函数的表示方法
函数的表示法知识点
函数的表示法1.函数的三种表示法: 图象法、列表法、解析法2.分段函数:在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
3.映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
记作“f :A →B ”给定一个集合A 到B 的映射,如果a ∈A,b ∈B.且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,b=f (a ),元素a 叫做元素b 的原象.说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A →B 来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。
注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.4.常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值5.分段函数:在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
函数的基本概念
函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。
它在数学和其他领域中有着广泛的应用。
本文将介绍函数的基本概念以及一些常见的函数类型。
1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。
通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式表示。
2. 函数的表示方法函数可以通过不同的方式进行表示。
常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。
- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。
图像可以帮助我们更直观地理解函数的性质。
- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。
3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。
函数的值域是指函数的所有可能输出值,即函数的取值范围。
定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。
4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。
线性函数的图像为一条直线,具有常等差的特点。
4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。
幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。
4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。
指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。
4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。
对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。
4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
第3讲函数的表示方法
问题研究
求函数解析式通常有哪些方法?
典型例题1
例1 分别根据下列条件,求函数f(x)的解析式:
⑴已知 f ( x 1) x 2 x ;
⑵已知 f ( x)是一次函数,且f f x 9x 8; ⑶已知 3 f x 2 f x 2x 5; ⑷已知 f 0 0,且对任意x,y R,有
例2
已知函数
f
( x)满足:f
x
1 x
x2
1, x2
求函数 f ( x)的解析式.
解
配方,得f
x
1 x
x
1 x
2
-2,
f ( x) x2 -2.
错!
思考1 解题是否就此结束?
定义域!
思考2 函数定义域是{x∈R︱x≠0},对吗?
求解过程
x 0且x 1.
1
-1 O 1
x
回顾反思
(1)求解步骤:
①确定函数的定义域;
y
②化简函数的解析式;
③作出函数的图象. (2)思维误区:
1
-1 O 1
x
①不会化简,无从下手;
②范围有误,图象失真;
③忽视细节,作图粗糙.
思路分析
例3 画出下列函数的图象:(2) y x 1 x 2 .
①×3- ②×2,解得 f(x)=2x+1.
回顾反思
(1)基本策略:解方程组,实施消元. (2)数学思想:函数与方程思想. (3)思维障碍:无法找到另一个方程,思维受阻.
思路分析
例1 ⑷已知f(0) =1,且对任意x,y∈R,有 f(x-y)=f(x)-y(2x-y+1),求f(x). 赋值法!
函数的三种表示方法
函数的三种表示方法全文共852字,预计阅读时间:3分钟上周,我们学习了函数的概念和三个要素。
你记得他们吗?如果忘记了,请及时复习!今天我们将继续函数的学习,主要学习函数的不同表达方式和相关知识点,并额外拓展映射的内容,大家看好了!一,函数的常见表示方法在初中阶段,我们已经学习了函数的三种常用表示法,即解析法、列表法和图像法。
你知道这三种方法各自的适用范围和优缺点吗?解析法:使用数学表达式表示两变量之间的对应关系,也就是函数式表达法,其优点是比较简洁明了,并且可以在已知定义域(自变量)的情况下根据函数式的特点求得值域(函数值),但是这种方法往往非常抽象,因此在之后的学习过程中,解析法常常和图像法结合使用;列表法:使用表格表示两变量之间的对应关系,这种方法的优点是并不需要计算就可以清晰地看出函数值,适合银行利率表之类的问题,但是大家也会发现,列表法的容量是非常有限的,而且是离散的,并不是连贯的;图像法:用图像来表示两个变量之间的对应关系,与前两者相比,图像法更直观,能看到变化趋势。
然而,提取图像的过程往往很复杂,因此它常常与分析方法一起使用。
二,分段函数分段函数是指在一个定义域内,自变量的不同范围有不同对应关系的函数。
需要同学们注意的是:1)虽然分段函数包括几个不同的对应关系,但是它依然是一个函数;2)分段函数的定义域是几个部分的“并”(什么是并,大家还记得吗?);3)分段函数定义域的不同部分并不能相交;4)由于分段函数包含若干对应关系,因此分段函数的图像不一定是连续曲线。
三,扩展学习 - 映射人教版教材中已经删除了映射的内容,但是为了让学生更好的理解函数,我们先简单的了解一下映射的基本概念,并不是强制性的!映射的定义是:其中“f:A→B”表示A到B的映射,而“f:B→A”表示B到A的映射,这两者并不是同一个映射!映射也有三个要素,即两个集合和一个对应的规则,和函数很像。
但函数要求两个集合必须是数的集合,映射对集合没有特殊要求。
浅谈函数三种表示方法的合理运用
浅谈函数三种表示方法的合理运用
表示函数的三种方法:图象法、列表法、解析法。
从直观、精准等方面归纳:
1.解析法的优点: 用函数关系式来表示,形如y=f(x),y=2x+5 或者是关于x和y的方
程例如5x+3y=7函数关系清楚,容易从自变量的值求出其对应的函数值,便于研究函数的性质。
2.列表法的优点: 采用表格的形式。
列出相应的x值和对应的y值,列举出来就行,
缺点是有些方程不可能把所有的x都列举出来,所以不能完全表示一个函数。
不必通过计算就知道当自变量取某些值时函数的对应值.
