第四章液压执行元件

合集下载

液压传动与控制第4章

液压传动与控制第4章
图4.3.1 带缝隙节流凸台的作动筒
在作动筒主活塞前后各有一个直径比主活塞略小的缓冲 凸台,当作动筒到达行程末端时,凸台将一部分油液封死, 被封闭的油液通过凸台与缸壁间的环形间隙流出,产生液压 阻力,减缓作动筒的速度,起到缓冲的作用。
✓ 节流阀缓冲
4.3.1 缓冲装置
图4.3.2 带单向节流阀的作动筒
图4.1.1 液压作动筒的工作原理 1—筒体;2—活塞;3—活塞杆;4—端盖;5—密封;6—进出管道
4.1.1 液压作动筒的基本原理和结构
结论:作动筒是利用液体压力来克服负载的(包括摩擦 力),利用液体流量维持运动速度。
输人作动筒的液体压力和流量是作动筒的输入参数, 是液压功率;作动筒的输出力和速度(或位移)是其输 出参数,是机械功率。
(a)缸体固定,活塞杆移动
(b)活塞杆固定,缸体移动
图4.1.2 双杆活塞缸
4.1.3 液压缸的基本类型和特点
A
A
F
p1
p2
因双杆液压缸的两端活塞杆直径相等,所以当输入流量和 油液压力不变时,其往返运动速度和推力相等。
液压缸活塞的实际推力
F
A(
p1
p2 )m
4
(D2
d
2 )(
p1
p2 )m
(4-15)
➢ 与非差动连接无杆腔进油工况相比,在输入油液压力和流量 都不变的条件下,活塞杆伸出速度较大而推力较小。差动连 接是在不增加液压泵容量和功率的情况下,实现系统快速运 动的有效方法。它的应用常见于组合机床和各类专用机床中。
➢ 在实际应用中,液压传动系统常通过控 制阀来改变单杆活塞缸的油路连接,使 它有不同的工作方式,从而获得快进 (差动连接)工进(无杆腔进油)快退 (有杆腔进油)的工作循环。

液压 第四章液压缸

液压 第四章液压缸
= p1
π (D − d )
2 2
4Leabharlann − p2πD4
2
2
= ( p1 − p2 )
πD
4
2
− p1
πd
4
因为: 因为:A无>A有 比较上述结果: 比较上述结果:v <v有,F无>F有

即活塞杆伸出时,速度较慢,推力较大; 即活塞杆伸出时,速度较慢,推力较大; 活塞杆缩回时,速度较快,推力较小。 活塞杆缩回时,速度较快,推力较小。 因此适用于伸出时承受工作载荷,缩回时为 因此适用于伸出时承受工作载荷, 空载或轻载场合。 空载或轻载场合。 速度比: 速度比:
二、柱塞式液压缸(单作用式) 柱塞式液压缸(单作用式)
特点: )柱塞与缸体不接触。 特点:1)柱塞与缸体不接触。 2 )柱塞重量大 水平安装时会下垂, 柱塞重量大,水平安装时会下垂 水平安装时会下垂, 引起单边磨损,故多垂直使用。 引起单边磨损,故多垂直使用。 3)柱塞工作时受恒压。 )柱塞工作时受恒压。 4)柱塞缸是单作用缸。为得到双向 )柱塞缸是单作用缸。 运动,常成对使用。 运动,常成对使用。
v有 D2 λv = = 2 v无 D − d 2

当活塞杆直径愈小时, 差值愈小。 当活塞杆直径愈小时,v 与v有差值愈小。
③差动连接: 差动连接: 当单杆缸两腔同时通入压力 油时,由于无杆腔的有效 由于无杆腔的有效 面积大于有杆腔的有效面 积,则活塞受到的向右的 作用力大于向左的作用力, 作用力大于向左的作用力, 活塞右移, 活塞右移,并将有杆腔的 油液挤出,流进无杆腔, 油液挤出,流进无杆腔, 加快活塞杆的右移速度。 加快活塞杆的右移速度。 这种连接方式称~。 这种连接方式称 。
其运动速度和推力的计算: 其运动速度和推力的计算:

项目四 液压执行元件答案

项目四 液压执行元件答案

项目四液压执行元件一、填空题1.单杆液压缸可采用连接,使其活塞缸伸出速度提高。

(差动)2. 液压缸从结构主要有、和摆三大类,从作用方式有和。

(活塞式、柱塞式、摆动式、单作用式、双作用式)3.当活塞面积一定时,活塞运动速度与进入油缸中液压油的 _______ 多少有关,活塞推力大小与液压油的 ________ 高低有关。

