2019—2020学年度辽宁省营口市七中初三11月月考初中数学
辽宁省营口中学2019-2020学年中考数学模拟试卷
辽宁省营口中学2019-2020学年中考数学模拟试卷一、选择题1.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数不少于20的频率为( )A .0.1B .0.17C .0.33D .0.92.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .3.图为某班35名学生投篮成绩的条型统计图,其中上面部分数据缺损导致数据不完全.已知此班学生投篮成绩的中位数是5,则根据统计图的数据,无法..确定下列哪一选项中的数值( )A .4球(不含4球)以下的人数B .5球(不含5球)以下的人数C .6球(不含6球)以下的人数D .7球(不含7球)以下的人数4.如图,AB ∥DC,ED ∥BC,AE ∥BD,那么图中与△ABD 面积相等的三角形有( )A.1个B.2个C.3个D.4个 5.已知抛物线2y ax bx c =++的对称轴为2x =,且经过点()3,0,则a b c ++的值( )A .等于0B .等于1C .等于1-D .不能确定6.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C′处;作∠BPC′的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .7.下列计算正确的是( )A .23a a a ⋅=B .(a 3)2=a 5C .23a a a +=D .623a a a ÷=8.如图,已知A ,B 是反比例函数y =k x(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为r ,则S 关于t 的函数图象大致为( )A .B .C .D .9.如图,直线y =mx+n 与两坐标轴分别交于点B ,C ,且与反比例函致y =2x(x >0)图象交于点A ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是6,则△DOC 的面积是( )A .5﹣B .C . 6D .﹣10.二次函数y =ax 2﹣4ax+2(a≠0)的图象与y 轴交于点A ,且过点B (3,6)若点B 关于二次函数对称轴的对称点为点C ,那么tan ∠CBA 的值是( )A .23B .43C .2D .34 11.sin30︒的值等于( )A .12B .1C .2D .2 12.如图,正方形ABCD 中,AB=3,点E 在边CD 上,且CD=3DE,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G,连接AG 、CF ,则BG 的长为( )A.1B.2C.1.5D.2.5二、填空题 13.植树节这天有20名同学共种了52棵树苗,其中男生每人种树苗3棵,女生每人种树苗2棵,则男同学的人数为______________人.14.如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y x =上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 1的位置,使点O 1的对应点O 2落在直线3y x =-上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为________________________.15.(3分)要使二次根式有意义,则的取值范围是 .16.如图,在反比例函数图象中,△AOB 是等边三角形,点A 在双曲线的一支上,将△AOB 绕点O 顺时针旋转α (0°<α<360° ),使点A 仍在双曲线上,则α=_____.17.三角形在正方形网格中的位置如图所示,则sin α的值是___.18.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为_______.三、解答题19.许多几何图形是优美的.对称,就是一种美.请你运用“二个圆、二个三角形、二条线段”在下图的左方框内设计一幅轴对称图形,并用简练的文字说明这幅图形的名称(或创意).名称(或创意) 名称(或创意) .20.解不等式组:{30240x x -≤+>21.阅读下列材料,解决问题:12345678987654321这个数有这样一个特点:各数位上的数字从左到右逐渐增大(由1到9,是连续的自然数),到数9时,达到顶峰,以后又逐渐减小(由9到1),它活像一只橄榄,我们不妨称它为橄榄数.记第一个橄榄数为a 1=1,第二个橄榄数为a 2=121,第三个橄榄数为a 3=12321……有趣的是橄榄数还是一个平方数,如1=12,121=112,12321=1112,1234321=11112……而且,橄榄数可以变形成如下对称式: 1111⨯= 2222121121⨯=++ 3333331232112321⨯=++++…… 根据以上材料,回答下列问题(1)11111112= ;将123454321变形为对称式:123454321= .(2)一个两位数(十位大于个位),交换其十位与个位上的数字,得到一个新的两位数,将原数和新数相加,就能得到橄榄数121,求这个两位数.(3)证明任意两个橄榄数a m ,a n 的各数位之和的差能被m ﹣n 整除(m =1,2…9,n =1,2…9,m >n )22.如图,点O 是Rt △ABC 斜边AB 上的一点,⊙O 经过点A 与BC 相切于点D ,分别交AB ,AC 于E ,F ,OA =2cm ,AC =3cm .(1)求BE 的长;(2)求图中阴影部分的面积.23.解不等式组211,? 331xx x①②+-⎧⎨+-⎩……请结合题意填空,完成本题的解答。
辽宁省营口市2019-2020学年中考第四次质量检测数学试题含解析
辽宁省营口市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.观察图中的“品”字形中个数之间的规律,根据观察到的规律得出a 的值为A .75B .89C .103D .1392.若关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为()A .34-B .34C .43D .43-3.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .4.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差5.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,△OAB 是边长为4的等边三角形,以O 为旋转中心,将△OAB 按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为( )A .(2,3B .(﹣2,4)C .(﹣2,2)D .(﹣2,36.如图,AB ∥ED ,CD=BF ,若△ABC ≌△EDF ,则还需要补充的条件可以是( )A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E7.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A.16cm B.13cm C.12cm D.1cm8.如图,直角边长为2的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为()A.B.C.D.9.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A.2个B.3个C.4个D.5个10.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为()A.4 B.5 C.8 D.1011.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π-B.2233π-C.433π-D.4233π-12.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:12+3=_______.14.如图,在扇形OAB中,∠O=60°,OA=43,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,»AB,OB上,则图中阴影部分的面积为__________.15.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.16.某航空公司规定,乘客所携带行李的重量x (kg )与运费y (元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg 的行李.17.如图,已知直线////a b c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 和B 、D 、F ,如果3AC =,5CE =,4DF =,那么BD =______.18.因式分解:323x y x -=_______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题: (1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数; (3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?20.(6分)如图,已知抛物线y=ax 2﹣2ax+b 与x 轴交于A 、B (3,0)两点,与y 轴交于点C ,且OC=3OA ,设抛物线的顶点为D . (1)求抛物线的解析式;(2)在抛物线对称轴的右侧的抛物线上是否存在点P ,使得△PDC 是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.21.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.22.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:销售单价x(元/kg)120 130 (180)每天销量y(kg)100 95 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.(8分)化简:()()2a b a2b a-+-.24.(10分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?25.(10分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E 在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.26.(12分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.(12分)已知甲、乙两地相距90km ,A ,B 两人沿同一公路从甲地出发到乙地,A 骑摩托车,B 骑电动车,图中DE ,OC 分别表示A ,B 离开甲地的路程s (km )与时间t (h )的函数关系的图象,根据图象解答下列问题:(1)请用t 分别表示A 、B 的路程s A 、s B ; (2)在A 出发后几小时,两人相距15km ?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B . 2.B 【解析】 【分析】将k 看做已知数求出用k 表示的x 与y ,代入2x+3y=6中计算即可得到k 的值. 【详解】 解:59x y k x y k +=⎧⎨-=⎩①②,①+②得:214x k =,即7x k =,将7x k =代入①得:75k y k +=,即2y k =-, 将7x k =,2y k =-代入236x y +=得:1466k k -=,解得:34k =.故选:B . 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值. 3.B 【解析】 【分析】根据相似三角形的判定方法一一判断即可. 【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 4.D 【解析】 【分析】根据方差反映数据的波动情况即可解答. 【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差. 故选D . 【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 5.D 【解析】分析:作BC ⊥x 轴于C ,如图,根据等边三角形的性质得4,2,60OA OB AC OC BOA ====∠=o,则易得A 点坐标和O 点坐标,再利用勾股定理计算出BC =然后根据第二象限点的坐标特征可写出B 点坐标;由旋转的性质得60,AOA BOB OA OB OA OB ∠'=∠'==='='o,则点A′与点B 重合,于是可得点A′的坐标.详解:作BC ⊥x 轴于C ,如图,∵△OAB 是边长为4的等边三角形∴4,2,60OA OB AC OC BOA ====∠=o , ∴A 点坐标为(−4,0),O 点坐标为(0,0), 在Rt △BOC 中,224223BC =-=, ∴B 点坐标为(2,3)-;∵△OAB 按顺时针方向旋转60o ,得到△OA′B′, ∴60,AOA BOB OA OB OA OB ∠'=∠'==='='o , ∴点A′与点B 重合,即点A′的坐标为(2,3)-, 故选D.点睛:考查图形的旋转,等边三角形的性质.求解时,注意等边三角形三线合一的性质. 6.C 【解析】 【分析】根据平行线性质和全等三角形的判定定理逐个分析. 【详解】由//AB ED ,得∠B=∠D, 因为CD BF =,若ABC V ≌EDF V ,则还需要补充的条件可以是: AB=DE,或∠E=∠A, ∠EFD=∠ACB, 故选C 【点睛】本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理. 7.D 【解析】【分析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分别是△OAB和△OCD的高,∴OF CDOE AB=,即2126CD=,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.8.B【解析】【分析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高332完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t=0时,S=0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键9.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y >1,即: 4a+2b+c >1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.10.D【解析】【分析】利用三角形中位线定理求得AD 的长度,然后由勾股定理来求BD 的长度.【详解】解:∵矩形ABCD 的对角线AC ,BD 相交于点O ,∴∠BAD=90°,点O 是线段BD 的中点,∵点M 是AB 的中点,∴OM 是△ABD 的中位线,∴AD=2OM=1.∴在直角△ABD中,由勾股定理知:BD=2222AD AB=86=10++.故选:D.【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.11.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.12.C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】12化成3.【详解】原式=23+3=33.故答案为33【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.14.8π﹣83【解析】【分析】连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.【详解】连接EF、OC交于点H,则OH=23,∴FH=OH×tan30°=2,∴菱形FOEC的面积=12×43×4=83,扇形OAB的面积=()26043360π⨯=8π,则阴影部分的面积为8π﹣83,故答案为8π﹣83.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.15.(10,3)【解析】【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.【详解】∵四边形AOCD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中=6,∴FC=10−6=4,设EC=x,则DE=EF=8−x,在Rt△CEF中,EF2=EC2+FC2,即(8−x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3).16.2【解析】【分析】设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由待定系数法求出其解即可.【详解】解:设乘客所携带行李的重量x(kg)与运费y(元)之间的函数关系式为y=kx+b,由题意,得30030 90050k b k b=+⎧⎨=+⎩,解得,30600kb=⎧⎨=-⎩,则y=30x-1.当y=0时,30x-1=0,解得:x=2.故答案为:2.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出函数的解析式是关键.17.12 5【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=3,CE=5,DF=4,即可求得BD的长.【详解】解:由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BD CE DF=,又由AC=3,CE=5,DF=4可得:354BD =解得:BD=12 5.故答案为12 5.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.18.x3(y+1)(y-1)【解析】【分析】先提取公因式x3,再利用平方差公式分解可得.【详解】解:原式=x3(y2-1)=x3(y+1)(y-1),故答案为x3(y+1)(y-1).【点睛】本题主要考查提公因式法与公式法的综合运用,解题的关键是熟练掌握一般整式的因式分解的步骤--先提取公因式,再利用公式法分解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】【分析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得.【详解】(1)840÷35%=2400(人),∴该区抽样调查的人数是2400人;(2)2400×25%=600(人),∴该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:1442400×360°=21.6°,∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.20.(1)y=﹣x2+2x+1;(2)P(2,1)或(352+,555-);(1)存在,且Q1(1,0),Q2(25,0),Q1(50),Q450),Q550).【解析】【分析】(1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.(2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.(1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.【详解】解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);∵OC=1OA,∴C(0,1);依题意有:203a a bb++=⎧⎨=⎩,解得13ab=-⎧⎨=⎩;∴y=﹣x2+2x+1.(2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);设P2(x,y),∵C(0,1),P(2,1),∴CP=2,∵D(1,4),∴CD=2<2,②由①此时CD⊥PD,根据垂线段最短可得,PC不可能与CD相等;②PC=PD时,∵CP22=(1﹣y)2+x2,D P22=(x﹣1)2+(4﹣y)2∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2将y=﹣x2+2x+1代入可得:35 x+=∴555y-=;∴P2(352+,555).综上所述,P(2,135+55-.(1)存在,且Q1(1,0),Q2(250),Q1(50),Q45,0),Q55,0);①若Q是直角顶点,由对称性可直接得Q1(1,0);②若N是直角顶点,且M、N在x轴上方时;设Q2(x,0)(x<1),∴MN=2Q1O2=2(1﹣x),∵△Q2MN为等腰直角三角形;∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);∵x<1,∴Q2(25,0);由对称性可得Q1(5,0);③若N是直角顶点,且M、N在x轴下方时;同理设Q4(x,y),(x<1)∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),∵y为负,∴﹣y=2(1﹣x),∴﹣(﹣x2+2x+1)=2(1﹣x),∵x<1,∴x=﹣5,∴Q4(-5,0);由对称性可得Q5(5+2,0).【点睛】本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.21.(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图22. (1)y=﹣0.5x+160,120≤x≤180;(2)当销售单价为180元时,销售利润最大,最大利润是7000元.【解析】试题分析:(1)首先由表格可知:销售单价没涨10元,就少销售5kg ,即可得y 与x 是一次函数关系,则可求得答案;(2)首先设销售利润为w 元,根据题意可得二次函数,然后求最值即可.试题解析:(1)∵由表格可知:销售单价没涨10元,就少销售5kg ,∴y 与x 是一次函数关系,∴y 与x 的函数关系式为:y=100﹣0.5(x ﹣120)=﹣0.5x+160,∵销售单价不低于120元/kg .且不高于180元/kg ,∴自变量x 的取值范围为:120≤x≤180;(2)设销售利润为w 元,则w=(x ﹣80)(﹣0.5x+160)=,∵a=<0,∴当x <200时,y 随x 的增大而增大,∴当x=180时,销售利润最大,最大利润是:w==7000(元).答:当销售单价为180元时,销售利润最大,最大利润是7000元.23.2b【解析】【分析】 原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.24.(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=,∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人, 8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.25.(1)∠DOA =100°;(2)证明见解析.【解析】试题分析:(1)根据∠CBA=50°,利用圆周角定理即可求得∠DOA 的度数;(2)连接OE ,利用SSS 证明△EAO ≌△EDO ,根据全等三角形的性质可得∠EDO=∠EAO=90°,即可证明直线ED 与⊙O 相切. 试题解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)证明:连接OE ,在△EAO 和△EDO 中,AO=DO ,EA=ED ,EO=EO ,∴△EAO ≌△EDO ,得到∠EDO=∠EAO=90°,∴直线ED 与⊙O 相切.考点:圆周角定理;全等三角形的判定及性质;切线的判定定理26.77B ∠=︒,38.5C ∠=︒.【解析】【分析】根据等腰三角形的性质即可求出∠B ,再根据三角形外角定理即可求出∠C.【详解】在ABC ∆中,AB AD DC ==,∵AB AD =,在三角形ABD 中,()118026772B ADB ∠=∠=︒-︒⨯=︒, 又∵AD DC =,在三角形ADC 中, ∴117738.522C ADB ∠=∠=︒⨯=︒. 【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.27.(1)s A =45t ﹣45,s B =20t ;(2)在A 出发后15小时或75小时,两人相距15km . 【解析】【分析】(1)根据函数图象中的数据可以分别求得s 与t 的函数关系式;(2)根据(1)中的函数解析式可以解答本题.【详解】解:(1)设s A 与t 的函数关系式为s A =kt+b , +0390k b k b =⎧⎨+=⎩,得4545k b =⎧⎨=⎩-, 即s A 与t 的函数关系式为s A =45t ﹣45,设s B 与t 的函数关系式为s B =at ,60=3a ,得a =20,即s B 与t 的函数关系式为s B =20t ;(2)|45t ﹣45﹣20t|=15,解得,t 1=65,t 2=125, 6515=-1,12575=-1, 即在A 出发后15小时或75小时,两人相距15km . 【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.。
【附5套中考模拟试卷】辽宁省营口市2019-2020学年中考数学模拟试题含解析