3.图象法的优点: 一条曲线(直线是特殊的曲线)与函数相一一对应,所以一条曲线
表示一个函数。
能直接形象的表示出函数的变化情况.。
高一数学函数的常用表示方法
x
45
钱数y
5 10 15 20 25
例4 下表是某校高一(1)班三名同学在高一 学年度六次数学测试的成绩及班级平均分表。
解:从表中可以知道每位同学在每次测试中的成 绩,但不太容易分析每位同学的成绩变化情况。 如果将“成绩”与“测试时间”之间的关系用函 数图象表示出来,如下表,那么就能比较直观地 看到成绩变化地情况。这对我们地分析很有帮助。
解:这个函数的定义域是数集{1,2,3,4,5} 用解析法可将函数y=f(x)表示为
y 5x, x 1,2,3,4,5
用列表法可将函数表示为
笔记本数x 1
钱数y
5
234 5 10 15 20 25
用图象法可将函数表示为下图
y
.
25
. 20 . 15 .. 10
5
012345
笔记本数x 1 2 3
2.1.2函数表示法 课件
例5 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6.某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
已知两个相邻的公共汽车站间相距为1公里,如果 沿途(包括起点站和终点站)有21个汽车站,请 根据题意,写出票价与里程之间的函数解析式, 并画出函数的图象。
解:设票价为y,里程为x,则根据题意, 如果某空调汽车运行路线中设21个汽车站,那么汽车 行驶的里程约为20公里,所以自变量x的数的三种表示法及其各种的优点 2、分段函数 3、映射的概念
函数的表示方法
函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系; 2.列表法:就是列出表格来表示两个变量的函数关系; 3.解析法:就是把两个变量的函数关系,用等式来表示。
二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
★重、难点突破重点:掌握函数的三种表示法-----图象法、列表法、解析法,分段函数的概念 难点:分段函数的概念,求函数的解析式重难点:掌握求函数的解析式的一般常用方法: (1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 问题1.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-= 方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 问题2:已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f 因为 x xf x f 3)1(2)(=+① 以x 1代x 得 xx f x f 13)(2)1(⋅=+②由①②联立消去)1(x f 得)0(2)(≠-=x x xx f ★热点考点题型探析考点1:用图像法表示函数[例1] (09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量 出水量 蓄水量(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。
高一数学函数的表示方法
函数的表示方法(一)1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法4、讨论分别用a x -,a y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?5、讨论分别用x -,y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?6、讨论分别用ax ,by 分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?7、讨论分别用||x ,|)(|x f 分别替换函数)(x f y =中的x ,)(x f 以后函数的图像会发生哪些变化?8、试作出下列函数的图像: (1)43-+=x x y (2)11-=x y11、若)3()3(x f x f +=-,那么函数)(x f 的图像有何性质? 12、)3(x f y -=与)3(x f +的图像之间有何关系函数的表示方法(二)1.例题:例1.(1)已知一次函数()f x 满足(0)5f =,图象过点(2,1)-,求()f x ;(2)已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ; (3)已知二次函数()F x ,其图象的顶点是(1,2)-,且经过原点,()F x .例2.