高三数学一轮复习14.变化率与导数学案
高考数学第一轮高效复习导学案-导数
![高考数学第一轮高效复习导学案-导数](https://img.taocdn.com/s3/m/baf6e6a449649b6648d747e2.png)
高考数学第一轮高效复习导学案导数及其应用1.了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2. 熟记八个基本导数公式(c,m x (m 为有理数),x x a e x x a x x log ,ln ,,,cos ,sin 的导数);掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.导数的应用价值极高,主要涉及函数单调性、极大(小)值,以及最大(小)值等,遇到有关问题要能自觉地运用导数.第一课时 导数概念与运算【学习目标】1.了解导数的定义、掌握函数在某一点处导数的几何意义——图象在该点处的切线的斜率;2.掌握幂函数、多项式函数、正弦函数、余弦函数、指数函数、对数函数的导数公式及两个函数的和、差、积、商的导数运算法则及简单复合函数的求导公式,并会运用它们进行求导运算;【考纲要求】导数为B 级要求【自主学习】1.导数的概念:函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比xy ∆∆的 ,即)(x f '= = . 2.导函数:函数y =)(x f 在区间(a, b)内 的导数都存在,就说)(x f 在区间( a, b )内 ,其导数也是(a ,b )内的函数,叫做)(x f 的 ,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值 ,就是)(x f 在0x 处的导数.3.导数的几何意义:设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的 .4.求导数的方法(1) 八个基本求导公式)('C = ;)('n x = ;(n∈Q) )(sin 'x = , )(cos 'x =)('x e = , )('x a =)(ln 'x = , )(log 'x a =(2) 导数的四则运算)('±v u =])(['x Cf = )('uv = ,)('vu = )0(≠v 【基础自测】1.在曲线y=x 2+1的图象上取一点(1,2)及附近一点(1+Δx ,2+Δy ),则xy ∆∆为 . 2.已知f(x)=sinx(cosx+1),则)(x f '= .3.设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是⎥⎦⎤⎢⎣⎡4,0π,则点P 横坐标的取值范围为 .4.曲线在y=53123+-x x 在x=1处的切线的方程为 . 5.设曲线y ax e =在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .[典型例析]例1.求函数y=12+x 在x 0到x 0+Δx 之间的平均变化率.例2. 求下列各函数的导数:(1);sin 25x xx x y ++= (2));3)(2)(1(+++=x x x y (3);4cos 212sin 2⎪⎭⎫ ⎝⎛--=x x y (4).1111x x y ++-=例3. 已知曲线y=.34313+x (1)求曲线在x=2处的切线方程;(2)求曲线过点(2,4)的切线方程.例4. 设函数bx ax x f ++=1)( (a,b∈Z ),曲线)(x f y =在点))2(,2(f 处的切线方程为y=3. (1)求)(x f 的解析式;(2)证明:曲线)(x f y =上任一点的切线与直线x=1和直线y=x 所围三角形的面积为定值,并求出此定值.[当堂检测]1. 函数y =ax 2+1的图象与直线y =x 相切,则a =2.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+△x ,2+△y ),则xy ∆∆为 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为4.设f (x )、g(x )分别是定义在R 上的奇函数和偶函数,当x <0时,()()()()f x g x f x g x ''+>0.且g(3)=0.则不等式f (x )g(x )<0的解集是________________5.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数有 个。
(聚焦典型)2014届高三数学一轮复习《变化率与导数、导数的运算》理 新人教B版
![(聚焦典型)2014届高三数学一轮复习《变化率与导数、导数的运算》理 新人教B版](https://img.taocdn.com/s3/m/5b0838c2da38376baf1fae72.png)
[第13讲 变化率与导数、导数的运算](时间:45分钟 分值:100分)基础热身1.[2013·江西卷] 若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B .(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0) 2.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =2x -3D .y =-2x -23.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-14.y =cos x 1-x的导数是( )A .y ′=cos x +sin x +x sin x(1-x )2B .y ′=cos x -sin x +x sin x(1-x )2C .y ′=cos x -sin x +x sin x1-xD .y ′=cos x +sin x -x sin x(1-x )2能力提升5.[2013·沈阳模拟] 若函数y =x 33-x 2+1(0<x <2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )A.π4B.π6C.5π6D.3π46.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a等于( )A .-2B .-1C .1D .2 7.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .2158.若曲线y =x -12在点⎝⎛⎭⎪⎫a ,a -12处的切线与两个坐标轴围成的三角形的面积为18,则a =( )A .64B .32C .16D .89.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π4B.⎣⎢⎡⎭⎪⎫π4,π2C.⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎭⎪⎫3π4,π10.[2013·深圳模拟] 已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,则x 0的值为________.11.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________.12.[2013·豫北六校联考] 已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为________.13.已知f (x )=e x -e-x e x +e-x ,则f ′(0)=________.14.(10分)求下列函数的导数:(1)y =sin ⎝ ⎛⎭⎪⎫π4-x +cos ⎝ ⎛⎭⎪⎫π4+x ; (2)y =e 1-2x+ln(3-x );(3)y =ln 1-x1+x.15.(13分)设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f (x )的解析式;(2)证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值.难点突破16.(12分)用导数方法求和:1+2x+3x2+…+nx n-1(x≠0,1,n∈N*).课时作业(十三)【基础热身】1.C [解析] f ′(x )=2x -2-4x >0,即x 2-x -2x>0.∵x >0,∴(x -2)(x +1)>0,∴x >2.2.A [解析] ∵y ′=⎪⎪⎪2(x +2)2x =-1=2,∴切线方程为y =2x +1. 3.A [解析] ∵y ′=2x +a⎪⎪⎪)x =0=a ,∴a =1,(0,b )在切线x -y +1=0上,∴b =1.4.B [解析] y ′=-(1-x )sin x -(-1)cos x (1-x )2=cos x -sin x +x sin x(1-x )2. 【能力提升】5.D [解析] y ′=x 2-2x ,当0<x <2时,-1≤y ′<0,即-1≤tan α<0,故3π4≤α<π,α的最小值为3π4.6.D [解析] f ′(x )=sin x +x cos x ,f ′⎝ ⎛⎭⎪⎫π2=1,即函数f (x )=x sin x +1在x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以⎝ ⎛⎭⎪⎫-a 2×1=-1,解得a =2.7.C [解析] f ′(x )=[x ·(x -a 1)(x -a 2)…(x -a 8)]′=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′,所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.8.A [解析] y ′=-12x -32,所以k =-12a -32,切线方程为y -a -12=-12a -32(x -a ).令x =0,得y =32a -12;令y =0,得x =3a .所以三角形的面积是S =12·3a ·32a -12=94a 12=18,解得a =64.9.D [解析] 由于y ′=⎝ ⎛⎭⎪⎫4e x +1′=-4e x(e x +1)2,而α为曲线在点P 处的切线的倾斜角,则k =tan α=-4e x (e +1)<0.