《自动控制原理》

合集下载

《自动控制原理》教学大纲

《自动控制原理》教学大纲

自动控制原理》教学大纲一、课程的性质、地位与任务本课程是电力系统自动化技术专业的基础课程。

通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,学生将掌握自动控制系统分析与设计等方面的基本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方本课程系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。

通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。

二、教学基本要求了解自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。

理解典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法,以串联校正为主的根轨迹综合法,掌握常用校正装置及其作用。

熟悉暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步了解高阶系统分析方法、主导极点的概念,能利用根轨迹对系统性能进行分析,熟悉偶极子的概念以及添加零极点对系统性能的影响。

频率特性的概念、开环系统频率特性Nyquist图和Bode图的画法和奈氏判据,了解绝对稳定系统、条件稳定系统、最小相位系统、非最小相位系统、稳定裕量、频指标的概念,以及频率特性与系统性能的关系。

基本校正方式和反馈校正的作用,掌握复合校正的概念和以串联校正为主的频率响应综合法。

三、教学学时分配表四、教学内容与学时安排第一章自动控制系统的基本知识……4学时本章教学目的和要求:掌握自动控制系统组成结构和基本要素,理解自动控制的基本控制方式和对系统的性能要求,了解一些实际自动控制系统的控制原理。

《自动控制原理》课程设计

《自动控制原理》课程设计

名称:《自动控制原理》课程设计题目:基于自动控制原理的性能分析设计与校正院系:建筑环境与能源工程系班级:学生姓名:指导教师:目录一、课程设计的目的与要求------------------------------3二、设计内容2.1控制系统的数学建模----------------------------42.2控制系统的时域分析----------------------------62.3控制系统的根轨迹分析--------------------------82.4控制系统的频域分析---------------------------102.5控制系统的校正-------------------------------12三、课程设计总结------------------------------------17四、参考文献----------------------------------------18一、课程设计的目的与要求本课程为《自动控制原理》的课程设计,是课堂的深化。

设置《自动控制原理》课程设计的目的是使MATLAB成为学生的基本技能,熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。