辽宁省营口市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则»AE 的弧长为( )A .2πB .πC .32π D .32.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .3.13-的相反数是 ( ) A .13 B .13-C .3D .-34.如图,平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别落在x 、y 轴上,点B 坐标为(6,4),反比例函数6y x=的图象与AB 边交于点D ,与BC 边交于点E ,连结DE ,将△BDE 沿DE 翻折至△B'DE 处,点B'恰好落在正比例函数y=kx 图象上,则k 的值是( )A .25-B .121-C .15-D .124-5.下列命题中错误的有( )个 (1)等腰三角形的两个底角相等(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1 B.2 C.3 D.46.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关7.如果关于x的方程220x x c++=没有实数根,那么c在2、1、0、3-中取值是()A.2;B.1;C.0;D.3-.8.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()A.B.C.D.9.已知a m=2,a n=3,则a3m+2n的值是()A.24 B.36 C.72 D.610.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13-11.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sinα米B.300cosα米C.300tanα米D.300 tanα米12.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.14.因式分解:9x ﹣x 2=_____.15.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角α为60o 时,两梯角之间的距离BC 的长为3m.周日亮亮帮助妈妈整理换季衣服,先使α为60o ,后又调整α为45o ,则梯子顶端离地面的高度AD 下降了______m(结果保留根号).16.分解因式:x 2y ﹣2xy 2+y 3=_____.17.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.18.如图,直线123y x =+与x 轴交于点A ,与y 轴交于点B ,点D 在x 轴的正半轴上,OD OA =,过点D 作CD x ⊥轴交直线AB 于点C ,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为_________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)解方程 (1)x 1﹣1x ﹣1=0 (1)(x+1)1=4(x ﹣1)1.20.(6分)计算:|2﹣1|﹣2sin45°+38﹣21()2- 21.(6分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率. 22.(8分)如图,己知AB 是的直径,C 为圆上一点,D 是的中点,于H ,垂足为H ,连交弦于E ,交于F ,联结.(1)求证:.(2)若,求的长.23.(8分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.(3)在(2)的条件下,求线段DE的长度.24.(10分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.25.(10分)先化简,再求值:(31m+﹣m+1)÷241mm-+,其中m的值从﹣1,0,2中选取.26.(12分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.27.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.(1)求证:△BFD∽△CAD;(2)求证:BF•DE=AB•AD.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】∵四边形AECD 是平行四边形, ∴AE=CD , ∵AB=BE=CD=3, ∴AB=BE=AE ,∴△ABE 是等边三角形, ∴∠B=60°, ∴AE u u u r的弧长=6023360ππ⨯⨯=.故选B. 2.B 【解析】 【分析】根据相似三角形的判定方法一一判断即可. 【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 3.B 【解析】先求13-的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是13,所以13-的绝对值是13;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此13的相反数是13-.故选B . 4.B 【解析】 【分析】根据矩形的性质得到,CB ∥x 轴,AB ∥y 轴,于是得到D 、E 坐标,根据勾股定理得到ED ,连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G ,根据轴对称的性质得到BF=B′F ,BB′⊥ED 求得BB′,设EG=x ,根据勾股定理即可得到结论. 【详解】解:∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴. ∵点B 坐标为(6,1),∴D 的横坐标为6,E 的纵坐标为1. ∵D ,E 在反比例函数6y x=的图象上, ∴D (6,1),E (32,1), ∴BE=6﹣32=92,BD=1﹣1=3, ∴22BE BD +3132.连接BB′,交ED 于F ,过B′作B′G ⊥BC 于G . ∵B ,B′关于ED 对称, ∴BF=B′F ,BB′⊥ED , ∴BF•ED=BE•BD 313BF=3×9,∴∴. 设EG=x ,则BG=92﹣x . ∵BB′2﹣BG 2=B′G 2=EB′2﹣GE 2, ∴222299()()22x x --=-,∴x=4526, ∴EG=4526,∴CG=4213,∴B′G=5413,∴B′(4213,﹣213),∴k=121-.故选B . 【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键. 5.D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误. 故选D .点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 6.A=+中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而【分析】根据一次函数性质:y kx b减小.由-2<0得,当x12时,y1>y2.【详解】因为,点A(1,a)和点B(4,b)在直线y=-2x+m上,-2<0,所以,y随x的增大而减小.因为,1<4,所以,a>b.故选A=+中y与x的大小关系,关【点睛】本题考核知识点:一次函数性质. 解题关键点:判断一次函数y kx b键看k的符号.7.A【解析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.8.D【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.9.C【解析】试题解析:∵a m=2,a n=3,∴a3m+2n=a3m•a2n=(a m)3•(a n)2=23×32=8×9=1.故选C.10.A【解析】【分析】根据负数的绝对值是其相反数解答即可.|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.11.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.12.B【解析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1【解析】【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.14.x(9﹣x)【解析】故答案为()9x x -.点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法. 15.()3322-【解析】 【分析】根据题意画出图形,进而利用锐角三角函数关系得出答案. 【详解】 解:如图1所示:过点A 作AD BC ⊥于点D , 由题意可得:B C 60∠∠==o , 则ABC V 是等边三角形, 故BC AB AC 3m ===, 则33AD 3sin60m o ==,如图2所示:过点A 作AE BC ⊥于点E , 由题意可得:B C 60∠∠==o ,则ABC V 是等腰直角三角形,BC AB 3m ==, 则32AE 3sin45==o , 故梯子顶端离地面的高度AD 下降了332m.2故答案为:3322.【点睛】此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.17.20000【解析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.18.1【解析】【分析】先求出直线y=13x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=13x+2=0+2=2,∴B(0,2),∴OB=2,令y=0,得0=13x+2,解得,x=-6,∴A(-6,0),∴OA=OD=6,∵OB∥CD,∴CD=2OB=4,∴C(6,4),把c(6,4)代入y=kx(k≠0)中,得k=1,故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)x1,x1=1(1)x1=3,x1=13.【解析】【分析】(1)配方法解;(1)因式分解法解.【详解】(1)x1﹣1x﹣1=2,x1﹣1x+1=1+1,(x﹣1)1=3,x﹣1=,x=1x1=1x1=1(1)(x+1)1=4(x﹣1)1.(x+1)1﹣4(x﹣1)1=2.(x+1)1﹣[1(x﹣1)]1=2.(x+1)1﹣(1x﹣1)1=2.(x+1﹣1x+1)(x+1+1x﹣1)=2.(﹣x+3)(3x﹣1)=2.x1=3,x1=13.【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.20.﹣1【解析】【分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=1)﹣2×2+2﹣4=﹣1+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21.(1)12;(2)34【解析】【分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率. 【详解】解:(1)(1)第二个孩子是女孩的概率=12;故答案为12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=3 4 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(1)证明见解析;(2)【解析】【分析】(1)由题意推出再结合,可得△BHE~△BCO.(2)结合△BHE~△BCO ,推出带入数值即可.【详解】(1)证明:∵为圆的半径,是的中点,∴,,∵,∴, ∴, ∴, ∵, ∴, ∴, 又∵, ∴∽. (2)∵∽, ∴, ∵,, ∴得, 解得, ∴.【点睛】 本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.23.(1)1EA FC =.(2)四边形1BC DA 是菱形.(3)2233. 【解析】【分析】 (1)根据等边对等角及旋转的特征可得1ABE C BF ≅V V即可证得结论; (2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E 作EG AB ⊥于点G ,解Rt AEG V 可得AE 的长,结合菱形的性质即可求得结果.【详解】(1)1EA FC =.证明:(证法一)AB BC A C =∴∠=∠Q ,.由旋转可知,111,,AB BC A C ABE C BF =∠=∠∠=∠∴1A BF CBE V V ≌.∴BE BF ,=又1AB BC =Q ,∴11A C A B CB ∠=∠=,,即1EA FC =.(证法二)AB BC A C =∴∠=∠Q ,.由旋转可知,1BA BE BC BF -=-,而1EBC FBA ∠=∠∴1A BF CBE ∴≅V V∴BE BF ,=∴1BA BE BC BF -=-即1EA FC =.(2)四边形1BC DA 是菱形.证明:111130,A ABA AC AB ︒∠=∠=∴Q ‖同理1AC BC ‖ ∴四边形1BC DA 是平行四边形.又1AB BC =Q ,∴四边形1BC DA 是菱形 (3)过点E 作EG AB ⊥于点E ,则1AG BG ==.在EG AB ⊥中,AE =.由(2)知四边形1BC DA 是菱形,∴1AG BG ==.∴2ED AD AE =-= 【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.24. (1)见解析;(2)DF【解析】【分析】(1)直接利用等腰三角形的定义结合勾股定理得出答案;(2)利用直角三角的定义结合勾股定理得出符合题意的答案.【详解】(1)如图(1)所示:△ABE ,即为所求;(2)如图(2)所示:△CDF 即为所求,DF=10.【点睛】 此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.25.22m +- ,当m=0时,原式=﹣1. 【解析】【分析】原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,m 不等于-1、2,将0m =代入原式即可解出答案. 【详解】解:原式2312(2)()111m m m m m --=-÷+++, 242(2)11m m m m --=÷++, (2)(2)112(2)m m m m m -+-+⋅+-, 22m +=-, ∵1m ≠-且2m ≠,∴当0m =时,原式1=﹣.【点睛】本题主要考查分数的性质、通分,四则运算法则以及倒数.26. (1)c >﹣2;(2) x 1=﹣1,x 2=1.【解析】【分析】(1)根据抛物线与x 轴有两个交点,b 2-4ac >0列不等式求解即可;(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x 轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【详解】(1)解:∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即16+8c >0,解得c >﹣2;(2)解:由y=﹣2x 2+4x+c 得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x 轴的另一个交点为(1,0),∴方程﹣2x 2+4x+c=0的根为x 1=﹣1,x 2=1.【点睛】考查了抛物线与x 轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.27.见解析【解析】试题分析:(1)2AD DE DF =⋅,ADF EDA ∠∠= ,可得ΔADF ∽ΔEDA ,从而得F DAE ∠∠=,再根据∠BDF=∠CDA 即可证; (2)由ΔBFD ∽ΔCAD ,可得BF DF AC AD =,从而可得BF AD AC DE=,再由ΔBFD ∽ΔCAD ,可得B C ∠∠=从而得AB AC =,继而可得BF AD AB DE= ,得到BF DE AB AD ⋅=⋅. 试题解析:(1)∵2AD DE DF =⋅,∴AD DF DE AD =, ∵ADF EDA ∠=∠ ,∴ADF ∆∽EDA ∆ ,∴F DAE ∠=∠,又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF ,即∠BDF=∠CDA ,∴BFD ∆∽CAD ∆;(2)∵BFD ∆∽CAD ∆ ,∴BF DF AC AD =, ∵AD DF DE AD = ,∴BF AD AC DE=, ∵BFD ∆∽CAD ∆,∴B C ∠=∠,∴AB AC =, ∴BF AD AB DE = , ∴BF DE AB AD ⋅=⋅. 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
2019-2020学年辽宁营口九年级上数学月考试卷
2019-2020学年辽宁营口九年级上数学月考试卷一、选择题1. −2019的绝对值是( )A.2019B.12019C.−12019D.−20192. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.3. 下列计算正确的是()A.√36=±6B.2a+3b=5abC.a6÷a2=a4D.(2ab2)3=6a3b54. 我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是()A.27.5,28B.27,28C.26.5,27D.28,275. 如图,在等腰直角△ABC中,∠C=90∘,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.3 5B.√53C.23D.2√226. 三角形的两边长分别为3和6,第三边的长是方程x2−6x+8=0的一个根,则这个三角形的周长是()A.11B.9C.13D.11或137. 式子√2x+1x−1有意义的x的取值范围是( )A.x≠1B.x≥−12且x≠1 C.x≥−12D.x>−12且x≠18. 下列事件中是必然发生的是()A.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品B.一个图形平移后所得的图形与原来的图形不全等C.随意翻到一本书的某页,这页的页码一定是偶数D.不等式的两边同时乘以一个数,结果仍是不等式9. 如图,边长为2的等边△ABC中,D是BC边上的任一点,连接AD,以AD为直径作⊙O,交AB于点E,交AC于点F,连接EF,则EF的最小值为()A.√32B.12C.32D.110. 如图,直线y =−12x+1分别交x轴、y轴于A,B两点,将线段AB绕点M旋转180∘得到线段CD,双曲线y=kx(k>0)恰好经过C,D,M三点,则k的值为()A.98B.43C.89D.1二、填空题目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为________.因式分解:x2−3x+(x−3)=________.已知一组数据1,2,3,5,x,它的平均数是3,则这组数据的方差是________.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为________.实数a,b满足√a+1+4a2+4ab+b2=0,则b a的值为_________.如图,在Rt△ABC中,∠BCA=90∘,∠BAC=30∘,BC=2,将Rt△ABC绕A点顺时针旋转90∘得到Rt△ADE,则BC扫过的面积为________.如图,五边形ABCDE中,AB // CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=________.如图,边长为1的菱形ABCD中,∠DAB=60∘.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC= 60∘.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60∘…按此规律所作的第n个菱形的边长是________.三、解答题先化简,再求值:x2+2x+1x2+x÷(1+x2x−2x),其中x=2cos45∘+(π−2019)0.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了________名学生,a=________%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为________度;(4)若该校有3000名学生,请估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上,如图所示.该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时∠AEB =∠FED ),在F 处测得旗杆顶A 的仰角为39.3∘,平面镜E 的俯角为45∘,FD =1.8m ,问:旗杆AB 的高度约为多少米?(结果保留整数)(参考数据:tan 39.3∘≈0.82,tan 84.3∘≈10.02)如图,AB 为⊙O 直径,C ,D 为⊙O 上不同于A ,B 的两点,∠ABD =2∠BAC ,连接CD .过点C 作CE ⊥DB ,垂足为E ,直线AB 与CE 相交于F 点.(1)求证:CF 为⊙O 的切线;(2)当BF =5,sin F =35时,求BD 的长.荆州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p (元/千克)与时间第t (天)之间的函数关系为:p ={14t +16(1≤t ≤40,t 为整数),−12t +46(41≤t ≤80,t 为整数),日销售量y (千克)与时间第t (天)之间的函数关系如图所示:(1)求日销售量y 与时间t 的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?(4)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠m(m <7)元给村里的特困户.在这前40天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求m 的取值范围.已知正方形ABCD 的边长为2,作正方形AEFG (A ,E ,F ,G 四个顶点按逆时针方向排列),连接BE ,GD . (1)如图①,当点E 在正方形ABCD 外时,线段BE 与线段DG 有何关系?直接写出结论;(2)如图②,当点E 在线段BD 的延长线上,射线BA 与线段DG 交于点M ,且DG =2DM 时,求边AG 的长;(3)如图③,当点E 在正方形ABCD 的边CD 所在的直线上,直线AB 与直线DG 交于点M ,且DG =4DM 时,直接写出边AG 的长.如图,已知抛物线y=ax2+3ax−4a与x轴负半轴相交于点A,与y轴正半轴相交于点B,OB=OA,直线l过A,B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.(3)连接BE,是否存在点D,使△DBE和△DAC相似?若存在,求出点D的坐标;若不存在,说明理由.参考答案与试题解析2019-2020学年辽宁营口九年级上数学月考试卷一、选择题1.【答案】此题暂无答案【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】轴对三与最心对昼图勾的识别【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】积的乘常及么应用同底射空的除法算三平最根合较溴类项【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】众数中位数【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】解直于三角姆等腰于角三旋形翻折变换(折叠问题)【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】三角常三簧关系解一较燥次延程抗因式分解法【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】分式根亮义况无意肌的条件二次根式较意夏的条件【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】必水明件不于械事件随验把件【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】圆明角研理解直于三角姆垂都着理垂因丙最短【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】一次常数图按上点入适标特点反比例都资的定义【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】此题暂无答案【考点】科学表数法擦-老示映小的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】因式分解水明字相乘法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】方差算三平最数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】由实正问构抽他加二元一次方程组【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】非负数的常树:偶次方完全明方养式非负射的纳质:算术棱方础【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】扇形体积硫计算旋因末性质含因梯否角样直角三角形【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】多边形正东与外角平行体的省质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】规律型:三形的要化类菱都资性质【解析】此题暂无解析【解答】此题暂无解答三、解答题【答案】此题暂无答案【考点】特殊角根三角函股值分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州勾股数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】条都连计图扇表统病图用样射子计总体【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】解直角明角念的应用备仰角俯城问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定锐角三较函数严定义切验极判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】待定正数键求一程植数解析式二次表数擦应用二次常数换最值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】全根三烛形做给质与判定四来获圆平行线体线土成比例勾体定展【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相验极角家的锰质与判定待定水体硫故二次函数解析式二次常数换最值【解析】此题暂无解析【解答】此题暂无解答。
辽宁省营口市2019-2020学年中考数学模拟试题(3)含解析
辽宁省营口市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为()A.1 B.2 C.﹣1 D.﹣22.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.3.﹣12的绝对值是()A.﹣12B.12C.﹣2 D.24.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.1125.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a46.如果向北走6km记作+6km,那么向南走8km记作()A.+8km B.﹣8km C.+14km D.﹣2km7.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<08.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱9.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是( )A .155B .14C .13D .154 10.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .31311.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°12.下列图形中,既是中心对称图形又是轴对称图形的是 ( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数12y x=,当x <0时,y 随x 的增大而_____. 14.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_________袋15.如图,在平行四边形ABCD 中,点E 在边BC 上,将ABE △沿AE 折叠得到AFE △,点F 落在对角线AC 上.若AB AC ⊥,3AB =,5AD =,则CEF △的周长为________.16.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .17.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为______________. 18.如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是______度三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.20.(6分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.21.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DE=CD,连接AE.(1)求证:四边形ABDE是平行四边形;(2)连接OE,若∠ABC=60°,且AD=DE=4,求OE的长.22.(8分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.(1)求抛物线的表达式及点B的坐标;(2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b 的取值范围.23.(8分)(1)解方程:x 2﹣5x ﹣6=0;(2)解不等式组:43(2)123x xx x +≤+⎧⎪-⎨<⎪⎩. 24.(10分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题: (1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.25.(10分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=k x 交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.求y 与x 之间的函数关系式;直接写出当x >0时,不等式34x+b >k x 的解集;若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.26.(12分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF.(1)求证:四边形ABCD 是平行四边形;(2)直接写出图中所有相等的线段(AE =CF 除外).27.(12分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据一元二次方程的解的定义,把x=2代入2x-3x+k=0得4-6+k=0,然后解关于k的方程即可.【详解】把x=2代入2x-3x+k=0得,4-6+k=0,解得k=2.故答案为:B.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.2.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.3.B【解析】【分析】根据求绝对值的法则,直接计算即可解答.【详解】111()222-=--=,故选:B.【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.4.C【解析】【分析】三粒均匀的正六面体骰子同时掷出共出现216种情况,而边长能构成直角三角形的数字为3、4、5,含这三个数字的情况有6种,故由概率公式计算即可.【详解】解:因为将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,按出现数字的不同共666⨯⨯=216种情况,其中数字分别为3,4,5,是直角三角形三边长时,有6种情况,所以其概率为1 36,故选C.