(1)已知2()43f x x x =-+,(1)f x +; (2)已知2(1)2f x x x +=-,求()f x .例3.函数在闭区间[1,2]-例4.某人开汽车以60/km h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50/km h 的速度返回A 地,把汽车离开A 地的路程()x km 表示为时间()t h (从A 地出发是开始)的函数,并画出函数的图象;再把车速v /km h 表示为时间()t h 的函数,并画出函数的图象.例5.已知一个函数的解析式为22y x x =-,它的值域为[1,3]-,这样的函数有多少个?试写出其中两个函数.2.练习:(1)练习:(1)已知2(3)21f x x =-,求()f x ; (答案:22()19f x x =-)(2)已知2211()1f x x xx-=++,求()f x .(答案:2()3f x x =+)3.小结:1.已知函数类型,求函数解析式,常用待定系数法;它的基本步骤是:设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数; 2.已知()f x 的解析式,求[()]f g x 时,把x 用()g x 代替;已知[()]f g x 的解析式,求()f x 时,常用配凑法或换元法;3.在解决实际问题时,求出函数解析式后,一定要写出定义域。
函数的三种表示方法课件
03
表格法
通过表格列出函数在不同 自变量值下的对应函数值。
优点
能够直观地展示函数的变 化趋势和数值特征。
缺点
对于连续函数,需要大量 的数据点才能准确反映函 数关系。
图象法
图象法
通过绘制函数图象来表示 函数关系。
优点
直观、形象,能够清晰地 展示函数的形态和变化规 律。
缺点
对于复杂函数,可能难以 准确绘制其图象。
抛物线开口向下。
接这些点即可得到函数的图象。
高次函数图象法表示
01
高次函数图象是一个连续曲线,其一般形式为y=anx^n+a(n-1)x^(n1)+...+a1x+a0,其中an至a0为常数且an≠0。
02
根据n的奇偶性,高次函数的增减性不同:当n为奇数时,函数在x>0时单调递 增,在x<0时单调递减;当n为偶数时,函数在x>0时单调递减,在x<0时单调 递增。
通过实例分析,加深 对函数表示方法的理 解和应用。
能够根据实际需求选 择合适的函数表示方 法。
02
函数的数学表示方法
解析法
解析法
缺点
使用数学表达式来表示函数关系,如 $y = f(x)$。
对于复杂函数,可能难以找到准确的 数学表达式。
优点
精确、明了,能够准确表达函数的数 学关系。
表格法
01
02
03
解析法实例
一次函数解析法表示
一次函数解析法表示:$y = ax + b$,其中$a$和$b$是常数,$a neq 0$。 实例:$y = x + 1$,其中$a = 1$,$b = 1$。
图像:直线。
函数的表示方法
函数的表示方法1.函数的表示方法:列表法,图象法,解析法;2.分段函数:在函数的定义域内,对于自变量的不同取值区间,有着不同的对应法则3.函数图象的一类基本变换①:将函数的图象关于y轴对称得到的新的图像就是的图像;②:将函数的图象关于x轴对称得到的新的图像就是的图像;③:将函数的图象在x轴下方的部分对称到x轴的上方,连同函数的图象在x轴上方的部分得到的新的图像就是的图像;④:将函数的图象在y轴左侧的部分去掉,函数的图象在y轴右侧的部分对称到y轴的左侧,连同函数的图象在y轴右侧的部分得到的新的图像就是的图像.4.函数值域的求法观察法:通过对解析式的简单变形和观察,利用熟知的基本函数的值域,求出函数的值域;配方法:若函数是二次函数形式,可通过配方后再结合二次函数的性质求值域,但要注意给定区间上的二次函数最值的求法;分离常数法:形如的函数值域为;反函数法:如求函数的值域,解出,,解得;判别式法:求f(x)=(a12+a22≠0)的值域时,常利用函数的定义域非空这一隐含的条件,将函数转化为方程,利用Δ≥0转化为关于函数值的不等式1.关于分段函数的叙述,正确的有( )分段函数的定义域是各段定义域的并集,值域是各段值域的并集;分段函数尽管在定义域不同的部分有不同的对应法则,但它们是一个函数;若分别是分段函数的两个不同对应法则的值域,那么A.1个 B.2个 C.3个 D.0个2.已知,则( ) A. B. C. D.3.函数的图象是( ) A.关于直线对称 B.关于直线对称C.关于直线对称 D.不是对称图形4.已知,则 5.函数y=的定义域为______________,值域为___________________6.函数的图像是( )7.已知,则8.函数的值域是1.B 2.A 3.B 4. 5.[-1,2],[0,] 6.A7. 8.函数的单调性1.增函数和减函数 对于函数的定义域I内某个区间上的任意两个自变量的值⑴若当<时,都有<,则说在这个区间上是增函数;⑵若当<时,都有 >,则说在这个区间上是减函数.2.