使相关专业的本科学生学会应用这一强大的工具,并掌握利用MATLAB对控制理论内容进行分析和研究的技能,以达到加深对课堂上所讲内容理解的目的。

通过使用这一软件工具把学生从繁琐枯燥的计算负担中解脱出来,而把更多的精力用到思考本质问题和研究解决实际生产问题上去。

通过此次计算机辅助设计,学生应达到以下的基本要求:1.能用MATLAB软件分析复杂和实际的控制系统。

2.能用MATLAB软件设计控制系统以满足具体的性能指标要求。

3.能灵活应用MATLAB的CONTROL SYSTEM 工具箱和SIMULINK仿真软件,分析系统的性能。

《自动控制原理》复习提纲

《自动控制原理》复习提纲

《自动控制原理》复习提纲自动控制原理复习提纲第一章:自动控制系统基础1.1自动控制的基本概念1.2自动控制系统的组成1.3自动控制系统的性能指标1.4自动控制系统的数学建模第二章:系统传递函数与频率响应2.1一阶惯性系统传递函数及特性2.2二阶惯性系统传递函数及特性2.3高阶惯性系统传递函数及特性2.4惯性环节与纯时延环节的传递函数2.5开环传递函数与闭环传递函数2.6频率响应曲线及其特性第三章:传递函数的绘制和分析3.1 Bode图的绘制3.2 Bode图的分析方法3.3 Nyquist图的绘制和分析3.4极坐标图的应用3.5稳定性分析方法第四章:闭环控制系统及稳定性分析4.1闭环控制系统4.2稳定性的概念和判据4.3 Nyquist稳定性判据4.4 Bode稳定性判据4.5系统的稳态误差分析第五章:比例、积分和微分控制器5.1比例控制器的原理和特性5.2积分控制器的原理和特性5.3微分控制器的原理和特性5.4比例积分(P)控制系统5.5比例积分微分(PID)控制系统第六章:根轨迹法6.1根轨迹的概念和基本性质6.2根轨迹的绘制方法6.3根轨迹法的稳定性判据6.4根轨迹设计法则6.5根轨迹法的应用案例第七章:频域设计方法7.1频域设计基本思想7.2平衡点反馈控制法7.3频域设计法的应用案例7.4系统频率响应的优化设计7.5频域方法的灵敏度设计第八章:状态空间分析和设计8.1状态空间模型的建立8.2状态空间的矩阵表示8.3状态空间系统的特性8.4状态空间系统的稳定性分析8.5状态空间设计方法和案例第九章:模糊控制系统9.1模糊控制的基本概念9.2模糊控制系统的结构9.3模糊控制器设计方法9.4模糊控制系统的应用案例第十章:遗传算法与控制系统优化10.1遗传算法的基本原理10.2遗传算法在控制系统优化中的应用10.3遗传算法设计方法和案例第十一章:神经网络及其应用11.1神经网络的基本概念和结构11.2神经网络训练算法11.3神经网络在控制系统中的应用11.4神经网络控制系统设计和优化方法第十二章:自适应控制系统12.1自适应控制的基本概念12.2自适应控制系统的结构12.3自适应控制器设计方法12.4自适应控制系统的应用案例第十三章:系统辨识与模型预测控制13.1系统辨识的基本概念13.2建模方法及其应用13.3模型预测控制的原理13.4模型预测控制系统设计和优化方法第十四章:多变量控制系统14.1多变量控制系统的基本概念14.2多变量系统建模方法14.3多变量系统稳定性分析14.4多变量系统控制器设计14.5多变量系统优化控制方法以上是《自动控制原理》的复习提纲,内容覆盖了自动控制系统的基本概念、传递函数与频率响应、传递函数的绘制和分析、闭环控制系统及稳定性分析、比例、积分和微分控制器、根轨迹法、频域设计方法、状态空间分析和设计、模糊控制系统、遗传算法与控制系统优化、神经网络及其应用、自适应控制系统、系统辨识与模型预测控制、多变量控制系统等知识点。

《自动控制原理》 胡寿松 自动控制原理简明教程(专业教学)

《自动控制原理》 胡寿松   自动控制原理简明教程(专业教学)

i 1
j1, j x
= 180 + 1 + 2 + 3 1 2 3
=180 + 56.5 + 19 + 59 技1术0教8育.5 37 90 = 79 23
n
m
zx 180 (zx p j ) (zx zi )
j 1
i1,i x
=180 117 90 + 153 + 63.5 + 119 + 121 =149.5
1)劳斯判据法 应用劳斯判据求出系统处于稳定边界的临界值K’, 由K’值求出相应的ω值。
2)代数法 把 s j 代入特征方程 1 G( j)H ( j) 0
1 1 1 0 d 0 d 1 d 5
3d 2 + 12d + 5 = 0
d1 = 0.472 d2 = 3.53(不在根轨迹上,
舍去,也可代入幅值方程看Kg>0否?) 分 离点上根轨迹的分离角为±90°。
d1 = 0.472
d 180 / k
如果方程的阶次高时,可用试技探术教法育 确定分离点。
j1, ji
p j zi
j 1
;
k 0, 1, 2,
z1
(p1-z1) ( p1-p2 )
( p1-p3 )
p3
0
p2
Im
A
a
s1
pa
3 p3
1 z1
1
0 p1
Re
p2 2
p1 180 (2k 1) ( p1 z1)
(( p1 p2 ) ( p1 p3))
例:起始角 技a 术教育180 (2k 1) 1 (1 2 232)
实轴上的交点 n