(流量、压力)4.伸缩式液压缸的活塞在向外运动时,按活塞的有效工作面积大小依次动作,有效面积的先动,有效面积的后动。

(大、小)5.在液压缸中,为了减少活塞在终端的冲击,应采取措施。

(缓冲)二、选择题( A )1.当系统的流量增大时,油缸的运动速度就()。

A.变快 B.变慢 C.没有变化( C )2.当工作行程较长时.采用()缸较合适。

A.单活塞杆 B.双活塞杆 C.柱塞(A )3.单杆活塞缸的活塞杆在收回时()。

A.受压力 B.受拉力 C.不受力(A )4.能形成差动连接的液压缸是()。

A.单杆液压缸 B.双杆液压缸 C.柱塞式液压缸( C )5.活塞有效作用面积一定时,活塞的运动速度取决于()。

A.液压缸中油液的压力B.负载阻力的大小C.进入液压缸的流量D.液压泵的输出流量( C )6.下列液压缸中可以进行差动连接的是()。

A.柱塞式液压缸B.摆动式液压缸C.单活塞杆式液压缸D.双活塞杆式液压缸( C)7.差动液压缸,若使其往返速度相等,则活塞面积应为活塞杆面积的()。

A.l倍 B.2倍 C.2倍( B )8.双杆活塞液压缸,当活塞杆固定时,运动所占的运动空间为缸筒有效行程的倍数()。

A.1倍 B.2倍 C.3倍 D.4倍( C)9.双杆液压缸,采用缸筒固定安置,工作台的移动范围为活塞有效行程的()。

A.1倍B.2倍C.3倍D.4倍(B )10.一单杆活塞式液压缸差动连接时,要使V3=V2,则活塞与活塞杆直径之比应为()。

A.1 B.2 C.3 D.2(D)11.双作用多级伸缩式液压缸,外伸时推力和速度的逐级变化,结果是:()A.推力和速度都增大 B.推力和速度都减小C.推力增大,速度减小 D.推力减小,速度增大( B )12.在液压系统的组成中,液压缸是()A. 动力元件. 执行元件 C. 控制元件 D. 传动元件( C )13. 在液压传动中,一定的液压缸的()决定于流量。

4《液压传动》执行元件

4《液压传动》执行元件
19
的供液次数,可分为:
第4章 液压传动执行元件
4.6.2 液压缸的计算
• 液压缸的基本计算,主要指其供液压力和驱动负载计算,以及输入 流量和运动速度的计算,输出功率可根据负载及其运动速度计算出。
20
第4章 液压传动执行元件
4.6.2 液压缸的计算
21
第4章 液压传动执行元件
4.6.2 液压缸的计算
第4章 液压传动执行元件
4.4.2 静力平衡式径向柱塞马达

静力平衡式马达式在staffa马达的基础上演变和发展起来的,如图 4.4-2所示,其特点是取消了连杆,并在主要摩擦副之间实现了静压 力平衡,故称静力平衡式液压马达,国外称之为“Roston”马达。
15
第4章 液压传动执行元件
4.4.2 静力平衡式径向柱塞马达
27
第4章 液压传动执行元件
4.7 典型液压缸及其结构
3 密封装置 液压缸的密封是液压缸结构中的重要环节之一,用于活塞、活塞杆和 端盖等处。用以防止液压缸的内部泄漏。常见密封结构如下:
28
第4章 液压传动执行元件
4.7 典型液压缸及其结构
29
第4章 液压传动执行元件
4.7 典型液压缸及其结构
4 液压缸缓冲装置 当液压缸带动质量较大的部件作快速往复运动时,应设置缓冲装置, 以防止活塞运动到末端时与缸盖碰撞,损坏液压缸。利用节流原理来实现 液压缸的缓冲,常有两种:间隙缓冲装置和节流阀缓冲装置。 环形间隙缓冲装置:当活塞达到行程末端时,长度L上的油液从环形间 隙S处挤出,形成缓冲压力。 节流阀缓冲装置:当活塞进入行程末端时,缓冲柱塞a进入缸盖孔c时, b腔回油液被柱塞a堵塞,回油口d被封闭,压油液只能通过节流阀2的阀口 排出,起到缓冲作用。回程时,油液经单向阀1和d口进入,可使活塞平稳 启动

液压控制元件.答案

液压控制元件.答案
进油口
2018/1/21
弹簧
阀芯
回油口
阻尼孔
40
2018/1/21
41
先导式:用刚度不太大的弹簧即可调整较高的开启压力
当进油口压力较低, 导阀上的液压作用力 小于弹簧5的作用力, 导阀关闭,没有溢流. 进油口压力升高到 作用在导阀上的液压 力大于导阀弹簧作用 力时,导阀打开,实现 溢流.
2018/1/21
2018/1/21
35
§3 压力控制阀

用途:
控制油液压力; 利用压力作为信号来控制执行元件和电气元件的动 作,使液压系统实现调压、稳压、减压、安全保护 和执行件顺序动作。


共同特点:

利用油液压力作用在阀芯上的推力与弹簧力平衡在不 同位置上,以控制阀口开度来实现压力控制。
2018/1/21
36
溢流阀
作用:对液压系统定压或进行安全保护。 用途:常用于节流调速系统中,和流量控制阀配合使用,
调节进入系统的流量,并保持系统的压力基本恒定. 溢流阀2并联于系统中 ,进入液压缸4 的流量由节流阀 3 调节 . 由于 , 泵 1 的 流量大于4所需的流量,油压升高,将 溢流阀2打开,多余的油液经阀2流回 油箱,系统压力基本保持不变.
60
2018/1/21
细长孔
Δp的影响:通过薄壁小孔的 流量受到的影响最小. 温度的影响:对于薄壁小孔, 粘度对流量几乎没有影响.
xc是阀口开度为xR=0
时的弹簧预压缩量 忽略弹簧刚度,则
p2 A1 p1 A2
由上式可见,选择阀芯的作用面积A1和A2,便可得到所 要求的压力比,且比值近似恒定.
2018/1/21 51