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.边长为3,4,5的三角形组成直角三角形.5.B【解析】【分析】【详解】解:A.a2+a2=2a2,故A错误;C、a2a3=a5,故C错误;D、a8÷a2=a6,故D错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方6.B【解析】【分析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量.若向北走6km记作+6km,那么向南走8km记作﹣8km.故选:B.【点睛】本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.7.B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象8.A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..9.D【解析】【分析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴22224115AC AB BC=-=-=,∴15ACsinBAB==,故选:D.【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.10.B【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B.11.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC 1+BC 1=AB 1.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .考点:勾股定理.12.C【解析】试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;B. 是轴对称图形,不是中心对称图形,故本选项错误;C. 既是中心对称图又是轴对称图形,故本选项正确;D. 是轴对称图形,不是中心对称图形,故本选项错误.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.减小【解析】【分析】 先根据反比例函数的性质判断出函数12y x =的图象所在的象限,再根据反比例函数的性质进行解答即可. 【详解】 解:∵反比例函数12y x =中,102k =>, ∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小.故答案为减小.【点睛】 考查反比例函数的图象与性质,反比例函数()0,k y k x=≠ 当0k >时,图象在第一、三象限.在每个象限,y 随着x 的增大而减小,当k 0<时,图象在第二、四象限.在每个象限,y 随着x 的增大而增大.14.33.【解析】试题分析:设品尝孔明菜的朋友有x 人,依题意得,5x +3=6x -3,解得x =6,所以孔明菜有5x +3=33袋.考点:一元一次方程的应用.15.6.【解析】【分析】先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE ,从而可求出CEF △的周长.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=5,∵AB AC ⊥,∴∵ABE △沿AE 折叠得到AFE △,∴AF=AB=3,EF=BE ,∴CEF △的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.16.9【解析】解:360÷40=9,即这个多边形的边数是9 17.2501030x y x y +=⎧⎨+=⎩【解析】【分析】设买美酒x 斗,买普通酒y 斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.【详解】依题意得:2501030x y x y +=⎧⎨+=⎩. 故答案为2501030x y x y +=⎧⎨+=⎩. 【点睛】考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.18.60∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为18,故答案为:18;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为41 82 =.【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.20.(1)证明见解析;(2)35.【解析】【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定21.(1)见解析【解析】【分析】(1)四边形ABCD是平行四边形,由平行四边形的性质,可得AB=DE,AB//DE ,则四边形ABDE是平行四边形;(2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=AB⋅sin∠ABO=2,BO=AB⋅cos∠,,则AE=BD,利用勾股定理可得OE.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形;(2)∵AD=DE=1,∴AD=AB=1.∴▱ABCD是菱形,∴AB =BC ,AC ⊥BD ,12BO BD =,12ABO ABC ∠=∠. 又∵∠ABC =60°,∴∠ABO =30°.在Rt △ABO 中,sin 2AO AB ABO =⋅∠=,cos BO AB ABO =⋅∠=∴BD =∵四边形ABDE 是平行四边形,∴AE ∥BD ,AE BD ==又∵AC ⊥BD ,∴AC ⊥AE .在Rt △AOE 中,OE ==【点睛】此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.22.(1)抛物线的表达式为y=x 2﹣2x ﹣2,B 点的坐标(﹣1,0);(2)y 的取值范围是﹣3≤y <1. (2)b 的取值范围是﹣83<b <25. 【解析】【分析】(1)、将点A 坐标代入求出m 的值,然后根据二次函数的性质求出点B 的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y 的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b 的取值范围.【详解】(1)∵将A (2,0)代入,得m=1, ∴抛物线的表达式为y=2x -2x-2.令2x -2x-2=0,解得:x=2或x=-1, ∴B 点的坐标(-1,0).(2)y=2x -2x-2=()21x --3.∵当-2<x <1时,y 随x 增大而减小,当1≤x <2时,y 随x 增大而增大,∴当x=1,y 最小=-3. 又∵当x=-2,y=1, ∴y 的取值范围是-3≤y <1.(2)当直线y=kx+b 经过B (-1,0)和点(3,2)时, 解析式为y=25x+25. 当直线y=kx+b 经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.23.(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式组的解集即可.【详解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)()432x1x23x x⎧+≤+⎪⎨-<⎪⎩①②∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式组的解集为﹣1≤x<1.【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.24.(1)200;(2)72°,作图见解析;(3)3 10.【解析】【分析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【详解】解:(1)这次知识竞赛共有学生2010%=200(名);(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200+=310.【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.25.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.26.(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整体分析:(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,E FAE CFDAE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四边形ABCD是平行四边形,∴AB=DC.27.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人,骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.。
辽宁省营口市2019-2020学年中考第一次质量检测数学试题含解析
辽宁省营口市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.242.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒3.下列运算正确的是()A.a12÷a4=a3B.a4•a2=a8C.(﹣a2)3=a6D.a•(a3)2=a74.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.25.如图,按照三视图确定该几何体的侧面积是(单位:cm)( )A.24π cm2B.48π cm2C.60π cm2D.80π cm26.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C .1232SS=D.1232CC=7.下列运算不正确的是A.B.C.D.8.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=50°,则∠ABC 的大小是()A.55°B.60°C.65°D.70°9.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是()A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念10.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A.5 B.4 C.3 D.2 11.如图中任意画一个点,落在黑色区域的概率是()A.1B.12C.πD.5012.下列计算正确的是()A.a3﹣a2=a B.a2•a3=a6C.(a﹣b)2=a2﹣b2D.(﹣a2)3=﹣a6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式1﹣2x<6的负整数解是___________.14.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)15.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”16.如图,点A是双曲线y=﹣9x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为_____.17.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.18.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(6分)先化简,再求值:2213242xxx x--⎛⎫÷--⎪--⎝⎭,其中x是满足不等式﹣12(x﹣1)≥12的非负整数解.21.(6分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?22.(8分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣mx>0的解集.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.24.(10分)计算:2-1+20160-3tan30°+|-3|25.(10分)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.求证:△ADF∽△ACG;若12ADAC=,求AFFG的值.26.(12分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C (0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.27.(12分)中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:成绩x(分)频数(人)频率50≤x<60 10 0.0560≤x<70 30 0.1570≤x<80 40 n80≤x<90 m 0.3590≤x≤10050 0.25根据所给信息,解答下列问题:(1)m=,n=;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【详解】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF=22AF AB=6,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.2.B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.3.D【解析】【分析】分别根据同底数幂的除法、乘法和幂的乘方的运算法则逐一计算即可得.【详解】解:A、a12÷a4=a8,此选项错误;B、a4•a2=a6,此选项错误;C、(-a2)3=-a6,此选项错误;D、a•(a3)2=a•a6=a7,此选项正确;故选D.【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂的除法、乘法和幂的乘方的运算法则.4.B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为15[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.5.A【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积.【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为8÷1=4cm,故侧面积=πrl=π×6×4=14πcm1.故选:A.【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.6.D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;=,所以B选项不成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此αβC选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.7.B【解析】,B是错的,A、C、D运算是正确的,故选B8.C【解析】连接OC,因为点C为弧BD的中点,所以∠BOC=∠DAB=50°,因为OC=OB,所以∠ABC=∠OCB=65°,故选C.9.C【分析】根据中心对称图形的概念求解.【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.10.C【解析】【分析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.11.B【解析】【分析】抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是1 2 .故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系. 12.D【解析】解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=﹣a6,符合题意,故选D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣,∴不等式的负整数解是﹣2,﹣1,故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.14.3n+1【解析】【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1.【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.15.1【解析】本题主要考查了三角形的内角和定理.解:根据三角形的内角和可知填:1.16.1 【解析】【分析】根据题意得出△AOD∽△OCE,进而得出AD OD OAEO CE OC==,即可得出k=EC×EO=1.【详解】解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴AD OD OAEO CE OC===tan60°=3,∴AODEOCSS∆∆=()23=1,∵点A是双曲线y=-9x在第二象限分支上的一个动点,∴S△AOD=12×|xy|=92,∴S△EOC=32,即12×OE×CE=32,∴k=OE×CE=1,故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD∽△OCE是解题关键.17.5 2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则AP=4×12=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般. 18.62n +【解析】【分析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成, ……∴组成n 个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.调整后的滑梯AD 比原滑梯AB 增加2.5米【解析】试题分析: Rt △ABD 中,根据30°的角所对的直角边是斜边的一半得到AD 的长,然后在Rt △ABC 中,求得AB 的长后用AD AB -即可求得增加的长度.试题解析: Rt △ABD 中,∵30ADB ∠=o ,AC=3米,∴AD=2AC=6(m)∵在Rt △ABC 中,58 3.53AB AC sin m =÷≈o ,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD 比原滑梯AB 增加2.5米.20.-12【解析】【分析】先根据分式的运算法则进行化简,然后再求出不等式的非负整数解,最后把符合条件的x 的值代入化简后的结果进行计算即可.【详解】原式=()()()()()()112232222x x x x x x x x ⎡⎤+-+--÷-⎢⎥+---⎣⎦, =()()()()()()112·2211x x x x x x x +--+-+-, =21+-x , ∵﹣12(x ﹣1)≥12, ∴x ﹣1≤﹣1,∴x≤0,非负整数解为0,∴x=0,当x=0时,原式=-12. 【点睛】本题考查了分式的化简求值,解题的关键是熟练掌握分式的运算法则.21.每台电脑0.5万元;每台电子白板1.5万元.【解析】【分析】先设每台电脑x 万元,每台电子白板y 万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x ,y 的值即可.【详解】设每台电脑x 万元,每台电子白板y 万元.根据题意,得:351017.5y x x y =⎧⎨+=⎩解得0.51.5x y =⎧⎨=⎩, 答:每台电脑0.5万元,每台电子白板1.5万元.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.22.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.【解析】试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<1.考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.23.(3)证明见试题解析;(3)3.【解析】试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.(3)先得出△ODF∽△AGF,再由cosA=,得出cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值.试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O 的半径,∴直线FG是⊙O的切线;(3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴,∵cosA=,∴cos∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC﹣AG=30﹣7=3,即CG的长是3.考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.24.3 2【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式=13+133 23-⨯+=1+133 2-+=32.【点睛】此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.25.(1)证明见解析;(2)1.【解析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF ∽△ACG .(2)解:∵△ADF ∽△ACG ,∴, 又∵,∴, ∴1. 26.(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2)或(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴2,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,2,∴2或OP=PC ﹣2﹣3∴P 1(0,2),P 2(0,3﹣2);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.27.(1)70,0.2;(2)补图见解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m 的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.详解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80≤x<90,∴这200名学生成绩的中位数会落在80≤x<90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人).点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.。
辽宁省营口市2019-2020学年中考数学模拟试题(4)含解析
辽宁省营口市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 下方,点E 是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A .3B .4﹣3C .4D .6﹣232.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位C ︒:﹣6,﹣1,x ,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( ) A .方差是8B .极差是9C .众数是﹣1D .平均数是﹣13.计算()15-3÷的结果等于( ) A .-5B .5C .1-5D .154.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A .3块B .4块C .6块D .9块5.如图,一段抛物线:y=﹣x (x ﹣5)(0≤x≤5),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2, 交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3, 交x 轴于点A 3;…如此进行下去,得到一“波浪线”,若点P (2018,m )在此“波浪线”上,则m 的值为( )A .4B .﹣4C .﹣6D .66.若分式11x-有意义,则x的取值范围是A.x>1 B.x<1 C.x≠1D.x≠0 7.下列事件中为必然事件的是()A.打开电视机,正在播放茂名新闻B.早晨的太阳从东方升起C.随机掷一枚硬币,落地后正面朝上D.下雨后,天空出现彩虹8.比1小2的数是()A.3-B.2-C.1-D.19.方程()21k1x1kx+=04---有两个实数根,则k的取值范围是().A.k≥1B.k≤1C.k>1 D.k<110.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S 与t函数关系的图象是()A.B.C.D.11.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个12.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x (元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为A.60元B.70元C.80元D.90元二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.14.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________16.分式方程的解是.17.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________18.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣__)2=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点A(﹣2,3),点B(6,n).(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=mx(m≠0)的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.20.(6分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.21.(6分)某学校为了解学生的课余活动情况,抽样调查了部分学生,将所得数据处理后,制成折线统计图(部分)和扇形统计图(部分)如图:(1)在这次研究中,一共调查了 学生,并请补全折线统计图;(2)该校共有2200名学生,估计该校爱好阅读和爱好体育的学生一共有多少人?22.(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.23.(8分)在平面直角坐标系xOy 中,抛物线()2y nx 4nx 4n 1n 0=-+-≠,与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A .()1求抛物线顶点M 的坐标;()2若点A 的坐标为()0,3,AB//x 轴,交抛物线于点B ,求点B 的坐标;()3在()2的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线1y x m 2=+与图象G 有一个交点,结合函数的图象,求m 的取值范围. 24.(10分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°. 操作发现如图1,固定△ABC ,使△DEC 绕点C 旋转.当点D 恰好落在BC 边上时,填空:线段DE 与AC 的位置关系是 ;②设△BDC 的面积为S 1,△AEC 的面积为S 1.则S 1与S 1的数量关系是 .猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 1的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC ,CE 边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长25.(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.26.(12分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求证:方程有两个不相等的实数根;(2)当方程有一个根为1时,求k的值.27.(12分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.