《自动控制原理》课件

《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域

《自动控制原理》程鹏第一章

《自动控制原理》程鹏第一章
自动控制原理
第一章 控制系统的一般概念 §1 绪论
一.控制系统的发展史 自动控制成为一门科学是从1945发展起来的。
• 开始多用于工业:压力、温度、流量、位移、湿度、 粘度自动控制
• 后来进入军事领域:飞机自动驾驶、火炮自动跟踪、 导弹、卫星、宇宙飞船自动控制
• 目前渗透到更多领域:大系统、交通管理、图书管 理等
缺点:被控量可能出现振荡,甚至发散。
适用场合:系统元件参数变化和扰动无法预计的场合。
§3 控制系统的组成
介绍由原理图画方块图的步骤:(以角度随动系统为例)
1、看懂工作原理图,找出被控量、被控对象、给定量。 2、从两头来,先画出给定量、被控对象和被控量。 3、依原理图补上中间部分。
一.组成与术语 组成: 1.测量元件:测量被控量 2.比较元件:产生偏差信号 3.放大元件:对偏差信号进行幅值、功率放大 4.执行元件:对被控对象施加作用 5.校正元件:改善系统性能 6.给定元件:给出输入信号
自动控制: 在无人直接参与的情况下,利用控制装置使设备、 生产过程(被控对象)的一个物理量(被控量)按 预定规律(给定量)运行。
自动控制系统:能对被控对象的工作状态进行自动控制的系统。
三.自动控制技术的作用
1. 自动控制技术的应用不仅使生产过程实现了自动化, 极大地提高了劳动生产率,而且减轻了人的劳动强 度。
一般的形式
输入信号 比较
放大
执行
被控对象
输出信号
测量
输入信号——系统控制目标的反映 控制系统——主要完成对有关信号的变换、处理,发出
控制量,驱动执行机构完成控制功能。 输出信号——系统的控制结果,反映了被控对象的运行 状况。
• 反馈(feedback):将输出量通过一定的方式送回到输入端, 并与输入信号比较产生偏差信号过程称为反馈

《自动控制原理》第一章-自动控制原理精选全文完整版

《自动控制原理》第一章-自动控制原理精选全文完整版
● 放大环节: 由于经过计算机处理的信号通常是标准化的 弱信号,不能驱动被控对象,因此需要加以放大。放大环 节的输出必须有足够的能量,一般需要幅值的放大和功率 的放大,才能实现驱动能力。
● 执行环节: 其作用是产生控制量,直接推动被控对象的 控制量发生变化。如电动机、调节阀门等就是执行元件。
常用的名词术语
1.稳定性
一个控制系统能正常工作的首要条件。 稳定系统:当系统受到外部干扰后,输出会偏离正 常工作状态,但是当干扰消失后,系统能够回复到 原来的工作状态,系统的输出不产生上述等幅振荡、 发散振荡或单调增长运动。
2.动态性能指标
反映控制系统输出信号跟随输入信号的变化情况。 当系统输入信号为阶跃函数时,其输出信号称为 阶跃响应。
时,线性系统的输出量也增大或缩小相同倍数。
即若系统的输入为 r(t) 时,对应的输出为 y(t),则
当输入量为 Kr(t)时,输出量为 Ky(t) 。
(2)非线性系统
● 特点:系统某一环节具有非线性特性,不满足叠加原理。 ● 典型的非线性特性:继电器特性、死区特性、饱和特性、
间隙特性等。
图1-5 典型的非线性特性
对被控对象的控制作用,实现控制任务。
图1-3 闭环控制系统原理框图
Hale Waihona Puke (3)复合控制系统 工作原理:闭环控制与开环控制相结合的一种自动控制系 统。在闭环控制的基础上,附加一个正馈通道,对干扰信 号进行补偿,以达到精确的控制效果。
图1-4 复合控制系统原理框图
2.按系统输入信号分类
(1)恒值控制系统 系统的输入信号是某一恒定的常值,要求系统能够克服 干扰的影响,使输出量在这一常值附近微小变化。
举例:连续生产过程中的恒温、恒压、恒速等自动控制 系统。

《自动控制原理》学习心得3篇

《自动控制原理》学习心得3篇

《自动控制原理》学习心得 (2)《自动控制原理》学习心得 (2)精选3篇(一)在学习《自动控制原理》这门课程的过程中,我深刻感受到了自动控制在现代工程和科学领域的重要性。