又(e x +1)2≥(2e x )2=4e x ,当且仅当e x=1,即x =0时,取等号,那么k =tan α=-4e x (e x +1)2≥-1,即-1≤k <0,那么对应的α∈⎣⎢⎡⎭⎪⎫3π4,π. 10.0或-23 [解析] 由题意2x 0=-3x 20,解得x 0=0或-23.11.ln2-1 [解析] y ′=1x ,令1x =12得x =2,故切点(2,l n2),代入直线方程,得ln2=12×2+b ,所以b =ln2-1.12.2 [解析] 函数y =ln(x +a )的导数为y ′=1x +a ,设切点(x 0,y 0),则切线方程为y -ln(x 0+a )=1x 0+a (x -x 0),即y =x +1,所以⎩⎪⎨⎪⎧1x 0+a =1,ln (x 0+a )-x 0x 0+a=1,解得a =2.13.1 [解析] ∵f ′(x )=⎝ ⎛⎭⎪⎫e x -e -x e x +e -x ′=⎝ ⎛⎭⎪⎫e 2x -1e 2x +1′=⎝ ⎛⎭⎪⎫1-2e 2x +1′=2(e 2x +1)-2·e 2x·2=4e 2x(e 2x +1)2,∴f ′(0)=44=1. 14.解:(1)y ′=cos ⎝ ⎛⎭⎪⎫π4-x ·⎝ ⎛⎭⎪⎫π4-x ′-sin ⎝ ⎛⎭⎪⎫π4+x ·⎝ ⎛⎭⎪⎫π4+x ′=-cos ⎝ ⎛⎭⎪⎫π4-x -sin ⎝ ⎛⎭⎪⎫π4+x =-2sin ⎝ ⎛⎭⎪⎫π4+x . (2)y ′=e 1-2x ·(1-2x )′+13-x ·(3-x )′=-2e 1-2x+1x -3.(3)∵y =ln(1-x )-ln(1+x ),∴y ′=11-x ·(1-x )′+11+x (1+x )′=1x -1+1x +1=2xx 2-1.15.解:(1)f ′(x )=a -1(x +b )2,于是⎩⎪⎨⎪⎧2a +12+b =3,a -1(2+b )2=0,解得⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧a =94,b =-83.因为a ,b ∈Z ,故f (x )=x +1x -1.(2)证明:已知函数y 1=x ,y 2=1x都是奇函数.所以函数g (x )=x +1x也是奇函数,其图象是以原点为中心的中心对称图形.而f (x )=x-1+1x -1+1,可知函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点⎝ ⎛⎭⎪⎫x 0,x 0+1x 0-1. 由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=⎣⎢⎡⎦⎥⎤1-1(x 0-1)2(x -x 0).令x =1得y =x 0+1x 0-1,切线与直线x =1交点为⎝ ⎛⎭⎪⎫1,x 0+1x 0-1.令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1).从而所围三角形的面积为12⎪⎪⎪⎪⎪⎪x 0+1x 0-1-1|2x 0-1-1|=12⎪⎪⎪⎪⎪⎪2x 0-1|2x 0-2|=2.所以,所围三角形的面积为定值2. 【难点突破】16.解:逆用导数公式,把1+2x +3x 2+…+nx n -1转化为等比数列{x n}的前n 项和的导数,求解和式的导数即可.1+2x +3x 2+…+nx n -1=x ′+(x 2)′+(x 3)′+…+(x n )′=(x +x 2+x 3+…+x n)′ =⎣⎢⎡⎦⎥⎤x (1-x n )1-x ′=⎝ ⎛⎭⎪⎫x -x n +11-x ′ =[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )21-(n+1)x n+nx n+1=(1-x)2。
2020高考数学理科大一轮复习导学案《变化率与导数、导数的计算》含答案
![2020高考数学理科大一轮复习导学案《变化率与导数、导数的计算》含答案](https://img.taocdn.com/s3/m/e2c38699f705cc175527097d.png)
第十节变化率与导数、导数的计算知识点一 导数的概念1.函数y =f (x )在x =x 0处的导数 称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. 2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).3.函数f (x )的导函数称函数f ′(x )=lim Δx→0f (x +Δx )-f (x )Δx为f (x )的导函数.1.某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( A )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).2.函数f (x )=x 2在区间[1,2]上的平均变化率为3,在x =2处的导数为4.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3,在x =2处的导数为f ′(2)=2×2=4.3.(2018·全国卷Ⅱ)曲线y =2ln(x +1)在点(0,0)处的切线方程为y =2x . 解析:∵y =2ln(x +1),∴y ′=2x +1.当x =0时,y ′=2,∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 知识点二 导数的运算1.几种常见函数的导数2.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.4.函数y =x cos x -sin x 的导数为( B ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:y ′=(x cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 5.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( B ) A .e 2 B .e C.ln22D .ln2解析:f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.1.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现如下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .2.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.考向一 导数的运算【例1】 求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ; (3)y =cos x e x ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 【解】 (1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x. (4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2 =12x sin(4x +π)=-12x sin4x ,∴y ′=-12sin4x -12x ·4cos4x =-12sin4x -2x cos4x .(1)对于复杂函数的求导,首先应利用代数、三角恒等变换等变形规则对函数解析式进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.(2)利用公式求导时要特别注意除法公式中分子的符号,不要与求导的乘法公式混淆.(1)函数y =sin xx 的导数为y ′=x cos x -sin x x 2. (2)已知f (x )=(x +1)(x +2)(x +a ),若f ′(-1)=2,则f ′(1)=26. (3)函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)-ln x ,则f ′(2)的值是-74.解析:(1)∵y =sin xx ,∴y ′=x (sin x )′-x ′sin x x 2=x cos x -sin xx 2.(2)f (x )=(x +1)(x +2)(x +a )=(x 2+3x +2)(x +a )=x 3+(a +3)x 2+(3a +2)x +2a ,所以f ′(x )=3x 2+2(a +3)x +3a +2,所以f ′(-1)=3×(-1)2+2(a +3)×(-1)+3a +2=2,解得a =3,所以f ′(x )=3x 2+12x +11,所以f ′(1)=3×12+12×1+11=26.(3)∵f (x )=x 2+3xf ′(2)-ln x ,∴f ′(x )=2x +3f ′(2)-1x ,令x =2,得f ′(2)=4+3f ′(2)-12,解得f ′(2)=-74. 考向二 导数的几何意义方向1 已知切点求切线方程【例2】 (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x【解析】 解法1:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-x )=-f (x ),所以(-x )3+(a -1)·(-x )2+a (-x )=-[x 3+(a -1)x 2+ax ],所以2(a -1)x 2=0,因为x ∈R ,所以a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.解法2:因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以f (-1)+f (1)=0,所以-1+a -1-a +(1+a -1+a )=0,解得a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.【答案】 D 方向2 求切点坐标【例3】 设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为________.【解析】 y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).【答案】 (1,1)方向3 未知切点的切线问题【例4】 (1)(2019·西安八校联考)曲线y =x 3上一点B 处的切线l 交x 轴于点A ,△OAB (O 为原点)是以∠A 为顶角的等腰三角形,则切线l 的倾斜角为( )A .30°B .45°C .60°D .120°(2)(2019·广州市调研测试)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为________.