详解:如图,当点E旋转至y轴上时DE最小;∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC∵AB=BC=2∴AD=AB•sin∠3∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,6)∴OA=6∴DE′=OA-AD-OE′=43故选B.点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.2.A【解析】根据题意可知x=-1,平均数=(-6-1-1-1+2+1)÷6=-1,∵数据-1出现两次最多,∴众数为-1,极差=1-(-6)=2,方差=16[(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.故选A.3.A【解析】【分析】根据有理数的除法法则计算可得.【详解】解:15÷(-3)=-(15÷3)=-5, 故选:A . 【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除. 4.B 【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体. 故选B . 5.C 【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值,由2017÷5=403…2,可知点P (2018,m )在此“波浪线”上C 404段上,求出C 404的解析式,然后把P (2018,m )代入即可.详解:当y=0时,﹣x (x ﹣5)=0,解得x 1=0,x 2=5,则A 1(5,0), ∴OA 1=5,∵将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…;如此进行下去,得到一“波浪线”, ∴A 1A 2=A 2A 3=…=OA 1=5,∴抛物线C 404的解析式为y=(x ﹣5×403)(x ﹣5×404),即y=(x ﹣2015)(x ﹣2020), 当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1, 即m=﹣1. 故选C .点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键. 6.C 【解析】 【分析】 【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C. 7.B 【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A 、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B 、早晨的太阳从东方升起,是必然事件,故本选项正确;C 、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D 、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误. 故选B . 8.C 【解析】 1-2=-1,故选C 9.D 【解析】当k=1时,原方程不成立,故k≠1,当k≠1时,方程()21k 1x =04-为一元二次方程. ∵此方程有两个实数根,∴221b 4ac 4k 11k k 122k 04-=-⨯-⨯=---=-≥(()(),解得:k≤1. 综上k 的取值范围是k <1.故选D . 10.C 【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C .点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式. 11.C 【解析】 【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出. 【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确; (3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误; 故选:C . 【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握. 12.C 【解析】设销售该商品每月所获总利润为w ,则w=(x –50)(–4x+440)=–4x 2+640x –22000=–4(x –80)2+3600, ∴当x=80时,w 取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C . 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.35【解析】 【分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案. 【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种, ∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:35. 故答案为35. 14.23≤M≤6 【解析】 【分析】把原式的xy 变为2xy-xy ,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy 的范围;再把原式中的xy 变为-2xy+3xy ,同理得到xy 的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy 的范围,最后利用已知x 2+xy+y 2-2=0表示出x 2+y 2,代入到M 中得到M=2-2xy ,2-2xy 的范围即为M 的范围. 【详解】由2220x xy y ++-=得:22220x xy y xy ++--=,即2()20x y xy +=+≥,所以2xy ≥-; 由2220x xy y ++-=得:222230x xy y xy -+-+=, 即2()230,x y xy -=-≥ 所以32xy ≤, ∴322xy -≤≤, ∴不等式两边同时乘以−2得:()()()322222xy -⨯-≥-≥⨯-,即4243xy -≤-≤, 两边同时加上2得:422242,3xy -+≤-≤+即22263xy ≤-≤,∵2220,x xy y ++-= ∴222x y xy +=-,∴2222M x xy y xy =-+=-, 则M 的取值范围是23≤M≤6. 故答案为:23≤M≤6. 【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M 关于xy 的式子,从而求出M 的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.15.222()2a b a ab b +=++ 【解析】由图形可得:()2222a b a ab b +=++ 16.x=﹣1. 【解析】试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:去分母得:x=2x ﹣1+2, 解得:x=﹣1,经检验x=﹣1是分式方程的解. 考点:解分式方程. 17.2.【解析】试题分析:已知方程x 2-2x 1m +-=0有两个相等的实数根,可得:△=4-4(m -1)=-4m +8=0,所以,m =2.考点:一元二次方程根的判别式. 18.1 23【解析】原方程为3x 2−6x+1=0,二次项系数化为1,得x 2−2x=−13, 即x 2−2x+1=−13+1,所以(x−1)2= 23. 故答案为:1,23.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1)反比例函数的解析式为y=﹣6x ;一次函数的解析式为y=﹣12x+2;(2)8;(3)点M 、N 在第二象限,或点M 、N 在第四象限. 【解析】 【详解】(1)把A (﹣2,3)代入y=mx ,可得m=﹣2×3=﹣6, ∴反比例函数的解析式为y=﹣6x;把点B (6,n )代入,可得n=﹣1, ∴B (6,﹣1).把A (﹣2,3),B (6,﹣1)代入y=kx+b ,可得2361k b k b -+=⎧⎨+=-⎩,解得122k b ⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+2; (2)∵y=﹣12x+2,令y=0,则x=4, ∴C (4,0),即OC=4,∴△AOB 的面积=12×4×(3+1)=8; (3)∵反比例函数y=﹣6x的图象位于二、四象限,∴在每个象限内,y 随x 的增大而增大, ∵x 1<x 2,y 1<y 2,∴M ,N 在相同的象限,∴点M 、N 在第二象限,或点M 、N 在第四象限. 【点睛】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.20.(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】 【分析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得; (2)根据“上加下减,左加右减”的原则进行解答即可. 【详解】解:(1)∵该抛物线过点(0,0), ∴设抛物线解析式为y =ax 2+bx , 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为y =2x 2+2x , 当y =840时,2x 2+2x =840, 解得:x =20(负值舍去),即他需要20s 才能到达终点; (2)∵y =2x 2+2x =2(x+12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x+2+12)2﹣12﹣5=2(x+52)2﹣112.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律. 21.(1)200名;折线图见解析;(2)1210人. 【解析】 【分析】(1)由“其他”的人数和所占百分数,求出全部调查人数;先由“体育”所占百分数和全部调查人数求出体育的人数,进一步求出阅读的人数,补全折线统计图; (2)利用样本估计总体的方法计算即可解答.【详解】(1)调查学生总人数为40÷20%=200(人),体育人数为:200×30%=60(人),阅读人数为:200﹣(60+30+20+40)=200﹣150=50(人).补全折线统计图如下:.(2)2200×5060200=1210(人).答:估计该校学生中爱好阅读和爱好体育的人数大约是1210人.【点睛】本题考查了统计知识的应用,试题以图表为载体,要求学生能从中提取信息来解题,与实际生活息息相关,符合新课标的理念.22.(1)14;(2)13.【解析】【分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=1 4(2)列表如下:美丽光明美---- (美,丽) (光,美) (美,明) 丽(美,丽) ---- (光,丽) (明,丽) 光(美,光) (光,丽) ---- (光,明) 明(美,明) (明,丽) (光,明) -------根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故 取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13P =. 【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(1)M 的坐标为()2,1-;(2)B (4,3);(3)1m 16=或1m 52<≤. 【解析】 【分析】()1利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案.. ()2根据抛物线的对称性质解答;()3利用待定系数法求得抛物线的表达式为24 3.y x x =-+根据题意作出图象G ,结合图象求得m 的取值范围. 【详解】解:(1)()()22244144121y nx nx n n x x n n x =-+-=-+-=-- ,∴该抛物线的顶点M 的坐标为()2,1-;()2由()1知,该抛物线的顶点M 的坐标为()2,1-;∴该抛物线的对称轴直线是x 2=,Q 点A 的坐标为()0,3,AB//x 轴,交抛物线于点B ,∴点A 与点B 关于直线x 2=对称,()B 4,3∴;()3Q 抛物线2y nx 4nx 4n 1=-+-与y 轴交于点()A 0,3,4n 13∴-=. n 1∴=.∴抛物线的表达式为2y x 4x 3=-+. ∴抛物线G 的解析式为:2y x 4x 3=++由21x m x 4x 32+=++. 由0=V ,得:1m 16=-Q 抛物线2y x 4x 3=-+与x 轴的交点C 的坐标为()1,0,∴点C 关于y 轴的对称点1C 的坐标为()1,0-.把()1,0-代入1y x m 2=+,得:1m 2=. 把()4,3-代入1y x m 2=+,得:m 5=.∴所求m 的取值范围是1m 16=-或1m 52<≤.故答案为(1)M 的坐标为()2,1-;(2)B (4,3);(3)1m 16=-或1m 52<≤. 【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G 的图象是解题的关键.24.解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2. 【解析】 【详解】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形. ∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM . ∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC . 又∵AD=AC ∴BD=AC . ∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D 作DM ⊥BC 于M ,过点A 作AN ⊥CE 交EC 的延长线于N ,∵△DEC 是由△ABC 绕点C 旋转得到, ∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°, ∴∠ACN=∠DCM ,∵在△ACN 和△DCM 中,ACN DCMCMD N AC CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ACN ≌△DCM (AAS ), ∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 1;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形, 所以BE=DF 1,且BE 、DF 1上的高相等, 此时S △DCF1=S △BDE ; 过点D 作DF 1⊥BD , ∵∠ABC=20°,F 1D ∥BE , ∴∠F 1F 1D=∠ABC=20°, ∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 1DB=90°, ∴∠F 1DF 1=∠ABC=20°, ∴△DF 1F 1是等边三角形,∴DF 1=DF 1,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=20°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92,∴BD=33∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF1=320°-150°-20°=150°,∴∠CDF1=∠CDF1,∵在△CDF1和△CDF1中,1212DF DFCDF CDFCD CD⎧⎪∠⎨⎪⎩===,∴△CDF1≌△CDF1(SAS),∴点F1也是所求的点,∵∠ABC=20°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×20°=30°,又∵BD=33,∴BE=12×33÷cos30°=3,∴BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或2.25.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61 122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.26.(2)证明见解析;(2)k2=2,k2=2.【解析】【分析】(2)套入数据求出△=b2﹣4ac的值,再与2作比较,由于△=2>2,从而证出方程有两个不相等的实数根;(2)将x=2代入原方程,得出关于k的一元二次方程,解方程即可求出k的值.【详解】(2)证明:△=b2﹣4ac,=[﹣(2k+2)]2﹣4(k2+k),=4k2+4k+2﹣4k2﹣4k,=2>2.∴方程有两个不相等的实数根; (2)∵方程有一个根为2,∴22﹣(2k+2)+k 2+k =2,即k 2﹣k =2, 解得:k 2=2,k 2=2. 【点睛】本题考查了根的判别式以及解一元二次方程,解题的关键是:(2)求出△=b 2﹣4ac 的值;(2)代入x =2得出关于k 的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,由根的判别式来判断实数根的个数是关键.27.(1)0.271000y x x 甲=(>);(2)选择乙印刷厂比较优惠.【解析】 【分析】(1)根据题意直接写出两厂印刷厂的收费y 甲(元)关于印刷数量x (份)之间的函数关系式; (2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可. 【详解】(1)根据题意可知:甲印刷厂的收费y 甲=0.3x×0.9+100=0.27x+100,y 关于x 的函数关系式是y 甲=0.27x+100(x >0); (2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠. 【点睛】本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.。
辽宁省营口市2019-2020学年中考数学最后模拟卷含解析
辽宁省营口市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( ).A .2(1)2y x =-++B .2(1)4y x =--+C .2(1)2y x =--+D .2(1)4y x =-++3.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )A .28×109B .2.8×108C .2.8×109D .2.8×10104.一元二次方程mx 2+mx ﹣12=0有两个相等实数根,则m 的值为( ) A .0 B .0或﹣2C .﹣2D .2 5.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD+∠ECB=45°;③BD ⊥CE ;④BE 1=1(AD 1+AB 1)﹣CD 1.其中正确的是( )A .①②③④B .②④C .①②③D .①③④6.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个7.如图,在平面直角坐标系xOy 中,A (2,0),B (0,2),⊙C 的圆心为点C (﹣1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于E 点,则△ABE 面积的最小值是( )A .2B .C .D .8.下列方程有实数根的是( )A .420x +=B .221x -=-C .x+2x−1=0D .111x x x =-- 9.关于x 的不等式组24351x x -<⎧⎨-<⎩的所有整数解是( ) A .0,1 B .﹣1,0,1 C .0,1,2 D .﹣2,0,1,210.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .11.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°12.某校九年级(1)班全体学生实验考试的成绩统计如下表: 成绩(分)2425 26 27 28 29 30 人数(人)25 6 6 8 7 6 根据上表中的信息判断,下列结论中错误的是( )A .该班一共有40名同学B .该班考试成绩的众数是28分C .该班考试成绩的中位数是28分D .该班考试成绩的平均数是28分二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数 2y x =-__________.14.分解因式:x 2–4x+4=__________.15.方程1223x x=+的解为__________.16.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.17.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.18.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?20.(6分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.21.(6分)如图,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD 于点E ,AF ⊥BE ,垂足为点O ,交BC 于点F ,连接EF .求证:四边形ABFE 为菱形.22.(8分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。
辽宁省营口市2019-2020学年中考数学教学质量调研试卷含解析
辽宁省营口市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.要使式子2a a+有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠ C .2a >-. 或0a ≠ D .2a ≥- 且0a ≠2.若顺次连接四边形ABCD 各边中点所得的四边形是菱形,则四边形ABCD 一定是( ) A .矩形B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形3.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v4.如图是由4个相同的正方体搭成的几何体,则其俯视图是( )A .B .C .D .5.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( ) A .10B .8C .5D .36.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-= B .800800402.25x x -= C .800800401.25x x-= D .800800401.25x x-= 7.如图,点O′在第一象限,⊙O′与x 轴相切于H 点,与y 轴相交于A (0,2),B (0,8),则点O′的坐标是( )A .(6,4)B .(4,6)C .(5,4)D .(4,5)8.把8a 3﹣8a 2+2a 进行因式分解,结果正确的是( ) A .2a (4a 2﹣4a+1) B .8a 2(a ﹣1)C .2a (2a ﹣1)2D .2a (2a+1)29.有一个数用科学记数法表示为5.2×105,则这个数是( ) A .520000B .0.000052C .52000D .520000010.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A .这10名同学体育成绩的中位数为38分B .这10名同学体育成绩的平均数为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为211.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数( )A .40°B .50°C .60°D .90°12.方程23x 1x=-的解是 A .3B .2C .1D .0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数). 例如42y x x =+,则342y x x '=+. 已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________.14.解不等式组1 (1)1212xx⎧-≤⎪⎨⎪-<⎩,则该不等式组的最大整数解是_____.15.如图,在正六边形ABCDEF中,AC于FB相交于点G,则AGGC值为_____.16.已知反比例函数kyx=的图像经过点(-2017,2018),当0x>时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)17.计算:2a×(﹣2b)=_____.18.已知抛物线y=x2上一点A,以A为顶点作抛物线C:y=x2+bx+c,点B(2,y B)为抛物线C上一点,当点A在抛物线y=x2上任意移动时,则y B的取值范围是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.20.(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A 点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.21.(6分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.22.(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.23.(8分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.24.(10分)“六一”期间,小张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只.(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的910倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?25.(10分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE 是边CD的中线,且∠AOB+∠COD=180°(1)如图2,当△ABO是等边三角形时,求证:OE=12 AB;(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=12 AB;(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,①试探究α、β之间存在的数量关系?②结论“OE=12AB”还成立吗?若成立,请你证明;若不成立,请说明理由.26.(12分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.27.(12分)[阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求as的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据二次根式和分式有意义的条件计算即可.【详解】解:∵2aa有意义,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.2.C【解析】【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=12BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.3.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.4.A【解析】试题分析:从上面看是一行3个正方形.故选A考点:三视图5.B【解析】∵摸到红球的概率为15,∴21 25n=+,解得n=8,故选B.6.C【解析】【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【详解】小进跑800米用的时间为8001.25x秒,小俊跑800米用的时间为800x秒,∵小进比小俊少用了40秒,方程是800800401.25x x-=,故选C.【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.7.D【解析】【分析】过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.【详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x轴相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得22O B 22-BC5-3=4,∴P点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.8.C【解析】【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【点睛】本题因式分解中提公因式法与公式法的综合运用.9.