以下是我的学习心得:第一,掌握基本概念和原理。

学习自动控制的第一步就是掌握其基本概念和原理。

通过学习课本和参与课堂讨论,我了解到自动控制的基本概念,如系统、控制器、传感器、执行器等。

同时,我也学习到了自动控制的基本原理,比如反馈控制、开环控制、闭环控制等。

第二,进行实践操作。

在理论学习的基础上,我还参与了一些实践操作,比如使用控制设备进行实验。

通过这些实践操作,我将自动控制的理论知识应用到具体的实际问题中,加深了对自动控制原理的理解和掌握。

第三,深入理解数学模型。

自动控制的核心是建立系统的数学模型,并通过分析模型来设计控制器。

因此,深入理解数学模型是学习自动控制的重要一环。

我通过学习相关的数学知识和实际案例,逐渐掌握了如何建立系统的数学模型,并通过模型来分析系统的稳定性和动态特性。

第四,多做习题和实例分析。

为了加深对自动控制原理的理解和掌握,我还做了大量的习题和实例分析。

通过这些练习,我更加熟悉了控制原理的应用方式,提升了解决实际问题的能力。

总的来说,学习《自动控制原理》是一个相对较复杂和抽象的过程,但只有深入学习和实践,才能真正掌握控制原理的应用。

在今后的学习和工作中,我将进一步学习和应用自动控制原理,以应对更加复杂的工程和科学问题。

《自动控制原理》学习心得 (2)精选3篇(二)在学习《自动控制原理》这门课程时,我深刻感受到控制理论对于实际生活和工程应用的重要性。

以下是我的一些学习心得:首先,理论与实践相结合。

《自动控制原理》这门课程通过讲解基本概念和数学推导,建立了控制系统的数学模型,并通过实例分析和仿真实验,使得抽象的理论变得具体可见。

这种理论与实践相结合的学习方式,使我更好地理解了控制系统的工作原理和设计方法。

其次,系统思维的培养。

《自动控制原理》课后习题答案

《自动控制原理》课后习题答案

掌握自动控制系统的一般概念(控制方式,分类,性能要求)6.(1)结构框图:Ug U Udn Uc UUr给定输入量: 给定值Ug 被控制量: 加热炉的温度扰动量: 加热炉内部温度不均匀或坏境温度不稳定等外部因素 被控制对象:加热器控制器: 放大器、发动机和减速器组成的整体 (2)工作原理:给定值输入量Ug 和反馈量Ur 通过比较器输出 U , 经放大器控制发动机的转速n ,再通过减速器与调压器调节加热器的电压U 来控制炉温。