【解析】 (1)解法1:因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A (23x 0,0).易知线段OB 的垂直平分线方程为y -x 302=-1x 20(x -x 02),根据线段OB 的垂直平分线过点A (23x 0,0)可得-x 302=-1x 20(23x 0-x 02),解得x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.故选C. 解法2:因为y =x 3,所以y ′=3x 2.设点B (x 0,x 30)(x 0≠0),则k l =3x 20,所以切线l 的方程为y -x 30=3x 20(x -x 0).取y =0,则x =23x 0,所以点A (23x 0,0).由|OA |=|AB |,得4x 209=x 209+x 60,又x 0≠0,所以x 20=33,所以k l =3x 20=3,故切线l 的倾斜角为60°.故选C.(2)由y =x ln x 得,y ′=ln x +1.设直线y =kx -2与曲线y =x ln x 相切于点P (x 0,y 0),则切线方程为y -y 0=(ln x 0+1)(x -x 0),又直线y =kx -2恒过点(0,-2),所以点(0,-2)在切线上,把(0,-2)以及y 0=x 0ln x 0代入切线方程,得x 0=2,故P (2,2ln2).把(2,2ln2)代入直线的方程y =kx -2,得k =1+ln2.【答案】 (1)C (2)1+ln21.与切线有关问题的处理策略(1)已知切点A (x 0,y 0)求斜率k ,即求该点处的导数值,k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .,(3)求过某点M (x 1,y 1)的切线方程时,需设出切点A (x 0,f (x 0)),则切线方程为y -f (x 0)=f ′(x 0)(x -x 0),再把点M (x 1,y 1)代入切线方程,求x 0.2.根据导数的几何意义求参数的值的思路一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.1.(方向1)已知函数f (x )是奇函数,当x <0时,f (x )=x ln(-x )+x +2,则曲线y =f (x )在x =1处的切线方程为( B )A .y =2x +3B .y =2x -3C .y =-2x +3D .y =-2x -3解析:设x >0,则-x <0,∵f (x )为奇函数,当x <0时,f (x )=x ln(-x )+x +2,∴f (x )=-f (-x )=-(-x ln x -x +2)=x ln x +x -2.∴f (1)=-1,f ′(x )=ln x +2.∴f ′(1)=2,∴曲线y =f (x )在x =1处的切线方程是y =2x -3.故选B.2.(方向2)设a ∈R ,函数f (x )=e x +a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数.若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( A )A .ln2B .-ln2 C.ln22D .-ln22解析:对f (x )=e x +a ·e -x 求导得f ′(x )=e x -a e -x ,又f ′(x )是奇函数,故f ′(0)=1-a =0,解得a =1,故f ′(x )=e x -e -x .设切点坐标为(x 0,y 0),则f ′(x 0)=e x 0-e -x 0=32,得e x 0=2或e x 0=-12(舍去),得x 0=ln2.3.(方向3)经过原点(0,0)作函数f (x )=x 3+3x 2的图象的切线,则切线方程为y =0或9x +4y =0.解析:当(0,0)为切点时,f ′(0)=0,故切线方程为y =0;当(0,0)不为切点时,设切点为P (x 0,x 30+3x 20)(x 0≠0),则切线方程为y -(x 30+3x 20)=(x -x 0)(3x 20+6x 0),因为切线过原点,所以x 30+3x 20=3x 30+6x 20,所以x 0=-32,此时切线方程为9x +4y =0.典例 若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.【分析】 分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b 的值.【解析】 解法1:求得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2),则k =1x 1=1x 2+1,所以x 2+1=x 1. 又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1,所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln2,所以b =y 1-kx 1=2-ln2-1=1-ln2.解法2:设直线y =kx +b 与y =ln x +2的切点坐标为A (x 1,ln x 1+2),则在点A 处的切线方程为y -(ln x 1+2)=1x 1(x -x 1),即为y =1x 1x +ln x 1+1 ①,设直线y =kx +b 与y =ln(x +1)的切点坐标为B (x 2,ln(x 2+1)),则在点B 处的切线方程为y -ln(x 2+1)=1x 2+1(x -x 2),即为y =1x 2+1x +ln(x 2+1)-x 2x 2+1②,由①②表示同一直线,则⎩⎨⎧ x 1=x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,则b =ln 12+1=1-ln2.【答案】 1-ln2已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =8.解析:法1:∵y =x +ln x ,∴y ′=1+1x ,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1 消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.法2:同法1得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎨⎧ x 0=-12,a =8.。
数学高中变化率教案
![数学高中变化率教案](https://img.taocdn.com/s3/m/05ae4498c0c708a1284ac850ad02de80d5d80646.png)
数学高中变化率教案
教学目标:
1. 理解变化率的概念。
2. 掌握求导数的方法。
3. 能够运用导数分析函数的变化率。
教学重点:
1. 变化率的定义和意义。
2. 求导数的方法和思路。
3. 利用导数分析函数的变化。
教学难点:
1. 求导数过程中的细节和技巧。
2. 应用导数解决实际问题。
教学准备:
1. 彩色板书笔和黑板。
2. 教学PPT。
3. 示例题目和练习题。
教学过程:
一、导入(5分钟)
教师简要介绍变化率的概念,并举几个生活中的实例引导学生思考。
二、理论学习(15分钟)
1. 利用PPT介绍导数的概念和性质。
2. 分析导数的计算方法和求导的基本规则。
3. 通过示例解析导数的实际应用。
三、练习与讨论(20分钟)
1. 教师布置几道导数计算的练习题,让学生尝试解答。
2. 学生互相讨论和分享解题思路,澄清疑惑。
四、小结与展示(5分钟)
教师总结本节课学习的重点内容,强调变化率的重要性,并展示几个导数应用的例题。
五、课堂作业(5分钟)
布置相关的作业题目,巩固学生对导数的理解和运用能力。
教学反思:
本节课注重引导学生理解变化率的概念,并通过实例和练习加深对导数的认识。
在教学过程中,要注重培养学生的分析和解决问题的能力,引导他们应用导数解决实际问题,提升数学思维能力。
2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)
![2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)](https://img.taocdn.com/s3/m/64d435cc541810a6f524ccbff121dd36a22dc451.png)
专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
高三数学一轮复习精品教案2:变化率与导数、导数的计算教学设计
![高三数学一轮复习精品教案2:变化率与导数、导数的计算教学设计](https://img.taocdn.com/s3/m/9bafff860722192e4436f65f.png)
第1节变化率与导数、导数的计算1.导数的概念(1)函数y=f(x)在x=x0处的导数:①定义:称函数y=f(x)在x=x0处的瞬时变化率_f(x0+Δx)-f(x0)Δx=_ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=ΔyΔx=_f(x0+Δx)-f(x0)Δx.②几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率.(瞬时速度就是位移函数s(t)对时间t的导数)相应地,切线方程为y-f(x0)=f′(x0)(x-x0).(2)函数f(x)的导函数:称函数f′(x)=_f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式3.导数的运算法则(1)『f (x )±g (x )』′=f ′(x )±g ′(x ); (2)『f (x )·g (x )』′=f ′(x )g (x )+f (x )g ′(x ); (3)『f (x )g (x )』′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数设u =v (x )在点x 处可导,y =f (u )在点u 处可导,则复合函数f 『v (x )』在点x 处可导,且f ′(x )=f ′(u )·v ′(x ),即y ′x =y ′u ·u ′x .1.(人教A 版教材习题改编)某汽车的路程函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,汽车的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2『解析』 由题意知,汽车的速度函数为v (t )=s ′(t )=6t 2-gt ,则v ′(t )=12t -g ,故当t =2 s 时,汽车的加速度是v ′(2)=12×2-10=14 m/s 2. 