顺序阀:控制系统中各执行元件动作的先后顺序

第四章液压缸

第四章液压缸
第四章 液压执行元件
4.1液压缸的工作原理
一、液压缸的组成
液压缸组成:活塞2、缸体1、活塞杆3、端盖4、 密封5
二、液压缸的工作原理
缸筒固定,一腔连续地输入压力油,当油的 压力足以克服活塞杆上的所有负载时,活塞以速 度连续向另一腔运v 1 动,活塞杆对外界做功;反之 亦然。
活塞杆固定,一腔连续地输入压力油时,则 缸筒向另一方向运动;反之亦然。
柱塞缸只能作单作用缸,要求往复运动时,需 成对使用。柱塞缸能承受一定的径向力。
(1)单柱塞缸
●单向液压驱动,回程靠外力。
(2)双柱塞缸
●双向液压驱动
(3)参数计算
推力:F pApd2
4
速度:v
q A
4q
d2
●柱塞粗、受力好。
●简化加工工艺(缸体内孔和柱塞没有配合,不 需精加工;柱塞外圆面比内孔加工容易。)
由两个或多个活塞式缸套装而成,前一级活塞 缸的活塞杆是后一级活塞缸的缸筒。各级活塞依次 伸出可获得很长的行程,当依次缩回时缸的轴向尺 寸很小。
除双作用伸缩液压缸外,还有单作用伸缩液压 缸,它与双作用不同点是回程靠外力,而双作用靠 液压作用力。
4.3液压缸的结构
液压缸按结构组成可以分为缸体组件、活塞 组件、密封装置、缓冲装置和排气装置等
1、缸体组件
缸体组件包括缸筒 、缸盖和一些连接零 件。缸筒可以用铸铁 (低压时)和无缝钢 管(高压时)制成。
缸筒和缸盖的常见连接方式如图所示。从加工的工艺 性、外形尺寸和拆装是否方便不难看出各种连接的特点。图 a)是法兰连接,加工和拆装都很方便,只是外形尺寸大些。 图b)是半环连接,要求缸筒有足够的壁厚。图 c)是拉杆式 连接,拆装容易,但外形尺寸大。图d)是螺纹连接,外形 尺寸小,但拆装不方便,要有专用工具。图 e)是焊接连接 ,结构简单,尺寸小,但可能会有因焊接有一些变形。

液压传动与气动技术课件 4液压执行元件

液压传动与气动技术课件 4液压执行元件
750
液压缸尺寸计算
已知一单杆活塞缸,设液压油进入有杆腔时的速 度为v2,差动连接时的速度为v3,现要求v3/v2=2时, 试求活塞直径D和活塞杆直径d之间的关系?
解:v2=q/A2=4q/π(D2-d2) v3=q/A3=4q/πd2 v3/v2=2 (D2-d2)/d2=2
D= 3 d
液压马达的应用
◆活塞式液压缸 ◆柱塞式液压缸
双活塞杆 单活塞杆
◆摆动式液压缸
◆伸缩式液压缸
双杆活塞缸应用特点
F2 v2
F1 v1
A1
A2
D
d
p、q
A1
A2
A
4
(D2
d
2)
F1
F2
F
pA
p
(D2 4
d 2)
v1
v2
v
q A
4q (D2
d 2)
特点:液压缸活塞往返速度、推力大小相等 应用:平面磨床工作台往返运动
液压缸密封圈
O型密封圈
V 型 密 封 圈
Y型密封圈
液压缸的缓冲与排气
缓冲:当活塞移近缸盖时,凸台逐渐进 入凹槽,将凹槽内的油液经凸台和凹槽 之间的缝隙挤出,增大了回油阻力,降 低活塞的运动速度,从而减小和避免活 塞对端盖的撞击,实现缓冲。
排气:对运动平稳性要求较高的液压缸, 常在两端装有排气塞。工作前拧开排气塞, 使活塞全行程空载往返数次,空气即可通 过排气塞排出。空气排净后,需把排气塞 拧紧,再进行工作。
应用:机床的送料装置、间歇进给机构、回转夹具、 工业机器人手臂和手腕的回转机构等。
齿轮齿条摆动油缸
伸 缩 缸
1—一级缸筒;2—一级活塞;3—二级缸筒;4—二级活塞;

