平面向量的数量积教案

合集下载

平面向量的数量积教案

平面向量的数量积教案

课题:平面向量的数量积(2课时)纪元中学朱海强一、教学目标(一)知识目标1理解向量数量积的定义;2理解向量b在a方向上的投影的意义;3掌握向量数量积的性质,掌握向量垂直的充要条件。

(二)能力目标体会分类思想、数形结合思想;培养学生分析、比较、抽象、概括的思维能力。

(三)情感目标创设适当的问题情境,从生活中的常见现象引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,体现新课程改革的理念之一,加强数学与其它学科及生活实践的联系。

二、教学难点向量数量积概念建立。

三、教学重点:平面向量数量积的定义、几何意义、性质及两个非零向量垂直的充要条件。

四、教学手段:在多媒体环境下,启发式教学。

五、教学过程(一)、新课引入——为什么定义平面向量数量积在物理学中学过功的概念,一个物体在力F的作用下产生位移S,那么力F所作的功W=FScosθ。

(二)、新课学习★新课学习阶梯一——怎么定义平面向量数量积平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π)并规定0与任何向量的数量积为01几何意义:“投影”的概念:作图定义:|b|cosθ叫做向量b在a方向上的投影思考:投影是否是长度?投影是否是向量?投影是否是实数?投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;几何意义:数量积a⋅b等于a的长度与b在a方向上投影|b|cosθ的乘积2.两个向量的数量积的性质:FSθ(1)两个非零向量a 与b ,a ⊥b ⇔ a ⋅b = 0(此性质可以解决几何中的垂直问题);(2)两个非零向量a 与b ,当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |(此性质可以解决直线的平行、点共线、向量的共线问题);(3)cos θ =||||a b a b ⋅(此性质可以解决向量的夹角问题); (4)a ⋅a = |a |2,||a a a =⋅(此性质可以解决长度问题即向量的模的问题);(5)|a ⋅b | ≤ |a ||b |(此性质要注意和绝对值的性质区别,可以解决不等式的有关问题); ★新课学习阶梯二 ——怎样用定义、性质解决问题(范例讲解)例1.(课本P104)已知a =5,b =4,向量a 与b 夹角是1200,求a b ⋅ 学生回答:a b ⋅=-10变式训练课堂练习(巩固概念)判断下列各题正确与否:例2、3 六、归纳小结①平面向量的数量积定义及其性质; ②理解数量积的运算是不同于实数运算的一种新的运算,注意它们的区别;③体会分类讨论、数形结合的思想。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的概念及其几何意义。

2. 学会计算平面向量的数量积,并能熟练运用数量积解决实际问题。

3. 掌握平面向量的数量积的性质,并能运用其性质进行向量运算。

二、教学重点:1. 平面向量的数量积的概念及其几何意义。

2. 平面向量的数量积的计算方法。

3. 平面向量的数量积的性质。

三、教学难点:1. 平面向量的数量积的计算方法。

2. 平面向量的数量积的性质的证明。

四、教学准备:1. 教师准备PPT,内容包括平面向量的数量积的概念、计算方法、性质及其应用。

2. 教师准备一些实际问题,用于引导学生运用平面向量的数量积解决实际问题。

五、教学过程:1. 导入(5分钟)教师通过PPT展示一些实际问题,引导学生思考如何运用向量的知识解决这些问题。

2. 讲解平面向量的数量积的概念(10分钟)教师通过PPT讲解平面向量的数量积的概念,并展示其几何意义。

3. 讲解平面向量的数量积的计算方法(15分钟)教师通过PPT讲解平面向量的数量积的计算方法,并给出一些例题进行讲解。

4. 练习平面向量的数量积的计算(10分钟)学生独立完成一些练习题,教师进行解答和讲解。

5. 讲解平面向量的数量积的性质(10分钟)教师通过PPT讲解平面向量的数量积的性质,并给出一些证明。

6. 练习平面向量的数量积的性质(10分钟)学生独立完成一些练习题,教师进行解答和讲解。

7. 应用平面向量的数量积解决实际问题(10分钟)教师给出一些实际问题,引导学生运用平面向量的数量积解决这些问题。

8. 总结(5分钟)教师对本节课的内容进行总结,并强调平面向量的数量积的重要性和应用价值。

9. 布置作业(5分钟)教师布置一些练习题,巩固学生对平面向量的数量积的理解和应用。

10. 课堂反馈(5分钟)教师通过课堂反馈了解学生对平面向量的数量积的掌握情况,为下一步的教学做好准备。

六、教学拓展:1. 教师通过PPT讲解平面向量的数量积与其他向量知识的联系,如向量的模、向量的加减法等。

必修四4.平面向量的数量积(教案)

必修四4.平面向量的数量积(教案)