『答案』 A2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x『解析』 f ′(x )=cos x -x sin x -cos x =-x sin x . 『答案』 B3.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 『解析』 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e. 『答案』 B4.(2013·青岛模拟)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15『解析』 ∵y =x 3+11,∴y ′=3x 2,∴y ′|x =1=3,∴曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 『答案』 C5.(2012·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 『解析』 ∵y ′=3x 2-1,∴y ′|x =1=3×12-1=2.∴所求切线方程为y -3=2(x -1),即2x -y +1=0. 『答案』 2x -y +1=0求下列函数的导数: (1)y =e x sin x ; (2)y =x (x 2+1x +1x 3);(3)y =x -sin x 2cos x2;(4)y =ln (2x +3)x 2+1.『思路点拨』 (1)利用积的导数运算法则求解,(2)(3)先化简再求导,(4)利用商的导数运算法则和复合函数求导法则求解.『尝试解答』 (1)y ′=(e x )′sin x +e x (sin x )′=e x sin x +e x cos x .(2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.(3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)y ′=(ln (2x +3))′(x 2+1)-ln (2x +3)(x 2+1)′(x 2+1)2=(2x +3)′2x +3·(x 2+1)-2x ln (2x +3)(x 2+1)2=2(x 2+1)-2x (2x +3)ln (2x +3)(2x +3)(x 2+1)2.1.本题在解答过程易出现商的求导中,符号判定错误. 2.求函数的导数的方法(1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导;(3)复杂公式:通过分子上凑分母,化为简单分式的和、差,再求导. (4)复合函数:确定复合关系,由外向内逐层求导.(5)不能直接求导的:适当恒等变形,转化为能求导的形式再求导.求下列函数的导数:(1)y =(1+x )(1+1x); (2)y =3x e x -ln x +e ; (3)y =3-x +e 2x .『解析』 (1)∵y =(1+x )(1+1x)=2+x -12+x 12,∴y ′=-12x -32+12x -12.(2)y ′=(3x )′e x +3x (e x )′-1x =3x e x ln 3+3x e x -1x=3x e x ln(3e)-1x.(3)y ′=12(3-x )-12(3-x )′+e 2x (2x )′=-12(3-x )-12+2e 2x .已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1,C 2都相切,求直线l 的方程. 『思路点拨』 从直线l 与C 1,C 2都相切入手,分别求直线l 的方程,通过比较系数求解.『尝试解答』 设l 与C 1相切于点P (x 1,x 21),与C 2相切于Q (x 2,-(x 2-2)2). 对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1), 即y =2x 1x -x 21, 对于C 2:y ′=-2(x -2), 则与C 2相切于点Q 的切线方程为 y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4. ∵两切线重合,∴2x 1=-2(x 2-2),且-x 21=x 22-4.解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 方程为y =0或y =4x -4.1.导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率.2.在求切线方程时,应先判断已知点Q (a ,b )是否为切点,若已知点Q (a ,b )不是切点,则应求出切点的坐标,其求法如下:(1)设出切点的坐标P (x 0,y 0);(2)解方程组⎩⎨⎧y 0=f (x 0),f ′(x 0)=f (x 0)-bx 0-a ,求出切点坐标; (3)利用点斜式写出切线方程.若函数f (x )=e x cos x ,则此函数图象在点(1,f (1))处的切线的倾斜角为( )A .0B .锐角C .直角D .钝角『解析』 由已知得:f ′(x )=e x cos x -e x sin x =e x (cos x -sin x ).∴f ′(1)=e(cos 1-sin 1).∵π2>1>π4.而由正余弦函数性质可得cos 1<sin 1. ∴f ′(1)<0,即f (x )在(1,f (1))处的切线的斜率k <0. ∴切线倾斜角是钝角. 『答案』 D设函数f (x )=ax +1x +b(a ,b ∈Z ),曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求y =f (x )的解析式;(2)证明曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 『思路点拨』『尝试解答』 (1)f ′(x )=a -1(x +b )2,于是⎩⎨⎧2a +12+b =3,a -1(2+b )2=0,解得{a =1,b =-1,或⎩⎨⎧a =94,b =-83. ∵a ,b ∈Z ,故f (x )=x +1x -1. (2)在曲线上任取一点(x 0,x 0+1x 0-1).由f ′(x 0)=1-1(x 0-1)2知,过此点的切线方程为y -x 20-x 0+1x 0-1=『1-1(x 0-1)2』(x -x 0).令x =1,得y =x 0+1x 0-1,切线与直线x =1的交点为(1,x 0+1x 0-1).令y =x ,得y =2x 0-1,切线与直线y =x 的交点为(2x 0-1,2x 0-1). 直线x =1与直线y =x 的交点为(1,1). 从而所围三角形的面积为12|x 0+1x 0-1-1|·|2x 0-1-1|=12|2x 0-1||2x 0-2|=2. ∴所围三角形的面积为定值2.1.切点(2,f (2))既在切线上,又在曲线f (x )上,从而得到关于a ,b 的方程组.2.当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,切线方程为x =x 0;当切点坐标不知道时,应首先设出切点坐标,再求解.(2013·惠州质检)已知f (x )=ln x ,g (x )=13x 3+12x 2+mx +n ,直线l 与函数f (x ),g (x )的图象都相切于点(1,0).(1)求直线l 的方程; (2)求函数g (x )的解析式.『解析』 (1)∵l 是f (x )=ln x 在点(1,0)处的切线,∴其斜率k =f ′(1)=1, 因此直线l 的方程为y =x -1. (2)又l 与g (x )相切于点(1,0), ∴g ′(1)=1,且g (1)=0.因此⎩⎨⎧13+12+m +n =0,1+1+m =1,∴⎩⎨⎧m =-1,n =16,所以函数g (x )=13x 3+12x 2-x +16.一个区别曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: (1)“在”曲线上一点处的切线问题,先对函数求导,代入点的横坐标得到斜率. (2)“过”曲线上一点的切线问题,此时该点未必是切点,故应先设切点,求切点坐标. 三个防范1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.要正确理解直线与曲线相切和直线与曲线只有一个交点的区别. 3.正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.从近两年的高考试题来看,求导公式和运算法则,以及导数的几何意义是高考的热点,题型既有选择题、填空题,又可做为解答题的一问,难度中、低档为主,除了考查导数运算,几何意义,还常与函数相关知识渗透交汇命题.易错辨析之五 求导时忽视函数定义域致误(2011·江西高考)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)『错解』 ∵f ′(x )=2x -2-4x =2x 2-2x -4x,∴由f ′(x )>0,可得x 2-x -2x >0,解得x >2或-1<x <0,故选B. 『答案』 B错因分析:(1)忽视函数的定义域(0,+∞).(2)记错导数公式(ln x )′=1x ,导致盲目作答致错.防范措施:(1)树立函数定义域优先意识. (2)熟练掌握导数的计算公式与运算法则. 『正解』 函数f (x )的定义域为(0,+∞),∵f ′(x )=2x -2-4x =2x 2-2x -4x ,∴由f ′(x )>0,可得x 2-x -2>0,∴x >2. 『答案』 C1.(2013·咸阳模拟)函数y =ln x (x >0)的图象与直线y =12x +a 相切,则a 等于( )A .2ln 2B .ln 2+1C .ln 2D .ln 2-1『解析』 设切点为(x 0,y 0),∵y ′=1x ,∴y ′|x =x 0=1x 0=12,∴x 0=2,y 0=ln 2,又点(2,ln 2)在直线y =12x +a 上,∴ln 2=12×2+a ,∴a =ln 2-1.『答案』 D2.(2012·课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.『解析』 ∵y =x (3ln x +1),∴y ′=3ln x +1+x ·3x=3ln x +4,∴k =y ′|x =1=4,∴所求切线的方程为y -1=4(x -1),即y =4x -3. 『答案』 y =4x -3。