第四章 液压执行元件

第四章 液压执行元件
45
3、缸盖螺栓的直径ds :
式中:F — 液压缸负载;
Z — 固定螺栓的个数;
k — 螺纹拧紧系数 k = 1.12~1.5;
[σ] —螺栓材料的许用应力。
46
四、稳定性校核
活塞杆受轴向压缩时,它所承受的力F:
式中:Fk — 临界负载;
nk — 安全系数,一般取 2~4 。
1、当活塞杆的细长比 ι / rk > ψ1√ ψ2 时:
23
4.1.5
液压缸的组件结构
24
25
(一)缸体组件
26
(二)活塞组件
27
(三)密封装置
28
(四)缓冲装置
29
(五)排气装置
30
§4 -2
液压马达
机械能。
功 能:把液压能 分 类:按结构可以分为
齿轮式;
叶片式; 柱塞式。
31
液压马达图形符号
32
齿轮马达
工作原理

结构特点 进出油口相等,有

配流轴圆周均布2x 个配流窗口,其中x 个窗口对应 于a段,通高压油,x 个窗口对应于b段,通回油 (x≠z );

输出轴 ,缸体与输出轴连成一体。
39
摆动马达——实现往复摆动的执行元件,输入为压力
和流量,输出为转矩和角速度。
40
§4-3 液压缸的设计与计算
一、设计时应注意的问题
1、尽量使活塞杆处于受拉状态。 2、注意缓冲和排气。 3、正确确定油缸的安装、固定方式。注意油缸 的热胀冷缩。 4、根据推荐的结构形式和标准设计。 5、注意壁厚强度,必要时进行压杆稳定计算。
1)、进、出油口可布置在活塞杆两端,也可布 置在缸筒两端;

液压执行元件

液压执行元件

图4-20 液压马达图形符号 a)单向定量马达;b) 单向变量马达; c) 双向定量马达;d) 双向变量马达
1)轴向柱塞式液压马达 如图4-21是轴向柱塞式液压马达的工作原理图。当压力油经配 油盘通入柱塞底部孔时,柱塞受压力油作用向外伸出,并紧压在斜
盘上,这时斜盘对柱塞产生一反作用力F。 由于斜盘倾斜角为γ, 所以F可分解为两个分力:一个轴向分力FX,它和作用在柱塞上的 液压作用力相平衡;另一个分力FY,它使缸体产生转矩。
机电一体化
液压式执行元件是先将电能变化成液体压力,并用电磁阀控制 压力油的流向,从而使液压执行元件驱动执行机构运动。液压式执 行元件有直线式油缸、回转式油缸、液压马达等。
液压执行元件的特点是输出功率大、速度快、动作平稳、可实 现定位伺服、响应特性好和过载能力强。缺点是体积庞大、介质要 求高、易泄露和环境污染。
图 4-15双杆活塞式液压缸 (a) 缸体固定; (b) 活塞杆固定
图4-16 (a) 无杆腔进油;;活塞缸两腔同时通入压力油时,由于无杆腔有效作用面 积大于有杆腔的有效作用面积,使得活塞向右的作用力大于向左的 作用力,因此,活塞向右运动,活塞杆向外伸出;与此同时,又将 有杆腔的油液挤出,使其流进无杆腔,从而加快了活塞杆的伸出速 度,单杆活塞液压缸的这种连接方式被称为差动连接。如图4-16 (c)差动连接时,液压缸的有效作用面积是活塞杆的横截面积,工 作台运动速度比无杆腔进油时的速度大,而输出力则减小。差动连 接是在不增加液压泵容量和功率的条件下,实现快速运动的有效办 法。
l
1)活塞式液压缸 活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装又 有缸筒固定和活塞杆固定两种方式。 ∫ 双杆活塞液压缸的活塞两端都带有活塞杆,分为缸体固定和活 塞杆固定两种安装形式,如图4-15所示。前者工作台移动范围约等 于活塞有效行程 的三倍, 常用于中小型设备。后者工作台的移动范围只约等于液压缸行 程 的两倍,常用于大型设备。单杆活塞液压缸的活塞仅一端带有 活塞杆,活塞双向运动可以获得不同的速度和输出力。其简图 及油路连接方式如图4-16所示。

《液压传动》(课件)-第四章精选全文

《液压传动》(课件)-第四章精选全文

4.缓冲装置
图 液压缸缓冲装置的形式
缓冲装置有两种形式:一种为节流式, 它是指在液压缸活塞运动至接近缸盖时,使低 压回油腔内的油液,全部或部分通过固定节流 或可变节流器,产生背压形成阻力,达到降低 活塞运动速度的缓冲效果,图中的(a), (b),(d),(e),(f)均属于此类。
另一类为卸载式,如图(c)所示,它是 指在活塞运动至接近缸盖时,双向缓冲阀2的 阀杆先触及缸盖,阀杆沿轴向被推离起密封作 用的阀座,液压缸两腔通过缓冲阀2的开启而 高低压腔互通,缸两腔的压差迅即减小而实现 缓冲。
当解锁压力油卸除之后又能自动锁紧。
1—锁紧套筒;2—活塞杆; 3—活塞
图套筒式锁紧装置
二、刹片式锁紧装置
如图所示,在液压缸的端盖上带有一 制动刹片1,它在碟形弹簧 2 的作用下被紧 紧地压在活塞杆 3 上,依靠摩擦力抵消轴 向力,从而使活塞杆锁紧在任意位置上。
当解锁压力油进入 A 腔后,在液压力 的作用下,将制动刹片顶开,使之脱离活 塞杆,达到解锁的目的。
F1
F2
(p1
p2 )A m
π 4
(D2
d2 )( p1
p2 )m
(4-1)
v1
v2
q A
v
(4-2)
式中, A ——液压缸的有效面积; ηm ——液压缸的机械效率; ηv——液压缸的容积效率; D ——活塞直径; d ——活塞杆直径; q ——输入液压缸的流量;
p1 ——进油腔压力;
p2 ——回油腔压力。
图(b)所示为半环连接,缸筒壁部因开了环形槽而削弱了 强度,因此有时要加厚缸壁,它容易加工和装拆,重量较轻, 常用于无缝钢管或锻钢制造的缸筒上。
图(c)所示为螺纹连接,缸筒端部结构复杂,外径加工时 要求保证内外径同心,装拆要使用专用工具,它的外形尺寸和重 量都较小,常用于无缝钢管或铸钢制的缸筒上。

