through 11
0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000
0.0000
-0.0000
0.0000
Columns 12 through 20 -0.0000
0.0000
-0.0001
0.0006
-0.0029
0.0143
-0.0717
0.3583
-1.7916
n = 19
算法二结果:>> [y,b]=f y =
0.1823 0.0884 0.0580 0.0431 0.0343 0.0285 0.0243 0.0212 0.0188 0.0169 0.0154 0.0141 0.0130 0.0120 0.0112 0.0105 0.0099 0.0093 0.0089
0.0083
0.0087
b =
21
实验分析:
从两题的计算结果可以看出来,算法一是不稳定的,而算法二是稳定的。
对算法一:由于y(1)本身具有一定的误差,设为a_1,
则由于
y(n)=1/n-5y(n-1)=1/n-5(1/(n-1)-5y(n-1))
=……
=1/n-5/(n-1)-5^2/(n-2)-…-(5^n)*y(0)
所以经过多次迭代后会使误差增大很多倍。
由此可知:在实际应用过程中应尽量避免使用数值不稳定的公式。