(完整版)高考数学第一轮复习教案——导数
![(完整版)高考数学第一轮复习教案——导数](https://img.taocdn.com/s3/m/858440eab7360b4c2f3f6462.png)
高考复习—-导数复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.2熟记基本导数公式,掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数.4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合.掌握复合函数的求导法则,并会用法则解决一些简单问题。
三、基础知识梳理:导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
4.瞬时速度物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 5.导数的定义导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据. 对导数的定义,我们应注意以下三点:(1)△x 是自变量x 在 0x 处的增量(或改变量).(2)导数定义中还包含了可导或可微的概念,如果△x→0时,xy∆∆有极限,那么函数y=f (x )在点0x 处可导或可微,才能得到f (x)在点0x 处的导数.(3)如果函数y=f (x)在点0x 处可导,那么函数y=f (x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x |在点x=0处连续,但不可导.由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行:(1)求函数的增量)()(00x f x x f y -∆+=∆; (2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(00; (3)取极限,得导数x y x f x ∆∆=→∆00lim )('。
2014届高三数学(理)一轮专题复习课件 变化率与导数、导数的计算
![2014届高三数学(理)一轮专题复习课件 变化率与导数、导数的计算](https://img.taocdn.com/s3/m/23976a3cf111f18583d05a3c.png)
方法点睛
①熟记基本初等函数的导数公式及四则运算
法则是正确求导的基础;②必要时对于某些求导问题可先化 简函数解析式再求导.
变式训练1
n x
求下列函数的导数:
cosx (1)y=x e ;(2)y= ;(3)y=exlnx;(4)y=(x+1)2(x- sinx 1).
§3.1
变化率与导数、导数的计算
[高考调研
明确考向]
考纲解读 •了解导数概念的实际背景. •理解导数的几何意义. 1 •能根据导数的定义求函数y=c,y=x,y=x ,y= 的导数. x
2
•能利用给出的基本初等函数的导数公式和导数的四则运算法 则求简单的函数的导数. •能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数.
+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1, 因此经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0 或y+2=0.
方法点睛
首先要分清是求曲线y=f(x)在某处的切线还
是求过某点曲线的切线.①求曲线y=f(x)在x=x0处的切线方 程可先求f′(x0),利用点斜式写出所求切线方程;②求过某 点的曲线的切线方程要先设切点坐标,求出切点坐标后再写 切线方程.
1 x 解析:(1)y′= · 2x= 2 . 2 x2+1 x +1 (2)y′=(2sin2x)(cos2x)×2=2sin4x. (3)y′=(-e-x)sin2x+e-x(cos2x)×2=e-x(2cos2x- sin2x). 1 1 x (4)y′= 2x= 2. 2· 2· 1+x 1+x 2 1+x
fx2-fx1 1 答案:□ x2-x1 Δy 4 lim □ → Δx Δx 0
[精品]新高三高考数学一轮复习14.1导数的概念优质课教案
![[精品]新高三高考数学一轮复习14.1导数的概念优质课教案](https://img.taocdn.com/s3/m/5bc1d4e00c22590102029de0.png)
14、导数及其应用 14.1导数的概念【知识网络】1.经历由平均变化率过渡到瞬时变化率的过程. 2.了解导数概念的实际背景,知道瞬时变化率就是导数. 3.体会导数的思想及其内涵.4.通过函数图象直观地理解导数的几何意义. 【典型例题】[例1](1)曲线y=sinx 上两点M (2π,1),N (π,0),则直线MN 的斜率是( )A .1B .-1C .-2πD .-π2(2)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= (3)在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3B .2C .1D .0(4)已知f(x)=x 3+2x 2,则xx f x x f ∆-∆+)()(= .(5)曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 .[例2] 已知f(x)=1+1x,1]上的平均变化率;(1)求f(x)在区间[1,2],[12(2)求f(x)在x=1处的瞬时变化率。
[例3] 如图,已知一个倒置的正四棱锥形容器的底面边长为10cm,高为10m,现用一根水管以9ml/s的速度向容器里注水.(1)将容器中水的高度h表示为时间t的函数,并作出其图象.(2)求第二个1 s 内水面高度的平均变化率.[例4] 设函数2xf分别在1x、2x处取得极小值、极大=xx(3+3)+-值.xoy 平面上点A 、B 的坐标分别为))(,(11x f x 、))(,(22x f x ,求点A 、B 的坐标 .【课内练习】1.已知函数f(x)=x 2+2x -1图象上一点P (1,2),点Q 也是图象上一点,且Q 位于点P 的右边,若点Q 无限逼近P ,则直线PQ 的斜率( ) A .不断增大且为负 B .不断增大且为正 C .不断减小且为正D .不断减小且为负2. 已知函数y=x 2+1的图象上一点A (1,2)及其邻近一点B (1+△x,2+△y),则直线AB的斜率是( ) A .2B .2xC .2+△xD .2+(△x)23. 一质点做直线运动,由始点经过ts 后的距离为s=14t 4-4t 3+16t 2,则速度为0的时刻是 ( )A .4s 末B .8s 末C .0s 末与8 s 末D .C .0s 末,4s 末,8 s 末4. 满足f ′(x)=f(x)的函数是 ( )A .f (x)=1-xB .f (x)=xC .f (x)=0D .f (x)=1 5.直线y=-2x +1上两点的横坐标增量△y 与纵坐标增量△x 的比值是 .6.一质点的运动方程是S=2t 2+1(位移单位:m ,时间单位:s),则平均变化率是 .7.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ⎧⎫⎨⎬+⎩⎭的前n 项和的公式是 . 8.设函数y=f(x)=x 2-1,(1) 当自变量x 由1变到1.1时,求函数值增量△y ; (2) 当自变量x 由1变到1.1时,求函数值的平均变化率; (3) 求该函数图象在点(1,y 0)处的切线方程.9.已知抛物线y=ax 2+bx +c(a ≠0)经过点(1,1),且在点(2,-1)处的切线与直线y=x -3重合,求a,b,c 的值.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120).12800080y x x x =-+<≤已知甲、乙两地相距100千米。
高中数学变化率和导数的概念学案
![高中数学变化率和导数的概念学案](https://img.taocdn.com/s3/m/ed13b25e0640be1e650e52ea551810a6f524c83e.png)
3。
1.1 变化率和导数的概念(学案)一、知识梳理1.函数的平均变化率:一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ∆=-, 10y y y ∆=-10()()f x f x =-00()()f x x f x =+∆-,则当0x ∆≠时,商称作函数()y f x =在区间00[,]x x x +∆(或00[,]x x x +∆)的平均变化率.注:这里x ∆,y ∆可为正值,也可为负值.但0x ∆≠,y ∆可以为0.2.函数的瞬时变化率、函数的导数:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ∆时,函数值相应的改变00()()y f x x f x ∆=+∆-.如果当x ∆趋近于0时,平均变化率趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率.“当x ∆趋近于零时,00()()f x x f x x +∆-∆趋近于常数l ”可以用符号“→"记作:“当0x ∆→时,”,或记作“000()()lim x f xx f x l x ∆→+∆-=∆”,符号“→"读作“趋近于".函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ∆→时,000()()()f x x f x f x x +∆-'→∆”或“”.3.可导与导函数:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或xy '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数.二、典例解析探究点一 平均变化率的求法例1、求2()21y f x x ==+在区间[]00,x x x +∆上的平均变化率,并求当011,2x x =∆=时平均变化率的值。
1.1变化率与导数导学案
![1.1变化率与导数导学案](https://img.taocdn.com/s3/m/7f78ccff9e31433239689316.png)
3、利用导数的定义求导,步骤为:
第一步,求函数的增量 ;
第二步:求平均变化率 ;
第三步:取极限得导数 .