2、4 平面向量得数量积教案A第1课时教学目标一、知识与技能1.掌握平面向量得数量积及其几何意义;2.掌握平面向量数量积得重要性质及运算律;3.了解用平面向量得数量积可以处理有关长度、角度与垂直得问题;二、过程与方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.三、情感、态度与价值观通过问题得解决,培养学生观察问题、分析问题与解决问题得实际操作能力;培养学生得交流意识、合作精神;培养学生叙述表达自己解题思路与探索问题得能力.教学重点、难点教学重点:平面向量数量积得定义.教学难点:平面向量数量积得定义及运算律得理解与平面向量数量积得应用、教学关键:平面向量数量积得定义得理解.教学方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.学习方法通过类比物理中功得定义,来推导数量积得运算.教学准备教师准备: 多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课在物理课中,我们学过功得概念,即如果一个物体在力F得作用下产生位移s,那么力F所做得功W可由下式计算:W=|F | | s|cosθ,其中θ就是F与s得夹角.我们知道力与位移都就是向量,而功就是一个标量(数量).故从力所做得功出发,我们就顺其自然地引入向量数量积得概念.二、主题探究,合作交流提出问题①a·b得运算结果就是向量还就是数量?它得名称就是什么?②由所学知识可以知道,任何一种运算都有其相应得运算律,数量积就是一种向量得乘法运算,它就是否满足实数得乘法运算律?师生活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b得数量积(或内积),记作a·b,即a·b=|a||b|cosθ(0≤θ≤π).其中θ就是a与b得夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)得投影.在教师与学生一起探究得活动中,应特别点拨引导学生注意:(1)两个非零向量得数量积就是个数量,而不就是向量,它得值为两向量得模与两向量夹角得余弦得乘积;(2)零向量与任一向量得数量积为0,即a·0=0;(3)符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<时cosθ>0,从而a·b>0;当<θ≤π时,cosθ<0,从而a·b<0.与学生共同探究并证明数量积得运算律.已知a、b、c与实数λ,则向量得数量积满足下列运算律:①a·b=b·a(交换律);②(λa)·b=λ(a·b)=a·(λb)(数乘结合律);③(a+b)·c=a·c+b·c(分配律).特别就是:(1)当a≠0时,由a·b=0不能推出b一定就是零向量.这就是因为任一与a垂直得非零向量b,都有a·b=0.注意:已知实数a、b、c(b≠0),则ab=bca=c.但对向量得数量积,该推理不正确,即a·b=b·c不能推出a=c.由上图很容易瞧出,虽然a·b=b·c,但a≠c.对于实数a、b、c有(a·b)c=a(b·c);但对于向量a、b、c,(a·b)c=a(b·c)不成立.这就是因为(a·b)c表示一个与c共线得向量,而a(b·c)表示一个与a共线得向量,而c与a不一定共线,所以(a·b)c=a(b·c)不成立.提出问题①如何理解向量得投影与数量积?它们与向量之间有什么关系?②能用“投影”来解释数量积得几何意义吗?师生活动:教师引导学生来总结投影得概念,可以结合“探究”,让学生用平面向量得数量积得定义,从数与形两个角度进行探索研究.教师给出图形并作结论性得总结,提出注意点“投影”得概念,如下图.定义:|b|cosθ叫做向量b在a方向上得投影.并引导学生思考、A、投影也就是一个数量,不就是向量;B、当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b|;当θ=180°时投影为-|b|.教师结合学生对“投影”得理解,让学生总结出向量得数量积得几何意义:数量积a·b等于a得长度与b在a方向上投影|b|cosθ得乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量得数量积得结果就是一个实数.教师与学生共同总结两个向量得数量积得性质:设a、b为两个非零向量,θ为两向量得夹角,e就是与b同向得单位向量.A、e·a=a·e=|a|cosθ.B、a⊥ba·b=0.C、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地a·a=|a|2或|a|=.D、cosθ=.E、|a·b|≤|a||b|.上述性质要求学生结合数量积得定义自己尝试推证,教师给予必要得补充与提示,在推导过程中理解并记忆这些性质.讨论结果:①略.②向量得数量积得几何意义为数量积a·b等于a得长度与b在a方向上投影|b|co sθ得乘积.三、拓展创新,应用提高例1 已知|a|=5,|b|=4,a与b得夹角为120°,求a·b活动:教师引导学生利用向量得数量积并结合两向量得夹角来求解.解:a·b=|a||b|cosθ=5×4×cos120°=5×4×()=-10.点评: 确定两个向量得夹角,利用数量积得定义求解.例 2 我们知道,对任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,就是否也有下面类似得结论?(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.解:(1)(a+b)2=(a+b)·(a+b)=a·b+a·b+b·a+b·b=a2+2a·b+b2;(2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.例3已知|a|=6,|b|=4,a与b得夹角为60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a·a-a·b-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cos60°-6×42=-72.例4已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+k b与a-kb互相垂直?解:a+kb与a-k b互相垂直得条件就是(a+kb)·(a-k b)=0,即a2-k2b2=0.∵a2=32=9,b2=42=16,∴9-16k2=0.∴k=±.也就就是说,当k=±时,a+kb与a-k b互相垂直.点评:本题主要考查向量得数量积性质中垂直得充要条件.四、小结1.先由学生回顾本节学习得数学知识,数量积得定义、几何意义,数量积得重要性质,数量积得运算律.2.教师与学生总结本节学习得数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法得同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.课堂作业1.已知a,b,c就是非零向量,则下列四个命题中正确得个数为( )①|a·b|=|a||b|a∥b②a与b反向a·b=-|a||b|③a⊥b|a+b|=|a-b| ④|a|=|b||a·c|=|b·c|A.1 B.2 C.3 D.42.有下列四个命题:①在△ABC中,若·>0,则△ABC就是锐角三角形;②在△ABC中,若·>0,则△ABC为钝角三角形;③△ABC为直角三角形得充要条件就是·=0;④△ABC为斜三角形得充要条件就是·≠0.其中为真命题得就是()A.①ﻩB.②ﻩC.③ D.④3.设|a|=8,e为单位向量,a与e得夹角为60°,则a在e方向上得投影为()A.4ﻩB.4C.42D.8+4.设a、b、c就是任意得非零平面向量,且它们相互不共线,有下列四个命题:①(a·b)c-(c·a)b=0; ②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直; ④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确得就是( )A.①②B.②③ C.③④D.②④5.在△ABC中,设=b,=c,则等于( )A.0B.S△ABCC.S△ABCD.2S△ABC6.设i,j就是平面直角坐标系中x轴、y轴方向上得单位向量,且a=(m+1)i-3j,b=i+(m-1)j,如果(a+b)⊥(a-b),则实数m=_____________.7.若向量a、b、c满足a+b+c=0,且|a|=3,|b|=1,|c|=4,则a·b+b·c+c·a=_________.参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13第2课时教学目标一、知识与技能1.掌握平面向量数量积运算规律、2.能利用数量积得性质及数量积运算规律解决有关问题、3.掌握两个向量共线、垂直得几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量得坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其她因素基本题型得求解方法.平面向量数量积得坐标表示就是在学生学习了平面向量得坐标表示与平面向量数量积得基础上进一步学习得,这都为数量积得坐标表示奠定了知识与方法基础.三、情感、态度与价值观通过平面向量数量积得坐标表示,进一步加深学生对平面向量数量积得认识,提高学生得运算速度,培养学生得运算能力,培养学生得创新能力,提高学生得数学素质.教学重点、难点教学重点:平面向量数量积得坐标表示.教学难点:向量数量积得坐标表示得应用.教学关键:平面向量数量积得坐标表示得理解.教学突破方法:教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.并通过练习,使学生掌握数量积得应用.教法与学法导航教学方法:启发诱导,讲练结合、学习方法:主动探究,练习巩固.教学准备教师准备:多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课前面我们学习了平面向量得坐标表示与坐标运算,以及平面向量得数量积,那么,能否用坐标表示平面向量得数量积呢?若能,如何表示呢?由此又能产生什么结论呢?本节课我们就来研究这个问题.(板书课题)二、主题探究,合作交流提出问题:①已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b得坐标表示a·b呢?②怎样用向量得坐标表示两个平面向量垂直得条件?③您能否根据所学知识推导出向量得长度、距离与夹角公式?师生活动:教师引导学生利用前面所学知识对问题进行推导与探究.提示学生在向量坐标表示得基础上结合向量得坐标运算进行推导数量积得坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要得提示与补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性得总结,由此可归纳如下:A、平面向量数量积得坐标表示两个向量得数量积等于它们对应坐标得乘积得与,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.B、向量模得坐标表示若a=(x,y),则|a|2=x2+y2,或|a|=.如果表示向量a得有向线段得起点与终点得坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),|a|=C、两向量垂直得坐标表示设a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.D、两向量夹角得坐标表示设a、b都就是非零向量,a=(x1,y1),b=(x2,y2),θ就是a与b得夹角,根据向量数量积得定义及坐标表示,可得cosθ=三、拓展创新,应用提高例1已知A(1,2),B(2,3),C(-2,5),试判断△ABC得形状,并给出证明.活动:教师引导学生利用向量数量积得坐标运算来解决平面图形得形状问题.判断平面图形得形状,特别就是三角形得形状时主要瞧边长就是否相等,角就是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在得向量共线或者模相等,则此平面图形与平行四边形有关;若三角形得两条边所在得向量模相等或者由两边所在向量得数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状得方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC就是直角三角形.下面给出证明.∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),∴·=1×(-3)+1×3=0.∴⊥.∴△ABC就是直角三角形.点评:本题考查得就是向量数量积得应用,利用向量垂直得条件与模长公式来判断三角形得形状.当给出要判定得三角形得顶点坐标时,首先要作出草图,得到直观判定,然后对您得结论给出充分得证明.例2设a=(5,-7),b=(-6,-4),求a·b及a、b间得夹角θ(精确到1°).解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=,|b|=由计算器得cosθ=≈-0.03.利用计算器得θ≈1.6rad=92°.四、小结1.在知识层面上,先引导学生归纳平面向量数量积得坐标表示,向量得模,两向量得夹角,向量垂直得条件.其次引导学生总结数量积得坐标运算规律,夹角与距离公式、两向量垂直得坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到得思维方法与数学思想方法,定义法,待定系数法等.课堂作业1.若a=(2,-3),b=(x,2x),且a·b=,则x等于()A.3B.C.ﻩD.-32.设a=(1,2),b=(1,m),若a与b得夹角为钝角,则m得取值范围就是( )A.m>B.m< C.m> D.m<3.若a=(cosα,sinα),b=(cosβ,sinβ),则( )A.a⊥bB.a∥bC.(a+b)⊥(a-b)D.(a+b)∥(a-b)4.与a=(u,v)垂直得单位向量就是( )A.()B.()C.()D.()或()5.已知向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+t b(t∈R),求u得模得最小值.6.已知a,b都就是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b得夹角.7.已知△ABC得三个顶点为A(1,1),B(3,1),C(4,5),求△ABC得面积.参考答案:1.C2.D 3.C 4.D5.|a|==1,同理有|b|=1.又a·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=,∴|u|2=(a+t b)2=a2+2t a·b+t2b2=t2+t+1=(t+)2+≥.当t=时,|u|min=.6.由已知(a+3b)⊥(7a-5b)(a+3b)·(7a-5b)=07a2+16a·b-15b2=0.①又(a-4b)⊥(7a-2b)(a-4b)·(7a-2b)=07a2-30a·b+8b2=0. ②①-②得46a·b=23b2,即a·b=③将③代入①,可得7|a|2+8|b|2-15|b|2=0,即|a|2=|b|2,有|a|=|b|,∴若记a与b得夹角为θ,则cosθ=.又θ∈[0°,180°],∴θ=60°,即a与b得夹角为60°.7.分析:S△ABC=||||sin∠BAC,而||,||易求,要求sin∠BAC可先求出cos∠BA C.解:∵=(2,0),=(3,4),||=2,||=5,∴cos∠BAC=.∴sin∠BAC=.∴S△ABC=||||sin∠BAC=×2×5×=4.教案 B第一课时教学目标一、知识与技能1、了解平面向量数量积得物理背景,理解数量积得含义及其物理意义;2、体会平面向量得数量积与向量投影得关系,理解掌握数量积得性质与运算律,并能运用性质与运算律进行相关得判断与运算.二、过程与方法体会类比得数学思想与方法,进一步培养学生抽象概括、推理论证得能力.三、情感、态度与价值观通过自主学习、主动参与、积极探究,学生能感受数学问题探究得乐趣与成功得喜悦,增加学习数学得自信心与积极性,并养成良好得思维习惯.教学重点平面向量数量积得定义,用平面向量得数量积表示向量得模、夹角.教学难点平面向量数量积得定义及运算律得理解,平面向量数量积得应用.教具多媒体、实物投影仪.内容分析本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.主要知识点:平面向量数量积得定义及几何意义;平面向量数量积得3个重要性质;平面向量数量积得运算律.教学流程概念引入→概念获得→简单运用→运算律探究→理解掌握→反思提高教学设想:一、情境设置:问题1:回忆一下物理中“功”得计算,功得大小与哪些量有关?结合向量得学习您有什么想法?力做得功:W= ||⋅||cosθ,θ就是与得夹角.(引导学生认识功这个物理量所涉及得物理量,从“向量相乘”得角度进行分析)二、新课讲解1.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π).并规定:0与任何向量得数量积为0.问题2:定义中涉及哪些量?它们有怎样得关系?运算结果还就是向量吗?(引导学生认清向量数量积运算定义中既涉及向量模得大小,又涉及向量得交角,运算结果就是数量)注意:两个向量得数量积与向量同实数积有很大区别.(1)两个向量得数量积就是一个实数,不就是向量,符号由cosθ得符号所决定.(2)两个向量得数量积称为内积,写成a⋅b;今后要学到两个向量得外积a×b,而a⋅b就是两个向量得数量得积,书写时要严格区分.符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a≠0,且a⋅b=0,则b=0;但就是在数量积中,若a≠0,且a⋅b=0,不能推出b=0.因为其中cosθ有可能为0.(4)已知实数a、b、c(b≠0),则ab=bc ⇒a=c.但就是在向量得数量积中,a⋅b= b⋅c 推导不出a= c、如下图:a⋅b= |a||b|cosβ = |b||OA|,b⋅c= |b||c|cosα = |b||OA|⇒a⋅b=b⋅c,但a≠c、(5)在实数中,有(a⋅b)c = a(b⋅c),但就是在向量中,(a⋅b)c≠a(b⋅c)显然,这就是因为左端就是与c共线得向量,而右端就是与a共线得向量,而一般a 与c不共线.( “投影”得概念):作图2.定义:|b|cosθ叫做向量b在a方向上得投影.投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为|b|;当θ =180︒时投影为-|b|.3.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积.例1已知平面上三点A、B、C满足||=2,||=1,||=,求·+·+.得值、解:由已知,||2+||2=||2,所以△ABC就是直角三角形、而且∠ACB=90°,从而sin∠ABC=,sin∠BAC=、∴∠ABC=60°,∠BAC=30°、∴与得夹角为120°,与得夹角为90°,与得夹角为150°、故·+·+·=2×1×cos120°+1×cos90°+×2cos150°=-4、点评:确定两个向量得夹角,应先平移向量,使它们得起点相同,再考察其角得大小,而不就是简单地瞧成两条线段得夹角,如例题中与得夹角就是120°,而不就是60°、探究1:非零向量得数量积就是一个数量,那么它何时为正,何时为0,何时为负?当0°≤θ<90°时a·b为正;当θ =90°时a·b为零;90°<θ ≤180°时a·b为负、探究2:两个向量得夹角决定了它们数量积得符号,那么它们共线或垂直时,数量积有什么特殊性呢?4.两个向量得数量积得性质:设a、b为两个非零向量.(1)a⊥b⇔a⋅b=0.(2)当a与b同向时,a⋅b= |a||b|;当a与b反向时,a⋅b= -|a||b|.特别得a⋅a=|a|2或.(3) |a⋅b|≤|a||b|.公式变形:cosθ =探究3:对一种运算自然会涉及运算律,回忆过去研究过得运算律,向量得数量积应有怎样得运算律?(引导学生类比得出运算律,老师作补充说明)向量a、b、c与实数λ,有(1) a⋅b= b⋅a(2)(λa)⋅b= λ(a⋅ b )=a⋅(λb)(3)(a +b)⋅ c= a·c+b⋅ c(进一步)您能证明向量数量积得运算律吗?(引导学生证明(1)、(2))例2 判断正误:①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a 与b就是两个单位向量,则a2=b2.上述8个命题中只有②③⑧正确;例3已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b得夹角就是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们得夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们得夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们得夹角θ=90°,∴a·b=0;③当a与b得夹角就是60°时,有a·b=|a||b|cos60°=3×6×=9.评述:两个向量得数量积与它们得夹角有关,其范围就是[0°,180°],因此,当a∥b时,有0°或180°两种可能.评述:这一类型题,要求学生确实把握好数量积得定义、性质、运算律.三、课堂练习1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b得夹角就是()A.60° B.30°C.135° D.45°2.已知|a|=2,|b|=1,a与b之间得夹角为,那么向量m=a-4b得模为( )A.2 B.2 C.6D.123.已知a、b就是非零向量,若|a|=|b|则(a+b)与(a-b)、4.已知向量a、b得夹角为,|a|=2,|b|=1,则|a+b|·|a-b|=.5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j就是直角坐标系中x轴、y轴正方向上得单位向量,那么a·b=.6.已知|a|=1,|b|=,(1)若a∥b,求a·b;(2)若a、b得夹角为45°,求|a+b|;(3)若a -b与a垂直,求a与b得夹角.参考答案:1.D2.B3.垂直 4. 5.-36、解:(1)若a、b方向相同,则a·b=;若a、b方向相反,则a·b=;(2)|a+b|=.(3)45°.四、知识小结(1)通过本节课得学习,您学到了哪些知识?(2)关于向量得数量积,您还有什么问题?五、课后作业教材第108页习题2.4A组1、2、3、6、7教学后记数学课堂教学应当就是数学知识得形成过程与方法得教学,数学活动就是以学生为主体得活动,没有学生积极参与得课堂教学就是失败得.本节课教学设计按照“问题——讨论——解决”得模式进行,并以学生为主体,教师以课堂教学得引导者、评价者、组织者与参与者同学生一起探索平面向量数量积定义、性质与运算律得形成与发展过程.始终做到以“学生为主体、教师为主导、思维为主攻、训练为主线”.第2课时教学目标一、知识与技能掌握平面向量得数量积坐标运算及应用.二、过程与方法1、通过平面向量数量积得坐标运算,体会向量得代数性与几何性、2、从具体应用体会向量数量积得作用.三、情感、态度与价值观学会对待不同问题用不同得方法分析得态度、教学重点、难点教学重点:平面向量数量积得坐标表示、教学难点:平面向量数量积得坐标表示得综合运用、教具多媒体、实物投影仪、教学设想一、复习引入向量得坐标表示,为我们解决有关向量得加、减、数乘运算带来了极大得方便.上一节,我们学习了平面向量得数量积,那么向量得坐标表示,对平面向量得数量积得表示方式又会带来哪些变化呢?由此直接进入主题.二、探究新知:⒈平面两向量数量积得坐标表示已知两个非零向量,,试用与得坐标表示.设就是轴上得单位向量,就是轴上得单位向量,那么,.所以.又,,,所以.这就就是说:两个向量得数量积等于它们对应坐标得乘积得与.即.2.平面内两点间得距离公式(1)设,则或.如果表示向量得有向线段得起点与终点得坐标分别为、,那么(平面内两点间得距离公式).(2)向量垂直得判定设,,则ﻩ.(3)两非零向量夹角得余弦()cosθ=.三、例题讲解例1已知a=(3,-1),b = (1, 2),求满足x⋅a = 9与x⋅b = -4得向量x.解:设x = (t,s),由、∴x= (2,-3)、例2 已知a=(1,),b=(+1,-1),则a与b得夹角就是多少?分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ得范围确定其值.解:由a=(1,),b=(+1,-1)、有a·b=+1+(-1)=4,|a|=2,|b|=2.记a与b得夹角为θ,则cosθ=、又∵0≤θ≤π,∴θ=、评述:已知三角形函数值求角时,应注重角得范围得确定.例3如图,以原点与A(5, 2)为顶点作等腰直角△OAB,使∠B=90︒,求点B 与向量得坐标.解:设B点坐标(x, y),则= (x, y),=(x-5, y-2)、∵⊥∴x(x-5)+ y(y-2) = 0即:x2 + y2-5x- 2y = 0、又∵||= || ∴x2 +y2= (x-5)2 + (y-2)2即:10x +4y= 29、由、∴B点坐标或;=或、例4在△ABC中,=(2, 3),=(1,k),且△ABC得一个内角为直角,求k值. 解:当∠A = 90︒时,⋅=0,∴2×1+3×k = 0,∴k =.当∠B = 90︒时,⋅=0,=-=(1-2, k-3)= (-1, k-3),∴2×(-1) +3×(k-3) =0 ∴k=.当∠C=90︒时,⋅= 0,∴-1+ k(k-3) =0,∴k =.四、小结1.本节课得内容:有关公式、结论(由学生归纳、总结)、2.本节课得思想方法:数形结合思想、分类讨论思想、方程(组)思想等、五、课外作业教材第107页练习.。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案一、教学目标知识与技能目标:使学生理解平面向量数量积的概念,掌握平面向量数量积的计算公式及性质,能够运用数量积解决一些几何问题。

过程与方法目标:通过探究平面向量数量积的概念和性质,培养学生的抽象思维能力和逻辑推理能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在现实生活中的应用价值。