单调性和单调区间 若函数在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间,此时也说函数是这一区间上的单调函数.3.证明函数单调性的一般步骤⑴设,是给定区间内的任意两个值,且<;⑵作差-,并将此差式变形(要注意变形的程度);⑶判断-的正负(要注意说理的充分性);⑷根据-的符号确定其增减性.4.复合函数单调性的判断对于函数和,如果在区间上是具有单调性,当时,,且在区间上也具有单调性,则复合函数在区间具有单调性的规律见下表:增↗减↘增↗减↘增↗减↘增↗减↘减↘增↗以上规律还可总结为: “同增异减”.1.下列命题正确的是()A.定义在上的函数,若存在,使得时有,那么在上为增函数B.定义在上的函数,若有无穷多对,使得时有,那么在上为增函数C.若在区间上为增函数,在区间上也为增函数,那么在上也一定为增函数D.若在区间上为增函数且,那么。
(整理版)函数的表示法解读
函数的表示法解读函数有三种常用的表示方法解析法意义列表法意义图像法意义相互转化1、解析法把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析式.优点:①简明、全面地概括了变量间的关系,便于运用解析式研究和应用函数的性质.②通过解析式可求出任意一个自变量的值所对应的函数值.2、列表法即列出表格来表示两个变量的函数关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值,列表法在实际生产和生活中有广泛的应用.3、图像法即用图像表示相对应的函数值.优点:能直观形象地表示自变量的变化,相应的函数值的变化趋势,使我们可通过图像来研究函数的某些性质.特别提示以下两类问题值得我们很好地研究:①如何在条件下确定函数:欲确定一个函数,即是要设法得到这个函数的表示,这时要注意从解析式能否确定、是否可以列出相应的表格和是否可以作出函数的图像这三个方面去考虑,通常情况下的优先考虑是设法求出函数的解析式②在给出函数表示方法的根底上研究函数的性质:无论是用哪一种方法表示出函数,都已经确定了函数中两个变量之间的关系,这一关系反映了该函数的各种性质,具体研究时,主要围绕函数的定义域、值域、图像等方面思考,注意数形结合思考问题4.难点疑点突破〔1〕函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法那么,二是要求出函数的定义域.求函数表达式的主要方法有:待定系数法、换元法、消参法等,如果函数解析式的构造时,可用待定系数法;复合函数f[g(x)]表达式时,可用换元法,这时要注意自变量的取值范围;当表达式简单时,也可用配凑法,假设抽象的函数表达式,那么常用解方程组,消参的方法求出f(x).〔2〕函数的图像是函数关系的一种表示形式,它反映了从“图形〞方面刻画函数的变化规律.它可以帮助我们研究函数的有关性质,也可以帮助我们记忆各类函数的根本性质.函数的图像可能是一条光滑的直线,也可能是直线或折线或其中的一局部,还可能是一些间断点.描点法是作函数的图像的根本方法.。
高一数学函数的常用表示方法
2.1.2函数表示法 课件
例5 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6.某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
;单创:/roll/2019-10-14/doc-iicezuev2144522.shtml
;
;
于是,带她去看,说明病史后,老中医什么都没说,只是揭开自己的白大褂,她看见,他只有一条腿。 (17)他说,人活着,不是靠双腿,靠的是一颗完整的心,我只有一条腿,活得好好的,你还比我多半条腿呢,怕什么? (18)从那以后,她常常去老中医那里,不是看病,而是疗心。 (19)再后来,父母给她装了假肢,搬了家,学了钢琴,当了钢琴老师,成了现在的自己。 (20)说完,她淡淡地笑,而我,似乎看见另外一个不一样的她,在我眼前,诉说别人的故事。 (21)是啊,如果不是偶然看见,在我心里,在我眼里,她依旧是那个只会撒娇、娇弱漂亮的公主,而此 刻,我似乎看见,那些她曾经受过的伤害和遭遇,凝聚成一股钢铁般的力量,让她坚强。 (22)再后来,她睡了。 (23)我走在走廊的尽头,心绪难平。 (24)我看见天边有一颗星星,异常耀眼,它像天空的眼睛,注视着大地,带给深沉无助的黑夜,一方光亮,也给黑夜里迷路的人们, 一抹希望。 (25)慢慢地,我看见天边泛着鱼肚白,黎明来了。 (26)那一刻,内心的迷茫,似乎慢慢退却,一点点被一束光照亮,所有难以启齿的磨难和曾经以为的绝望,慢慢变成了希冀。 (27)是的,繁华尽头有悲凉,尘埃深处是繁花。 (2017年5月9日) 16.