教师精选编制内容
针对目标训练(用时10-20分钟)
【针对训练】
1、质点运动动规律 ,则在时间 中,相应的平均速度为()
A. B.
C. D.
2、设函数 在 附近有定义,且有 ( 为常数)则
1.1变化率与导数
学生明确内容
学习目标
1、了解导数概念的实际背景;
2、会求函数在某一点附近的平均变化率;
3、会利用导数的定义求函数在某处的导数。
重点难点
教学重点:准确求解函数的平均变化率
教学难点:理解导数的概念以及求导数
易混淆知识点
教师编制内容
生成问题预习提纲
【自主学习】
1、平均变化率:_______________=_______
设 , 是数轴上的一个定点,在数轴 上另取一点 , 与 的差记为 ,即 =或者 =, 就表示从 到 的变化量或增量,相应地,函数的变化量或增量记为 ,即 =;如果它们的比值 ,则上式就表示为,此比值就称为平均变化率.
反思:所谓平均变化率也就是的增量与的增量的比值.
2.导数的概念
从函数 )在 处的瞬时变化率是:
A. 上的平均变化率为__
4、一质点运动规律是 (单位: (米) (秒)),则在 秒时的瞬时速度估计是__
5、函数 在 =1处的导数为__
师生共同完成内容
1、问题梳理2、归纳小结
1.平均变化率的概念
2.函数的瞬时变化率
3.函数在某点处的导数
学生自主完成
听课所得
高考数学一轮复习变化率与导数、导数的计算
![高考数学一轮复习变化率与导数、导数的计算](https://img.taocdn.com/s3/m/430fb27f59fafab069dc5022aaea998fcc224073.png)
第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.。
高中数学变化率与导数 学案(新人教A版选修1-1)
![高中数学变化率与导数 学案(新人教A版选修1-1)](https://img.taocdn.com/s3/m/8839ba98fd0a79563d1e7218.png)
1.1.1变化率问题学案【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。
【学习重点】通过实例,让学生明白变化率在实际生活中的需要,探究和体验平均变化率的实际意义和数学意义;1. 掌握平均变化率的概念,体会逼近的思想和用逼近的思想思考问题的方法; 【学习难点】平均变化率的概念.【自学点拨】一.阅读章引言,并思考章引言写了几层意思? 二、问题提出问题1气球膨胀率问题:气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是__________. 如果将半径r 表示为体积V 的函数,那么___________. ⑴ 当V 从0增加到1时,气球半径增加了___________. 气球的平均膨胀率为___________.⑵ 当V 从1增加到2时,气球半径增加了___________. 气球的平均膨胀率为___________.可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? ___________. 问题2 高台跳水问题:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在怎样的函数关系?在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系___________.)如何计算运动员的平均速度?并分别计算0≤t ≤0.5,1≤t ≤2,1.8≤t ≤2,2≤t ≤2.2,时间段里的平均速度. 思考计算:5.00≤≤t 和21≤≤t 的平均速度 在5.00≤≤t 这段时间里,___________.; 在21≤≤t 这段时间里,___________. 探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以___________., 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (1)计算和思考,展开讨论;(2)说出自己的发现,并初步修正到最终的结论上.(3)得到结论是:①平均速度只能粗略地描述运动员的运动状态,它并不能反映某一刻的运动状态. ②需要寻找一个量,能更精细地刻画运动员的运动状态;(二)平均变化率概念:1.上述问题中的变化率可用式子 1212)()(x x x f x f --表示, 称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆)3. 则平均变化率为=∆∆=∆∆xf x y ___________. 思考:观察函数f (x )的图象 平均变化率=∆∆x f 1212)()(x x x f x f --表示什么? (1) 一起讨论、分析,得出结果;(2) 计算平均变化率的步骤:①求自变量的增量Δx=x 2-x 1;②求函数的增量Δf=f(x 2)-f(x 1);③求平均变化率2121()()f x f x fx x x -∆=∆-. 注意:①Δx 是一个整体符号,而不是Δ与x 相乘; ②x 2= x 1+Δx ; ③Δf=Δy=y 2-y 1;三.典例分析例1.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:例2. 求2x y =在0x x =附近的平均变化率。
高考数学一轮必备 3.1《变化率与导数、导数的运算》考情分析学案
![高考数学一轮必备 3.1《变化率与导数、导数的运算》考情分析学案](https://img.taocdn.com/s3/m/2cbb56e1d5bbfd0a795673a5.png)
3.1变化率与导数、导数的运算考情分析1.导数的实际意义是指瞬时变化率,几何意义是指曲线在某一点处切线的斜率.2.求导公式和运算法则是利用导数研究函数问题的基础,须熟练掌握.3.高考中,通常以选择题或填空题的形式考查导数的几何意义,也可以在大题中考查.导数的运算每年必考,一般不单独命题考查,而是在应用中考查.仅做为一个考点或工具出现,难度不大,但基础性很强.基础知识1.导数的概念(1)函数)(x f y =在0x x =处的导数:一般地,函数)(x f y =在0x x =处的瞬时变化率0000()()limlim x x f x x f x y x x δ∆→→+∆-∆=∆∆,称其为函数)(x f y =在0x x =处的导数,记作00()|x x f x y =''或(2)当()()x f x f x '变化时,称为的导函数,则()f x y ''==0()()limx f x x f x x ∆→+∆-∆ 2.导数的几何意义函数)(x f y =在0x x =处的导数的几何意义,就是曲线)(x f y =在点0(,)o p x y 处切线的斜率,过点P 的切线方程为: 000()()y y f x x x '-=-3.基本初等函数的导数公式:(1) 0c '=(c 为常数) (2) 1()()x nx Q ααα-*'=∈(3) (sin )cos x x '= (4) (cos )sin x x '=-(5) ()x x e e '= (6) ()ln x x a a a '= (7) 1(ln )x x '= (8) 1(log )ln a x x a'= 4.导数的运算法则:(1) [()()]()()f x g x f x g x '''±=± (2) [()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3) 2()()()()()[](()0)()[()]f x f x g x f x g x g x g x g x ''⋅-⋅'=≠ 注意事项1.曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.2.(1)导数的四则运算法则.(2)复合函数的求导法则.3.(1)利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.(2)要正确理解直线与曲线相切和直线与曲线只有一个交点的区别.(3)正确分解复合函数的结构,由外向内逐层求导,做到不重不漏.题型一 导数的定义【例1】利用导数的定义求函数f (x )=x 3在x =x 0处的导数,并求曲线f (x )=x 3在x =x 0处切线与曲线f (x )=x 3的交点.解 f ′(x 0)=lim x →x 0 f x -f x 0x -x 0=lim x →x 0 x 3-x 30x -x 0 =lim x →x 0 (x 2+xx 0+x 20)=3x 20.