左健民液压与气压传动第五版课后答案1-11章

左健民液压与气压传动第五版课后答案1-11章

液压与气压传动课后答案(左健民)第一章液压传动基础知识1-1液压油的体积为331810m -⨯,质量为16.1kg ,求此液压油的密度。

解: 23-3m 16.1===8.9410kg/m v 1810ρ⨯⨯ 1-2 某液压油在大气压下的体积是335010m -⨯,当压力升高后,其体积减少到3349.910m -⨯,取油压的体积模量为700.0K Mpa =,求压力升高值。

解: ''33343049.9105010110V V V m m ---∆=-=⨯-⨯=-⨯由0P K V V ∆=-∆知: 643070010110 1.45010k V p pa Mpa V --∆⨯⨯⨯∆=-==⨯ 1- 3图示为一粘度计,若D=100mm ,d=98mm,l=200mm,外筒转速n=8r/s 时,测得转矩T=40N ⋅cm,试求其油液的动力粘度。

解:设外筒内壁液体速度为0u08 3.140.1/ 2.512/2fu n D m s m s F TA r rl πτπ==⨯⨯===由 dudy du dyτμτμ=⇒= 两边积分得0220.422()()22 3.140.20.0980.10.0510.512a a T l d D p s p s u πμ-⨯-⨯⨯∴===1-4 用恩式粘度计测的某液压油(3850/kg m ρ=)200Ml 流过的时间为1t =153s ,20C ︒时200Ml 的蒸馏水流过的时间为2t =51s ,求该液压油的恩式粘度E ︒,运动粘度ν和动力粘度μ各为多少? 解:12153351t E t ︒=== 62526.31(7.31)10/ 1.9810/E m s m s Eν--=︒-⨯=⨯︒ 21.6810Pa s μνρ-==⨯⋅1-5 如图所示,一具有一定真空度的容器用一根管子倒置一液面与大气相通的水槽中,液体与大气相通的水槽中,液体在管中上升的高度h=1m,设液体的密度为31000/kg m ρ=,试求容器内真空度。

液压传动课后习题及解答

液压传动课后习题及解答

第一章绪论一、填空题1 、一部完整的机器一般主要由三部分组成,即 、 、2 、液体传动是主要利用 能的液体传动。

3 、液压传动由四部分组成即 、 、 、 。

4 、液压传动主要利用 的液体传动。

5 、液体传动是以液体为工作介质的流体传动。

包括 和 。

二、计算题:1:如图 1 所示的液压千斤顶,已知活塞 1 、 2 的直径分别为 d= 10mm , D= 35mm ,杠杆比 AB/AC=1/5 ,作用在活塞 2 上的重物 G=19.6kN ,要求重物提升高度 h= 0.2m ,活塞 1 的移动速度 v 1 = 0.5m /s 。

不计管路的压力损失、活塞与缸体之间的摩擦阻力和泄漏。

试求:1 )在杠杆作用 G 需施加的力 F ;2 )力 F 需要作用的时间;3 )活塞 2 的输出功率。

二、课后思考题:1 、液压传动的概念。

2 、液压传动的特征。

3 、液压传动的流体静力学理论基础是什么?4 、帕斯卡原理的内容是什么?5 、液压传动系统的组成。

6 、液压系统的压力取决于什么?第一章绪论答案一、填空题第1空:原动机;第2空:传动机;第3空:工作机;第4空:液体动能; 第5空 :液压泵; 6 :执行元件; 7 :控制元件; 8 :辅助元件; 9 :液体压力能; 10 :液力传动; 11 :液压传动二、计算题:答案:1 )由活塞2 上的重物 G 所产生的液体压力=20×10 6 Pa根据帕斯卡原理,求得在 B 点需施加的力由于 AB/AC=1/5 ,所以在杠杆 C 点需施加的力2 )根据容积变化相等的原则求得力 F 需施加的时间3 )活塞 2 的输出功率第二章液压流体力学基础一、填空题1、油液在外力作用下,液层间作相对运动进的产生内摩擦力的性质,叫做 。