函数的表示法
类比二次函数y= 类比二次函数 =x2 及二次函数y=( - 及二次函数 =(x-2 )2+1你 =( 你 有何感想? 有何感想?
问题探究
2x+3, x<- <-1, <- x2, -1≤x<1, < 4. 已知函数 (x)= 已知函数f x-1, - x≥1 .
(1)求f{f[f(-2)]} ;(复合函数) 求 - (复合函数) (2) 当f (x)=-7时,求x ; - 时求
欲改造营口开发区世纪广场中 心的圆形喷水池, 心的圆形喷水池,已知原喷水池直径为 20m, 20m,喷水池的周边靠近水面的位置安装 一圈喷水头,喷出的水柱在离池中心4m 一圈喷水头,喷出的水柱在离池中心4m 处达到最高,高度为6m 6m, 处达到最高,高度为6m,现设想在喷水 池的中心设计一个装饰物, 池的中心设计一个装饰物,使各方面喷 来的水柱在此处汇合, 来的水柱在此处汇合,这个装饰物的高 度应当如何设计? 度应当如何设计?
函数的表示法
函数表示法有几种?
函数表示法 解析法 图像法 列表法
一、函数的三种表示方法: 函数的三种表示方法:
定义:是把两个变量的函数关系,用一个等式来表示, 定义:是把两个变量的函数关系,用一个等式来表示, 1、解析法 简称解析式。 简称解析式。 优点:函数关系清楚, 优点:函数关系清楚,容易从自变量的值求出其对应 的函数值,便于用解析式来研究函数的性质。 的函数值,便于用解析式来研究函数的性质。 2、列表法 定义:是列出表格来表示两个变量的函数关系。 定义:是列出表格来表示两个变量的函数关系。 优点: 优点:不必通过计算就知道当自变量取某些值时函 数的对应值。 数的对应值。 3、图象法 定义:是用函数图象来表示两个变量的函数关系。 定义:是用函数图象来表示两个变量的函数关系。 优点:能直观形象地表示出函数的变化情况。 优点:能直观形象地表示出函数的变化情况。
函数有哪几种表示法?你能谈谈它们的优点和不足吗?
函数有哪几种表示法?你能谈谈它们的优点和不足吗?
答:表示函数有三种方法:解析法,列表法,图象法.结合其意义、优点与不足,分别说明如下.
(1)利用解析式(如学过的代数式)表示函数的方法叫做解析法.用解析式表示函数的优点是简明扼要、规范准确.已学利用函数的解析式,求自变量x=a时对应的函数值,还可利用函数的解析式,列表、描点、画函数的图象,进而研究函数的性质,又可利用函数解析式的结构特点,分析和发现自变量与函数间的依存关系,猜想或推导函数的性质(如对称性、增减性等),探求函数的应用等.不足之处是有些变量与函数关系很难或不能用解析式表示,求x与y的对应值需要逐个计算、有时比较繁杂.