T Ur U Ud n Uc U T7.(1)结构框图 略给定输入量:输入轴θr 被控制量: 输出轴θc扰动量: 齿轮间配合、负载大小等外部因素 被控制对象:齿轮机构 控制器: 液压马达 (2)工作原理:θc Ue Ug i θm θc比较器 放大器 减速器 调压器 电动机 加热器 热电偶干扰量实际温度掌握系统微分方程,传递函数(定义、常用拉氏变换),系统框图化简;1.(a)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdu C i R u i i u iR u t ct ct t r )(02)(0)(01)()2......()1(.......... 将(2)式带入(1)式得:)()(01)(021)(0t r t t t u dtdu C R u R R u =++拉氏变换可得)()(01)(0221s r s s U CsU R u R R R =+⎪⎪⎭⎫ ⎝⎛+整理得 21212)()(0)(R R Cs R R R U U G S r S s ++==1.(b)⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=dtdi L u R u i i u iR u Lt o t Lt t r )(2)(0)(01)()2........()1......(.......... 将(2)式代入(1)式得)()(0221)(01t r t t u u R R R dt u L R =++⎰ 拉氏变换得)()(0221)(01s r s s U U R R R U Ls R =++ 整理得LsR R R R LsR U U G s r s s )(21212)()(0)(++==2.1)微分方程求解法⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-31224203221211111Rudt du c Ruu R u R u Rudt du c R u u c c c c c c c c r中间变量为1c u,2c u及其一阶导数,直接化简比较复杂,可对各微分方程先做拉氏变换⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-=+=-3122423221211111RUU sc R U U RU R U RUU sc R U U c c c c c c c c r移项得⎪⎪⎪⎩⎪⎪⎪⎨⎧++==++=2432432211211)11()111(c c c c rUR R sc RU R RU U U R R sc R U可得11121432432143214320)111()11(RR sc R R R R sc R R R R R R R R sc R R sc Ur U ++++=++++=2)复阻抗法⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=+++=++=2211232223234212121111*11*11sc R sc z U sc R sc z U sc R sc R R z sc R sc R R z r解得:1112143243RR sc R R R R sc R R Ur U ++++=3.分别以m 2,m 1为研究对象(不考虑重力作用)⎪⎪⎩⎪⎪⎨⎧--=---=11212121121222222)()()(ky dty y d c dt y d m dty y d cdt dy c t f dt y d m 中间变量含一阶、二阶导数很难直接化简,故分别做拉氏变换⎪⎩⎪⎨⎧--=---=112112112122222)()()(kY Y Y s c Y s m Y Y s c sY c s F Y s m 消除Y1中间变量21211222))1(()(Yk s c s m sc s c s c s m s F s++-++=10.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)---++G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---+G 1(s)/(1+G 1(s)H 1(s))G 2(s)G 3(s)/(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)-G 1(s)G 2(s)G 3(s)/(1+G 1(s)H 1(s))(1+G 3(s)H 3(s))X i (s)X o (s)+H 2(s)/G 1(s)G 3(s)- +1.综合点前移,分支点后移G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)H 3(s)H 2(s)/G 1(s)G 3(s)---++2.交换综合点,交换分支点3.化简1231133221231133221133()()()()()(1()())(1()())()()()()()1()()()()()()()()()()o i X s G s G s G s X s G s H s G s H s G s H s G s G s G s G s H s G s H s G s H s G s H s G s H s =+++=++++11.系统框图化简:G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)-++ 1.综合点前移,分支点后移2.交换综合点,合并并联结构H 4(s)G 4(s)H 2(s)H 3(s)++--G 1(s)G 2(s)G 3(s)X i (s)X o (s)+H 1(s)/G 1(s)G 4(s)-+H 4(s)/G 1(s)G 2(s)G 4(s)H 2(s)/G 4(s)H 3(s)++--+-G 1(s)G 2(s)G 3(s)X i (s)X o (s)+-G 4(s)H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)3.