二、教学重点与难点重点:平面向量数量积的概念,计算公式及性质。

难点:平面向量数量积的运算规律及其在几何中的应用。

三、教学方法采用问题驱动法、案例分析法和小组合作法,引导学生主动探究,发现平面向量数量积的规律,提高学生解决问题的能力。

四、教学准备教师准备PPT,涵盖平面向量数量积的概念、计算公式、性质及应用实例。

学生准备笔记本,以便记录学习过程中的疑问和感悟。

五、教学过程1. 导入新课教师通过展示一个实际问题,引导学生思考平面向量数量积的定义和作用。

2. 探究平面向量数量积的概念(1)教师引导学生根据定义,探究平面向量数量积的计算公式。

(2)学生通过实例,理解并掌握平面向量数量积的计算方法。

3. 学习平面向量数量积的性质(1)教师引导学生总结平面向量数量积的性质。

(2)学生通过练习,巩固对平面向量数量积性质的理解。

4. 应用平面向量数量积解决几何问题教师展示几个应用实例,引导学生运用平面向量数量积解决几何问题。

学生分组讨论,合作解决问题,分享解题过程和心得。

5. 课堂小结教师引导学生总结本节课所学内容,强调平面向量数量积的概念、计算公式及性质。

学生整理学习笔记,反思自己在学习过程中的收获和不足。

6. 布置作业教师布置一些有关平面向量数量积的练习题,巩固所学知识。

学生认真完成作业,巩固课堂所学内容。

七、教学反思教师在课后对自己的教学过程进行反思,分析教学效果,针对学生的掌握情况,调整教学策略。

学生反思自己的学习过程,总结经验教训,提高学习效果。

八、教学评价教师通过课堂表现、作业完成情况和课后练习成绩,全面评价学生对平面向量数量积的掌握程度。

平面向量数量积授课教案

平面向量数量积授课教案

平面向量数量积授课优秀教案一、教学目标1. 知识与技能:(1)理解平面向量的概念,掌握向量的表示方法;(2)掌握向量的坐标运算,包括加法、减法和数乘;(3)理解向量数量积的概念,掌握数量积的计算公式和性质;(4)学会运用数量积解决实际问题。

2. 过程与方法:(1)通过图形和实例,培养学生的直观想象能力;(2)运用逻辑推理,引导学生发现向量数量积的计算规律;(3)通过练习题,提高学生运用向量数量积解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生感受数学在生活中的应用,提高学生的数学素养。

二、教学重点与难点1. 教学重点:(1)平面向量的概念及表示方法;(2)向量的坐标运算;(3)向量数量积的计算公式和性质;(4)运用向量数量积解决实际问题。

2. 教学难点:(1)向量数量积的计算规律的发现;(2)向量数量积在实际问题中的应用。

三、教学准备1. 教具准备:黑板、粉笔、投影仪;2. 学具准备:笔记本、练习本、相关书籍。

四、教学过程1. 导入新课:(1)复习旧知识:回顾二维空间中的点、线、面的基本概念;(2)提出问题:如何表示一个平面内的向量?向量之间有什么基本的运算?2. 讲解向量的概念及表示方法:(1)介绍向量的定义;(2)讲解向量的表示方法,如用箭头表示、用坐标表示等。

3. 讲解向量的坐标运算:(1)向量的加法、减法和数乘;(2)举例说明运算规律。

4. 讲解向量数量积的概念和性质:(1)介绍数量积的定义;(2)讲解数量积的计算公式;(3)阐述数量积的性质。

5. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)挑选学生回答问题,及时给予评价和指导。

五、课后作业1. 复习本节课所学内容,整理笔记;2. 完成课后练习题,巩固向量数量积的知识;3. 思考实际生活中的向量数量积问题,提高数学应用能力。

六、教学拓展1. 引导学生探索向量数量积的推广:(1)从二维向量推广到三维向量;(2)探讨更高维向量的数量积。

必修四2.4.平面向量的数量积(教案)

必修四2.4.平面向量的数量积(教案)