(2)通过列表给出y与x的对应数值、表示y是x的函数的方法叫做列表法.列表法的优点是能鲜明地显现出自变量与函数值之间的数量关系,于是一些数学用表应运而生.
(3)利用图象表示y是x的函数的方法叫做图象法.用图象表示函数的优点是形象直观,清晰呈现函数的增减变化、点的对称、最大(或小)值等性质.图象法的不足之处是所画出的图象是近似的、局部的,观察或由图象确定的函数值往往不够准确.
由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽人意,所以在应用中本着物尽其用、扬长避短、优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.。
函数的表示方法
例如:初中学习过的平方表、平方根表、三角函数表。我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.
特别提醒:
列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。这种表格常常应用到实际生产和生活中。
函数的表示方法
1、能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;
2、了解简单的分段函数,并能简单应用;
一、函数的常用表示方法简介:
1、解析法
如果函数 中, 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。
例如, =60 , = , , 等等都是用解析式表示函数关系的。
答案:D
3.函数 的图像是( )
(A) (B) (C) (D)
答案:C
4.已知函数 ,则( )
A、 B、 C、 D、不能确定大小
答案: A
5.如图,已知函数 的图象关于直线 对称,则满足不等式 的实数 的取值范围是。
答案: 或
6.根据函数 ,可以知道, , , (横线上填“>”或“<”符号)
答案:
7.设 ,求函数 的最大值。
列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。
3、图象法:
用函数图象表示两个变量之间的函数关系的方法,叫做图像法。
例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。
特别提醒:
图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。
函数关系的表示法
函数关系的表示法
一个函数一般可以用以下三种方法表示:
(1)解析法:把一个函数用一个式子表示,这种表示函数的方法叫做解析法。
例如,函数y=2x+1就是用一个代数式2x+1表示函数y的,因此,它是解析法表示函数。
(2)列表法:把两个变量的一系列对应值列成一个表,这种表示方法叫做列表法。
例如,y=2x+1用列表法是:
(3)图象法:把两个变量之间的关系用图象表示,这种方法叫做图象法。
例如,y=2x+1的图象如图所示。
以上三种表示函数的方法各有优缺点。
用解析法表示函数关系,优点是简明,便于用数学方法进行研究,但是多数的函数关系又往往不能用这种方法表示的。
用列表法表示函数关系,优点是容易找到对应于自变量的某一个值(只要表中有)的函数值,但缺点是往往不可能把自变量的值都列在表里。
用图象法表示函数关系,优点是一方面可以容易地找到自变量某一值所对应的函数值,另一方面可以明显地看出自变量变化时,函数值的变化情况,但用图象法表示函数关系只能是局部的、近似的图形。
函数的表示方法有三种
函数的表示方法有三种
首先,我们来谈谈显式函数。
显式函数是最为常见和直观的函数表示方法。
它通常采用y=f(x)的形式,其中y表示函数的输出,x表示函数的输入,f(x)表示输出和输入之间的关系。
以一元一次函数y=2x+3为例,这就是一个典型的显式函数表示方法。
在这种表示方法中,我们可以清晰地看到输入和输出之间的关系,因此能够方便地进行计算和分析。
其次,隐式函数是另一种常见的函数表示方法。
与显式函数不同的是,隐式函数通常不易直接解出y关于x的表达式。
例如,圆的方程x^2+y^2=1就是一个隐式函数的表示方法。
在这种情况下,我们无法直接从方程中解出y关于x的表达式,但仍然可以通过这个方程描述出圆的性质和特点。
在实际应用中,有些函数的关系并不容易用显式表达式来表示,这时候就需要用到隐式函数的表示方法。
最后,我们来介绍参数方程这种函数表示方法。
参数方程是一种使用参数来表示函数关系的方法。
通常采用x=f(t),y=g(t)的形式,其中x和y都是t的函数,t 是参数。
参数方程常常用于描述曲线或者曲面在平面或者空间中的轨迹。
例如,二维空间中的抛物线可以通过参数方程x=t,y=t^2来表示。
在这种表示方法中,我们可以通过参数t的取值来描述出抛物线上的各个点的位置,因此参数方程在描述曲线或者曲面的轨迹时具有很大的优势。
总之,函数的表示方法有三种,分别是显式函数、隐式函数和参数方程。
每种表示方法都有其适用的场景和特点,我们需要根据具体情况选择合适的表示方法。
希望本文的介绍能够帮助读者更好地理解和运用函数的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章函数
3.1.2 函数的表示方法
【教学目标】
1. 了解函数的解析法、列表法、图象法三种主要表示方法.