化简G 1(s)G 2(s)G 3(s)G 4(s)X i (s)X o (s)+-H 2(s)/G 4(s)-H 3(s)-H 1(s)/G 1(s)G 4(s)+H 4(s)/G 1(s)G 2(s)12341234243114412123123212343231344()()()()()()1()()()()(()/()()()/()()()/()())()()()1()()()()()()()()()()()()()()(o i X s G s G s G s G s X s G s G s G s G s H s G s H s H s G s G s H s G s G s G s G s G s G s G s G s H s G s G s G s G s H s G s G s H s G s G s H =+--+=+--+)s第三章掌握时域性能指标,劳斯判据,掌握常用拉氏变换-反变换求解时域响应,误差等2.(1)求系统的单位脉冲响应12()()()TsY(s)+Y(s)=KX(s)X(s)=1Y(s)=1()=20e t tTT y t y t Kx t K Ts k w t e T∙--+=+=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位脉冲信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应2.(2)求系统的单位阶跃响应,和单位斜坡响应22()()()TsY(s)+Y(s)=KX(s)X(s)=5Y(s)=1111110()10-10e ;1X(s)=Y(s)=t T y t y t Kx t KTK Ts Ts Ts sK s s s y t s∙-+=+++=-=-=已知系统的微分方程为:对微分方程进行零初始条件的拉氏变换得当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:进行拉式反变换得到系统的时域相应当输入信号为单位阶跃信号时,所以系统输出的拉式变换为:22222110550111()510t+5e ;t K K KT T K Ts s s s Ts s s Ts y t -=-+=-++++=-+进行拉式反变换得到系统的时域相应9.解:由图可知该系统的闭环传递函数为22()(22)2b kG s s k s kτ=+++ 又因为:2122%0.20.512222r n n n e t k kπξξσπβωξξωτω--⎧⎪==⎪-⎪==⎨-⎪=+⎪⎪=⎩ 联立1、2、3、4得0.456; 4.593;10.549;0.104;n K ξωτ==== 所以0.76931.432p ds nt s t sπωξω====10.解:由题可知系统闭环传递函数为210()1010b kG s s s k=++ 221010n nk ξωω=⎧⎪⎨=⎪⎩ 当k=10时,n ω=10rad/s; ξ=0.5;所以有2/12%16.3%0.36130.6p n s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当k=20时,n ω=14.14rad/s; ξ=0.35;所以有2/12%30.9%0.24130.6pn s n e t s t sπξξσπωξξω--⎧⎪==⎪⎪⎪==⎨-⎪⎪⎪==⎪⎩当0<k<=2.5时,为过阻尼和临界阻尼,系统无超调,和峰值时间;其中调整时间不随k 值增大而变化; 当k>2.5时,系统为欠阻尼,超调量σ%随着K 增大而增大,和峰值时间pt 随着K 增大而减小;其中调整时间s t 不随k 值增大而变化;14.(1)解,由题可知系统的闭环传递函数为32560-1403256000056014014k 00()1440kb k k k s s s ks kG s s s s k->><<∴=+++∴⎧⎨⎩∴劳斯表系统稳定的充要条件为:14.(2)解,由题可知系统的闭环传递函数为320.60.8832430.60.80010.20.80.210.8k 00(1)()(1)k b k k k kk s s s ks k s G s s s k s k-->>>>-∴+=++-+∴⎧⎪⎨⎪⎩∴劳斯表系统稳定的充要条件为:20.解:由题可知系统的开环传递函数为(2)()(3)(1)k k s G s s s s +=+-当输入为单位阶跃信号时,系统误差的拉氏变换为11()111()lim limlim ()0k ss k ssss s s k s ss G s E G s ssE G s e →→→+=+===∞∴=又根据终值定理e 又因为25.解:由题可知系统的开环传递函数为1212()(1)(1)k k k G s T s T s =++当输入为给定单位阶跃信号时1()i X s s=,系统在给定信号下误差的拉氏变换为111211211()111()lim limlim ()11k ss k ss ss s s k s ss G s E G s ssE G s k k e k k →→→+=+===∴=+又根据终值定理e 又因为当输入为扰动信号时1()N s s=,系统扰动信号下误差的拉氏变换为22121122212212121()111()lim limlim ()111k ss k ss ss s s k s ss ss ss ss k G s k T s E G s ssE G s k k k e k k k e e e k k →→→-+-+=+===-∴=+-∴=+=+又根据终值定理e 又因为第四章 根轨迹法掌握轨迹的概念、绘制方法,以及分析控制系统4-2 (2)G(s)=)15.0)(12.0(++s s s K;解:分析题意知:由s(0.2s+1)(0.5s+1)=0得开环极点s 1=0,s 2=-2,s 3=-5。