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】5.2×105=520000,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.11.B【解析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB⊥BC,∴∠ABC=90°,∵点B在直线b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.12.A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解:去分母得:2x=3x ﹣3,解得:x=3,经检验x=3是分式方程的解.故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12【解析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯n ()=0,解得m=12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项.△>0说明方程有两个不同实数解,△=0说明方程有两个相等实数解,△<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.14.x=1.【解析】【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【详解】()111212x x ⎧-≤⎪⎨⎪-⎩①<②, 由不等式①得x≤1,由不等式②得x >-1,其解集是-1<x≤1,所以整数解为0,1,2,1,则该不等式组的最大整数解是x=1.故答案为:x=1.【点睛】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.15.12. 【解析】【分析】由正六边形的性质得出AB=BC=AF ,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG ,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG ,即可得出答案.【详解】∵六边形ABCDEF 是正六边形,∴AB =BC =AF ,∠ABC =∠BAF =120°,∴∠ABF =∠BAC =∠BCA =30°,∴AG =BG ,∠CBG =90°,∴CG =2BG =2AG , ∴AG GC =12; 故答案为:12. 【点睛】本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.16.增大【解析】【分析】根据题意,利用待定系数法解出系数的符号,再根据k 值的正负确定函数值的增减性.【详解】∵反比例函数kyx的图像经过点(-2017,2018),∴k=-2017×2018<0,∴当x>0时,y随x的增大而增大.故答案为增大.17.﹣4ab【解析】【分析】根据单项式与单项式的乘法解答即可.【详解】2a×(﹣2b)=﹣4ab.故答案为﹣4ab.【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.18.y a≥1【解析】【分析】设点A的坐标为(m,n),由题意可知n=m1,从而可知抛物线C为y=(x-m)1+n,化简为y=x1-1mx+1m1,将x=1代入y=x1-1mx+1m1,利用二次函数的性质即可求出答案.【详解】设点A的坐标为(m,n),m为全体实数,由于点A在抛物线y=x1上,∴n=m1,由于以A为顶点的抛物线C为y=x1+bx+c,∴抛物线C为y=(x-m)1+n化简为:y=x1-1mx+m1+n=x1-1mx+1m1,∴令x=1,∴y a=4-4m+1m1=1(m-1)1+1≥1,∴y a≥1,故答案为y a≥1【点睛】本题考查了二次函数的性质,解题的关键是根据题意求出y a=4-4m+1m1=1(m-1)1+1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)25 3.【解析】(2)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP=,∴BP=253.“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP转化为证明AB•CD=CP•BP是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP∽△BCA是解决第(2)小题的关键.20.(1)3;(2)∠DEF的大小不变,tan∠DEF=34;(3)7541或7517.【解析】【详解】(1)当t=3时,点E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE∥OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)∠DEF的大小不变;理由如下:作DM⊥OA于M,DN⊥AB于N,如图2所示:∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM∥AB,DN∥OA,∴BD BNDO NA=,BD AMDO OM=,∵点D为OB的中点,∴M、N分别是OA、AB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴△DMF∽△DNE,∴34 DFDMDE DN==,∵∠EDF=90°,∴tan∠DEF=34DFDE=;(3)作DM⊥OA于M,DN⊥AB于N,若AD将△DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;①当点E到达中点之前时,如图3所示,NE=3﹣t,由△DMF∽△DNE得:MF=34(3﹣t),∴AF=4+MF=﹣34t+254,∵点G为EF的三等分点,∴G(37112t+,23t),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得:8043k bk b+=⎧⎨+=⎩,解得:346kb⎧=-⎪⎨⎪=⎩,∴直线AD的解析式为y=﹣34x+6,把G(37112t+,23t)代入得:t=7541;②当点E越过中点之后,如图4所示,NE=t﹣3,由△DMF∽△DNE得:MF=34(t﹣3),∴AF=4﹣MF=﹣34t+254,∵点G为EF的三等分点,∴G(3236t+,13t),代入直线AD的解析式y=﹣34x+6得:t=7517;综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为7541或7517.考点:四边形综合题.21.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】【分析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.22.(1)50;(2)240;(3)1 2 .【解析】【分析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1)510%50n=÷=;(2)样本中喜爱看电视的人数为501520510---=(人),10120024050⨯=,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率61 122 ==.【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.23.(1)见解析;(2)①见解析;②.【解析】【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,∵点N,P是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如图2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵点M、N、P分别是线段DE、BC、CD的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如图3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC24.(1)A种文具进货40只,B种文具进货60只;(2)一共有三种购货方案,购买A型文具48只,购买B型文具52只使销售文具所获利润最大.【解析】【分析】只,根据总价=单价×数量(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100)x结合A 、B 两种文具的进价及总价,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x 的取值范围,再根据一次函数的性质,即可解决最值问题.【详解】(1)设A 种文具进货x 只,B 种文具进货(100)x -只,由题意得:1015(100)1300x x +-=,解得:x =40,10060x -=,答:A 种文具进货40只,B 种文具进货60只;(2)设购进A 型文具a 只,则有9(100)10a a ≥-,且28(100)500a a +-≥; 解得:9005019a ≤≤, ∵a 为整数,∴a =48、49、50,一共有三种购货方案;利润28(100)6800wa a a +--+==, ∵60k -<=,w 随a 增大而减小,当a =48时W 最大,即购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【点睛】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.25.(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.【解析】【分析】(1)作OH ⊥AB 于H ,根据线段垂直平分线的性质得到OD=OA ,OB=OC ,证明△OCE ≌△OBH ,根据全等三角形的性质证明;(2)证明△OCD ≌△OBA ,得到AB=CD ,根据直角三角形的性质得到OE=12CD ,证明即可; (3)①根据等腰三角形的性质、三角形内角和定理计算;②延长OE 至F ,是EF=OE ,连接FD 、FC ,根据平行四边形的判定和性质、全等三角形的判定和性质证明.【详解】(1)作OH ⊥AB 于H ,∵AD 、BC 的垂直平分线相交于点O ,∴OD=OA ,OB=OC ,∵△ABO 是等边三角形,∴OD=OC ,∠AOB=60°,∵∠AOB+∠COD =180°∴∠COD=120°,∵OE 是边CD 的中线,∴OE ⊥CD ,∴∠OCE=30°,∵OA=OB ,OH ⊥AB ,∴∠BOH=30°,BH=12AB , 在△OCE 和△BOH 中,OCE BOH OEC BHO OB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△OBH ,∴OE=BH ,∴OE=12AB ; (2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD 和△OBA 中,OD OA COD BOA OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△OCD ≌△OBA ,∴AB=CD ,∵∠COD=90°,OE 是边CD 的中线,∴OE=12CD ,∴OE=12AB ; (3)①∵∠OAD=α,OA=OD ,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延长OE 至F ,使EF=OE ,连接FD 、FC ,则四边形FDOC 是平行四边形,∴∠OCF+∠COD=180°,FC OA =,∴∠AOB=∠FCO ,在△FCO 和△AOB 中,FC OA FCO AOB OC OB =⎧⎪∠=∠⎨⎪=⎩,∴△FCO ≌△AOB ,∴FO=AB ,∴OE=12FO=12AB . 【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.26.答案见解析【解析】由于AB=AC ,那么∠B=∠C ,而DE ⊥AC ,DF ⊥AB 可知∠BFD=∠CED=90°,又D 是BC 中点,可知BD=CD ,利用AAS 可证△BFD ≌△CED ,从而有DE=DF .27.tanA=3;综上所述,当β=45°时,若△APQ是“中边三角形”,as的值为34或1512.【解析】【分析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【详解】解:[理解]∵AC和BD是“对应边”,∴AC=BD,设AC=2x,则CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分线,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.【点睛】本题是一道相似形综合运用的试题, 考查了相似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.。
辽宁省营口市2019-2020学年中考数学第二次调研试卷含解析
辽宁省营口市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .3 2.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( )A.1201806x x =+ B .1201806x x =- C .1201806x x =+ D .1201806x x =- 3.如图,矩形ABCD 中,AD=2,AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A .5B .136C .1D .564.下列调查中适宜采用抽样方式的是( )A .了解某班每个学生家庭用电数量B .调查你所在学校数学教师的年龄状况C .调查神舟飞船各零件的质量D .调查一批显像管的使用寿命5.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4 C .3 D .26.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+17.下列实数中是无理数的是( )A .227B .πC 9D .13-8.下列计算正确的是()A.a+a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a79.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.10.下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.11.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107B.0.71×10﹣6C.7.1×10﹣7D.71×10﹣812.16的算术平方根是()A.4 B.±4 C.2 D.±2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,函数y=kx(x<0)的图像与直线y=-3x交于A点,将线段OA绕O点顺时针旋转30°,交函数y=kx(x<0)的图像于B点,得到线段OB,若线段AB=32-6,则k= _______________________.14.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1=.15.化简1111x x -+-的结果是_______________. 16.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.17.计算()22133x y xy ⎛⎫-⋅= ⎪⎝⎭_______. 18.抛物线y=x 2+2x+m ﹣1与x 轴有交点,则m 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(2x x x +﹣1)÷22121x x x -++,其中x=1. 20.(6分)如图,在Rt △ABC 的顶点A 、B 在x 轴上,点C 在y 轴上正半轴上,且A(-1,0),B(4,0),∠ACB =90°.(1)求过A 、B 、C 三点的抛物线解析式;(2)设抛物线的对称轴l 与BC 边交于点D ,若P 是对称轴l 上的点,且满足以P 、C 、D 为顶点的三角形与△AOC 相似,求P 点的坐标;(3)在对称轴l 和抛物线上是否分别存在点M 、N ,使得以A 、O 、M 、N 为顶点的四边形是平行四边形,若存在请直接写出点M 、点N 的坐标;若不存在,请说明理由.图1 备用图21.(6分)某农场要建一个长方形ABCD 的养鸡场,鸡场的一边靠墙,(墙长25m )另外三边用木栏围成,木栏长40m .(1)若养鸡场面积为168m 2,求鸡场垂直于墙的一边AB 的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?22.(8分)如图1,点O 和矩形CDEF 的边CD 都在直线l 上,以点O 为圆心,以24为半径作半圆,分别交直线l 于,A B 两点.已知: 18CD =,24CF =,矩形自右向左在直线l 上平移,当点D 到达点A 时,矩形停止运动.在平移过程中,设矩形对角线DF 与半圆»AB 的交点为P (点P 为半圆上远离点B 的交点).如图2,若FD 与半圆»AB 相切,求OD 的值;如图3,当DF 与半圆»AB 有两个交点时,求线段PD 的取值范围;若线段PD 的长为20,直接写出此时OD 的值.23.(8分)先化简,再求值:a (a ﹣3b )+(a+b )2﹣a (a ﹣b ),其中a=1,b=﹣1224.(10分)先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0. 25.(10分)某汽车专卖店销售A,B 两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表: A 型汽车 B 型汽车上周 1 3本周 21 (1)求每辆A 型车和B 型车的售价各为多少元(2)甲公司拟向该店购买A,B 两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?26.(12分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为,图①中的a的值为;(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.27.(12分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.【详解】解:∵方程x2−5x+2=0的两个解分别为x1,x2,∴x1+x2=5,x1•x2=2,∴x1+x2−x1•x2=5−2=1.故选D.【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.2.C【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.3.D【解析】【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到AE ADAF FH=,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FH⊥AE于H,Q四边形ABCD是矩形,∴AB=CD,AB∥CD,Q AE//CF, ∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3-DE,∴24DE+Q∠FHA=∠D=∠DAF=90o,∴∠AFH+∠HAF=∠DAE+∠FAH=90, ∴∠DAE=∠AFH, ∴△ADE~△AFH,∴AE AD AF FH=∴AE=AF,∴243DE DE+=-,∴DE=5 6 ,故选D.本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.4.D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.5.D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.6.B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.7.B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A 、227是分数,属于有理数; B 、π是无理数;C 9,是整数,属于有理数;D 、-13是分数,属于有理数; 故选B .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.A【解析】【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A.a+a=2a ,故本选项正确;B.336 b b b ⋅=,故本选项错误;C.32a a a ÷= ,故本选项错误;D.525210()a a a ⨯==,故本选项错误.故选:A.【点睛】考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.9.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.10.D【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.C【解析】【分析】先求出16的值,然后再利用算术平方根定义计算即可得到结果.【详解】16=4,4的算术平方根是2,所以16的算术平方根是2,故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-33【解析】【分析】作AC⊥x轴于C,BD⊥x轴于D,AE⊥BD于E点,设A点坐标为(3a,-3a),则OC=-3a,AC=-3a,利用勾股定理计算出OA=-23a,得到∠AOC=30°,再根据旋转的性质得到OA=OB,∠BOD=60°,易证得Rt△OAC≌Rt△BOD,OD=AC=-3a,BD=OC=-3a,于是有AE=OC-OD=-3a+3a,BE=BD-AC=-3a+3a,即AE=BE,则△ABE为等腰直角三角形,利用等腰直角三角形的性质得到32-6=2(-3a+3a),求出a=1,确定A点坐标为(3,-3),然后把A(3,-3)代入函数y=kx即可得到k的值.【详解】作AC⊥x轴与C,BD⊥x轴于D,AE⊥BD于E点,如图,点A在直线3上,可设A点坐标为(3a,3a),在Rt△OAC中,OC=-3a,3a,∴OA=22AC OC=-23a,∴∠AOC=30°,∵直线OA绕O点顺时针旋转30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-3a,BD=OC=-3a,∵四边形ACDE为矩形,∴AE=OC-OD=-3a+3a,BE=BD-AC=-3a+3a,∴AE=BE,∴△ABE为等腰直角三角形,∴AB=2AE,即32-6=2(-3a+3a),解得a=1,∴A点坐标为(3,-3),而点A在函数y=kx的图象上,∴k=3×(-3)=-33.故答案为-33.【点睛】本题是反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性质进行线段的转换与计算.14.107°【解析】【分析】过C作d∥a, 得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.【详解】过C作d∥a, ∴a∥b, ∴a∥b∥d,∵四边形ABCD 是正方形,∴∠DCB=90°, ∵∠2=73°,∴∠6=90°-∠2=17°, ∵b ∥d, ∴∠3=∠6=17°, ∴∠4=90°-∠3=73°, ∴∠5=180°-∠4=107°,∵a ∥d, ∴∠1=∠5=107°,故答案为107°.【点睛】本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.15.221x -- 【解析】【分析】先将分式进行通分,即可进行运算.【详解】1111x x -+-=211x x ---211x x +-=221x -- 【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.16.8。
辽宁省营口市2019-2020学年中考数学模拟试题(5)含解析
辽宁省营口市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°2.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.23.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个4.如图所示的几何体的左视图是()A.B.C.D.5.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°6.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD=1,BD=3,那么由下列条件能够判断DE ∥BC 的是( ) A .31DE BC = B .DE 1BC 4= C .31AE AC = D .AE 1AC 4= 7.下列运算正确的是( )A .a 2·a 3﹦a 6B .a 3+ a 3﹦a 6C .|-a 2|﹦a 2D .(-a 2)3﹦a 6 8.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )A .B .C .D .9.一组数据是4,x ,5,10,11共五个数,其平均数为7,则这组数据的众数是( ) A .4B .5C .10D .1110.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )A .甲超市的利润逐月减少B .乙超市的利润在1月至4月间逐月增加C .8月份两家超市利润相同D .乙超市在9月份的利润必超过甲超市11.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p ,而在另一个瓶子中是1:q ,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )A .2P q +B .2P q Pq +C .2+2p q P q Pq +++D .2+2p q pq P q +++12.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边二、填空题:(本大题共6个小题,每小题4分,共24分.)13.要使分式51x-有意义,则x的取值范围为_________.14.分解因式:2a4﹣4a2+2=_____.15.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).16.当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值为_____.17.计算12-3的结果是______.18.函数y=3x-中自变量x的取值范围是________,若x=4,则函数值y=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校2000 名学生所捐图书的数量.20.(6分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.21.(6分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?22.(8分)某保健品厂每天生产A ,B 两种品牌的保健品共600瓶,A ,B 两种产品每瓶的成本和利润如表,设每天生产A 产品x 瓶,生产这两种产品每天共获利y 元. (1)请求出y 关于x 的函数关系式;(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?(3)该厂每天生产的A ,B 两种产品被某经销商全部订购,厂家对A 产品进行让利,每瓶利润降低100x元,厂家如何生产可使每天获利最大?最大利润是多少?A B 成本(元/瓶) 50 35 利润(元/瓶)201523.(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理. 类别 频数(人数) 频率 武术类 0.25 书画类 20 0.20 棋牌类 15 b 器乐类 合计a1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图. 请你根据以上图表提供的信息解答下列问题: ①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.(10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=43,AB=14,求线段PC的长.25.(10分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.26.(12分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.27.(12分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:如图:∵∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.考点:平行线的性质.2.B【解析】【分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.3.