2、作用在液体内部所有质点上的力大小与受作用的液体质量成正比,这种力称为 。

3、作用在所研究的液体外表面上并与液体表面积成正比的力称为 。

4、 液体体积随压力变化而改变。

液压气动技术基础 第4章

液压气动技术基础 第4章

4.1 液压缸的工作原理与结构
三、液压缸结构设计中的几个基本问题
1、缸体与缸盖的连接 • 拉杆连接:前、后端盖装载缸体两边,用四根拉杆(螺栓) 拉杆连接: 将其紧固。这种连接结构简单、装拆方便,但外形尺寸较 大,重量较大,通常只用于较短的液压缸。 • 法兰连接:在无缝钢管的缸体上焊上法兰盘,再用螺钉与 法兰连接: 端盖紧固。这种连接结构简单,加工和装拆都方便,缺点 连接端部较大,外形尺寸大。但是尺寸和重量比拉杆连接 要小,应用广泛。 • 内半环连接:内半环连接结构紧凑,重量小,工作可靠, 内半环连接: 但缸体铣出了半环槽后,消弱了其强度,所以相应要加大 缸体的壁厚。
4.1 液压缸的工作原理与结构
2、单活塞杆液压缸 1)无杆腔进油时:
4.1 液压缸的工作原理与结构
2、单活塞杆液压缸 2)有杆腔进油时:
活塞运动速度v2与v1之比称为速比 速比, 速比 用λv表示,则

4.1 液压缸的工作原理与结构
2、单活塞杆液压缸 3)液压缸差动连接时:
单杆活塞液压缸两腔同时通入流体时,利用两端面积差 进行工作的连接形式,称为液压缸的差动连接 液压缸的差动连接。 液压缸的差动连接
4.1 液压缸的工作原理与结构
二、液压缸的结构
4、活塞杆是由钢材做成实心杆或空心杆,表面经淬火再镀铬 活塞杆 处理并抛光。 5、缓冲装置:为了防止活塞在行程的终点与前后端盖板发生 缓冲装置: 缓冲装置 碰撞,引起噪音,影响工件精度或使液压缸损坏,常在液 压缸前后端盖上设有缓冲装置,以使活塞移到快接近行程 终点时速度减慢下来终至停止。 6、放气装置:在安装过程中或停止工作的一段时间后,空气 放气装置: 放气装置 将渗入液压系统内,缸筒内如存留空气,将使液压缸在低 速时产生爬行、颤抖现象,换向时易引起冲击,因此在液 压缸结构上要能及时排除缸内留存的气体。 7、密封装置是 用以防止油液的泄漏,液压缸常采用O形密封 密封装置是 密封装置 圈和Y形密封圈。

液压执行元件

液压执行元件

17
第四章、 液压执行元件
第二节 液压缸
2、双活塞杆式液压缸
F 1 F 2 ( p1 p2 ) Am
v1 v2 q V A
18
第四章、 液压执行元件
第二节 液压缸
3、伸缩式液压缸
Fi p1 Aimi
q vi Vi Ai
19
第四章、 液压执行元件
第二节 液压缸
第一节 液压马达
§1.1 柱塞式液压马达 一、结构及工作原理
3
第四章、 液压执行元件
第一节 液压马达
§1.1 柱塞式液压马达 一、结构及工作原理
单作用连杆型径向柱塞马达——低速大转矩马达
4
第四章、 液压执行元件
第一节 液压马达
§1.1 柱塞式液压马达 一、结构及工作原理
多作用内曲线径向柱塞液压马达
因此仅用于高速小转矩的场合,如工程机械、农
业机械及对转矩均匀性要求不高的设备。
9
第四章、 液压执行元件
第一节 液压马达§1.4 摆动式液压马达 Nhomakorabea10
第四章、 液压执行元件
§1.5 液压泵与液压马达的比较 (1)液压马达一般需要正反转,所以在内部结构上应具有对称性, 而液压泵一般是单方向旋转的,没有这一要求; (2)液压泵在结构上需保证具有自吸能力,而液压马达就没有这一 要求。为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口 的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要
身不能直接作为执行元件 。
D 2 p2 p1 ( ) d
增压缸只能将高压油输入其它液压缸以获得大的推力,其本
21
第四章、 液压执行元件
第二节 液压缸

第四章:液 压 缸

第四章:液 压 缸

第四章液压缸液压缸又称为油缸,它是液压系统中的一种执行元件,其功能就是将液压能转变成直线往复式的机械运动。

一、液压缸的类型和特点液压缸的种类很多,其详细分类可见表4-2。

表4-2 常见液压缸的种类及特点图4-5双杆活塞缸下面分别介绍几种常用的液压缸。

1.活塞式液压缸活塞式液压缸根据其使用要求不同可分为双杆式和单杆式两种。

(1)双杆式活塞缸。

活塞两端都有一根直径相等的活塞杆伸出的液压缸称为双杆式活塞缸,它一般由缸体、缸盖、活塞、活塞杆和密封件等零件构成。

根据安装方式不同可分为缸筒固定式和活塞杆固定式两种。

如图4-5(a)所示的为缸筒固定式的双杆活塞缸。

它的进、出口布置在缸筒两端,活塞通过活塞杆带动工作台移动,当活塞的有效行程为l时,整个工作台的运动范围为3l,所以机床占地面积大,一般适用于小型机床,当工作台行程要求较长时,可采用图4-5(b)所示的活塞杆固定的形式,这时,缸体与工作台相连,活塞杆通过支架固定在机床上,动力由缸体传出。