曲线f (x )=x 3在x =x 0处的切线方程为y -x 30=3x 20·(x -x 0),即y =3x 20x -2x 30,由⎩⎪⎨⎪⎧ y =x 3,y =3x 20x -2x 30, 得(x -x 0)2(x +2x 0)=0,解得x =x 0,x =-2x 0.若x 0≠0,则交点坐标为(x 0,x 30),(-2x 0,-8x 30);若x 0=0,则交点坐标为(0,0).【变式1】 利用导数的定义证明奇函数的导数是偶函数,偶函数的导数是奇函数. 证明 法一 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x )f ′(x )=li m Δx →0 f x +Δx -f x Δx则f ′(-x )=li mΔx →0 f -x +Δx -f -x Δx =li m Δx →0 f x -Δx -f x -Δx=f ′(x ) 因此f ′(x )为偶函数,同理可证偶函数的导数是奇函数.法二 设y =f (x )是奇函数,即对定义域内的任意x 都有f (-x )=-f (x ),即f (x )=-f (-x )因此f ′(x )=[-f (-x )]′=- [f (-x )]′=f ′(-x )则f ′(x )为偶函数同理可证偶函数的导数是奇函数.题型二 导数的运算【例2】求下列各函数的导数:(1)y =x +x 5+sin x x 2; (2)y =(x +1)(x +2)(x +3);(3)y =sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (4)y =11-x +11+x ;解 (1)∵y =x 12+x 5+sin xx 2=x -32+x 3+sin x x 2, ∴y ′=⎝ ⎛⎭⎪⎫x -32′+(x 3)′+(x -2sin x )′ =-32x -52+3x 2-2x -3sin x +x -2cos x . (2)法一 y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6,∴y ′=3x 2+12x +11.法二 y ′=[(x +1)(x +2)]′(x +3)+(x +1)(x +2)(x +3)′=[(x +1)′(x +2)+(x +1)(x +2)′](x +3)+(x +1)· (x +2)=(x +2+x +1)(x +3)+(x +1)(x +2)=(2x +3)(x +3)+(x +1)(x +2)=3x 2+12x +11. (3)∵y =sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x , ∴y ′=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x . (4)y =11-x +11+x =1+x +1-x -x+x =21-x , ∴y ′=⎝ ⎛⎭⎪⎫21-x ′=--x-x 2=2-x 2. 【变式2】 求下列函数的导数:(1)y =x n e x ;(2)y =cos x sin x; (3)y =e x ln x ;(4)y =(x +1)2(x -1).解 (1)y ′=nx n -1e x +x n e x =x n -1e x (n +x ).(2)y ′=-sin 2x -cos 2x sin 2x =-1sin 2x. (3)y ′=e x ln x +e x ·1x =e x ⎝ ⎛⎭⎪⎫1x +ln x . (4)∵y =(x +1)2(x -1)=(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=3x 2+2x -1.题型三 求复合函数的导数【例3】求下列复合函数的导数.(1)y =(2x -3)5;(2)y =3-x ;(3)y =sin 2⎝⎛⎭⎪⎫2x +π3;(4)y =ln(2x +5). 解 (1)设u =2x -3,则y =(2x -3)5,由y =u 5与u =2x -3复合而成,∴y ′=f ′(u )·u ′(x )=(u 5)′(2x -3)′=5u 4·2=10u 4=10(2x -3)4.(2)设u =3-x ,则y =3-x .由y =u 12与u =3-x 复合而成. y ′=f ′(u )·u ′(x )=(u 12)′(3-x )′=12u -12(-1)=-12u -12=-123-x =3-x 2x -6. (3)设y =u 2,u =sin v ,v =2x +π3,则y x ′=y u ′·u v ′·v x ′=2u ·cos v ·2=4sin ⎝ ⎛⎭⎪⎫2x +π3·cos ⎝ ⎛⎭⎪⎫2x +π3=2sin ⎝⎛⎭⎪⎫4x +2π3. (4)设y =ln u ,u =2x +5,则y x ′=y u ′·u x ′y ′=12x +5·(2x +5)′=22x +5. 【变式3】 求下列函数的导数: (1)y =x 2+1; (2)y =sin 22x ;(3)y =e -x sin 2x; (4)y =ln 1+x 2.解 (1)y ′=12 x 2+1·2x =x x 2+1, (2)y ′=(2sin 2x )(cos 2x )×2=2sin 4x(3)y ′=(-e -x )sin 2x +e -x (cos 2x )×2=e -x (2cos 2x -sin 2x ).(4)y ′=11+x 2·121+x 2·2x =x 1+x 2. 重难点突破【例4】已知函数f (x )=ln x -ax +1-a x-1(a ∈R ). (1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性. [解析] (1)当a =-1时,f (x )=ln x +x +2x-1, x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞),(1分) 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1.又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2,即x -y +ln 2=0.(3分)(2)因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x2,x ∈(0,+∞).(4分)令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞),所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;(6分)②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a-1. a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减;(7分)b .当0<a <12时,1a-1>1>0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝ ⎛⎭⎪⎫1,1a -1时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增;x ∈⎝ ⎛⎭⎪⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;(9分)c .当a <0时,由于1a-1<0,x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增.(11分)综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减,函数f (x )在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减; 当0<a <12时,函数f (x )在(0,1)上单调递减,函数f (x )在⎝ ⎛⎭⎪⎫1,1a -1上单调递增, 函数f (x )在⎝ ⎛⎭⎪⎫1a -1,+∞上单调递减.(12分) 巩固提高1.下列求导过程中①⎝ ⎛⎭⎪⎫1x ′=-1x 2;②(x )′=12x;③(log a x )′=⎝ ⎛⎭⎪⎫ln x ln a ′= 1x ln a;④(a x )′=(eln a x )′=(e x ln a )′=e x ln a ln a =a x ln a 其中正确的个数是( ).A .1B .2C .3D .4答案 D2.函数f (x )=(x +2a )(x -a )2的导数为( ).A .2(x 2-a 2)B . 2(x 2+a 2)C .3(x 2-a 2)D .3(x 2+a 2)解析 f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).答案 C3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ). A .-12 B.12 C .-22 D.22解析 本小题考查导数的运算、导数的几何意义,考查运算求解能力. y ′=cos x x +cos x -sin xx -sin x x +cos x 2=11+sin 2x ,把x =π4代入得导数值为12. 答案 B4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ).A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解析 令f ′(x )=2x -2-4x =x -x +x >0,利用数轴标根法可解得-1<x <0或x >2,又x >0,所以x >2.故选C.答案 C5.如图,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则f (f (0))=______;li m Δx →0 f +Δx -fΔx =________(用数字作答).答案 2 -2。