2.4 平面向量的数量积教案 A第1课时教学目标一、知识与技能1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;二、过程与方法本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.三、情感、态度与价值观通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.教学重点、难点教学重点:平面向量数量积的定义.教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用.教学关键:平面向量数量积的定义的理解.教学方法本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.学习方法通过类比物理中功的定义,来推导数量积的运算.教学准备教师准备: 多媒体、尺规.学生准备: 练习本、尺规.教学过程一、创设情境,导入新课在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W可由下式计算:W=| F | | s | cosθ,其中θ是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量).故从力所做的功出发,我们就顺其自然地引入向量数量积的概念.二、主题探究,合作交流提出问题①a ·b 的运算结果是向量还是数量?它的名称是什么?②由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律?师生活动:已知两个非零向量a 与b ,我们把数量|a ||b |cosθ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ(0≤θ≤π).其中θ是a 与b 的夹角,|a |cosθ(|b |cosθ)叫做向量a 在b 方向上(b 在a 方向上)的投影.在教师与学生一起探究的活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a ·0=0; (3)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<2π时cosθ>0,从而a ·b >0;当2π<θ≤π时,cosθ<0,从而a ·b <0.与学生共同探究并证明数量积的运算律.已知a 、b 、c 和实数λ,则向量的数量积满足下列运算律: ①a ·b =b ·a (交换律); ②(λa )·b =λ(a ·b )=a ·(λb )(数乘结合律); ③(a +b )·c =a ·c +b ·c (分配律). 特别是:(1)当a ≠0时,由a ·b =0不能推出b 一定是零向量.这是因为任一与a 垂直的非零向量b ,都有a ·b =0.注意:已知实数a 、b 、c (b ≠0),则ab =bc ⇒a =c .但对向量的数量积,该推理不正确,即a ·b =b ·c 不能推出a =c .由上图很容易看出,虽然a ·b =b ·c ,但a ≠c .对于实数a 、b 、c 有(a ·b )c =a (b ·c );但对于向量a 、b 、c ,(a ·b )c =a (b ·c )不成立.这是因为(a ·b )c 表示一个与c 共线的向量,而a (b ·c )表示一个与a 共线的向量,而c 与a 不一定共线,所以(a ·b )c =a (b ·c )不成立.提出问题①如何理解向量的投影与数量积?它们与向量之间有什么关系? ②能用“投影”来解释数量积的几何意义吗?师生活动:教师引导学生来总结投影的概念,可以结合“探究”,让学生用平面向量的数量积的定义,从数与形两个角度进行探索研究.教师给出图形并作结论性的总结,提出注意点“投影”的概念,如下图.定义:|b |cos θ叫做向量b 在a 方向上的投影.并引导学生思考. A . 投影也是一个数量,不是向量;B . 当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b |;当θ=180°时投影为-|b |.教师结合学生对“投影”的理解,让学生总结出向量的数量积的几何意义: 数量积a ·b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量的数量积的结果是一个实数.教师和学生共同总结两个向量的数量积的性质:设a 、b 为两个非零向量,θ为两向量的夹角,e 是与b 同向的单位向量. A . e ·a =a ·e =|a |cos θ. B . a ⊥b ⇔a ·b =0.C . 当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |.特别地a ·a =|a |2或|a |=a a ∙. D . cosθ=||||a ba b ∙. E . |a ·b |≤|a ||b |.上述性质要求学生结合数量积的定义自己尝试推证,教师给予必要的补充和提示,在推导过程中理解并记忆这些性质.讨论结果: ①略.②向量的数量积的几何意义为数量积a ·b 等于a 的长度与b 在a 方向上投影|b |cosθ的乘积.三、拓展创新,应用提高例1 已知|a |=5,|b |=4,a 与b 的夹角为120°,求a ·b活动:教师引导学生利用向量的数量积并结合两向量的夹角来求解.解: a ·b =|a ||b |cosθ=5×4 ×cos120°=5×4×(21-) =-10.点评: 确定两个向量的夹角,利用数量积的定义求解.例2 我们知道,对任意a ,b ∈R ,恒有(a +b )2=a 2+2ab +b 2,(a +b )(a -b )=a 2-b 2.对任意向量a 、b ,是否也有下面类似的结论?(1)(a +b )2=a 2+2a ·b +b 2; (2)(a +b )·(a -b )=a 2-b 2. 解:(1)(a +b )2=(a +b )·(a +b )=a ·b +a ·b +b ·a +b ·b =a 2+2a ·b +b 2;(2)(a +b )·(a -b )=a ·a -a ·b +b ·a -b ·b=a 2-b 2.例3 已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a -3b ). 解: (a +2b )·(a -3b )=a ·a -a ·b -6b ·b=|a |2-a ·b -6|b |2=|a |2-|a ||b |cosθ-6|b |2 =62-6×4×cos60°-6×42 =-72.例4 已知|a |=3,|b |=4,且a 与b 不共线,当k 为何值时,向量a +k b 与a -k b 互相垂直?解: a +k b 与a -k b 互相垂直的条件是(a +k b )·(a -k b )=0, 即a 2-k 2b 2=0.∵a 2=32=9,b 2=42=16, ∴9-16k 2=0.∴k =±43.也就是说,当k =±43时,a +k b 与a -k b 互相垂直.点评:本题主要考查向量的数量积性质中垂直的充要条件.四、小结1.先由学生回顾本节学习的数学知识,数量积的定义、几何意义,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.课堂作业1.已知a ,b ,c 是非零向量,则下列四个命题中正确的个数为( ) ①|a ·b |=|a ||b |⇔a ∥b ②a 与b 反向⇔a ·b =-|a ||b | ③a ⊥b ⇔|a +b |=|a -b | ④|a |=|b |⇔|a ·c |=|b ·c |A .1B .2C .3D .4 2.有下列四个命题:①在△ABC 中,若AB ·BC >0,则△ABC 是锐角三角形;②在△ABC 中,若AB ·BC >0,则△ABC 为钝角三角形; ③△ABC 为直角三角形的充要条件是AB ·BC =0; ④△ABC 为斜三角形的充要条件是AB ·BC ≠0. 其中为真命题的是( )A .①B .②C .③D .④ 3.设|a |=8,e 为单位向量,a 与e 的夹角为60°,则a 在e 方向上的投影为( ) A .43 B .4C .42D .8+234.设a 、b 、c 是任意的非零平面向量,且它们相互不共线,有下列四个命题: ①(a ·b )c -(c ·a )b =0; ②|a |-|b |<|a -b |; ③(b ·c )a -(c ·a )b 不与c 垂直; ④(3a +2b )·(3a -2b )=9|a |2-4|b |2. 其中正确的是( )A .①②B .②③C .③④D .②④ 5.在△ABC 中,设AB =b ,AC =c ,则22(|||)()b c b c ∙-等于( ) A .0 B .21S △ABC C .S △ABC D .2S △ABC 6.设i ,j 是平面直角坐标系中x 轴、y 轴方向上的单位向量,且a =(m+1)i -3j ,b =i +(m -1)j ,如果(a +b )⊥(a -b ),则实数m=_____________.7.若向量a 、b 、c 满足a +b +c =0,且|a |=3,|b |=1,|c |=4,则a ·b +b ·c +c ·a =_________. 参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13第2课时教学目标一、知识与技能1.掌握平面向量数量积运算规律.2.能利用数量积的性质及数量积运算规律解决有关问题.3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三、情感、态度与价值观通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.教学重点、难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.教学关键:平面向量数量积的坐标表示的理解.教学突破方法:教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.并通过练习,使学生掌握数量积的应用.教法与学法导航教学方法:启发诱导,讲练结合.学习方法:主动探究,练习巩固.教学准备教师准备:多媒体、尺规.学生准备:练习本、尺规.教学过程一、创设情境,导入新课前面我们学习了平面向量的坐标表示和坐标运算,以及平面向量的数量积,那么,能否用坐标表示平面向量的数量积呢?若能,如何表示呢?由此又能产生什么结论呢?本节课我们就来研究这个问题.(板书课题)二、主题探究,合作交流提出问题:①已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?②怎样用向量的坐标表示两个平面向量垂直的条件?③你能否根据所学知识推导出向量的长度、距离和夹角公式?师生活动:教师引导学生利用前面所学知识对问题进行推导和探究.提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下:A.平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和, 即a =(x 1,y 1),b =(x 2,y 2), 则a ·b =x 1x 2+y 1y 2. B . 向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=22y x +.如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=.)()(212212y y x x -+-C . 两向量垂直的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),则 a ⊥b ⇔x 1x 2+y 1y 2=0.D . 两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=121222221122||||x x y y a ba b x yx y+=++三、拓展创新,应用提高例1 已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明. 活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB =(2-1,3-2)=(1,1),AC =(-2-1,5-2)=(-3,3),∴AB ·AC =1×(-3)+1×3=0. ∴AB ⊥AC .∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.例2 设a =(5,-7),b =(-6,-4),求a ·b 及a 、b 间的夹角θ(精确到1°). 解:a ·b =5×(-6)+(-7)×(-4)=-30+28=-2.|a |=74)7(522=-+,|b |=22(6)(4)52-+-=,由计算器得cos θ=52742⨯-≈-0.03.利用计算器得θ≈1.6rad=92°. 四、小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.课堂作业1.若a =(2,-3),b =(x ,2x ),且a ·b =34,则x 等于( ) A .3 B .31 C .31- D .-32.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( ) A .m>21 B .m<21 C .m>21- D .m<21- 3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b ) 4.与a =(u ,v )垂直的单位向量是( ) A .(2222,vu u vu v ++-)B .(2222,vu u vu v +-+)C .(2222,vu u vu v ++)D .(2222,v u u v u v++-)或(2222,vu uv u v +-+) 5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u的模的最小值.6.已知a ,b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角.7.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积. 参考答案:1.C 2.D 3.C 4.D5.|a |=23sin 23cos 67cos 23cos 2222+=+=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22° =cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a ·b +t 2b 2=t 2+2t+1=(t+22)2+21≥21. 当t=22-时,|u|mi n =22. 6.由已知(a +3b )⊥(7a -5b )⇔(a +3b )·(7a -5b )=0⇔7a 2+16a ·b -15b 2=0.①又 (a -4b )⊥(7a -2b )⇔(a -4b )·(7a -2b )=0⇔7a 2-30a ·b +8b 2=0. ②①-②得46a ·b =23b 2,即a ·b =.2||222b b =③ 将③代入①,可得7|a |2+8|b |2-15|b |2=0,即|a |2=|b |2,有|a |=|b |,∴若记a 与b 的夹角为θ,则cosθ=2||12||||||||2b a b a b b b ∙==g g .又θ∈[0°,180°],∴θ=60°,即a 与b 的夹角为60°. 7.分析:S △ABC =21|AB ||AC |sin ∠BAC ,而|AB |,|AC |易求,要求sin ∠BAC 可先求出cos ∠BA C .解:∵AB =(2,0),AC =(3,4),|AB |=2,|AC |=5, ∴cos ∠BAC =23043255||||AB AC AB AC ⨯+⨯==⨯.∴sin ∠BAC =54.∴S △ABC =21|AB ||AC |sin ∠BAC =21×2×5×54=4.教案 B第一课时教学目标一、知识与技能1. 了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;2. 体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算.二、过程与方法体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力. 三、情感、态度与价值观通过自主学习、主动参与、积极探究,学生能感受数学问题探究的乐趣和成功的喜悦,增加学习数学的自信心和积极性,并养成良好的思维习惯. 教学重点平面向量数量积的定义,用平面向量的数量积表示向量的模、夹角. 教学难点平面向量数量积的定义及运算律的理解,平面向量数量积的应用. 教 具多媒体、实物投影仪. 内容分析本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的3个重要性质;平面向量数量积的运算律. 教学流程概念引入→概念获得→简单运用→运算律探究→理解掌握→反思提高 教学设想:一、情境设置:问题1:回忆一下物理中“功”的计算,功的大小与哪些量有关?sθF结合向量的学习你有什么想法?力做的功:W = |F |⋅|S |cos θ,θ是F 与S 的夹角.(引导学生认识功这个物理量所涉及的物理量,从“向量相乘”的角度进行分析)二、新课讲解1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π).并规定:0与任何向量的数量积为0.问题2:定义中涉及哪些量?它们有怎样的关系?运算结果还是向量吗?(引导学生认清向量数量积运算定义中既涉及向量模的大小,又涉及向量的交角,运算结果是数量)注意:两个向量的数量积与向量同实数积有很大区别.(1)两个向量的数量积是一个实数,不是向量,符号由cosθ的符号所决定.(2)两个向量的数量积称为内积,写成a⋅b;今后要学到两个向量的外积a×b,而a⋅b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a≠0,且a⋅b=0,则b=0;但是在数量积中,若a≠0,且a⋅b=0,不能推出b=0.因为其中cosθ有可能为0.(4)已知实数a、b、c(b≠0),则ab=bc ⇒ a=c.但是在向量的数量积中,a⋅b= b⋅c 推导不出a= c.如下图:a⋅b= |a||b|cosβ = |b||OA|,b⋅c= |b||c|cosα = |b||OA|⇒ a⋅b=b⋅c,但a≠c.(5)在实数中,有(a⋅b)c = a(b⋅c),但是在向量中,(a⋅b)c≠a(b⋅c)显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c 不共线.(“投影”的概念):作图2.定义:|b|cosθ叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|.3.向量的数量积的几何意义:数量积a⋅b等于a的长度与b在a方向上投影|b|cosθ的乘积.例1 已知平面上三点A 、B 、C 满足|AB |=2,|BC |=1,|CA |=3,求AB ·BC +BC ·CA +CA .AB 的值. 解:由已知,|BC |2+|CA |2=|AB |2,所以△ABC 是直角三角形.而且∠ACB =90°, 从而sin ∠ABC =23,sin ∠BAC =21. ∴∠ABC =60°,∠BAC =30°.∴AB 与BC 的夹角为120°,BC 与CA 的夹角为90°,CA 与AB 的夹角为150°.故AB ·BC +BC ·CA +CA ·AB =2×1×cos120°+1×3cos90°+3×2cos150°=-4.点评:确定两个向量的夹角,应先平移向量,使它们的起点相同,再考察其角的大小,而不是简单地看成两条线段的夹角,如例题中AB 与BC 的夹角是120°,而不是60°. 探究1:非零向量的数量积是一个数量,那么它何时为正,何时为0 ,何时为负?当0°≤θ< 90°时a ·b 为正;当θ =90°时a ·b 为零; 90°<θ ≤180°时a ·b 为负.探究2:两个向量的夹角决定了它们数量积的符号,那么它们共线或垂直时,数量积有什么特殊性呢?4.两个向量的数量积的性质: 设a 、b 为两个非零向量. (1)a ⊥b ⇔ a ⋅b = 0.(2)当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||.(3) |a ⋅b | ≤ |a ||b |. 公式变形:cos θ =||||b a b a ⋅探究3:对一种运算自然会涉及运算律,回忆过去研究过的运算律,向量的数量积应有怎样的运算律?(引导学生类比得出运算律,老师作补充说明)向量a 、b 、c 和实数λ,有(1) a ⋅ b= b ⋅ a(2)(λa )⋅ b= λ(a ⋅ b )= a ⋅(λb ) (3)(a +b )⋅ c = a · c+ b ⋅ c(进一步)你能证明向量数量积的运算律吗?(引导学生证明(1)、(2)) 例2 判断正误:①a ·0=0;②0·a =0;③0-AB =BA ;④|a ·b|=|a ||b|;⑤若a ≠0,则对任一非零b有a ·b≠0;⑥a ·b=0,则a 与b中至少有一个为0;⑦对任意向量a ,b,с都有(a ·b)с=a(b·с);⑧a 与b是两个单位向量,则a 2=b2.上述8个命题中只有②③⑧正确;例3 已知|a |=3,|b|=6,当①a ∥b,②a ⊥b,③a 与b的夹角是60°时,分别求a ·b.解:①当a ∥b时,若a 与b同向,则它们的夹角θ=0°, ∴a ·b=|a |·|b|cos0°=3×6×1=18; 若a 与b反向,则它们的夹角θ=180°, ∴a ·b=|a ||b|cos180°=3×6×(-1)=-18; ②当a ⊥b时,它们的夹角θ=90°, ∴a ·b=0;③当a 与b的夹角是60°时,有a ·b=|a ||b|cos60°=3×6×21=9.评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a ∥b时,有0°或180°两种可能.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律. 三、课堂练习1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A .60° B .30° C .135° D .45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为π3,那么向量m =a -4b 的模为( )A .2B .23C .6D .12 3.已知a 、b 是非零向量,若|a |=|b |则(a +b )与(a -b ) . 4.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .6.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为45°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.参考答案:1.D 2.B 3.垂直4.215.-37;6. 解:(1)若a、b方向相同,则a·b=2;若a、b方向相反,则a·b=2(2)|a+b|=5.(3)45°.四、知识小结(1)通过本节课的学习,你学到了哪些知识?(2)关于向量的数量积,你还有什么问题?五、课后作业教材第108页习题2.4 A组1、2、3、6、7教学后记数学课堂教学应当是数学知识的形成过程和方法的教学,数学活动是以学生为主体的活动,没有学生积极参与的课堂教学是失败的.本节课教学设计按照“问题——讨论——解决”的模式进行,并以学生为主体,教师以课堂教学的引导者、评价者、组织者和参与者同学生一起探索平面向量数量积定义、性质和运算律的形成与发展过程.始终做到以“学生为主体、教师为主导、思维为主攻、训练为主线”.第2课时教学目标一、知识与技能掌握平面向量的数量积坐标运算及应用.二、过程与方法1.通过平面向量数量积的坐标运算,体会向量的代数性和几何性.2.从具体应用体会向量数量积的作用.三、情感、态度与价值观学会对待不同问题用不同的方法分析的态度.教学重点、难点教学重点:平面向量数量积的坐标表示.教学难点:平面向量数量积的坐标表示的综合运用.教具多媒体、实物投影仪.教学设想一、复习引入向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.二、探究新知:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+=.所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=. 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=. 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=.2. 平面内两点间的距离公式(1)设),(y x a =,则222||y x a +=或22||y x a +=.如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式). (2)向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x . (3)两非零向量夹角的余弦(πθ≤≤0) cos θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=.三、例题讲解例1 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x . 解:设x = (t , s ), 由{{9,39,4,24,x a t s x b t s ⋅=-=⇒⋅=-+=-{2,3.t s =⇒=- . ∴x = (2,-3).例2 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少?分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1).有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a . 又∵0≤θ≤π,∴θ=4π. 评述:已知三角形函数值求角时,应注重角的范围的确定.例3 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x -5, y -2).∵OB ⊥AB ∴x (x -5) + y (y -2) = 0 即:x 2 + y 2 -5x - 2y = 0.又∵|OB | = |AB | ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29.由{22121273,,520,223710429,,.22x x x y x y x y y y ⎧⎧==⎪⎪+--=⇒⎨⎨+==-=⎪⎪⎩⎩或.∴B 点坐标)23,27(-或)27,23(;AB =)27,23(--或)23,27(- .例4在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当∠A = 90︒时,AB ⋅AC = 0,∴2×1 +3×k = 0, ∴k =23-.当∠B = 90︒时,AB ⋅BC = 0,BC =AC -AB = (1-2, k -3) = (-1, k -3),∴2×(-1) +3×(k -3) = 0 ∴k =311.当∠C = 90︒时,AC ⋅BC = 0,∴-1 + k (k -3) = 0, ∴k =2133±. 四、小结1.本节课的内容:有关公式、结论(由学生归纳、总结).2.本节课的思想方法:数形结合思想、分类讨论思想、方程(组)思想等. 五、课外作业教材第107页练习.。

2023高中数学平面向量的数量积教案范文

2023高中数学平面向量的数量积教案范文

2023高中数学平面向量的数量积教案范文2020高中数学平面向量的数量积教案范文一一、教学内容分析1、教学主要内容(1)平面向量数量积及其几何意义(2)用平面向量处理有关长度、角度、直垂问题2、教材编写特点本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。

3、教学内容的核心教学思想用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。

4、我的思考本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。

因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。

二、学生分析1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。

因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形a·b=∣OM∣·∣OB∣=∣b∣cosθ∣a∣即a·b=∣a∣∣b∣cosθ理解并记忆。

对于cosθ= ,等的变形应用,同学们甚感兴趣。

2、我的思考对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。

三、学习目标1、知识与技能(1)掌握平面向量数量积及其几何意义。

(2)平面向量数量积的应用。

2、过程与方法通过学生小组探究学习,讨论并得出结论。

3、情感态度与价值观培养学生运算推理的能力。

四、教学活动内容师生互动设计意图时间 1、课题引入师:请同学请回忆我们所学过的相关同里的运算。

生:加法、减法,数乘师:这些运算所得的结果是数还是向量。

生:向量。

师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。

3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab②O与任何向量的数里积为O。

平面向量数量积的教案

平面向量数量积的教案

平面向量数量积的教案教学目标:1. 理解平面向量的概念及其几何表示。

2. 掌握平面向量的数量积的定义及其性质。

3. 学会运用数量积解决实际问题。

教学内容:一、平面向量的概念及其几何表示1. 向量的定义2. 向量的几何表示3. 向量的坐标表示二、平面向量的数量积1. 数量积的定义2. 数量积的性质a. 交换律b. 分配律c. 互补律3. 数量积的计算公式三、数量积的运算律1. 交换律的应用2. 分配律的应用3. 互补律的应用四、数量积与向量垂直1. 数量积与向量垂直的定义2. 数量积与向量垂直的性质3. 数量积与向量垂直的应用五、数量积在实际问题中的应用1. 力学中的问题2. 几何中的问题3. 其它实际问题教学方法:1. 采用讲授法,系统地讲解平面向量的概念、数量积的定义及其性质。

2. 通过例题演示数量积的运算律及应用。

3. 引导学生运用数量积解决实际问题,培养学生的实际应用能力。

教学准备:1. 教案、PPT课件2. 课堂练习题3. 相关实际问题素材教学过程:一、导入(5分钟)1. 复习平面向量的概念及其几何表示。

2. 引出本节课的主题——平面向量的数量积。

二、新课讲解(20分钟)1. 讲解平面向量的数量积的定义。

2. 引导学生通过实例理解数量积的几何意义。

3. 讲解数量积的性质,如交换律、分配律、互补律。

4. 给出数量积的计算公式。

三、数量积的运算律(15分钟)1. 通过例题讲解数量积的交换律、分配律、互补律的应用。

2. 引导学生总结数量积的运算律。

四、数量积与向量垂直(15分钟)1. 讲解数量积与向量垂直的定义。

2. 引导学生掌握数量积与向量垂直的性质。

3. 通过例题展示数量积与向量垂直的应用。

五、数量积在实际问题中的应用(15分钟)1. 给出力学、几何等方面的实际问题。

2. 引导学生运用数量积解决实际问题。

3. 总结数量积在实际问题中的应用。

六、课堂练习(10分钟)1. 让学生独立完成课堂练习题。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案一、教学目标1. 理解平面向量的概念,掌握向量的表示方法。