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.4.A【解析】本题考查的是三视图.左视图可以看到图形的排和每排上最多有几层.所以选择A.5.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.6.D【解析】【详解】如图,∵AD=1,BD=3,∴AD1 AB4=,当AE1AC4=时,AD AEAB AC=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.7.C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.8.B【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】锥形瓶从上面往下看看到的是两个同心圆.故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线. 9.B【解析】试题分析:(4+x+3+30+33)÷3=7,解得:x=3,根据众数的定义可得这组数据的众数是3.故选B.考点:3.众数;3.算术平均数.10.D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.11.C 【解析】 【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案. 【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1qq +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键. 12.C 【解析】分析:由A 、B 、C 三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O 与A 、B 的距离分别为1、1,即可得出a=±1、b=±1,结合a 、b 、c 间的关系即可求出a 、b 、c 的值,由此即可得出结论.解析:∵|a ﹣b|=3,|b ﹣c|=5, ∴b=a+3,c=b+5,∵原点O 与A 、B 的距离分别为1、1, ∴a=±1,b=±1, ∵b=a+3, ∴a=﹣1,b=﹣1, ∵c=b+5, ∴c=1.∴点O 介于B 、C 点之间. 故选C .点睛:本题考查了数值以及绝对值,解题的关键是确定a 、b 、c 的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≠1【解析】由题意得x-1≠0,∴x≠1.故答案为x≠1.14.1(a+1)1(a ﹣1)1.【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=1(a 4﹣1a 1+1)=1(a 1﹣1)1=1(a+1)1(a ﹣1)1,故答案为:1(a+1)1(a ﹣1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式. 15.2π【解析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角=()621806-⨯︒=120°, 所得到的三条弧的长度之和=3×120180r π=2πcm ; 方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm .16.-1或-4【解析】分析:设“倍根方程”2(2)20x m x m +--=的一个根为α,则另一根为2α,由一元二次方程根与系数的关系可得2(2)?22m m αααα+=--⋅=-,,由此可列出关于m 的方程,解方程即可求得m 的值. 详解:由题意设“倍根方程”2(2)20x m x m +--=的一个根为α,另一根为2α,则由一元二次方程根与系数的关系可得:2(2)?22m m αααα+=--⋅=-,, ∴223m m αα-=-=-,, ∴22()3m m --=-, 化简整理得:2540m m ++=,解得 1241m m =-=-,.故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程2(0)0 ax bx c a ++=≠的两根分别为αβ、,则 b c a aαβαβ+=-=,. 17. 【解析】【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】1232333==【点睛】考点:二次根式的加减法.18.x≥3 y =1【解析】根据二次根式有意义的条件求解即可.即被开方数是非负数,结果是x≥3,y =1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解析】【分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【详解】(1)∵捐 2 本的人数是 15 人,占 30%,∴该班学生人数为 15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为 360°×550=36°. (4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=15750, ∴全校 2000 名学生共捐 2000×15750=6280(本), 答:全校 2000 名学生共捐 6280 册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.20.(1)证明见解析;(1)23【解析】【分析】(1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD ,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.3OE ,交CD 于点F ,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=1OF=1,求出菱形的面积即可. 【详解】 ()1证明:CE //OD Q ,DE //OC ,∴四边形OCED 是平行四边形,Q 矩形ABCD ,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,∴四边形OCED 是菱形;()2在矩形ABCD 中,ABC 90o ∠=,BAC 30∠=o ,AC 4=,BC 2∴=,AB DC 23∴==,连接OE ,交CD 于点F ,Q 四边形OCED 为菱形,F ∴为CD 中点,O Q 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.21.(1)2400元;(2)8台.【解析】试题分析:(1)设商场第一次购入的空调每台进价是x 元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将y 台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x 元,依题意,得52000240002,200x x=⨯+ 解得2400.x = 经检验,2400x =是原方程的解.答:第一次购入的空调每台进价是2 400元.(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y 台空调打折出售,由题意,得()()()()30001030002000.95300020020122%2400052000y y ⨯++⨯⋅+⋅-≥+⨯+(),解得8y ≤. 答:最多可将8台空调打折出售.22.(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元.【解析】试题分析:(1)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;利润=A 种品牌白酒瓶数×A 种品牌白酒一瓶的利润+B 种品牌白酒瓶数×B 种品牌白酒一瓶的利润,列出函数关系式; (2)A 种品牌白酒x 瓶,则B 种品牌白酒(600-x )瓶;成本=A 种品牌白酒瓶数×A 种品牌白酒一瓶的成本+B 种品牌白酒瓶数×B 种品牌白酒一瓶的成本,列出不等式,求x 的值,再代入(1)求利润. (3)列出y 与x 的关系式,求y 的最大值时,x 的值.试题解析:(1)y=20x+15(600-x) =5x+9000,∴y 关于x 的函数关系式为y=5x+9000;(2)根据题意,得50 x+35(600-x)≥26400,解得x≥360,∵y=5x+9000,5>0,∴y 随x 的增大而增大,∴当x=360时,y 有最小值为10800,∴每天至少获利10800元;(3)()2015600100x y x x ⎛⎫=-+- ⎪⎝⎭ ()212509625100x =--+, ∵10100-<,∴当x=250时,y 有最大值9625, ∴每天生产A 产品250件,B 产品350件获利最大,最大利润为9625元.23.(1)见解析; (2)① a=100,b=0.15; ②144°;③140人. 【解析】【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a 值,用喜欢棋牌类的人数除以总人数即可求得b 值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【详解】(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.(1)(2)证明见解析;(3)1.【解析】【分析】(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;(3)易证△PAC∽△PCB,由相似三角形的性质可得到PC APPB PC,又因为tan∠ABC=43,所以可得AC BC =43,进而可得到PCPB=43,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠A CO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6 (k=0不合题意,舍去).∴PC=4k=4×6=1.【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.25.(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=5(3)满足条件的AG的长为10或26【解析】【分析】(1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO =∠AEG=45°,解直角三角形即可解决问题;(3)分两种情形分别画出图形即可解决问题;【详解】(1)结论:BE=DG,BE⊥DG.理由:如图①中,设BE交DG于点K,A E交DG于点O.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四点共圆,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴222DM==,∵DG=1DM,∴42=DG,∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=1,在Rt△AHG中,222425AG=+=.(3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.易证△AHG≌△EDA,可得GH=AB=1,∵DG=4DM.AM∥GH,∴1,4 DA DMDH DG==∴DH=8,∴AH=DH﹣AD=6,在Rt△AHG中,2262210AG=+=.②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.∵AD∥GH,∴1,5 AD DMGH MG==∵AD=1,∴HG=10,在Rt△AGH中,22102226AG.+=综上所述,满足条件的AG的长为210或26【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.(1)证明见解析;(2)23.【解析】【分析】(1)由BD是△ABC的角平分线,DE∥AB,可证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得四边形ADEF是平行四边形;(2)过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得BH的长,从而求得BE、DE的长,即可求得答案.【详解】(1)证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;(2)解:过点E作EH⊥BD于点H.∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DH=12BD=12×6=3,∵BE=DE,∴BH=DH=3,∴BE==3∴DE=BE=23【点睛】此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.注意掌握辅助线的作法.27.(1) 1;(2)1 7【解析】(1)由勾股定理求AB,设⊙O的半径为r,则r=12(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=2x,由(1)可知CO=2r=2,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO 求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得AB=22AC BC+=5,∴☉O的半径r=12(AC+BC-AB)=12(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴x3=4x4-,解得x=127,即GP=127,CG=122,∴OG=CG-CO=1227-2=527,在Rt△ODG中,DG=22OG OD-=1 7 .。
辽宁省营口市2019-2020学年中考中招适应性测试卷数学试题(3)含解析
辽宁省营口市2019-2020学年中考中招适应性测试卷数学试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列手机手势解锁图案中,是轴对称图形的是( )A.B.C.D.2.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=()A.2.5 B.3 C.4 D.53.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-24.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+5.在⊙O中,已知半径为5,弦AB的长为8,则圆心O到AB的距离为()A.3 B.4 C.5 D.66.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A.(2017,0)B.(2017,12)C.(20183D.(2018,0)7.﹣23的绝对值是()A.﹣322B.﹣23C.23D.3228.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位9.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5 人数 2 4 3 8 3学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数B.加权平均数C.众数D.中位数10.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近11.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.603n mile B.602n mile C.303n mile D.302n mile12.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.710二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.14.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 15.如图,AB 为⊙O 的弦,C 为弦AB 上一点,设AC =m ,BC =n(m >n),将弦AB 绕圆心O 旋转一周,若线段BC 扫过的面积为(m 2﹣n 2)π,则mn=______16.当a <0,b >02a b _____.17.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 18.如果a ,b 分别是2016的两个平方根,那么a+b ﹣ab=___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=x 2﹣6x+9与直线y=x+3交于A ,B 两点(点A 在点B 的左侧),抛物线的顶点为C ,直线y=x+3与x 轴交于点D .(1)求抛物线的顶点C 的坐标及A ,B 两点的坐标;(2)将抛物线y=x 2﹣6x+9向上平移1个单位长度,再向左平移t (t >0)个单位长度得到新抛物线,若新抛物线的顶点E 在△DAC 内,求t 的取值范围;(3)点P (m ,n )(﹣3<m <1)是抛物线y=x 2﹣6x+9上一点,当△PAB 的面积是△ABC 面积的2倍时,求m ,n 的值.20.(6分)先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.21.(6分)如图1,已知直线l :y=﹣x+2与y 轴交于点A ,抛物线y=(x ﹣1)2+m 也经过点A ,其顶点为B ,将该抛物线沿直线l 平移使顶点B 落在直线l 的点D 处,点D 的横坐标n (n >1).(1)求点B 的坐标;(2)平移后的抛物线可以表示为 (用含n 的式子表示);(3)若平移后的抛物线与原抛物线相交于点C ,且点C 的横坐标为a . ①请写出a 与n 的函数关系式.②如图2,连接AC ,CD ,若∠ACD=90°,求a 的值.22.(8分)如图,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE=EF .求证:∠C=90°;当BC=3,sinA=35时,求AF 的长.23.(8分)如图,已知△ABC 中,AB=BC=5,tan ∠ABC=34.求边AC 的长;设边BC 的垂直平分线与边AB 的交点为D ,求ADDB的值.24.(10分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)25.(10分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1.26.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.27.(12分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.(1)请画出树状图并写出所有可能得到的三位数;(2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.2.A【解析】【分析】先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.【详解】∵∠ACB=90°,D为AB中点∴CD=∵点E、F分别为BC、BD中点∴.故答案为:A.【点睛】本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.3.D【解析】【分析】把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.【详解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故选D.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.4.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式. 5.A【解析】解:作OC⊥AB于C,连结OA,如图.∵OC⊥AB,∴AC=BC=12AB=12×8=1.在Rt△AOC中,OA=5,∴OC=2222543OA AC-=-=,即圆心O到AB的距离为2.故选A.6.C【解析】【分析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为23F滚动7次时的横坐标为8,纵坐3F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.【详解】.解:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2017÷6=336余1,∴点F滚动1次时的横坐标为23,点F滚动7次时的横坐标为83,∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,∴点F滚动2107次时的横坐标为2017+1=20183∴点F滚动2107次时的坐标为(20183),故选C.【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.7.C【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】│-2│=2,A 错误;│-3│=3,B 错误;│2│=2,D 错误;,故选C. 【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题. 8.C 【解析】 【分析】根据“上加下减”的原则求解即可. 【详解】将函数y =2x ﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y =2x . 故选:C . 【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键. 9.C 【解析】 【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数. 【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm 的女式运动鞋,就说明穿23.0cm 的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用. 10.D 【解析】 【分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.11.B【解析】【分析】【详解】如图,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=22×60=302n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=602n mile.故选B.12.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题:(本大题共6个小题,每小题4分,共24分.)133【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴223BD DE-,3.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3 2 12ab⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.15.15+【解析】【分析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=5n n±,∵m>0,n>0,∴5n n+∴15mn+=故答案为12+. 【点睛】 此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC 扫过的面积是解题的关键,是一道中等难度的题目.16.-【解析】分析:按照二次根式的相关运算法则和性质进行计算即可.详解:∵00a b <>,,a ==-故答案为:-点睛:熟记二次根式的以下性质是解答本题的关键:(100)a b =≥≥,;(2)a =() (0)0?0 (0)a a a a a >⎧⎪=⎨⎪-<⎩. 17.9.6×1.【解析】【详解】将9600000用科学记数法表示为9.6×1. 故答案为9.6×1. 18.1【解析】【分析】先由平方根的应用得出a ,b 的值,进而得出a+b=0,代入即可得出结论.【详解】∵a ,b 分别是1的两个平方根,∴a b == ∵a ,b 分别是1的两个平方根,∴a+b=0,∴ab=a×(﹣a )=﹣a 2=﹣1,∴a+b ﹣ab=0﹣(﹣1)=1,故答案为:1.【点睛】此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)C (2,0),A (1,4),B (1,9);(2)12<t <5;(2)m=72,∴n=372. 【解析】分析:(Ⅰ)将抛物线的一般式配方为顶点式即可求出点C 的坐标,联立抛物线与直线的解析式即可求出A 、B 的坐标.(Ⅱ)由题意可知:新抛物线的顶点坐标为(2﹣t ,1),然后求出直线AC 的解析式后,将点E 的坐标分别代入直线AC 与AD 的解析式中即可求出t 的值,从而可知新抛物线的顶点E 在△DAC 内,求t 的取值范围.(Ⅲ)直线AB 与y 轴交于点F ,连接CF ,过点P 作PM ⊥AB 于点M ,PN ⊥x 轴于点N ,交DB 于点G ,由直线y=x+2与x 轴交于点D ,与y 轴交于点F ,得D (﹣2,0),F (0,2),易得CF ⊥AB ,△PAB 的面积是△ABC 面积的2倍,所以12AB•PM=12AB•CF ,,从而可求出PG=3,利用点G 在直线y=x+2上,P (m ,n ),所以G (m ,m+2),所以PG=n ﹣(m+2),所以n=m+4,由于P (m ,n )在抛物线y=x 2﹣1x+9上,联立方程从而可求出m 、n 的值.详解:(I )∵y=x 2﹣1x+9=(x ﹣2)2,∴顶点坐标为(2,0).联立2693y x x y x ⎧=-+⎨=+⎩,解得:14x y =⎧⎨=⎩或69x y =⎧⎨=⎩; (II )由题意可知:新抛物线的顶点坐标为(2﹣t ,1),设直线AC 的解析式为y=kx+b将A (1,4),C (2,0)代入y=kx+b 中,∴430k b k b +=⎧⎨+=⎩, 解得:26k b =-⎧⎨=⎩, ∴直线AC 的解析式为y=﹣2x+1. 当点E 在直线AC 上时,﹣2(2﹣t )+1=1,解得:t=12. 当点E 在直线AD 上时,(2﹣t )+2=1,解得:t=5,∴当点E 在△DAC 内时,12<t <5; (III )如图,直线AB 与y 轴交于点F ,连接CF ,过点P 作PM ⊥AB 于点M ,PN ⊥x 轴于点N,交DB于点G.由直线y=x+2与x轴交于点D,与y轴交于点F,得D(﹣2,0),F(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF=22OC OF+=22,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面积是△ABC面积的2倍,∴12AB•PM=12AB•CF,∴PM=2CF=12.∵PN⊥x轴,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=PMPG,∴PG=45PMsin︒=622=3.∵点G在直线y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴点P在点G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在抛物线y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=7732±.∵﹣2<m<1,∴m=773+不合题意,舍去,∴m=773-,∴n=m+4=3773-.点睛:本题是二次函数综合题,涉及待定系数法,解方程,勾股定理,三角形的面积公式,综合程度较高,需要学生综合运用所学知识.20.12x x +-,当x =0时,原式=12-(或:当x =-1时,原式=14). 【解析】【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.【详解】解:原式=21x x --×()()2x 1x 1(2)x +--=12x x +-. x 满足﹣1≤x≤1且为整数,若使分式有意义,x 只能取0,﹣1.当x=0时,原式=﹣12(或:当x=﹣1时,原式=14). 【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(1)B (1,1);(2)y=(x ﹣n )2+2﹣n .(3)a=2n ;+1. 【解析】【分析】1) 首先求得点A 的坐标, 再求得点B 的坐标, 用h 表示出点D 的坐标后代入直线的解析式即可验证答案。
辽宁省营口市七中初三11月月考