张爱民《自动控制原理》

张爱民《自动控制原理》

张爱民《自动控制原理》1. 引言《自动控制原理》是由张爱民教授编写的一本介绍自动控制理论和方法的教材。

自动控制是现代工程和科学领域中的一个重要学科,涉及到各个领域的控制问题,包括机械、电气、电子、通信等。

2. 作者简介张爱民,清华大学自动化系教授,是自动控制领域的知名专家。

他在自动控制理论和应用方面做出了很多重要贡献。

他主持和参与了多项国家级科研项目,在自动控制领域发表了大量论文。

张爱民教授的《自动控制原理》以其深入浅出的讲解风格和丰富的实例深受学生和教师的喜爱。

3. 内容概述《自动控制原理》一书共分为八章,内容涵盖了自动控制领域的基础理论和实践方法。

下面对每一章的主要内容进行简要介绍。

3.1 第一章:自动控制概述这一章介绍了自动控制的基本概念、分类和发展历程。

通过一些实例,帮助读者理解自动控制的重要性和应用领域。

3.2 第二章:数学基础在自动控制领域,数学是基础。

这一章主要介绍了自动控制所涉及到的数学基础,包括线性代数、微积分和概率论等。

读者可以通过这一章的学习,为后续章节打下坚实的数学基础。

3.3 第三章:系统建模系统建模是自动控制的第一步。

这一章介绍了系统建模的基本概念和方法,包括系统的描述、状态空间分析和传递函数表示等。

通过实例,读者可以学会如何将实际问题转化为数学模型。

3.4 第四章:传递函数的表示与分析传递函数是自动控制中常用的数学工具。

这一章详细介绍了传递函数的定义、性质和常见的运算规则。

同时,还介绍了用传递函数进行系统分析和设计的方法。

3.5 第五章:控制器的设计控制器是自动控制中的核心组成部分。

这一章主要介绍了控制器的设计方法,包括比例控制器、积分控制器和PID控制器等。

通过实例,读者可以学会如何选择和设计合适的控制器。

3.6 第六章:闭环控制系统分析闭环控制系统是自动控制中常用的控制方式。

这一章详细介绍了闭环控制系统的分析方法,包括系统的稳定性分析和性能指标的评价等。

读者可以通过这一章的学习,了解闭环控制系统的优势和局限性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《自动控制原理》实验报告姓名:学号:专业:班级:时段:成绩:工学院自动化系实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为KRKRRRZZsG200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK图形如图1-3所示。

三、实验内容按下列各典型环节的传递函数,建立相应的SIMULINK仿真模型,观察并记录其单位阶跃响应波形。

①比例环节1)(1=sG和2)(1=sG;②惯性环节11)(1+=ssG和15.01)(2+=ssG③积分环节ssG1)(1=④微分环节ssG=)(1⑤比例+微分环节(PD)2)(1+=ssG和1)(2+=ssG⑥比例+积分环节(PI)ssG11)(1+=和ssG211)(2+=四、实验结果及分析图1-3 比例环节的模拟电路及SIMULINK图形① 仿真模型及波形图1)(1=s G 和2)(1=s G② 仿真模型及波形图11)(1+=s s G 和15.01)(2+=s s G 11)(1+=s s G 15.01)(2+=s s G③ 积分环节ss G 1)(1=④ 微分环节⑤比例+微分环节(PD)⑥比例+积分环节(PI)五、分析及心得体会实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB的调用语句:t=[0:0.1:10];c=[];num=[0 0 25]; %定义分子多项式den=[1 4 25]; %定义分母多项式[c,x,t]=step(num,den,t); %调用阶跃响应函数求取单位阶跃响应曲线 plot(t,c,'-'); %画图grid; %画网格标度线xlabel('t/s'),ylabel('h(t)'); %给坐标轴加上说明title('Unit-step Response of G(s)=25/(s^2+4s+25)') %给图形加上标题名则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text命令在图上的任何位置加标注。

三、实验内容1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为146473)(2342++++++=sssssssG可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

1、阶跃响应t=[0:0.1:10];c=[];num=[0 0 1 3 7];den=[1 4 6 4 1];[c,x,t]=step(num,den,t);plot(t,c,'-');grid;xlabel('t/s'),ylabel('h(t)');图2-1 二阶系统的单位阶跃响应图2-2 定义时间范围的单位阶跃响应title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)')2、脉冲响应num=[0 0 1 3 7]; den=[1 4 6 4 1]; impulse(num,den) gridtitle('Unit-impulse Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)')2.对典型二阶系统2222)(nn n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。

num=[0 0 4]; den1=[1 0 4]; den2=[1 1 4]; den3=[1 2 4]; den4=[1 4 4]; den5=[1 8 4]; t=0:0.1:10; step(num,den1,t)gridgtext('Zeta=0'); hold Current plot held step(num,den2,t) gtext('0.25') step(num,den3,t) gtext('0.5') step(num,den4,t) gtext('1.0') step(num,den5,t) gtext('2.0')2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数nω对系统的影响。