2. 掌握向量的数量积运算,了解数量积的性质和运算规律。

3. 能够运用数量积解决实际问题,提高数学应用能力。

二、教学内容1. 向量的概念及表示方法2. 向量的数量积定义及计算公式3. 数量积的性质和运算规律4. 数量积在坐标系中的运算5. 数量积的应用三、教学重点与难点1. 重点:向量的概念,数量积的计算公式,数量积的性质和运算规律。

2. 难点:数量积在坐标系中的运算,数量积的应用。

四、教学方法1. 采用讲授法,讲解向量及数量积的基本概念、性质和运算规律。

2. 利用案例分析法,分析数量积在实际问题中的应用。

3. 利用数形结合法,直观展示数量积在坐标系中的运算。

4. 引导学生通过小组讨论、探究,提高学生的参与度和自主学习能力。

五、教学安排1. 第一课时:向量的概念及表示方法2. 第二课时:向量的数量积定义及计算公式3. 第三课时:数量积的性质和运算规律4. 第四课时:数量积在坐标系中的运算5. 第五课时:数量积的应用六、教学过程1. 导入:通过复习实数乘法的分配律,引导学生思考向量数量积的定义。

2. 讲解向量的概念,向量的表示方法,向量的几何直观。

3. 引入向量数量积的概念,讲解数量积的计算公式。

4. 通过实例,演示数量积的运算过程,让学生感受数量积的意义。

5. 总结数量积的性质和运算规律,引导学生发现数量积与向量坐标的关系。

七、案例分析1. 利用数量积解释物理学中的力的合成与分解。

2. 利用数量积解决几何问题,如求解平行四边形的对角线长度。

3. 利用数量积判断两个向量是否垂直。

八、数量积在坐标系中的运算1. 讲解坐标系中向量的表示方法,向量的坐标运算。

2. 推导数量积在坐标系中的运算公式。

3. 通过实例,演示数量积在坐标系中的运算过程。

4. 引导学生掌握数量积在坐标系中的运算方法,提高运算能力。

九、数量积的应用1. 利用数量积解决线性方程组。

平面向量的数量积教案(带答案)

平面向量的数量积教案(带答案)

平面向量的数量积教案教学目标: (i)知识目标:(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示. (2) 平面向量数量积的应用. (ii)能力目标:(1) 培养学生应用平面向量积解决相关问题的能力. (2) 正确运用向量运算律进行推理、运算.教学重点: 1. 掌握平面向量的数量积及其几何意义.2. 用数量积求夹角、距离及平面向量数量积的坐标运算.教学难点: 平面向量数量积的综合应用. 教学过程: 一、知识梳理1.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b|cos θ叫a 与b 的数量积,记作a ⋅b ,即a ⋅b = |a ||b|cos θ,(0)θπ≤≤并规定0 与任何向量的数量积为2.平面向量的数量积的几何意义:数量积a ⋅b 等于a的长度与b 在a 方向上投影|b |c os θ的乘积. 3.两个向量的数量积的性质 设a 、b 为两个非零向量,e是与b 同向的单位向量1︒e ⋅a = a ⋅e =|a |cos θ; 2︒a ⊥b ⇔ a ⋅b= 03︒当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |,特别地a ⋅a = |a |24︒cos θ =||||b a b a ⋅ ; 5︒|a ⋅b | ≤ |a ||b|4.平面向量数量积的运算律① 交换律:a ⋅ b = b ⋅ a ② 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a⋅(λb ) ③ 分配律:(a + b )⋅c = a ⋅c+ b ⋅c5.平面向量数量积的坐标表示①已知两个向量),(11y x a =,),(22y x b = ,则b a ⋅2121y y x x +=.②设),(y x a = ,则22||y x a +=.③平面内两点间的距离公式 如果表示向量a的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=.④向量垂直的判定 两个非零向量),(11y x a =,),(22y x b = ,则b a ⊥⇔02121=+y y x x .⑤两向量夹角的余弦 co s θ =||||b a ba ⋅⋅222221212121y x y x y y x x +++=(πθ≤≤0). 二、典型例题1. 平面向量数量积的运算 例题1 已知下列命题:①()0a a +-= ; ②()()a b c a b c ++=++ ; ③()()a b c a b c = ; ④()a b c a c b c +=+其中正确命题序号是 ②、④ .点评: 掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知2,5,(1)||a b a b == 若; (2) a b ⊥ ;(3) a b 与的夹角为030,分别求a b. 解(1)当 ||a b 时, a b=0cos025110a b =⨯⨯= 或a b =0cos18025(1)10a b =⨯⨯-=- . (2)当a b ⊥ 时, a b=0cos902500a b =⨯⨯=. (3)当a b 与的夹角为030时, a b =03cos3025532a b =⨯⨯= .变式训练:已知0000(cos23,cos67),(cos68,cos22)a b == ,求a b解:0000cos23cos68cos67cos22a b =+ = 000002cos 23sin 22sin 23cos 22sin 452+==点评: 熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整. 2.夹角问题例题3 若1,2,a b c a b ===+ ,且c a ⊥,则向量a 与向量b 的夹角为 ( )A. 030 B. 060 C. 0120 D. 0150解:依题意2()0cos 0a a b a a b θ⋅+=⇒+= 1c o s2θ⇒=- 0120θ∴= 故选C 变式训练1:① 已知2,3,7a b a b ==-=,求向量a 与向量b 的夹角.② 已知(1,2),(4,2)a b =-= ,)a a b -与(夹角为θ,则cos θ= .解: ① 7a b -=⇒ 2227a a b b -+= 31cos ,232a b a b a b ⇒〈〉===⨯,故夹角为060. ②依题意得)(3,4)a b -=-- (()385cos 555a ab a a b θ--+⇒===⨯-. 变式训练2:已知,a b是两个非零向量,同时满足a b a b ==- ,求a a b + 与的夹角.法一 解:将a b a b ==- 两边平方得 221122a b a b == , 2223a b a a b b a ∴+=++=则222221()32cos 23a a a a b a a ba a ba ab a aθ+++====++, 故a a b + 与的夹角.为030. 法二: 数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法. 3.向量模的问题例题4 已知向量,a b 满足6,4a b == ,且a b 与的夹角为060,求3a b a b +- 和.解: 6,4a b == ,且a b 与的夹角为060 12a b ∴=22276219a b a a b b ∴+=++== ; 223691086 3.a b a a b b -=-+==变式训练 :①(2005年湖北)已知向量(2,2),(5,)a b k =-=,若a b + 不超过5,则k 的取值范围 ( )A. [4,6]-B. [6,4]-C. [6,2]-D. [2,6]-②(2006年福建) 已知a b 与的夹角为0120,3a = ,13a b += ,则b 等于( )A 5 B. 4 C. 3 D. 1解: ① 2(3,2)(2)95a b k k +=+=++≤ ,62k ⇒-≤≤ 故选C②2222a b a a b b +=++ , 222cos12013a a b b ∴++= ,解得4b = ,故选B点评:涉及向量模的问题一般利用22a a a a ==,注意两边平方是常用的方法. 4.平面向量数量积的综合应用例题5 已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<< .(1) 若,a b θ⊥求 ; (2)求a b + 的最大值 .解:(1)若a b ⊥ ,则sin cos 0θθ+=,tan 1,()224πππθθθ⇒=--<<∴=-.(2) a b + =22(sin 1)(1cos )32(sin cos )θθθθ+++=++=322sin()4πθ++3,,22444πππππθθ-<<∴-<+<2sin()(,1]42πθ∴+∈- 4πθ∴=当时,a b +的最大值为2322(21)21+=+=+.例题6已知向量(cos ,sin ),(cos ,sin )a b ααββ== ,且,a b 满足3ka b a kb +=- ,k R +∈ (1) 求证()()a b a b +⊥-; (2)将a 与b 的数量积表示为关于k 的函数()f k ;(3)求函数()f k 的最小值及取得最小值时向量a 与向量b的夹角θ.解:(1) (cos ,sin ),(cos ,sin )a b ααββ==2222()()||||110a b a b a b a b ∴+-=-=-=-= , 故 ()()a b a b +⊥-(2) 3ka b a kb +=-,2222223,121363,ka b a kb a b k ka b ka b k ∴+=-∴==∴++=-+ 又21,(0)4k a b k k +∴=> 故21(),(0)4k f k k k+=>.(3) 21111()2444442k k k f k k k k +==+≥= ,此时当1,()k f k =最小值为12.1cos 2a b a b θ∴==,量a 与向量b 的夹角θ 3π=小结1. 掌握平面向量数量积的定义及几何意义,熟练掌握两个向量数量积的五个性质及三个运算率.2.灵活应用公式a ⋅b = |a ||b |cos θ , b a⋅2121y y x x += , 22||y x a +=.3. 平面向量数量积的综合应用 作业1.设i ,j 是互相垂直的单位向量,向量a =(m +1)i -3j ,b =i +(m -1)j ,(a +b )⊥(a -b ),则实数m 的值为( )A .-2B .2C .-12D .不存在解析:由题设知:a =(m +1,-3),b =(1,m -1),∴a +b =(m +2,m -4),a -b =(m ,-m -2).∵(a +b )⊥(a -b ),∴(a +b )·(a -b )=0,∴m (m +2)+(m -4)(-m -2)=0,解之得m =-2.故应选A.答案:A2.设a ,b 是非零向量,若函数f (x )=(xa +b )·(a -xb )的图象是一条直线,则必有( )A .a ⊥bB .a ∥bC .|a |=|b |D .|a |≠|b |解析:f (x )=(xa +b )·(a -xb )的图象是一条直线,即f (x )的表达式是关于x 的一次函数.而(xa +b )·(a -xb )=x |a |2-x 2a ·b +a ·b -x |b |2,故a ·b =0,又∵a ,b 为非零向量,∴a ⊥b ,故应选A.答案:A3.向量a =(-1,1),且a 与a +2b 方向相同,则a ·b 的范围是( )A .(1,+∞)B .(-1,1)C .(-1,+∞)D .(-∞,1)解析:∵a 与a +2b 同向,∴可设a +2b =λa (λ>0),则有b =λ-12a ,又∵|a |=12+12=2,∴a ·b =λ-12·|a |2=λ-12×2=λ-1>-1,∴a ·b 的范围是(-1,+∞),故应选C.答案:C4.已知△ABC 中,,,AB a AC b == a ·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于( )A .30°B .-150°C .150°D .30°或150°解析:∵S △ABC =12|a ||b |sin ∠B AC =154,∴sin ∠BAC =12,又a ·b <0,∴∠BAC 为钝角,∴∠BAC =150°. 答案:C5.(2010·辽宁)平面上O ,A ,B 三点不共线,设,,OA a OB b ==则△OAB 的面积等于( )A.|a |2|b |2-(a ·b )2B.|a |2|b |2+(a ·b )2C.12|a |2|b |2-(a ·b )2D.12|a |2|b |2+(a ·b )2解析:cos 〈a ,b 〉=a ·b|a |·|b |,sin ∠AOB =1-cos 2〈a ,b 〉=1-⎝⎛⎭⎫a ·b |a |·|b |2, 所以S △OAB =12|a ||b |sin ∠AOB =12|a |2|b |2-(a ·b )2.答案:C6.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB AC等于( )A .-16B .-8C .8D .16解析:解法一:因为cos A =ACAB ,故||||AB AC AB AC = cos A =AC 2=16,故选D.解法二:AB 在AC 上的投影为|AB|cos A =|AC |, 故||||AB AC AC AB = cos A =A C 2=16,故选D.答案:D7.(2010·江西)已知向量a ,b 满足|b |=2,a 与b 的夹角为60°,则b 在a 上的投影是________.解析:b 在a 上的投影是|b |cos 〈a ,b 〉=2cos60°=1. 答案:18.(2010·浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.解析:由于α⊥(α-2β),所以α·(α-2β)=|α|2-2α·β=0,故2α·β=1,所以|2α+β|=4|α|2+4α·β+|β|2=4+2+4=10.答案:109.已知|a |=2,|b |=2,a 与b 的夹角为45°,要使λb -a 与a 垂直,则λ=________.解析:由λb -a 与a 垂直,(λb -a )·a =λa ·b -a 2=0,所以λ=2. 答案:210.在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则(OA OB OC + )的最小值是________.解析:令|OM |=x 且0≤x ≤2,则|OA |=2-x . ()2OA OB OC OA OM +==-2(2-x )x =2(x 26-2x )=2(x -1)2-2≥-2. ∴()OA OB OC + 的最小值为-2.答案:-211.已知|a |=2,|b |=1,a 与b 的夹角为45°,求使向量(2a +λb )与(λa -3b )的夹角是锐角的λ的取值范围.解:由|a |=2,|b |=1,a 与b 的夹角为45°,则a ·b =|a ||b |cos45°=2×1×22=1. 而(2a +λb )·(λa -3b )=2λa 2-6a ·b +λ2a ·b -3λb 2=λ2+λ-6.设向量(2a +λb )与(λa -3b )的夹角为θ,则cos θ=(2a +λb )·(λa -3b )|2a +λb ||λa -3b |>0,且cos θ≠1,∴(2a +λb )·(λa -3b )>0,∴λ2+λ-6>0,∴λ>2或λ<-3.假设cos θ=1,则2a +λb =k (λa -3b )(k >0),∴⎩⎪⎨⎪⎧2=kλ,λ=-3k ,解得k 2=-23.故使向量2a +λb 和λa -3b 夹角为0°的λ不存在.所以当λ>2或λ<-3时,向量(2a +λb )与(λa -3b )的夹角是锐角.评析:由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a ·b |a ||b |去判断θ分五种情况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.12.设在平面上有两个向量a =(cos α,sin α)(0°≤α<360°),b =⎝⎛⎭⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.解:(1)证明:因为(a +b )·(a -b )=|a |2-|b |2=(cos 2α+sin 2α)-⎝⎛⎭⎫14+34=0,故a +b 与a -b 垂直.(2)由|3a +b |=|a -3b |,两边平方得3|a |2+23a ·b +|b |2=|a |2-23a ·b +3|b |2,所以2(|a |2-|b |2)+43a ·b =0,而|a |=|b |,所以a ·b =0,则⎝⎛⎭⎫-12·cos α+32·sin α=0, 即cos(α+60°)=0,∴α+60°=k ·180°+90°,即α=k ·180°+30°,k ∈Z , 又0°≤α<360°,则α=30°或α=210°.13.已知向量a =(cos(-θ),sin(-θ)),b =⎝⎛⎭⎫cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ,(1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-ka +tb 满足x ⊥y ,试求此时k +t 2t的最小值.解:(1)证明:∵a ·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin(-θ)·sin ⎝⎛⎭⎫π2-θ=sin θcos θ-sin θcos θ=0. ∴a ⊥b .(2)由x ⊥y ,得x ·y =0,即[a +(t 2+3)b ]·(-ka +tb )=0,∴-ka 2+(t 3+3t )b 2+[t -k (t 2+3)]a ·b =0,∴-k |a |2+(t 3+3t )|b |2=0.7又|a|2=1,|b|2=1,∴-k+t3+3t=0,∴k=t3+3t,∴k+t2t=t3+t2+3tt=t2+t+3=⎝⎛⎭⎫t+122+114.故当t=-12时,k+t2t有最小值114.。