辽宁省营口市七中初三11 月月考数学试卷一.选择题(每题 3 分,共 24 分)1.与下面二视图所对应的直观图是()2.一架 15 米长的梯子斜靠在墒上,测得它与地面的夹角为()40°,则梯子底端到墙角距离为A. 5sin40 ° B .5cos40 °5D .5 C.cos 40 tan 403.依据以下表格的对应值:x 3.23 3.24 3.25 7.26a x 2+b x +c 0.06 0.02 0.03 0.07判断方程 a x 2+b x + c =0( a ≠0. a ,b, c 常数)的一个解x 的范围是()A. 3< x <3.23 B . 3.23< x <3.24 C.3.24< x <3.25 D . 3.25< x <3.26 4.如图,丁轩同学在夜晚由路灯AC 走向路灯 BD ,当他走到点 P 时,发观身后他影子的顶部恰好接触到路灯AC 的底部,当他向前再步行20m 抵达 Q 点时,发现身前他影子的顶部恰好接触到路灯BD 的底部,已知丁轩同学的身商是 1.5m 两个路灯的亮度都是9m.则两路灯之间的距离是()A. 24 m B . 25m C.28m D . 30 m5.方程x2 -9 x +18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A. 12 B.12 或 15 C.15 D .不可以确立k 2 1()6.在以下图中,反比率函数y 的图象大概是x7.如图,在△ ABC 中,∠ C=90°,∠ B=22.5 °,AB 的垂直均分线交AB 于 D ,交 BC 于 E,若 CE=3,则 BE 的长是()A.3B.6C.23D. 3 28.将三粒平均的分别标有1,2,3,4,5,6 的正六面体骰子同时掷出,出现的数字分别为a 、b、 c ,则 a 、b、 c 是直角三角形三边长的概率是()111 1 A.B.C.D.216723612二.填空题(每题 3 分,共 24 分)9.已知菱形的一个内角为60°,一条对角线的长为2 3 ,则另一条对角线的长为_______.10.用配方法解方程x 22x 5 =0时,原方程应变形为______________。
辽宁省营口市七年级上学期数学11月月考试卷
辽宁省营口市七年级上学期数学11月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·松滋期中) ﹣6的相反数是()A . 6B . 1C . 0D . ﹣62. (2分)(2017·绥化) 下列运算正确的是()A . 3a+2a=5a2B . 3a+3b=3abC . 2a2bc﹣a2bc=a2bcD . a5﹣a2=a33. (2分)(2016·文昌模拟) 在0,﹣2,1,这四个数中,最小的数是()A . 0B . ﹣2C . 1D .4. (2分) (2016七上·个旧期中) 下列各多项式中,是二次三项式的是()A . a2+b2B . x+y+7C . 5-x-y2D . x2-y2+x-3x25. (2分) (2017七上·澄海期末) 若5x+2与﹣2x+7的值互为相反数,则x﹣2的值为()A . ﹣5B . 5C . ﹣1D . 16. (2分) (2016七下·济宁期中) 已知是方程2x﹣ay=3的一个解,那么a的值是()A . 1B . 3C . ﹣3D . ﹣17. (2分) (2019七上·台州期末) 已知关于 x 的方程 3x+m=5 的解为 x=2,则关于 y 的方程 3(y-2)+m=5 的解为()A . y=-1B . y=0C . y=2D . y=48. (2分)绝对值小于3的所有整数的和与积分别是()A . 0, -2B . 0,0C . 3,2D . 0,29. (2分)阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获得20%,则这种电子产品的标价为()A . 26元B . 27元C . 28元D . 29元10. (2分) (2016七上·南昌期末) 按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是466;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)(2018·咸安模拟) 我国南海海域面积为3500000km2 ,用科学记数法表示3500000为________12. (1分) (2016七上·鼓楼期中) 比较大小:﹣ ________﹣(填“<”、“=”、“>”).13. (1分)关于x的多项式(m-1)x3-2xn+3x的次数是2,那么m=________ ,n=________ .14. (1分) (2016七上·宁德期末) 已知x=3是方程ax﹣6=﹣a+8的解,则a=________.15. (1分) (2018七上·天台期中) 已知一个多项式与3x2+9x+2的和等于3x2+4x﹣3,则此多项式是________.16. (1分) (2018七上·玉田期中) 现定义两种运算“⊕”和“※”.对于任意两个整数,,,则8※(3⊕5)=________.三、解答题 (共7题;共60分)17. (10分) (2019七上·广陵月考)(1) |﹣3|﹣5×(﹣)+(﹣4)(2)(﹣2)2﹣4÷(﹣)+(﹣1)2016(3)×(﹣24)(4)﹣12014﹣(1﹣0.5)÷ ×[(﹣2)3﹣4]18. (10分) (2019七上·沛县期末) 先化简,再求值,,其中,,满足关于、的单项式与的和为 .19. (10分) (2020七上·东城期末) 解方程:(1)(2)20. (10分) (2019七下·同安期中) 解方程组:.21. (5分) (2017七上·襄城期中) 化简求值: ,其中 .22. (5分) (2020七上·陵县期末) 《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十六两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了16两(袋子重量忽略不计),问黄金、白银每枚各重多少两?23. (10分) A、B两个动点在数轴上同时出发,分别向左、向右做匀速运动,它们的运动时间以及在数轴上的位置记录如下.(1)根据题意,填写下列表格;时间(秒)057A点位置19﹣1________B点位置________1727(2) A、B两点能否相遇,如果能相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3) A、B两点能否相距9个单位长度,如果能,求相距9个单位长度的时刻;如不能,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共60分)答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
2019-2020学年辽宁营口九年级下数学期中试卷详细答案与试题解析
2019-2020学年辽宁营口九年级下数学期中试卷一、选择题1. −2017的倒数是( )A.−2017B.2017C.−12017D.120172. 下列运算正确的是()A.a2+a2=a4B.(−b2)3=−b6C.2x⋅2x2=2x3D.(m−n)2=m2−n23. 由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.4. 下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差5. 某个密码锁的密码由三个数字组成,每个数字都是0−9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.1 10B.19C.13D.126. 已知关于x的一元二次方程(k−1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A.k>5B.k<5C.k≤5,且k≠1D.k<5,且k≠17. 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2016年底某市汽车拥有量为16.9万辆.已知2014年底该市汽车拥有量为10万辆,设2014年底至2016年底该市汽车拥有量的年平均增长率为x,根据题意列方程得( )A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1−x)2=16.9D.10(1−2x)=16.98. 不等式组{12x−1≤7−32x,5x−2>3(x+1)的解集表示在数轴上,正确的是( )A. B. C. D.9. 如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF= 2FC,AF分别与DE,DB相交于点M,N,则MN的长为( )A.2√25B.9√220C.3√24D.4√2510. 如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=45,反比例函数y=48x在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60B.80C.30D.40二、填空题2016年第四季度全国网上商品零售额6310亿元,将6310亿元用科学记数法表示应为________元.分解因式:3m2−6mn+3n2=________.在实数范围内有意义,则实数x的取值范围是________.要使式子√x+2x−1在△ABC中,AB=AC=10,cos B=3,如果圆O的半径为2√10,且经过点B,C,5那么线段AO的长等于________.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90∘的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是________.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为________.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>−1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为−1. 其a中正确的结论有________. (填序号)如图,面积为4的等腰直角三角形△OA1A2,∠OA2A1=90∘,以OA2为斜边在△OA1A2外作等腰直角三角形△OA2A3,以OA3为斜边在△OA2A3外作等腰直角三角形△OA3A4,以OA4为斜边在△OA3A4外作等腰直角三角形△OA4A5,…连接A1A3,A3A5,A5A7,…分别与OA2,OA4,OA6,…交于点B1,B2,B3,…按此规律继续下去,记△OB1A3的面积为S1,△OB2A5的面积为S2,△OB3A7的面积为S3,…△OB n A2n+1的面积为S n=________(用含正整数n的式子表示).三、解答题先化简,再求值:(3x+1−x+1)÷x2+4x+4x+1,其中x=√3−2.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1,A2,在第四组内的两名选手记为:B1,B2,从第一组和第四组中随机选取2名选手进行调研座谈,则有两人在同一组的概率为________.小文妈妈为小文准备四个粽子作早点:一个花生馅粽,一个肉馅粽,两个枣馅粽,四个粽子除内部馅料不同外,其它一切均相同.(1)小文吃前两个粽子刚好都是枣馅粽子的概率为________;(2)若妈妈在早点中给小文再增加一个枣馅粽,则小文吃前两个粽都是枣馅粽的可能性是否会增大?请说明理由.某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘刚在南海巡航的渔政船前往救援,伤员在C处,直升机在A处,伤员离云梯(AP)150米(即CP的长).伤员从C地前往云梯的同时,直升机受到惯性的影响又往前水平行进30米到达B处,此时云梯也移动到BQ位置,已知∠ACP=30∘,∠APQ=60∘,∠BQI=43∘.问:伤员需前行多少米才能够到云梯?(结果保留整数,sin43∘=0.68,cos43∘=0.73,tan43∘=0.93,√3≈1.73)如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠CEB=3,BE=10√2,求AC,BC的长.4夏季空调销售供不应求,某空调厂接到一份订单,要求在10天内(含10天)完成任务.为了提高生产效率,工厂加班加点,接到任务的第一天就生产了42台,以后每天生产的空调都比前一天多两台,由于机器损耗等原因,当日生产的数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.(1)设第x天生产空调m台,直接写出m与x之间的函数关系式,并写出自变量x的取值范围;(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为2920元,设每天的利润为y元,试求y与x之间的函数关系式,并求工厂哪一天获得的利润最大,最大利润是多少?已知正方形ABCD的边长为4,一个以点A为顶点的45∘角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a,b的值;(2)当△AEF是直角三角形时,求a,b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a,b满足的关系式,并说明理由.如图,抛物线与x轴交于A(x1, 0),B(x2, 0)两点,且x1<x2,与y轴交于点C(0, −4),其中x1,x2是方程x2−4x−12=0的两个根.(1)求抛物线的解析式;(2)点M是线段AB上的一个动点,过点M作MN // BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;(3)点D(4, k)在(1)中抛物线上,点E为抛物线上一动点,在对称轴上是否存在点F,使以A,D,E,F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标;若不存在,请说明理由.参考答案与试题解析2019-2020学年辽宁营口九年级下数学期中试卷一、选择题1.【答案】C【考点】倒数【解析】此题暂无解析【解答】解:−2017的倒数是−1.2017故选C.2.【答案】B【考点】完全平方公式幂的乘方与积的乘方合并同类项【解析】根据题目的已知条件,利用合并同类项和单项式乘单项式的相关知识可以得到问题的答案,需要掌握在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变;单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.【解答】解:A,a2+a2=2a2,故本选项错误;B,(−b2)3=−b6,故本选项正确;C,2x⋅2x2=4x3,故本选项错误;D,(m−n)2=m2−2mn+n2,故本选项错误.故选B.3.【答案】C【考点】简单组合体的三视图【解析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选C.4.【答案】B【考点】方差众数中位数算术平均数频数(率)分布表【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10−x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:14+142=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数.故选B.5.【答案】A【考点】概率公式【解析】最后一个数字可能是0∼9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为110.故选A.6.【答案】D【考点】根的判别式一元二次方程的定义【解析】此题暂无解析【解答】解:∵关于x的一元二次方程(k−1)x2+4x+1=0有两个不相等的实数根,∴{k−1≠0,Δ>0,即{k−1≠0,42−4(k−1)>0,解得:k<5且k≠1.故选D.7.【答案】A【考点】由实际问题抽象出一元二次方程【解析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.【解答】解:设2014年底至2016年底该市汽车拥有量的年平均增长率为x,根据题意,可列方程:10(1+x)2=16.9.故选A.8.【答案】A【考点】解一元一次不等式组在数轴上表示不等式的解集【解析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则分析选项可得答案.【解答】解:解不等式12x−1≤7−32x,得:x≤4,解不等式5x−2>3(x+1),得:x>52,∴不等式组的解集为:52<x≤4.故选A.9.【答案】B【考点】相似三角形的判定与性质矩形的性质勾股定理【解析】此题暂无解析【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF=√FH2+AH2=√22+22=2√2,∵OH // AE,∴HOAE =DHAD=13,∴OH=13AE=13,∴OF=FH−OH=2−13=53,∵AE // FO,∴△AME∼FMO,∴AMFM =AEFO=153=35,∴AM=38AF=3√24,∵AD // BF,∴△AND∼△FNB,∴ANFN =ADBF=32,∴AN=35AF=6√25,∴MN=AN−AM=6√25−3√24=9√220.故选B.10.【答案】D【考点】解直角三角形菱形的性质反比例函数系数k的几何意义【解析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=12S菱形OBCA,结合菱形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90∘,OA=a,sin∠AOB=45,∴AM=OA⋅sin∠AOB=45a,OM=√OA2−AM2=35a,∴点A的坐标为(35a, 45a).∵点A在反比例函数y=48x的图象上,∴35a×45a=1225a2=48,解得:a=10,或a=−10(舍去).∴AM=8,OM=6,OB=OA=10.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=12S菱形OBCA=12OB⋅AM=40.故选D.二、填空题【答案】6.31×1011【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6310亿元用科学记数法表示应为6.31×1011.故答案为:6.31×1011.【答案】3(m−n)2【考点】提公因式法与公式法的综合运用【解析】原式提取3,再利用完全平方公式分解即可.【解答】解:原式=3(m2−2mn+n2)=3(m−n)2.故答案为:3(m−n)2.x≥−2且x≠1【考点】分式有意义、无意义的条件二次根式有意义的条件【解析】直接利用二次根式有意义的条件得出x的取值范围.【解答】解:要使式子√x+2x−1在实数范围内有意义,则x+2≥0,且x−1≠0,解得:x≥−2且x≠1.故答案为:x≥−2且x≠1.【答案】6或10【考点】解直角三角形垂径定理等腰三角形的性质【解析】作AD⊥BC于D,如图,利用等腰三角形的性质可判断AD垂直平分BC,则根据垂径定理得到点O在AD上,连接OB,如图,根据余弦的定义可计算出BD=6,则利用勾股定理可计算出AD=8,OD=2,讨论:OA=AD−OD=6;OA=AD+OD=10.【解答】解:作AD⊥BC于D,如图.∵AB=AC,∴AD垂直平分BC,∴点O在AD上,连接OB.在Rt△ABD中,cos B=BDAB =35,∴BD=10×35=6,∴AD=√102−62=8.在Rt△BOD中,OD=√(2√10)2−62=2,∴OA=AD−OD=8−2=6.或OA=AD+OD=8+2=10.故答案为:6或10.3√2cm【考点】圆锥的计算弧长的计算【解析】圆的半径为12,求出AB的长度,用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.【解答】解:AB=√2=√2=12√2(cm),∴BĈ=90π×12√2180=6√2π,∴圆锥的底面圆的半径=6√2π÷(2π)=3√2(cm).故答案为:3√2cm.【答案】3【考点】相似三角形的性质与判定直角三角形斜边上的中线等腰三角形的判定与性质平行线的判定与性质【解析】根据直角三角形斜边上中线是斜边的一半可得DF=12AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE // BC,进而可得DE=8,由EF= DE−DF可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90∘,∵AB=10,D为AB中点,∴DF=12AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE // BC,∴△ADE∼△ABC,∴DECB =ADAB,即DE16=510,解得:DE=8,∴EF=DE−DF=3. 故答案为:3.【答案】①③④抛物线与x 轴的交点二次函数图象与系数的关系【解析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x =3时,y >0,可判断②;由OA =OC ,且OA <1,可判断③;把−1a 代入方程整理可得ac 2−bc +c =0,结合③可判断④;从而可得出答案. 【解答】解:由图象开口向下,可知a <0.与y 轴的交点在x 轴的下方,可知c <0. 又对称轴方程为x =2,所以−b 2a>0,所以b >0.∴ abc >0,故①正确;由图象可知当x =3时,y >0, ∴ 9a +3b +c >0,故②错误; 由图象可知OA <1. ∵ OA =OC ,∴ OC <1,即−c <1, ∴ c >−1,故③正确;假设方程的一个根为x =−1a,把x =−1a代入方程可得1a−ba+c =0,整理可得ac −b +1=0,两边同时乘c 可得ac 2−bc +c =0, 即方程有一个根为x =−c ,由②可知−c =OA ,而x =OA 是方程的根, ∴ x =−c 是方程的根,即假设成立,故④正确. 综上可知正确的结论是①③④. 故答案为:①③④. 【答案】43×(14)n−1 【考点】 三角形的面积规律型:图形的变化类 等腰直角三角形【解析】先根据等腰直角三角形的定义求出∠A 1OA 3=∠OA 3A 2=90∘,得A 2A 3 // OA 1,根据同底等高的两个三角形的面积相等得:S △A 1A 2O =S △A 1A 3O ,所以S △OA 3B 1=S △A 1A 2B 1,同理得:A 4A 5 // A 3O ,同理得:S △OB 2A 5=S △A 3A 4B 2,根据已知的S △OA 1A 2=1,求对应的直角边和斜边的长:OA 2=A 1A 2=√2,A 2A 3=OA 3=1,OA 1=2,并利用平行相似证明△A 2B 1A 3∽△OB 1A 1,列比例式可以求A 2B 1=√23,根据面积公式计算S 1=13,同理得:S 2=14×13,从而得出规律:S n =14S n−1=(14)n−1×13.解:∵△OA1A2、△OA2A3是等腰直角三角形,∴∠A1OA2=∠A2OA3=45∘,∴∠A1OA3=∠OA3A2=90∘,∴A2A3 // OA1,∴S△A1A2O =S△A1A3O(同底等高),∴S△OA3B1+S△OA1B1=S△OA1B1+S△A1A2B1,∴S△OA3B1=S△A1A2B1,同理得:A4A5 // A3O,S△OB2A5=S△A3A4B2,∵S△OA1A2=4,∴12OA2⋅A1A2=4,∵OA2=A1A2,∴OA2=A1A2=2√2,∴A2A3=OA3=2,OA1=4,∵A2A3 // OA1,∴△A2B1A3∼△OB1A1,∴A2A3OA1=A2B1OB1=12,∵A2O=2√2,∴A2B1=2√23,∴S1=S△OA3B1=S△A1A2B1=12A1A2⋅A2B1=12×2√2×2√23=43,同理得:OA4=A3A4=√2,A4A5=1,∵△A4A5B2∼△OA3B2,∴A4B2OB2=A4A5OA3=12,∴A4B2=13OA4=√23,∴S2=S△OA5B2=S△A3A4B2=12×√2×√23=13,所以得出规律:S n=14S n−1=43×(14)n−1.故答案为:43×(14)n−1.三、解答题【答案】解:原式=[3x+1−(x+1)(x−1)x+1]⋅x+1(x+2)2=−(x+2)(x−2)x+1⋅x+1 (x+2)2=−x−2x+2.当x=√3−2时,原式=√3−2−23=√3−43=4√3−33.【考点】分式的化简求值【解析】此题暂无解析【解答】解:原式=[3x+1−(x+1)(x−1)x+1]⋅x+1(x+2)2=−(x+2)(x−2)x+1⋅x+1 (x+2)2=−x−2x+2.当x=√3−2时,原式=√3−2−2√3=√3−4√3=4√3−33.【答案】解:(1)由题意可得,a=20−2−7−2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360∘×920=162∘;(3)由题意可得,所有的可能性如下图所示,共有12种结果,每种结果出现可能性相同,其中两人在同一组的结果有4种,∴P=412=13,答:两人在同一组的概率为13.【考点】列表法与树状图法频数(率)分布表扇形统计图【解析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20−2−7−2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360∘×920=162∘;(3)由题意可得,所有的可能性如下图所示,共有12种结果,每种结果出现可能性相同,其中两人在同一组的结果有4种,∴P=412=13,答:两人在同一组的概率为13.【答案】16(2)会增大.理由:分别用A,B,C表示一个花生馅粽,一个肉馅粽,三个枣馅粽,画树状图得:∵共有20种等可能的结果,两个都是枣馅的有6种情况,∴都是枣馅粽的概率为:620=310>16,∴给小文再增加一个枣馅的粽子,则小文吃前两个粽子都是枣馅粽的可能性会增大.【考点】列表法与树状图法【解析】(1)首先分别用A,B,C表示一个枣馅粽,一个肉馅粽,两个花生馅粽,然后根据题意画树状图,再由树状图求得所有等可能的结果与小文都是花生馅的情况,然后利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小文吃前两个都是花生的情况,再利用概率公式即可求得给小文再增加一个花生馅的粽子,比较大小即可.【解答】解:(1)分别用A,B,C表示一个花生馅粽,一个肉馅粽,两个枣馅粽,画树状图得:∵共有12种等可能的结果,小文吃前两个粽子刚好都是枣馅的有2种情况,∴小文吃前两个粽子刚好都是枣馅粽的概率:212=16.故答案为:16.(2)会增大.理由:分别用A,B,C表示一个花生馅粽,一个肉馅粽,三个枣馅粽,画树状图得:∵共有20种等可能的结果,两个都是枣馅的有6种情况,∴都是枣馅粽的概率为:620=310>16,∴给小文再增加一个枣馅的粽子,则小文吃前两个粽子都是枣馅粽的可能性会增大.【答案】解:如图,作AE⊥CP,BF⊥CP分别于点E,F.∵∠APQ=∠C+∠CAP,∴∠CAP=∠APQ−∠ACP=60∘−30∘=30∘,∴∠ACP=∠CAP,∴AP=CP=150(米),在直角△APE中,AE=AP⋅sin∠APE=150×√32=75√3(米),PE=AP⋅cos∠APE=150×cos60∘=75(米).∵在直角△BQF中,BF=AE=75√3(米).tan∠BQF=BFQF,∴QF=BFtan∠BQF =75√3tan43∘.∴CQ=CP+PQ=CP+PE+EF−QF=150+75+30−75√3tan43∘=150+105−75√3tan43∘≈255−75×1.730.93=255−139.5≈116(米).故伤员需前行116米才能够到云梯.【考点】解直角三角形的应用-坡度坡角问题【解析】根据三角形的外角的性质求得∠CAP的度数,证明△ACP是等腰三角形,则AP=CP=150米,作AE⊥CP,BF⊥CP分别于点E、F,在直角△APE中利用三角函数求得PE和AE的长,然后在直角△BQF中利用三角函数求得QF的长,根据CQ=CP+PQ=CP+ PE+EF−QF即可求解.【解答】解:如图,作AE⊥CP,BF⊥CP分别于点E,F.∵∠APQ=∠C+∠CAP,∴∠CAP=∠APQ−∠ACP=60∘−30∘=30∘,∴∠ACP=∠CAP,∴AP=CP=150(米),在直角△APE中,AE=AP⋅sin∠APE=150×√32=75√3(米),PE=AP⋅cos∠APE=150×cos60∘=75(米).∵在直角△BQF中,BF=AE=75√3(米).tan∠BQF=BFQF,∴QF=BFtan∠BQF =75√3tan43∘.∴CQ=CP+PQ=CP+PE+EF−QF=150+75+30−75√3tan43∘=150+105−75√3tan43∘≈255−75×1.730.93=255−139.5≈116(米).故伤员需前行116米才能够到云梯.【答案】(1)证明:如图1,连结OC,∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90∘,∴OC // AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)解:PC=PF.理由如下:∵AB是直径,∴∠ACB=90∘,∴∠PCB+∠ACD=90∘又∵∠CAD+∠ACD=90∘,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)解:如图2,连结AE.∵∠ACE=∠BCE,∴AÊ=BÊ,∴AE=BE.又∵AB是直径,∴∠AEB=90∘,AB=√2BE=20,∵tan∠CEB=tan∠CAB=34,∴BCCA =34.设BC=3x,则CA=4x,在Rt△ABC中,(3x)2+(4x)2=400,解得x=−4(舍)或x=4,∴BC=12,AC=16.【考点】圆周角定理圆的综合题解直角三角形切线的性质圆心角、弧、弦的关系勾股定理等腰三角形的判定等腰三角形的性质平行线的判定与性质【解析】(1)先判断出∠OAC=∠OCA,再判断出OC // AD,即可得出结论;(2)先判断出∠CAD+∠ACD=90∘,进而得出∠PFC=∠PCF即可得出结论;(3)先求出AB=10,再找出3CA=4BC,最后用勾股定理即可得出结论.