>> num1=[0 0 1]; den1=[1 0.5 1]; num2=[0 0 4]; den2=[1 1 4];num3=[0 0 16]; den3=[1 2 16]; num4=[0 0 36];den4=[1 3 36];t=0:0.1:10; step(num1,den1,t) grid gtext('1'); hold Current plot held>> step(num2,den2,t) >> gtext('2'); >> step(num3,den3,t) >> gtext('4'); >> step(num4,den4,t) >> gtext('6');3.单位负反馈系统的开环模型为)256)(4)(2()(2++++=s s s s Ks G试判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

>> roots([1,12,69,198,200])ans =-3.0000 + 4.0000i -3.0000 - 4.0000i -4.0000 -2.0000特征方程的根部都具有负实部,因而系统稳定。

四、分析及心得体会实验三 线性系统的根轨迹一、实验目的1. 熟悉MATLAB 用于控制系统中的一些基本编程语句和格式。

2. 利用MATLAB 语句绘制系统的根轨迹。

3. 掌握用根轨迹分析系统性能的图解方法。

4.掌握系统参数变化对特征根位置的影响。

二、实验原理1)绘制系统的根轨迹rlocus () MATLAB 中绘制根轨迹的函数调用格式为:rlocus(num,den) 开环增益k 的范围自动设定。

rlocus(num,den,k) 开环增益k 的范围人工设定。

rlocus(p,z) 依据开环零极点绘制根轨迹。

r=rlocus(num,den) 不作图,返回闭环根矩阵。

[r,k]=rlocus(num,den) 不作图,返回闭环根矩阵r 和对应的开环增益向量k 。

其中,num,den 分别为系统开环传递函数的分子、分母多项式系数,按s 的降幂排列。

K 为根轨迹增益,可设定增益范围。

例3-1:已知系统的开环传递函数924)1()(23++++=*s s s s K s G ,绘制系统的根轨迹的MATLAB 的调用语句如下:num=[1 1]; %定义分子多项式 den=[1 4 2 9]; %定义分母多项式 rlocus (num,den) %绘制系统的根轨迹 grid %画网格标度线 xlabel(‘Real Axis ’),ylabel(‘Imaginary Axis ’) %给坐标轴加上说明 title(‘Root Locus ’) %给图形加上标题名则该系统的根轨迹如图3-1所示:三、实验内容及分析1.请绘制下面系统的根轨迹曲线)136)(22()(22++++=s s s s s Ks G 程序: G=tf([1,],[1,8,27,38,26,0]); rlocus (G);>> [k,r]=rlocfind(G)G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) k =30.0061 r =-2.8147 + 2.1754i -2.8147 - 2.1754i -2.3708 0.0001 + 1.0001i 0.0001 - 1.0001i)10)(10012)(1()12()(2+++++=s s s s s K s G程序:G=tf([1,12],[1,23,233,1220,1000]); rlocus (G);>> [k,r]=rlocfind(G)G_c=feedback(G,1); %形成单位负反馈闭环系统 k =1.0180e+003 r =0.0026 + 9.8647i 0.0026 - 9.8647i-11.5026 + 1.8702i -11.5026 - 1.8702i)11.0012.0)(10714.0()105.0()(2++++=s s s s s K s G 程序:G=tf([1.05],[0.008568,0.012,0.0714,0.814,1,0]); rlocus (G);>> [k,r]=rlocfind(G)G_c=feedback(G,1); %形成单位负反馈闭环系统 step(G_c) k =0.0019 r =1.8686 + 4.3366i 1.8686 - 4.3366i -3.7376 -1.3981 -0.0020无论K 值怎么变化系统都不稳定。

相关文档
最新文档