平面向量的数量积优秀教案第一课时

平面向量的数量积优秀教案第一课时

2.4《平面向量的数量积》教案(第一课时)教材分析:教材从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的5个重要性质,运算律。

向量的数量积把向量的长度和三角函数联系起来,这样为解决三角形的有关问题提供了方便,特别能有效地解决线段的垂直问题。

教案目标:1.掌握平面向量数量积的定义2.掌握平面向量数量积的重要性质及运算律教案重点:平面向量的数量积定义.教案难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教案方法:1. 问题引导法2. 师生共同探究法教案过程:一.回顾旧知向量的数乘运算定义:一般地,实数λ与向量的积是一个向量,记作λ, 它的长度和方向规定如下:(1)=(2)当λ>0时,λ的方向与a 方向相同,当λ<0时, λ的方向与a 方向相反 特别地,当0=λ或=时,=λ 向量的数乘运算律:设a ,b 为任意向量,λ,μ为任意实数,则有: ①λ(μ)=()λμ② (λ+μ)=μλ+③λ(+)=λλ+二.情景创设问题 1.我们已经学习了向量的加法,减法和数乘,它们的运算结果都是向量,那么向量与向量之间有没有“乘法”运算呢?这种新的运算结果又是什么呢?三.学生活动联想:物理中,功就是矢量与矢量“相乘”的结果。

问题2. 在物理课中,我们学过功的概念,即如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功为多少?W 可由下式计算:W =|F |·|s |cos θ,其中θ是F 与s 的夹角.若把功W 看成是两向量F 和S 的某种运算结果,显然这是一种新的运算,我们引入向量数量积的概念.四.建构数学1.向量数量积的定义已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b 的数量积,记作a ·b ,即有a ·b =|a ||b |cos θ说明:(1)向量的数量积的结果是一个实数,而不是向量,符号由夹角决定(2)θ是a 与b 的夹角;范围是0≤θ≤π,(注意在两向量的夹角定义中,两向量必须是同起点的.)当θ=0时,a 与b 同向;a ·b =|a ||b |cos0=|a ||b |当θ=π2 时,a 与b 垂直,记a ⊥b ;a ·b =|a ||b |cos 2π=0 当θ=π时,a 与b 反向;a ·b =|a ||b |cos π=-|a ||b |(3)规定·a =0;a 2=a ·a =|a |2或|a (4)符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替2. 向量数量积的运算律 已知a ,b ,和实数λ,则向量的数量积满足下列运算律:①a ·b =b ·a (交换律)②(λa )·b =λ (a ·b )=a ·(λb ) (数乘结合律) ③(a +b )·c =a ·c +b ·c (分配律) ④(a ·b )c ≠a (b ·c ) (一般不满足结合律) 五.例题剖析加深对数量积定义的理解例1 判断正误,并简要说明理由.① ∙=;② 0∙=0;③ 若a ≠0,则对任意非零向量b ,有0≠⋅b a④ 如果〉⋅,那么a 与b 夹角为锐角⑤ 若c b c a ⋅=⋅,则b a =⑥ 若≠且⋅=⋅,则=⑦ 若//,则a ·b =|a ||b |⑧ 与是两个单位向量,则2=2数量积定义运用例2: 已知a =2,b =3,θ为a 与b 的夹角,分别在下列条件下求·(1)a 与b 的夹角为135° (2)∥(3)⊥变式:已知||=4,||=6,a 与b 的夹角θ为60°,求(1)b a ⋅(2)()b a a +⋅(3)()()b a b a 32+⋅-概念辨析,正确理解向量夹角定义例3 已知△ABC 中,a =5,b =8,C =60°,求BC →·CA →变式:三角形ABC 中,若0〉⋅,判断三角形ABC 的形状()DAB ABCD ⋅=∠==︒.1:,60,34,.4求中在平行四边形例()DA AB ⋅.2六.课堂小结通过本节学习,要求大家掌握平面向量的数量积的定义、重要性质、运算律,并能运用它们解决相关的问题.七.课堂检测1.=4=6,m 与n 的夹角为0150,则=⋅n m .2.若b a ⋅<0,则a 与b 的夹角θ的取值范围是( ) A. 0,2π⎡⎫⎪⎢⎣⎭ B.,2ππ⎡⎫⎪⎢⎣⎭ C. ,2ππ⎛⎤ ⎥⎝⎦ D.,2ππ⎛⎫ ⎪⎝⎭3.下列等式中,其中正确的是 ( )2a =②2b a ⋅()222b a b a ⋅=⋅④()2b a +=222b b a a +⋅+ A.1个 B.2个 C.3个 D.4个4.5=8=,20-=⋅b a ,则a 与b 的夹角为。

平面向量的数量积(教案)

平面向量的数量积(教案)