【解答】(1)证明:如图1,连结OC,∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90∘,∴OC // AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)解:PC=PF.理由如下:∵AB是直径,∴∠ACB=90∘,∴∠PCB+∠ACD=90∘又∵∠CAD+∠ACD=90∘,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)解:如图2,连结AE.∵∠ACE=∠BCE,∴AÊ=BÊ,∴AE=BE.又∵AB是直径,∴∠AEB=90∘,AB=√2BE=20,∵tan∠CEB=tan∠CAB=34,∴BCCA =34.设BC=3x,则CA=4x,在Rt△ABC中,(3x)2+(4x)2=400,解得x=−4(舍)或x=4,∴BC=12,AC=16.【答案】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多两台,∴由题意可得出,第x天生产空调m台,m与x之间的函数关系式为:m=40+2x(1≤x≤10);(2)当1≤x≤5时,y=(2920−2000)(40+2x)=1840x+36800.∵1840>0,∴y随x的增大而增大,∴当x=5时,y最大值=1840×5+36800=46000;当5<x≤10时,y=[2920−2000−20(40+2x−50)](40+2x)=−80(x−4)2+ 46080.此时函数图象开口向下,在对称轴右侧,y随着x的增大而减小.又因为天数x为整数,∴当x=6时,y最大值=45760元.∵46000>45760,∴当x=5时,y最大,且y最大值=46000元.综上所述:W={1840x+36800(1≤x≤5),−80(x−4)2+46080(5<x≤10).【考点】函数最值问题根据实际问题列一次函数关系式二次函数的应用二次函数的最值【解析】(1)根据接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,直接得出生产这批空调的时间为x天,与每天生产的空调为y台之间的函数关系式;(2)根据基本等量关系:利润=(每台空调订购价-每台空调成本价-增加的其他费用)×生产量即可得出答案.【解答】解:(1)∵接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多两台,∴由题意可得出,第x天生产空调m台,m与x之间的函数关系式为:m=40+2x(1≤x≤10);(2)当1≤x≤5时,y=(2920−2000)(40+2x)=1840x+36800.∵1840>0,∴y随x的增大而增大,∴当x=5时,y最大值=1840×5+36800=46000;当5<x≤10时,y=[2920−2000−20(40+2x−50)](40+2x)=−80(x−4)2+ 46080.此时函数图象开口向下,在对称轴右侧,y随着x的增大而减小.又因为天数x为整数,∴当x=6时,y最大值=45760元.∵46000>45760,∴当x=5时,y最大,且y最大值=46000元.综上所述:W={1840x+36800(1≤x≤5),−80(x−4)2+46080(5<x≤10).【答案】解:(1)∵四边形ABCD是正方形,∴∠BCF=∠DCE=90∘,∵AC是正方形ABCD的对角线,∴ ∠ACF =∠ACE ,∵ ∠EAF 被对角线AC 平分,∴ ∠CAF =∠CAE ,在△ACF 和△ACE 中,{∠ACF =∠ACE ,AC =AC ,∠CAF =∠CAE ,∴ △ACF ≅△ACE ,∴ CE =CF ,∵ CE =a ,CF =b ,∴ a =b ,∵ △ACF ≅△ACE ,易得∠AEF =∠AFE ,∵ ∠EAF =45∘,∴ ∠AEF =∠AFE =67.5∘,∵ CE =CF ,∠ECF =90∘,∠AEC =∠AFC =22.5∘,∴ ∠CAF =∠CAE =22.5∘,∴ ∠CAE =∠CEA ,∴ CE =AC =4√2,即:a =b =4√2;(2)当△AEF 是直角三角形时,(ⅰ)当∠AEF =90∘时,∵ ∠EAF =45∘,∴ ∠AFE =45∘,∴ △AEF 是等腰直角三角形,∴ AF 2=2FE 2=2(CE 2+CF 2),AF 2=2AE 2=2(AD 2+BE 2),∴ 2(CE 2+CF 2)=2(AD 2+BE 2),∴ CE 2+CF 2=AD 2+BE 2,∴ CE 2+CF 2=16+(4+CE)2,∴ CF 2=8(CE +4)①∵ ∠AEB +∠BEF =90∘,∠AEB +∠BAE =90∘,∴ ∠BEF =∠BAE ,∴ △ABE ∼△ECF ,∴ AB CE =BE CF ,∴ 4CE =CE+4CF ,联立①②得,CE=4,CF=8,∴a=4,b=8,(ⅰ)当∠AFE=90∘时,同(ⅰ)的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90∘,∠AFC+∠CGF=90∘,∠AGB=∠CGF,∴∠BAG=∠AFC,∵∠BAC=45∘,∴∠BAG+∠CAF=45∘,∴∠AFC+∠CAF=45∘,∵∠AFC+∠AEC=180∘−(∠CFE+∠CEF)−∠EAF=180∘−90∘−45∘=45∘,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135∘,∴△ACF∼△ECA,∴ACEC =CFAC,∴EC×CF=AC2=2AB2=32,∴ab=32.【考点】相似三角形的性质与判定全等三角形的性质与判定四边形综合题勾股定理直角三角形的性质【解析】(1)当∠EAF被对角线AC平分时,易证△ACF≅△ACE,因此CF=CE,即a=b.(2)分两种情况进行计算,①先用勾股定理得出CF2=8(CE+4)①,再用相似三角形得出4CF=CE(CE+4)②,两式联立解方程组即可;(3)先判断出∠AFC+∠CAF=45∘,再判断出∠AFC+∠AEC=45∘,从而求出∠AEC,而∠ACF=∠ACE=135∘,得到△ACF∽△ECA,即可.【解答】解:(1)∵ 四边形ABCD 是正方形,∴ ∠BCF =∠DCE =90∘,∵ AC 是正方形ABCD 的对角线,∴ ∠ACB =∠ACD =45∘,∴ ∠ACF =∠ACE ,∵ ∠EAF 被对角线AC 平分,∴ ∠CAF =∠CAE ,在△ACF 和△ACE 中,{∠ACF =∠ACE ,AC =AC ,∠CAF =∠CAE ,∴ △ACF ≅△ACE ,∴ CE =CF ,∵ CE =a ,CF =b ,∴ a =b ,∵ △ACF ≅△ACE ,易得∠AEF =∠AFE ,∵ ∠EAF =45∘,∴ ∠AEF =∠AFE =67.5∘,∵ CE =CF ,∠ECF =90∘,∠AEC =∠AFC =22.5∘,∴ ∠CAF =∠CAE =22.5∘,∴ ∠CAE =∠CEA ,∴ CE =AC =4√2,即:a =b =4√2;(2)当△AEF 是直角三角形时,(ⅰ)当∠AEF =90∘时,∵ ∠EAF =45∘,∴ ∠AFE =45∘,∴ △AEF 是等腰直角三角形,∴ AF 2=2FE 2=2(CE 2+CF 2),AF 2=2AE 2=2(AD 2+BE 2),∴ 2(CE 2+CF 2)=2(AD 2+BE 2),∴ CE 2+CF 2=AD 2+BE 2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90∘,∠AEB+∠BAE=90∘,∴∠BEF=∠BAE,∴△ABE∼△ECF,∴ABCE =BECF,∴4CE =CE+4CF,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8,∴a=4,b=8,(ⅰ)当∠AFE=90∘时,同(ⅰ)的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,∵∠BAG+∠AGB=90∘,∠AFC+∠CGF=90∘,∠AGB=∠CGF,∴∠BAG=∠AFC,∵∠BAC=45∘,∴∠BAG+∠CAF=45∘,∴∠AFC+∠CAF=45∘,∵∠AFC+∠AEC=180∘−(∠CFE+∠CEF)−∠EAF=180∘−90∘−45∘=45∘,∴∠CAF=∠AEC,∵∠ACF=∠ACE=135∘,∴△ACF∼△ECA,∴ACEC =CFAC,∴ab=32.【答案】解:(1)∵x2−4x−12=0,∴x1=−2,x2=6,∴A(−2, 0),B(6, 0).又∵抛物线过点A,B,C,故设抛物线的解析式为y=a(x+2)(x−6),将点C的坐标代入,求得a=13,∴抛物线的解析式为y=13x2−43x−4;(2)设点M的坐标为(m, 0),过点N作NH⊥x轴于点H,如图(1).∵点A的坐标为(−2, 0),点B的坐标为(6, 0),∴AB=8,AM=m+2.∵MN // BC,∴△MNA∼△BCA,∴NHCO =AMAB,∴NH4=m+28,∴NH=m+22,∴S△CMN=S△ACM−S△AMN=12AM⋅CO−12AM⋅NH=12(m+2)(4−m+22)=−14m2+m+3=−14(m−2)2+4.∴当m=2时,S△CMN有最大值4.此时,点M的坐标为(2, 0);(3)∵点D(4, k)在抛物线y=13x2−43x−4上,∴当x=4时,k=−4,∴点D的坐标是(4, −4).∵点F在二次函数的对称轴上,点E为抛物线上的点,∴设F(2,y1),E(x2,y2).①当AD 为平行四边形的对角线时,AD 与EF 互相平分,∴ 此时平行四边形的对称中心为(1,−2),∴ {2+x 2=2,y 1+y 2=−4,解得{x 2=0,y 2=−4,y 1=0,∴ 点F 坐标为(2,0);②当AF 为平行四边形的对角线时,AF 与ED 互相平分, ∴ 此时平行四边形的对称中心为(0,y12), ∴ x 2+42=0,y 2−42=y 12,∴ x 2=−4,y 2=203,∴ y 1=83, ∴ 点F 坐标为(2,83);③当AE 为平行四边形的对角线时,AE 与DF 互相平分, ∴ 此时平行四边形的对称中心为(3,y 1−42), ∴ x 2−22=3,y 22=y 1−42,∴ x 2=8,y 2=203, ∴ y 1=323,∴ 点F 坐标为(2,323).综上所述,满足条件的点F 的坐标为(2,0)或(2,83)或(2,323). 【考点】相似三角形的性质与判定平行四边形的性质与判定二次函数综合题待定系数法求二次函数解析式二次函数的最值【解析】(1)根据一元二次方程解法得出A,B两点的坐标,再利用交点式求出二次函数解析式;(2)首先判定△MNA∽△BCA.得出NHCO =AMAB,进而得出函数的最值;(3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案.【解答】解:(1)∵x2−4x−12=0,∴x1=−2,x2=6,∴A(−2, 0),B(6, 0).又∵抛物线过点A,B,C,故设抛物线的解析式为y=a(x+2)(x−6),将点C的坐标代入,求得a=13,∴抛物线的解析式为y=13x2−43x−4;(2)设点M的坐标为(m, 0),过点N作NH⊥x轴于点H,如图(1).∵点A的坐标为(−2, 0),点B的坐标为(6, 0),∴AB=8,AM=m+2.∵MN // BC,∴△MNA∼△BCA,∴NHCO =AMAB,∴NH4=m+28,∴NH=m+22,∴S△CMN=S△ACM−S△AMN=12AM⋅CO−12AM⋅NH=12(m+2)(4−m+22)=−14m2+m+3=−14(m −2)2+4. ∴ 当m =2时,S △CMN 有最大值4.此时,点M 的坐标为(2, 0);(3)∵ 点D(4, k)在抛物线y =13x 2−43x −4上,∴ 当x =4时,k =−4,∴ 点D 的坐标是(4, −4).∵ 点F 在二次函数的对称轴上,点E 为抛物线上的点, ∴ 设F(2,y 1),E(x 2,y 2).①当AD 为平行四边形的对角线时,AD 与EF 互相平分,∴ 此时平行四边形的对称中心为(1,−2),∴ {2+x 2=2,y 1+y 2=−4,解得{x 2=0,y 2=−4,y 1=0,∴ 点F 坐标为(2,0);②当AF 为平行四边形的对角线时,AF 与ED 互相平分, ∴ 此时平行四边形的对称中心为(0,y 12),∴ x 2+42=0,y 2−42=y 12,∴ x 2=−4,y 2=203,∴ y 1=83, ∴ 点F 坐标为(2,83);③当AE 为平行四边形的对角线时,AE 与DF 互相平分, ∴ 此时平行四边形的对称中心为(3,y 1−42), ∴ x 2−22=3,y 22=y 1−42,∴ x 2=8,y 2=203, ∴ y 1=323,∴ 点F 坐标为(2,323). 综上所述,满足条件的点F 的坐标为(2,0)或(2,83)或(2,323).。
辽宁省营口中学2019-2020学年中考数学模拟试卷
辽宁省营口中学2019-2020学年中考数学模拟试卷一、选择题1.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:A.9.7,9.5B.9.7,9.9C.9.6,9.5D.9.6,9.62.如图,在四边形ABCD 中,∠B=90°,AC=4,AB∥CD,DH 垂直平分AC,点H 为垂足,设AB=x,AD=y,则y 关于x 的函数关系用图象大致可以表示为 ( )A. B. C. D.3.估算在哪两个整数之间( )A.0和1B.1和2C.2和3D.3和44.在某学校“国学经典诵读”比赛中,有11名同学参加某项比赛,预赛成绩各不相同,要取前5名参加决赛,小明已经知道了自己的成绩,他想知道自己能否进入决赛,只需要再知道这11名同学成绩的( ) A .中位数B .平均数C .众数D .方差5.函数243y x x =---图象的顶点坐标是( ). A .(2,-1) B .(2,1)C .(-2,-1)D .(-2,1)6.若代数式42x -的值与0(1)-互为相反数,则x =( ) A .1B .2C .2-D .47.下面给出四个命题:①各边相等的六边形是正六边形;②顶角和底边对应相等的两个等腰三角形全等;③顺次连结一个四边形各边中点所成的四边形是矩形,则原四边形是菱形;④正五边形既是中心对称图形又是轴对称图形其中真命题有( ) A .0个 B .1个 C .2个 D .4个 8.一张矩形纸片在太阳光线的照射下,形成影子不可能是( )A .平行四边形B .矩形C .正方形D .梯形9.在平面直角坐标系中,正方形A 1B 1C 1D 1,D 1E 1E 2B 2,A 2D 2C 2D 2,D 2E 3E 4B 3,A 3B 3C 3D 3,…,按如图所示的方式放置,其中点B 1在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3,…,在x 轴上已知正方形A 1,B 1,C 1,D 1,的边长为1,∠OB 1C 1=30°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A n B n ∁n D n 的边长是( )A.12n⎛⎫⎪⎝⎭B.112n-⎛⎫⎪⎝⎭CD10.在直角坐标系中,⊙O的圆心在原点,半径为3,⊙A的圆心A的坐标为(,1),半径为1,那么⊙O与⊙A的位置关系是( )A.内含B.内切C.相交D.外切11.为选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数x 及其方差s2如表所示:A.甲B.乙C.丙D.丁12.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF 等于( )A B.C.7D.二、填空题13.在△ABC中,∠ACB=90°,BC=8,AC=6,以点C为圆心,4为半径的圆上有一动点D,连接AD,BD,CD,则12BD+AD的最小值是_____.14.在矩形ABCD中,P为CD边上一点()DP CP<,90APB∠=︒.将ADP△沿AP翻折得到AD P '△,'PD 的延长线交边AB 于点M ,过点B 作BN MP 交DC 于点N .连接AC ,分别交PM ,PB 于点E ,F .现有以下结论:①连接DD ',则AP 垂直平分DD ';②四边形PMBN 是菱形;③2AD DP PC =⋅;④若2AD DP =,则59EF AE =.其中正确的结论是________(填写所有正确结论的序号).15.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是_____(只需添加一个即可)16.等腰三角形一边长为8,另一边长为5,则此三角形的周长为_____.17.如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_____.18.如图,在Rt △ABC 中,∠A=90°,AB=AC ,,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB′C 为直角三角形,则BM 的长为_____.三、解答题19.计算下列各式: (1)11112323x y x y ⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭;(2)2222113322x y y x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭.20.如图,在图中求作⊙O ,使⊙O 满足以线段DE 为弦,且圆心O 到∠ABC 两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹)21.如图,抛物线y =﹣x 2+bx+c 与x 轴分别交于A (﹣1,0),B (5,0)两点. (1)求抛物线的解析式;(2)在第二象限内取一点C ,作CD 垂直x 轴于点D ,连接AC ,且AD =5,CD =8,将Rt △ACD 沿x 轴向右平移m 个单位,当点C 落在抛物线上时,求m 的值.22.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,且OA=OC ,OB=OD ,过O 点作EF ⊥BD ,分别交AD 、BC 于点E 、F . (1)求证:△AOE ≌△COF ;(2)判断四边形BEDF 的形状,并说明理由.23.解不等式组315122x x x +≥⎧⎪⎨->-⎪⎩.并写出所有整数解.24.如图,形如量角器的半圆O 的直径DE-12cm ,形如三角板的△ABC 中,∠ACB=90°,tan ∠ABC=BC=12cm 半圆O 以2cm/s 的速度从左向右运动,在运动过程中,点D 、E 始终在直线BC 上。
辽宁省营口市七年级上学期数学11月月考试卷
辽宁省营口市七年级上学期数学11月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如果收入200元记作+200元,那么支出150元记作()A . +150元B . -150元C . +50元D . -50元2. (2分) 6的相反数是()A . -6B .C . ±6D .3. (2分) (2019七上·泉州月考) 已知a、b是不为0的有理数,且,,,那么用数轴上的点来表示a、b时,正确的是()A .B .C .D .4. (2分)下列说法正确的是()A . 一个数前面加上“﹣”号这个数就是负数B . 非负数就是正数C . 正数和负数统称为有理数D . 0既不是正数也不是负数5. (2分)若|a|=|b|,则a, b的关系是()A . a=bB . a=-bC . a=b或a=-bD . a=0且b=06. (2分) a、b两数在数轴上对应点的位置如图所示,则下列结论正确的是()A . a-2>b-2B . b-a>0C . ab<0D . 2a<2b7. (2分)下列四个数中最大的数是()A .B .C .D .8. (2分)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A . -4B . -2C . 0D . 4二、填空题 (共8题;共8分)9. (1分) (2019七上·右玉月考) 若a与b互为相反数,c与d互为倒数,则a﹣4cd+b=________.10. (1分) (2019七上·泰兴月考) 如图所示是计算机程序计算,若开始输入x=—2,则最后输出的结果是________.11. (1分) (2016七上·高安期中) 比较大小: ________ .12. (1分)如图所示,在数轴上有A,B,C三点.请回答:(1)将点A向右移动2个单位长度后,表示的有理数是________;(2)将点B向左移动3个单位长度后,表示的有理数是________;(3)将点C向左移动5个单位长度后,表示的有理数是________.13. (1分) (2019七上·吉安期中) 已知对,,且,则 ________.14. (1分) (2019八下·长春期中) 在实数0,,,中,最小的数是________.15. (1分) (2018七上·镇江月考) 如图,若数轴上a的绝对值是b的绝对值的3倍,则数轴的原点在点________或点________.(填“A”、“B”、“C”或“D”)16. (1分) (2019七上·港南期中) 某些整数的所有正约数之和可以按如下方法求得,如:,则6的所有正约数之和为;,则12的所有正约数之和为,则36的所有正约数之和为参照上述方法,那么144的所有正约数之和为________.三、解答题 (共7题;共52分)17. (10分) (2019七上·宝鸡月考) 计算题:(1)(-54)+17(2)(-2)-9(3)(4)()-(- )-(-4.9)-0.618. (5分) (2015七上·楚雄期中) 某次考试六名同学成绩与平均分的差值为5、1 、﹣4、3 、﹣5、0,请在数轴上画出表示各数的点,并用“<”号把它们连接起来.19. (5分)有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:+3,﹣6,﹣4,+2,﹣1,总计超过或不足多少千克?5筐蔬菜的总重量是多少千克?20. (5分) (2020七下·重庆期中) 化简求值:,其中 .21. (20分) (2018七上·兰州期中) 某市出租车收费标准是:起步价10元,可乘3千米;之后超过3千米的部分,每千米收费2.4元(1)若某人乘坐了x(x>3)千米的路程,列出代数式表示他应该支付的费用;(2)若某人乘坐的路程为6千米,那么他应支付的费用是多少?22. (4分) (2019七上·广陵月考) 如图,在数轴上A点表示数﹣2,B点表示数6,若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,则经过________秒,甲、乙两小球到原点的距离相等.23. (3分)用计算器计算(精确到0.01)(5.34﹣6.28)2÷(﹣3.14)+2.78≈________.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、12-2、12-3、13-1、14-1、15-1、16-1、三、解答题 (共7题;共52分)17-1、17-2、17-3、17-4、18-1、19-1、20-1、21-1、21-2、22-1、23-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年度辽宁省营口市七中初三11月
月考初中数学
数学试卷
一.选择题〔每题3分,共24分〕
1.与下边二视图所对应的直观图是〔 〕
2.一架15米长的梯子斜靠在墒上,测得它与地面的夹角为40°,那么梯子底端到墙角距离为〔 〕
A .5sin40°
B .5cos40°
C .︒40tan 5
D .︒
40cos 5 3.依照以下表格的对应值: x 3.23 3.24 3.25
7.26 a x 2+b x +c 0.06
0.02 0.03 0.07 判定方程a 〕
A .3<x <3.23
B .3.23<x <3.24
C .3.24<x <3.25
D .3.25<x <3.26
4.如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发观身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发觉身前他影子的顶部刚好接触到路灯BD 的底部,丁轩同学的身商是1.5m 两个路灯的亮度差不多上9m .那么两路灯之间的距离是〔 〕
A .24 m
B .25m
C .28m
D .30 m
5.方程2
x -9x +18=0的两个根是等腰三角形的底和腰,那么那个三角形的周长为〔 〕
A .12
B .12或15
C .15
D .不能确定 6.在以下图中,反比例函数x k y 12+=的图象大致是 〔 〕
7.如图,在△ABC 中,∠C=90°,∠B=22.5°,AB 的垂直平分线交AB 于D ,交BC 于 E ,假设CE=3,那么BE 的长是〔 〕
A .3
B .6
C .32
D . 23
8.将三粒平均的分不标有1,2,3,4,5,6的正六面体骰子同时掷出,显现的数字分不为a 、b 、c ,那么a 、b 、c 是直角三角形三边长的概率是〔 〕
A .2161
B .721
C .361
D .12
1 二.填空题〔每题3分,共24分〕
9.菱形的一个内角为60°,一条对角线的长为23,那么另一条对角线的长为_______.
10.用配方法解方程522
--x x =0时,原方程应变形为______________。
11.如下图,在梯形ABCD 中.AD ∥BC ,∠ABC=90°,AD=AB=6,BC=14,点M 是线段BC 上一定点,且MC=8。
动点P 从C 点动身沿C→D→A→B 的路线运动,运动到点B 停止.在点P 的运动过程中,使△PMC 为等腰三角形的点P 有_______个.
12.如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F .假设BC=2,那么DE+DF=_______
13.函数()12222-+-+=t t
x t t y ,当t =_______时,此函数是二次函数,当t =_______时,
此函数是反比例函数
14.在一个暗箱里放有a 个除颜色外其它完全相同的球,那个a 球中红球只有3个.每次将球搅拌平均后,任意摸出一个球记下颜色再放回暗箱.通过大量反复摸球实验后发觉,摸到红球的频率稳固在25%,那么能够推算出a 大约是______
15.如图,在矩形ABCD 中,AC 、BD 相交于D ,AE 平分∠BAD ,交BC 于E ,假设∠CAE=15°,那么∠BOE 的度数为_______
16.如图,双曲线x k y = 〔k >0〕通过矩形OABC 的边BC 的中点E ,交AB 于点D 。
假设梯形ODBC 的面积为3。
那么双曲线的解析式为______________
三.解答题
17.三根垂直于地面的木杆甲、乙、丙,在路灯下乙、丙的影于如图 所示,试确定路灯灯泡的位置,再作出甲的影子〔不写作法,保留作图痕迹〕。
18.如图,有四张背面相同的纸牌A ,B ,C ,D ,其正面分不画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张。
〔1〕用树状图〔或列表法〕表示两次摸牌所有可能显现的结果〔纸牌A ,B ,C ,D 表示〕
〔2〕求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率。
19.如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF=BD ,连结BF 。
〔1〕求证:BD=CD ;
〔2〕假如AB=AC ,试判定四边形AFBD 的形状,并证明你的结论。
20.如图,某人在D 处测得山顶C 的仰角为30°,向前走200米来到山脚A 处,测得山坡AC 的坡度为i =1:0.5求山的高度〔不计测角仪的高度,结果保留根号〕。
21.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间能够住满。
当每个房间每天的定价每增加10元时,就会有一个房间闲暇,对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间每天的定价增加x 元,求:
〔1〕房间每天的入住量y 〔间〕关于x 〔元〕的函数关系式;
〔2〕当每个房间的定价为每天多少元时,该宾馆客房部每天的利润达到15210元?
22.〔1〕求证:关于x 的一元二次方程()23322
2++++-k k x k x =0不论k 取何值,方程都有两个不相等的实数根。
〔2〕假设△ABC 的两边AB ,AC 的长是关于x 的方程()23322
2++++-k k x k x =0的两根,k 为何值时,△ABC 是以BC 为斜边的直角三角形:
四.解答题〔12分,〕
23.如图1,P 是线段AB 上的一点,在AB 的同侧作△APC 和△BPD 。
使PC=PA ,PD=PB ,∠APC=∠BPD ,连接CD ,点E 、F 、G 、H 分不是AC 、AB 、BD 、CD 的中点,顺次连接E 、F 、G 、H .
〔1〕猜想四边形EFGH 的形状,直截了当回答。
不必讲明理由:
〔2〕当点P 在线段AB 的上方时,如图2,在△APB 的外部作△APC 和△BPD ,其他
条件不变,〔1〕中的结论还成立吗?讲明理由:
〔3〕假如〔2〕中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判定四边形EFGH 的形状,并讲明理由.
五.解答题〔14分〕
24.如图,直线x y 2=与双曲线x y 8=交于点A 、E ,直线AB 交双曲线于另一点B ,与x 轴、y 轴分不交丁C 、D ,过B 点作BG ⊥x 轴于G 点,且BG/OG=1/2,直线EB 交x 轴于点F 。
〔1〕求A 、B 两点的坐标.
〔2〕求∠OFE 的正切值
〔3〕求证:△COD ∽△CBF 。