这种安装形式中,工作台的移动范围只等于液压缸有效行程l的两倍(2l),因此占地面积小。

进出油口可以设置在固定不动的空心的活塞杆的两端,但必须使用软管连接。

由于双杆活塞缸两端的活塞杆直径通常是相等的,因此它左、右两腔的有效面积也相等,当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右两个方向的推力和速度相等。

当活塞的直径为D,活塞杆的直径为d,液压缸进、出油腔的压力为p1和p2,输入流量为q时,双杆活塞缸的推力F和速度v为:F=A(p1-p2)=π (D2-d2) (p1-p2) /4 (4-18)v=q/A=4q/π(D2-d2) (4-19) 式中:A为活塞的有效工作面积。

双杆活塞缸在工作时,设计成一个活塞杆是受拉的,而另一个活塞杆不受力,因此这种液压缸的活塞杆可以做得细些。

(2)单杆式活塞缸。

如图4-6所示,活塞只有一端带活塞杆,单杆液压缸也有缸体固定和活塞杆固定两种形式,但它们的工作台移动范围都是活塞有效行程的两倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章液压执行元件第一节液压马达一、液压马达的特点及分类液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。

但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。

例如:1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。

2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。

而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。

3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。

因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。

4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。

若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。

5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。

6.液压马达必须具有较大的起动扭矩。

所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。

由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。

液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。

通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。

高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。

此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。

低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。

液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。

二、液压马达的性能参数液压马达的性能参数很多。

下面是液压马达的主要性能参数:1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。

液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。

因为液压马达在工作中输出的转矩大小是由负载转矩决定的。

但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。

根据液压动力元件的工作原理可知,马达转速n、理论流量q i与排量V之间具有下列关系q i=nV (4-1)式中:q i为理论流量(m3/s);n为转速(r/min);V为排量(m3/s)。

为了满足转速要求,马达实际输入流量q大于理论输入流量,则有:q= q i+Δq (4-2)式中:Δq为泄漏流量。

ηv=q i/q=1/(1+Δq/q i)(4-3)所以得实际流量q=q i/ηv(4-4)2.液压马达输出的理论转矩根据排量的大小,可以计算在给定压力下液压马达所能输出的转矩的大小,也可以计算在给定的负载转矩下马达的工作压力的大小。

当液压马达进、出油口之间的压力差为ΔP,输入液压马达的流量为q,液压马达输出的理论转矩为T t,角速度为ω,如果不计损失,液压马达输入的液压功率应当全部转化为液压马达输出的机械功率,即:ΔP q=T tω(4-5)又因为ω=2πn,所以液压马达的理论转矩为:T t=ΔP·V/2π(4-6)式中:ΔP为马达进出口之间的压力差。

3.液压马达的机械效率由于液压马达内部不可避免地存在各种摩擦,实际输出的转矩T总要比理论转矩Tt小些,即:T=Ttηm(4-7)式中:ηm为液压马达的机械效率(%)。

4.液压马达的启动机械效率ηm 液压马达的启动机械效率是指液压马达由静止状态起动时,马达实际输出的转矩T0与它在同一工作压差时的理论转矩Tt之比。

即:ηm0=T/T t(4-8)液压马达的启动机械效率表示出其启动性能的指标。

因为在同样的压力下,液压马达由静止到开始转动的启动状态的输出转矩要比运转中的转矩大,这给液压马达带载启动造成了困难,所以启动性能对液压马达是非常重要的,启动机械效率正好能反映其启动性能的高低。

启动转矩降低的原因,一方面是在静止状态下的摩擦因数最大,在摩擦表面出现相对滑动后摩擦因数明显减小,另一方面也是最主要的方面是因为液压马达静止状态润滑油膜被挤掉,基本上变成了干摩擦。

一旦马达开始运动,随着润滑油膜的建立,摩擦阻力立即下降,并随滑动速度增大和油膜变厚而减小。

实际工作中都希望启动性能好一些,即希望启动转矩和启动机械效率大一些。

现将不同结构形式的液压马达的启动机械效率ηm0的大致数值列入表4-1中。

液压马达的结构形式启动机械效率ηm0/%齿轮马达老结构0.60~0.80新结构0.85~0.88叶片马达高速小扭矩型0.75~0.85轴向柱塞马达滑履式0.80~0.90非滑履式0.82~0.92曲轴连杆马达老结构0.80~0.85新结构0.83~0.90静压平衡马达老结构0.80~0.85新结构0.83~0.900.90~0.94多作用内曲线马达由横梁的滑动摩擦副传递切向力0.95~0.98传递切向力的部位具有滚动副马达居中,叶片马达较差,而齿轮马达最差。