§5.3 平面向量的数量积(教案)2014高考会这样考1.考查两个向量的数量积的求法;2.利用两个向量的数量积求向量的夹角、向量的模;3.利用两个向量的数量积证明两个向量垂直.复习备考要这样做1.理解数量积的意义,掌握求数量积的各种方法;2.理解数量积的运算性质;3.利用数量积解决向量的几何问题.1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cos θ叫做a和b的数量积(或内积),记作a·b=|a||b|cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a与b垂直的充要条件是a·b=0,两个非零向量a与b平行的充要条件是a·b=±|a||b|.2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=|a|cos θ;(2)非零向量a,b,a⊥b⇔a·b=0;(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,a·a=a2,|a|=a·a;(4)cos θ=a·b |a||b|;(5)|a·b|__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b=b·a(交换律);(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|=|AB→|=x1-x22+y1-y22.(3)设两个非零向量a,b,a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0. [难点正本疑点清源]1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围.2.a·b>0是两个向量a·b夹角为锐角的必要不充分条件.因为若〈a,b〉=0,则a·b>0,而a,b夹角不是锐角;另外还要注意区分△ABC中,AB→、BC→的夹角与角B的关系.3.计算数量积时利用数量积的几何意义是一种重要方法.1. 已知向量a 和向量b 的夹角为135°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =___.答案 -32解析 a ·b =|a||b |cos 135°=2×3×⎝ ⎛⎭⎪⎪⎫-22=-3 2. 2. 已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为________.答案32解析 由a ⊥b 知a ·b =0.又3a +2b 与λa -b 垂直,∴(3a +2b )·(λa -b )=3λa 2-2b 2 =3λ×22-2×32=0.∴λ=32.3. 已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.答案655解析 设a 和b 的夹角为θ,|a |cos θ=|a |a ·b|a||b |=2×-4+3×7-42+72=1365=655.4. (2011·辽宁)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k 等于( )A .-12B .-6C .6D .12答案 D解析 由已知得a ·(2a -b )=2a 2-a ·b =2(4+1)-(-2+k )=0,∴k =12.5.(2012·陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( )A.22B.12C.0 D.-1答案 C解析利用向量垂直及倍角公式求解.a=(1,cos θ),b=(-1,2cos θ).∵a⊥b,∴a·b=-1+2cos2θ=0,∴cos2θ=12,∴cos 2θ=2cos2θ-1=1-1=0.题型一平面向量的数量积的运算例1(1)在Rt△ABC中,∠C=90°,AC=4,则AB→·AC→等于( )A.-16 B.-8 C.8 D.16(2)若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)·c=30,则x等于( )A.6 B.5 C.4 D.3思维启迪:(1)由于∠C=90°,因此选向量CA→,CB→为基底.(2)先算出8a-b,再由向量的数量积列出方程,从而求出x.答案(1)D (2)C→=16.解析(1)AB→·AC→=(CB→-CA→)·(-CA→)=-CB→·CA→+CA2(2)∵a=(1,1),b=(2,5),∴8a-b=(8,8)-(2,5)=(6,3).又∵(8a-b)·c=30,∴(6,3)·(3,x)=18+3x=30.∴x=4.探究提高求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.本题从不同角度创造性地解题,充分利用了已知条件.(2012·北京)已知正方形ABCD的边长为1,点E是AB边上的动点,则DE→·CB→的值为________;DE→·DC→的最大值为________.答案 1 1解析方法一以射线AB,AD为x轴,y轴的正方向建立平面直角坐标系,则A(0,0),B(1,0),C(1,1),D(0,1),则E(t,0),t∈[0,1],则DE→=(t,-1),CB→=(0,-1),所以DE→·CB→=(t,-1)·(0,-1)=1.因为DC→=(1,0),所以DE→·DC→=(t,-1)·(1,0)=t≤1,故DE→·DC→的最大值为1.方法二由图知,无论E点在哪个位置,DE→在CB→方向上的投影都是CB=1,∴DE→·CB→=|CB→|·1=1,当E运动到B点时,DE→在DC→方向上的投影最大即为DC=1,∴(DE→·DC→)max=|DC→|·1=1.题型二向量的夹角与向量的模例2已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB→=a ,BC →=b ,求△ABC 的面积. 思维启迪:运用数量积的定义和|a |=a ·a .解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6. ∴cos θ=a ·b |a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB→|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=33.探究提高 (1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a ·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,达到简化运算的目的.(1)已知向量a 、b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为( )A.π6B.π4C.π3D.π2(2)已知向量a =(1,3),b =(-1,0),则|a +2b |等于( )A .1B.2C .2D .4 答案 (1)C (2)C解析 (1)∵cos 〈a ,b 〉=a ·b|a||b |=12,∴〈a ,b 〉=π3.(2)|a +2b |2=a 2+4a ·b +4b 2=4-4×1+4=4,∴|a +2b |=2. 题型三 向量数量积的综合应用例3已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)思维启迪:(1)证明两向量互相垂直,转化为计算这两个向量的数量积问题,数量积为零即得证.(2)由模相等,列等式、化简.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -kb =(cos α-k cos β,sin α-k sin β), |k a +b |=k 2+2k cos β-α+1, |a -k b |=1-2k cosβ-α+k 2.∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.∵0<α<β<π,∴0<β-α<π,∴β-α=π2.探究提高 (1)当向量a 与b 是坐标形式给出时,若证明a ⊥b ,则只需证明a ·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算证明a ·b =0.(3)数量积的运算中,a ·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a ·b =0,但不能说a ⊥b .已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎪⎫12,32. (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ). (1)证明 ∵a ·b =3×12-1×32=0,∴a ⊥b .(2)解∵c=a+(t2-3)b,d=-k a+t b,且c⊥d,∴c·d=[a+(t2-3)b]·(-k a+t b)=-k a2+t(t2-3)b2+[t-k(t2-3)]a·b=0,又a2=|a|2=4,b2=|b|2=1,a·b=0,∴c·d=-4k+t3-3t=0,∴k=f(t)=t3-3t4(t≠0).三审图形抓特点典例:(5分)如图所示,把两块斜边长相等的直角三角板拼在一起,若AD→=xAB→+yAC→,则x=________,y=________.审题路线图图形有一副三角板构成↓(注意一副三角板的特点)令|AB|=1,|AC|=1↓(一副三角板的两斜边等长)|DE|=|BC|= 2↓(非等腰三角板的特点)|BD|=|DE|sin 60°=2×32=62↓(注意∠ABD=45°+90°=135°) AD→在AB→上的投影即为x↓x=|AB|+|BD|cos 45°=1+62×22=1+32↓AD→在AC→上的投影即为y↓y=|BD|·sin 45°=62×22=32.解析方法一结合图形特点,设向量AB→,AC→为单位向量,由AD→=xAB→+yAC→知,x,y分别为AD→在AB→,AC→上的投影.又|BC|=|DE|=2,∴|BD→|=|DE→|·sin 60°=62.∴AD→在AB→上的投影x=1+62cos 45°=1+62×22=1+32,AD→在AC→上的投影y=62sin 45°=32.方法二∵AD→=xAB→+yAC→,又AD→=AB→+BD→,∴AB→+BD→=xAB→+yAC→,∴BD→=(x-1)AB→+yAC→.又AC→⊥AB→,∴BD→·AB→=(x-1)AB→2. 设|AB→|=1,则由题意|DE→|=|BC→|= 2.又∠BED=60°,∴|BD→|=62.显然BD→与AB→的夹角为45°.∴由BD→·AB→=(x-1)AB→2,得62×1×cos 45°=(x-1)×12.∴x=32+1.同理,在BD→=(x-1)AB→+yAC→两边取数量积可得y=3 2 .答案1+3232温馨提醒突破本题的关键是,要抓住图形的特点(图形由一副三角板构成).根据图形的特点,利用向量分解的几何意义,求解方便快捷.方法二是原试题所给答案,较方法一略显繁杂.方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.失误与防范1. (1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系. 2. a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3. a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于( ) A .-1B .-12C.12D .1答案 D解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( )A.5 B.10 C .25 D .10答案 B 解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2.∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |=32+-12=10.3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎪⎫79,73B.⎝ ⎛⎭⎪⎪⎫-73,-79C.⎝ ⎛⎭⎪⎪⎫73,79D.⎝ ⎛⎭⎪⎪⎫-79,-73答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 联立①②解得x =-79,y =-73.4. 在△ABC 中,AB =3,AC =2,BC =10,则AB→·AC →等于( )A .-32B .-23C.23D.32答案 D解析 由于AB→·AC →=|AB →|·|AC →|·cos ∠BAC=12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32. 二、填空题(每小题5分,共15分)5. (2012·课标全国)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.答案 32解析 ∵a ,b 的夹角为45°,|a |=1, ∴a ·b =|a |·|b |cos 45°=22|b |,|2a -b |2=4-4×22|b |+|b |2=10,∴|b |=32.6. (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB→·AC →=________.答案 -16 解析 如图所示, AB→=AM →+MB →, AC →=AM →+MC → =AM→-MB →, ∴AB→·AC →=(AM →+MB →)·(AM →-MB →) =AM→2-MB →2=|AM →|2-|MB →|2=9-25=-16. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________.答案 (-∞,-6)∪⎝⎛⎭⎪⎪⎫-6,32解析 由a ·b <0,即2λ-3<0,解得λ<32,由a ∥b 得:6=-λ,即λ=-6.因此λ<32,且λ≠-6.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c . 解 (1)a ·b =2n -2,|a |=5,|b |=n 2+4,∴cos 45°=2n -25·n 2+4=22,∴3n 2-16n -12=0,∴n =6或n =-23(舍),∴b =(-2,6).(2)由(1)知,a ·b =10,|a |2=5.又c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0, ∴λb ·a -|a |2=0,∴λ=|a |2b ·a =510=12,∴c =12b =(-1,3).9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围. 解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×12=1,∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7. 由已知得2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时, 设2t e 1+7e 2=λ(e 1+t e 2),λ<0, 则⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍). 故t 的取值范围为(-7,-142)∪(-142,-12).B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·湖南)在△ABC 中,AB =2,AC =3,AB→·BC →=1,则BC 等于( )A.3B.7C .22D.23答案 A解析 ∵AB→·BC →=1,且AB =2,∴1=|AB→||BC →|cos(π-B ),∴|AB →||BC →|cos B =-1. 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B , 即9=4+|BC |2-2×(-1). ∴|BC |=3.2. 已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .2 答案 A解析 a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a ·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉, ∴|a |·cos 〈a ,b 〉=-4.3. (2012·江西)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2等于( ) A .2B .4C .5D .10答案 D解析 ∵PA→=CA →-CP →,∴|PA →|2=CA →2-2CP →·CA →+CP →2. ∵PB→=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2. ∴|PA→|2+|PB →|2=(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD →+2CP →2. 又AB→2=16CP →2,CD →=2CP →, 代入上式整理得|PA→|2+|PB →|2=10|CP →|2,故所求值为10.二、填空题(每小题5分,共15分)4. (2012·安徽)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.答案2解析 利用向量数量积的坐标运算求解.a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0, ∴m =-12.∴a =(1,-1),∴|a |=2.5. (2012·江苏)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.答案2解析 方法一 坐标法.以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (2,0),E (2,1),F (x,2). 故AB→=(2,0),AF →=(x,2),AE →=(2,1),BF→=(x -2,2),∴AB →·AF →=(2,0)·(x,2)=2x .又AB →·AF →=2,∴x =1.∴BF →=(1-2,2). ∴AE→·BF →=(2,1)·(1-2,2)=2-2+2=2.方法二 用AB→,BC →表示AE →,BF →是关键.设DF→=xAB →,则CF →=(x -1)AB →. AB→·AF →=AB →·(AD →+DF →) =AB →·(AD →+xAB →)=xAB →2=2x , 又∵AB→·AF →=2,∴2x =2,∴x =22.∴BF →=BC →+CF →=BC →+⎝ ⎛⎭⎪⎪⎫22-1AB →.∴AE →·BF →=(AB →+BE →)·⎣⎢⎢⎡⎦⎥⎥⎤BC →+⎝⎛⎭⎪⎪⎫22-1AB →=⎝ ⎛⎭⎪⎪⎫AB →+12BC →⎣⎢⎢⎡⎦⎥⎥⎤BC →+⎝ ⎛⎭⎪⎪⎫22-1AB →=⎝ ⎛⎭⎪⎪⎫22-1AB →2+12BC →2=⎝ ⎛⎭⎪⎪⎫22-1×2+12×4= 2.6. (2012·上海)在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC→|=|CN →||CD→|,则AM→·AN →的取值范围是________. 答案 [1,4]解析 利用基向量法,把AM →,AN →都用AB →,AD →表示,再求数量积.如图所示,设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),则BM →=λBC →, CN→=λCD →,DN →=CN →-CD → =(λ-1)CD→,∴AM→·AN →=(AB →+BM →)·(AD →+DN →)=(AB →+λBC →)·[AD →+(λ-1)CD →] =(λ-1)AB→·CD →+λBC →·AD →=4(1-λ)+λ=4-3λ,∴当λ=0时,AM→·AN →取得最大值4;当λ=1时,AM →·AN →取得最小值1.∴AM →·AN →∈[1,4]. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =⎝ ⎛⎭⎪⎪⎫-12,32. (1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-⎝ ⎛⎭⎪⎪⎫14+34=0,故向量a +b 与a -b 垂直. (2)解 由|3a +b |=|a -3b |,两边平方得3|a |2+23a ·b +|b |2=|a |2-23a ·b +3|b |2,所以2(|a |2-|b |2)+43a ·b =0,而|a |=|b |,所以a ·b =0,即⎝ ⎛⎭⎪⎪⎫-12·cos α+32·sin α=0,即cos(α+60°)=0,∴α+60°=k ·180°+90°, k ∈Z , 即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α=30°或α=210°.。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的定义及其几何意义。

2. 掌握平面向量的数量积的计算公式及运算性质。

3. 学会运用平面向量的数量积解决实际问题。

二、教学内容:1. 平面向量的数量积的定义向量的数量积又称点积,是指两个向量在数量上的乘积。

对于平面向量a和b,它们的数量积定义为:a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。

2. 平面向量的数量积的几何意义(1)向量a和b的夹角为θ时,它们的数量积|a||b|cosθ表示在平行四边形法则下,向量a和b共同作用于某一点产生的合力的大小。

(2)向量a和b的夹角为90°时,它们的数量积为0,表示向量a和b垂直。

3. 平面向量的数量积的计算公式及运算性质(1)计算公式:a·b = |a||b|cosθ(2)运算性质:①交换律:a·b = b·a②分配律:a·(b+c) = a·b + a·c③数乘律:λa·b = (λa)·b = λ(a·b)三、教学重点与难点:1. 教学重点:平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 教学难点:平面向量的数量积的几何意义的理解及应用。

四、教学方法:1. 采用讲授法,讲解平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 利用多媒体课件,展示平面向量的数量积的图形演示,增强学生的直观感受。

3. 结合例题,引导学生运用平面向量的数量积解决实际问题。

五、课后作业:1. 理解并掌握平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 完成课后练习题,巩固所学知识。

3. 思考如何运用平面向量的数量积解决实际问题。

六、教学案例与分析:1. 案例一:在平面直角坐标系中,有两个向量a = (3, 2)和b = (4, -1),求向量a和b的数量积。

平面向量的数量积(教案)

平面向量的数量积(教案)

教学过程一、课堂导入[考情展望]1.以客观题的形式考查平面向量数量积的计算,向量垂直条件与数量积的性质.2.以平面向量数量积为工具,与平面几何、三角函数、解析几何等知识交汇命题,主要考查运算能力及数形结合思想.二、复习预习[自主梳理]1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a|cos〈a,b〉叫做向量a在b方向上的投影.(2)向量数量积的性质:①如果e是单位向量,则a·e=e·a=__________________;②非零向量a,b,a⊥b⇔________________;③a·a=________________或|a|=________________;④cos〈a,b〉=________;⑤|a·b|____|a||b|.2.向量数量积的运算律(1)交换律:a·b=________;(2)分配律:(a+b)·c=________________;(3)数乘向量结合律:(λa)·b=________________.3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a=(a1,a2),b=(b1,b2),则a·b=________________________;(2)设a=(a1,a2),b=(b1,b2),则a⊥b⇔________________________;(3)设向量a=(a1,a2),b=(b1,b2),则|a|=________________,cos〈a,b〉=____________________________.(4)若A(x1,y1),B(x2,y2),则|AB→=________________________,所以|AB→|=_____________________.【答案】1.(1)a·b=|a||b|cos〈a,b〉(2)①|a|cos〈a,e〉②a·b=0③|a|2a·a④a·b|a||b|⑤≤ 2.(1)b·a(2)a·c+b·c(3)λ(a·b) 3.(1)a1b1+a2b2(2)a1b1+a2b2=0(3)a21+a22a1b1+a2b2a21+a22b21+b22(4)(x2-x1,y2-y1)(x2-x1)2+(y2-y1)2三、知识讲解考点1平面向量的数量积1.数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则向量a与b的数量积是数量|a||b|cosθ,记作a·b,即a·b=|a||b|cosθ.规定:零向量与任一向量的数量积为0.2.向量的投影:设θ为a与b的夹角,则向量a在b方向上的投影是|a|cosθ;向量b在a方向上的投影是|b|cosθ.3.数量积的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.考点2平面向量数量积的运算律1.交换律:a·b=b·a;2.数乘结合律:(λa)·b=λ(a·b)=a·(λb);3.分配律:a·(b+c)=a·b+a·c.考点3平面向量数量积的性质及其坐标表示已知非零向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.结论几何表示坐标表示模|a|=a·a|a|=x21+y21数量积a·b=|a||b|cosθa·b=x1x2+y1y2夹角cosθ=a·b|a||b|cosθ=x1x2+y1y2x21+y21·x22+y22a⊥b的充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b|(当且仅当a∥b时等号成立)|x1x2+y1y2|≤x21+y21·x22+y22四、例题精析考点一平面向量数量积的运算例1(1)在△ABC中,M是BC的中点,AM=3,BC=10,则AB→·AC→=________.(2)已知正方形ABCD的边长为1,点E是AB边上的动点,则DE→·CB→的值为________;DE→·DC→的最大值为________.【答案】(1)-16(2)11【思路点拨】(1)把AB→,AC→用AM→,MB→或MC→表示;(2)建立平面直角坐标系,把向量用坐标表示.或用数量积的几何意义求解【解析】(1)如图所示,AB→=AM→+MB→,AC→=AM→+MC→=AM→-MB→,→·AC→=(AM→+MB→)·(AM→-MB→)=AM→2-MB→2=|AM→|2-|MB→|2=9-25=-16.∴AB(2)法一如图所示,以AB,AD所在的直线分别为x轴和y轴建立平面直角坐标系,由于正方形边长为1,故B (1,0),C (1,1),D (0,1).又E 在AB 边上,故设E (t,0)(0≤t ≤1).则DE →=(t ,-1),CB →=(0,-1).故DE →·CB →=1.又DC →=(1,0),∴DE →·DC →=(t ,-1)·(1,0)=t .又0≤t ≤1,∴DE →·DC →的最大值为1.法二∵ABCD 是正方形,∴DA →=CB →.∴DE →·CB →=DE →·DA →=|DE →||DA →|cos ∠EDA =|DA →||DE →|cos ∠EDA =|DA →|·|DA →|=|DA →|2=1.又E 点在线段AB 上运动,故为点E 与点B 重合时,DE →在DC →上的投影最大,此时DC →·DE →=|DC →||DE →|cos 45°=2×22=1.所以DE →·DC →的最大值为1.【规律方法】1.平面向量的数量积的运算有两种形式,一是依据长度与夹角,二是利用坐标来计算.2.要有“基底”意识,关键用基向量表示题目中所求相关向量,如本例(1)中用AM →、MB →表示AB →、AC →等.注意向量夹角的大小,以及夹角θ=0°,90°,180°三种特殊情形.例2已知点D 是ABC ∆所在平面内的一点,且2BD DC =- ,设AD AB AC λμ=+,则λμ-=()A.-6B.6C.-3D.3【答案】C【解析】如图,()222AD AB BC AB AC AB AB AC =+=+-=-+,得1,2λμ=-=,3λμ∴-=-,故选C 。