2. 已知函数解析式会用描点法作简单函数的图象.
3. 培养学生数形结合、分类讨论的数学思想方法,通过小组合作培养学生的协作能力.
【教学重点】
函数的三种表示方法;作函数图象.
【教学难点】
作函数图象.
【教学方法】
这节课主要采用问题解决法和分组讨论教学法.本节课先借助一个实例,简要介绍函数的三种表示方法,进一步刻画函数概念;然后通过两个例题,使学生初步感知如何由解析式分析函数性质以指导画图,避免画图的盲目性.通过本节教学,使学生初步了解数形结合研究函数的方法,为下面学习函数的单调性和奇偶性做铺垫.
【教学过程】
数学基础模块上册
新课3.针对上面的例子,思考并回答下列问题:
(1) 在上例描点时,是怎样确定一个点的位置
的?哪个变量作为点的横坐标?哪个变量
作为点的纵坐标?
(2) 函数的定义域是什么?
(3) s的值能大于200吗?能是负值吗?为什
么?函数的值域是什么?
(4) 距离s 随行驶时间t 的增大有怎样的变
化?
4.例1作函数y=x3 的图象.
解列表
画图
5.结合例1完成下列问题:
(1) 函数y=x3 的定义域、值域是什么?
(2) 函数值y随x的增大有怎样的变化?
(3) f(a)与f(-a)相等吗?有怎样的关系?
(4) 函数图象是轴对称图形还是中心对称图
教师引导学生利用函数图象
分析回答函数的性质.
师:由上例可以看出,我们在
列表、作图时,要认真分析函数,
避免盲目列表计算.函数的图象有
利于我们研究函数的性质,如本例
中函数的定义域、值域以及y随x
增大而增大等性质.
教师引导学生分析:
函数y=x3 的定义域是R,
当x>0时,y>0,这时函数的图
象在第一象限,y 的值随着x 的
值增大而增大;当x<0时,y<0,
这时函数的图象在第三象限,y 的
值随着x 的值减小而减小.
教师引导学生完成列表、描点
及连线,完成函数图象.
师生合作完成例1,让学生体
会取值前如何分析研究函数式的
特点.
学生分组讨论完成,从讨论中
掌握分析函数性质的方法.
设置起到了
承上启下的
作用.
为突破
本节课难点
而设计.问
题(4)为下节
引入函数的
单调性做准
备.
让学生
在作图过程
中体会函数
的性质,从
做中学.
尽可能
把主动权交
给学生,使
学生在自主
探索中发现
问题解决问
题.
问题(3)(4)的
设置是为引
入函数的奇
偶性作准
备.
避免为
第三章函数
新课形?
6.例2作函数y=
1
x2的图象.
解列表
画图
7.结合例2解答下列问题:
(1) 函数y=
1
x2的定义域、值域是什么?
(2) 在第一象限中,函数值y随x的增大有怎样
的变化?在第二象限中呢?
(3) f (a)与f (-a)相等吗?有怎样的关系?
(4) 函数图象是轴对称图形还是中心对称图
形?
学生小组合作分析课本例2
如何取值.
学生作出例2图象,教师针对
出现的情况进行点评或让学生互
评.
教师强调自变量的取值,即
{x | x≠0}.
学生分组讨论完成,从讨论中
掌握分析函数性质的方法.
作图象而作
图象,让学
生在画图的
过程中学
习.
让学生
进一步掌握
分析函数性
质的方
法.并为下
一步学习函
数的单调性
与奇偶性做
准备.
小结1. 函数的三种表示方法.
2. 作函数图象.
学生畅谈本节课的收获,老师
引导梳理,总结本节课的知识点.
梳理总
结也可针对
学生薄弱或
易错处进行
强调和总
结.
作业教材P65 ,练习A组第3题;
练习B 组第2题.
巩固拓
展.。