5.液压马达的转速液压马达的转速取决于供液的流量和液压马达本身的排量V,可用下式计算:n t=q i/V (4-9)式中:n t为理论转速(r/min)。

由于液压马达内部有泄漏,并不是所有进入马达的液体都推动液压马达做功,一小部分因泄漏损失掉了。

所以液压马达的实际转速要比理论转速低一些。

n=n t·ηv (4-10)式中:n为液压马达的实际转速(r/min);ηv为液压马达的容积效率(%)。

6.最低稳定转速最低稳定转速是指液压马达在额定负载下,不出现爬行现象的最低转速。

所谓爬行现象,就是当液压马达工作转速过低时,往往保持不了均匀的速度,进入时动时停的不稳定状态。

液压马达在低速时产生爬行现象的原因是:(1)摩擦力的大小不稳定。

通常的摩擦力是随速度增大而增加的,而对静止和低速区域工作的马达内部的摩擦阻力,当工作速度增大时非但不增加,反而减少,形成了所谓“负特性”的阻力。

另一方面,液压马达和负载是由液压油被压缩后压力升高而被推动的,因此,可用图4-1(a)所示的物理模型表示低速区域液压马达的工作过程:以匀速v0推弹簧的一端(相当于高压下不可压缩的工作介质),使质量为m的物体(相当于马达和负载质量、转动惯量)克服“负特性”的摩擦阻力而运动。

当物体静止或速度很低时阻力大,弹簧不断压缩,增加推力。

只有等到弹簧压缩到其推力大于静摩擦力时才开始运动。

一旦物体开始运动,阻力突然减小,物体突然加速跃动,其结果又使弹簧的压缩量减少,推力减小,物体依靠惯性前移一段路程后停止下来,直到弹簧的移动又使弹簧压缩,推力增加,物体就再一次跃动为止,形成如图4-1(b)所示的时动时停的状态,对液压马达来说,这就是爬行现象。

图4-1液压马达爬行的物理模型(2)泄漏量大小不稳定。

液压马达的泄漏量不是每个瞬间都相同,它也随转子转动的相位角度变化作周期性波动。

由于低速时进入马达的流量小,泄漏所占的比重就增大,泄漏量的不稳定就会明显地影响到参与马达工作的流量数值,从而造成转速的波动。

当马达在低速运转时,其转动部分及所带的负载表现出的惯性较小,上述影响比较明显,因而出现爬行现象。

实际工作中,一般都期望最低稳定转速越小越好。

7.最高使用转速液压马达的最高使用转速主要受使用寿命和机械效率的限制,转速提高后,各运动副的磨损加剧,使用寿命降低,转速高则液压马达需要输入的流量就大,因此各过流部分的流速相应增大,压力损失也随之增加,从而使机械效率降低。

对某些液压马达,转速的提高还受到背压的限制。

例如曲轴连杆式液压马达,转速提高时,回油背压必须显著增大才能保证连杆不会撞击曲轴表面,从而避免了撞击现象。

随着转速的提高,回油腔所需的背压值也应随之提高。

但过分的提高背压,会使液压马达的效率明显下降。

为了使马达的效率不致过低,马达的转速不应太高。

8.调速范围液压马达的调速范围用最高使用转速和最低稳定转速之比表示,即:i=n max/n min(4-11)三、液压马达的工作原理常用的液压马达的结构与同类型的液压泵很相似,下面对叶片马达、轴向柱塞马达和摆动马达的工作原理作一介绍。

1.叶片马达图4-2所示为叶片液压马达的工作原理图。

图4-2叶片马达的工作原理图1~7—叶片 当压力为p 的油液从进油口进入叶片1和3之间时,叶片2因两面均受液压油的作用所以不产生转矩。

叶片1、3上,一面作用有压力油,另一面为低压油。

由于叶片3伸出的面积大于叶片1伸出的面积,因此作用于叶片3上的总液压力大于作用于叶片1上的总液压力,于是压力差使转子产生顺时针的转矩。

同样道理,压力油进入叶片5和7之间时,叶片7伸出的面积大于叶片5伸出的面积,也产生顺时针转矩。

这样,就把油液的压力能转变成了机械能,这就是叶片马达的工作原理。

当输油方向改变时,液压马达就反转。

当定子的长短径差值越大,转子的直径越大,以及输入的压力越高时,叶片马达输出的转矩也越大。

在图4-2中,叶片2、4、6、8两侧的压力相等,无转矩产生。

叶片3、7产生的转矩为T 1,方向为顺时针方向。

假设马达出口压力为零,则:p R R B r R BP r R T ⋅-=+•-=)(]2)()[(22222111 (4-12)式中:B 为叶片宽度;R 1为定子长半径;r 为转子半径;p 为马达的进口压力。

叶片1、5产生的转矩为T 2,方向为逆时针方向,则:p R R B T T T ⋅-=-=)(222121 (4-13)由式(4-12)、式(4-13)看出,对结构尺寸已确定的叶片马达,其输出转矩T 决定于输入油的压力。

由叶片泵的理论流量q i 的公式:q i =2πBn(R 12-R 22)得: n=q i /2πB(R 12-R 22) (4-14) 式中:q i 为液压马达的理论流量,q i =q ·ηv ;q 为液压马达的实际流量,即进口流量。

相关文档
最新文档