平面向量的数量积教案精品

平面向量的数量积教案精品

平面向量的数量积教案精品教学目标:1.理解平面向量的数量积的概念和性质。

2.学会计算平面向量的数量积。

3.解决与平面向量的数量积相关的问题。

教学重点:1.平面向量的数量积的定义和性质。

2.使用平面向量的数量积计算向量的模长和夹角。

教学难点:1.运用平面向量的数量积解决实际问题。

2.掌握平面向量的数量积的计算方法。

教学准备:1.教师准备黑板、彩笔和相关教学资料。

2.学生准备课本、作业本、笔等。

教学过程:Step 1 引入教师用黑板上画两个平行且相等长的向量,并引出向量积的概念。

简单介绍向量的数量积和叉积,并引出本节课的内容是向量的数量积。

Step 2 讲解1. 向量的数量积的定义:向量a(x1, y1)和向量b(x2, y2)的数量积,记作a·b,等于,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示向量a和向量b的夹角。

2.向量的数量积的性质:a·b=b·a交换律a·(kb)=k(a·b) 数量积与数的结合a·a=,a,^2向量与自己的数量积等于向量的模长的平方a·b=0两个向量的数量积为0,表示两个向量垂直Step 3 讲解教师做一道具体的例题,先引入概念,并导出计算公式。

例题:已知向量a(3,2)和向量b(1,-4),求向量a和向量b的数量积。

解:根据定义公式,a·b, = ,a,·,b,·cosθ代入向量a和向量b的数值,得到3*1+2*(-4)=3+(-8)=-5Step 4 讲解教师通过例题引导学生讨论下面的性质并证明之。

向量a·b = ,a,·,b,·cosθ其中,0≤θ≤π。

当0≤θ≤π/2时,cosθ > 0;当π/2≤θ≤π时,cosθ<0。

Step 5 练习由简单到复杂给学生练习一些数量积的计算题目,并检查答案。

高中数学必修4《平面向量的数量积》教案

高中数学必修4《平面向量的数量积》教案

⾼中数学必修4《平⾯向量的数量积》教案 ⾼中数学必修4《平⾯向量的数量积》教案【⼀】 教学准备 教学⽬标 1.掌握平⾯向量的数量积及其⼏何意义; 2.掌握平⾯向量数量积的重要性质及运算律; 3.了解⽤平⾯向量的数量积可以处理垂直的问题; 4.掌握向量垂直的条件. 教学重难点 教学重点:平⾯向量的数量积定义 教学难点:平⾯向量数量积的定义及运算律的理解和平⾯向量数量积的应⽤ 教学过程 1.平⾯向量数量积(内积)的定义:已知两个⾮零向量a与b,它们的夹⾓是θ, 则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b = |a||b|cosq,(0≤θ≤π). 并规定0向量与任何向量的数量积为0. ×探究:1、向量数量积是⼀个向量还是⼀个数量?它的符号什么时候为正?什么时候为负? 2、两个向量的数量积与实数乘向量的积有什么区别? (1)两个向量的数量积是⼀个实数,不是向量,符号由cosq的符号所决定. (2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,⽽a×b是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能⽤“×”代替. (3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0. ⾼中数学必修4《平⾯向量的数量积》教案【⼆】 教学准备 教学⽬标 1.掌握平⾯向量的数量积及其⼏何意义; 2.掌握平⾯向量数量积的重要性质及运算律; 3.了解⽤平⾯向量的数量积可以处理有关长度、⾓度和垂直的问题; 4.掌握向量垂直的条件. 教学重难点 教学重点:平⾯向量的数量积定义 教学难点:平⾯向量数量积的定义及运算律的理解和平⾯向量数量积的应⽤ 教学⼯具 投影仪 教学过程 ⼀、复习引⼊: 1.向量共线定理向量与⾮零向量共线的充要条件是:有且只有⼀个⾮零实数λ,使=λ 五,课堂⼩结 (1)请学⽣回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想⽅法有那些? (2)在本节课的学习过程中,还有那些不太明⽩的地⽅,请向⽼师提出。

《平面向量的数量积》教学设计

《平面向量的数量积》教学设计

《平面向量的数量积》教学设计《《平面向量的数量积》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容知识梳理1.向量的夹角已知两个非零向量a和b,作→(OA)=a,→(OB)=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是[0,π].2.平面向量的数量积定义:设两个非零向量a,b的夹角为θ,则数量|a||b|·cosθ叫做a与b的数量积,记作a·b.3.向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论符号表示坐标表示模|a|=|a|=1(2)夹角cosθ=|a||b|(a·b)cosθ=2(2)a⊥b的充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤)(2)概念方法微思考两个向量的数量积大于0,则夹角一定为锐角吗?提示不一定.当夹角为0°时,数量积也大于0.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的夹角的范围是2(π).(×)(2)由a·b=0可得a=0或b=0.(×)(3)(a·b)c=a(b·c).(×)(4)若a·b<0,则a和b的夹角为钝角.(×)题组二教材改编2.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.答案12解析∵2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k)=0,∴10+2-k=0,解得k=12.3.已知|a|=2,|b|=6,a·b=-6,则a与b的夹角θ=________.答案6(5π)解析cosθ=|a||b|(a·b)=2×6(3)=-2(3),又因为0≤θ≤π,所以θ=6(5π).题组三易错自纠4.已知a,b为非零向量,则“a·b>0”是“a与b的夹角为锐角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析根据向量数量积的定义可知,若a·b>0,则a与b的夹角为锐角或零角,若a与b的夹角为锐角,则一定有a·b>0,所以“a·b>0”是“a与b的夹角为锐角”的必要不充分条件,故选B.5.已知矩形ABCD中,|→(AB)|=6,|→(AD)|=4,若点M,N满足→(BM)=3→(MC),→(DN)=2→(NC),则→(AM)·→(NM)等于()A.20B.15C.9D.6答案C解析因为ABCD为矩形,建系如图.A(0,0),M(6,3),N(4,4).则→(AM)=(6,3),→(NM)=(2,-1),→(AM)·→(NM)=6×2-3×1=9.6.(多选)在△ABC中,→(AB)=c,→(BC)=a,→(CA)=b,在下列命题中,是真命题的为()A.若a·b>0,则△ABC为锐角三角形B.若a·b=0,则△ABC为直角三角形C.若a·b=c·b,则△ABC为等腰三角形D.若(a+c-b)·(a+b-c)=0,则△ABC为直角三角形答案BCD解析①若a·b>0,则∠BCA是钝角,△ABC是钝角三角形,A错误;②若a·b=0,则→(BC)⊥→(CA),△ABC为直角三角形,B正确;③若a·b=c·b,b·(a-c)=0,→(CA)·(→(BC)-→(AB))=0,→(CA)·(→(BC)+→(BA))=0,取AC的中点D,则→(CA)·→(BD)=0,所以BA=BC,即△ABC为等腰三角形,C正确;④若(a+c-b)·(a+b-c)=0,则a2=(c-b)2,即b2+c2-a2=2b·c,即2|b||c|(b2+c2-a2)=-cosA,由余弦定理可得cosA=-cosA,即cosA=0,即A=2(π),即△ABC为直角三角形,D正确,综上真命题为BCD.7.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.答案 2解析方法一|a+2b|=====2.方法二(数形结合法)由|a|=|2b|=2知,以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=|→(OC)|.又∠AOB=60°,所以|a+2b|=2.平面向量数量积的基本运算例1如图,在梯形ABCD中,AB∥CD,CD=2,∠BAD=4(π),若→(AB)·→(AC)=2→(AB)·→(AD),则→(AD)·→(AC)=________.答案12解析方法一(几何法)因为→(AB)·→(AC)=2→(AB)·→(AD),所以→(AB)·→(AC)-→(AB)·→(AD)=→(AB)·→(AD),所以→(AB)·→(DC)=→(AB)·→(AD),因为AB∥CD,CD=2,∠BAD=4(π),所以2|→(AB)|=|→(AB)|·|→(AD)|cos4(π),化简得|→(AD)|=2.故→(AD)·→(AC)=→(AD)·(→(AD)+→(DC))=|→(AD)|2+→(AD)·→(DC) =(2)2+2×2cos4(π)=12.方法二(坐标法)如图,建立平面直角坐标系xAy.依题意,可设点D(m,m),C(m+2,m),B(n,0),其中m>0,n>0,则由→(AB)·→(AC)=2→(AB)·→(AD),得(n,0)·(m+2,m)=2(n,0)·(m,m),所以n(m+2)=2nm,化简得m=2.故→(AD)·→(AC)=(m,m)·(m+2,m)=2m2+2m=12.思维升华平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b=|a||b|cos〈a,b〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.(3)利用数量积的几何意义求解.跟踪训练1(1)在正三角形ABC中,D是BC上的点,若AB=3,BD=1,则→(AB)·→(AD)=________.答案2(15)解析如图所示,→(AB)·→(AD)=→(AB)·(→(AB)+→(BD))=9+3×cos120°=2(15).(2)已知梯形ABCD中,AB∥CD,AB=2CD,且∠DAB=90°,AB=2,AD=1,若点Q满足→(AQ)=2→(QB),则→(QC)·→(QD)等于()A.-9(10)B.9(10)C.-9(13)D.9(13)答案D解析以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,如图所示,则B(2,0),C(1,1),D(0,1),又→(AQ)=2→(QB),∴Q,0(4),∴→(QC)=,1(1),→(QD)=,1(4),∴→(QC)·→(QD)=9(4)+1=9(13).故选D.《平面向量的数量积》教学设计这篇文章共7499字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.4.1 平面向量数量积的物理背景及其含义
博白县龙潭中学 庞映舟
一、教学重难点:
1、重点:平面向量数量积的概念、性质的发现论证;
2、难点:平面向量数量积、向量投影的理解;
二、教学过程:
(一)创设问题情景,引出新课
问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
新课引入:本节课我们来研
究学习向量的另外一种运算:平面向量的数量积的
物理背景及其含义 (二)新课:
1、探究一:数量积的概念 展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型 背景的第一次分析:
问题:真正使汽车前进的力是什么?它的大小是多少? 答:实际上是力→F 在位移方向上的分力,即θCOS F →
,在数学中我们给它一个名字叫投影。

“投影”的概念:作图
定义:|→b |cos 叫做向量→b 在→
a 方向上的投影.投影也是一个数量,不是向量;
2、背景的第二次分析:
问题:你能用文字语言表述“功的计算公式”吗? 分析:θCOS S F w →→=用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。

这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?
平面向量数量积(内积)的定义:已知两个非零向量→a 与→b ,它们的夹角是θ,则数量|→a ||→b |θcos 叫→a 与→b 的数量积,记作→a ·→b ,即有→a ·→b = |→a ||→b |θcos (0≤θ≤π).并规定→0与任何向量的数量积为0.
注:两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.
3、向量的数量积的几何意义:
数量积→a ·→b 等于→a 的长度与→b 在→a 方向上投影|→b |cos θ的乘积.
三、例题讲解:
例1 已知|→a |=5,|→b |=4,→a 与→b 的夹角θ=O 60,求→a ·→b 解:由向量的数量积公式得:(先复习特殊角度的余弦值) →a ·→b =|→a ||→
b |cos θ=5×4×cos O 60=5×4×21=10 练习1已知|→a |=8,|→b |=6,①→a 与→b 的夹角为O 60,②→a 与→b 的夹
角θ=00,求→a ·→
b ;
解:由向量的数量积公式得:
①→a ·→b =|→a ||→
b |cos θ=8×6×cos O 60=8×6×21=24 ①→a ·→b =|→a ||→
b |cos θ=8×6×cos O 0=8×6×1=48 归纳总结:由特殊到一般的数学思想得到: 性质(1) 当→a 与→b 同向时,→a ·→b = →→b a ; 练习2已知|→a |=1,|→b |=2,当→a 与→b 的夹角为090时,求→a ·→b 和→a ⋅→a 解:根据向量夹角的概念和向量的数量积公式得: ①→a ·→b =|→a ||→
b |cos θ=1×2×cos O 0=1×2×1=2 ②→a ·→a =|→a ||→b |cos θ =1×1×cos O 0=1×1×1=1 归纳总结:⑵特别地→a ⋅→a 常记作2→a ,这时2→a = 2→a ; ⑶→a ⊥→b ⇔ →a ·→b = 0 ;
四、练习: 五、课堂小结:“1+3”
一个概念:数量积的定义→a ·→b = |→a ||→b |cos θ 三个性质:
1、当→a 与→b 同向时,→a ·→b = →→b a ;
2、特别地→a ⋅→a 常记作2→a ,这时2→a = 2→a ;
3、→a ⊥→b ⇔ →a ·→b = 0 ;
六、作业:课本109页 练习A ,2,练习B ,1、2 ;b 30b ,2b ,12a 10→→→→→→•==a a ,求的夹角为与、已知;
b 45b ,4b ,25a 20→→→→→→•==a a 求的夹角为与、已知。

相关文档
最新文档