数学选修《变化率与导数》高中教案
![数学选修《变化率与导数》高中教案](https://img.taocdn.com/s3/m/05c19333a1c7aa00b42acbbe.png)
数学选修《变化率与导数》高中教案数学选修《变化率与导数》高中教案数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的能力的重任。
它的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。
下面是本文库整理的有关数学选修《变化率与导数》高中教案。
高中数学选修1-1《变化率与导数》教案1教学准备1. 教学目标(1)理解平均变化率的概念.(2)了解瞬时速度、瞬时变化率、的概念.(3)理解导数的概念(4)会求函数在某点的导数或瞬时变化率.2. 教学重点/难点教学重点:瞬时速度、瞬时变化率的概念及导数概念的形成和理解教学难点:会求简单函数y=f(x)在x=x0处的导数3. 教学用具多媒体、板书4. 标签教学过程一、创设情景、引入课题【师】十七世纪,在欧洲资本主义发展初期,由于工场的手工业向机器生产过渡,提高了生产力,促进了科学技术的快速发展,其中突出的成就就是数学研究中取得了丰硕的成果―――微积分的产生。
【板演/PPT】【师】人们发现在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态【板演/PPT】让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。
【设计意图】自然进入课题内容。
二、新知探究[1]变化率问题【合作探究】探究1 气球膨胀率【师】很多人都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是如果将半径r表示为体积V的函数,那么【板演/PPT】【活动】【分析】当V从0增加到1时,气球半径增加了气球的平均膨胀率为(1)当V从1增加到2时,气球半径增加了气球的平均膨胀率为0.62>0.16可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.【思考】当空气容量从V1增加到V2时,气球的平均膨胀率是多少解析:探究2 高台跳水【师】在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态(请计算)【板演/PPT】【生】学生举手回答【活动】学生觉得问题有价值,具有挑战性,迫切想知道解决问题的方法。
北师大版高中数学选修变化率与导数综合学案
![北师大版高中数学选修变化率与导数综合学案](https://img.taocdn.com/s3/m/4e226fbe08a1284ac950436b.png)
变化率与导数变化率问题学习目标 1.理解函数的增量的概念2.理解函数的增量与自变量的增量的比的极限的具体意义学习重点 函数的增量 瞬时速度、切线的斜率、边际成本学习难点 极限思想教学过程一、导入新课1. 瞬时速度问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是221gt s =(其中g 是重力加速度). 当时间增量t ∆很小时,从3秒到(3+t ∆)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.从3秒到(3+t ∆)秒这段时间内位移的增量:222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ∆+∆=⨯-∆+=-∆+=∆ 从而,t ts v ∆+=∆∆=--9.44.29. 从上式可以看出,t ∆越小,ts ∆∆越接近29.4米/秒;当t ∆无限趋近于0时,t s ∆∆无限趋近于29.4米/秒. 此时我们说,当t ∆趋向于0时,ts ∆∆的极限是29.4. 当t ∆趋向于0时,平均速度t s ∆∆的极限就是小球下降3秒时的速度,也叫做 瞬时速度.一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ∆)这段时间内的平均速度为t t s t t s t s ∆-∆+=∆∆)()(. 如果t ∆无限趋近于0时,ts ∆∆无限趋近于某个常数a ,就说当t ∆趋向于0时,t s ∆∆的极限为a ,这时a 就是物体在时刻t 的瞬时速度.2. 切线的斜率问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.析:设点Q 的横坐标为1+x ∆,则点Q 的纵坐标为(1+x ∆)2,点Q 对于点P 的纵坐标的增量(即函数的增量)22)(21)1(x x x y ∆+∆=-∆+=∆,所以,割线PQ 的斜率x xx x x y k PQ ∆+=∆∆+∆=∆∆=2)(22. 由此可知,当点Q 沿曲线逐渐向点P 接近时,x ∆变得越来越小,PQ k 越来越接近2;当点Q 无限接近于点P 时,即x ∆无限趋近于0时,PQ k 无限趋近于2. 这表明,割线PQ 无限趋近于过点P 且斜率为2的直线. 我们把这条直线叫做曲线在点P 处的切线. 由点斜式,这条切线的方程为:12-=x y .一般地,已知函数)(x f y =的图象是曲线C ,P (00,y x ),Q (y y x x ∆+∆+00,)是曲线C 上的两点,当点Q 沿曲线逐渐向点P 接近时,割线PQ 绕着点P 转动. 当点Q 沿着曲线无限接近点P ,即x ∆趋向于0时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线. 此时,割线PQ 的斜率xy k PQ ∆∆=无限趋近于切线PT 的斜率k ,也就是说,当x ∆趋向于0时,割线 PQ 的斜率xy k PQ ∆∆=的极限为k. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响.在本问题中,成本的增量为:222)(3300)10503(10)50(3)50()50(q q q C q C C ∆+∆=+⨯-+∆+=-∆+=∆. 产量变化q ∆对成本的影响可用:q q C ∆+=∆∆3300来刻划,q ∆越小,qC ∆∆越接近300;当q ∆无限趋近于0时,qC ∆∆无限趋近于300,我们就说当q ∆趋向于0时,q C ∆∆的极限是300.我们把qC ∆∆的极限300叫做当q =50时103)(2+=q q C 的边际成本. 一般地,设C 是成本,q 是产量,成本与产量的函数关系式为C =C (q ),当产量为0q 时,产量变化q ∆对成本的影响可用增量比qq C q q C q C ∆-∆+=∆∆)()(00刻划. 如果q ∆无限趋近于0时,qC ∆∆无限趋近于常数A ,经济学上称A 为边际成本. 它表明当产量为0q 时,增加单位产量需付出成本A (这是实际付出成本的一个近似值).二、小结瞬时速度是平均速度t s ∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率xy ∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限. 三、练习与作业:1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度.2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程.3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本.4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度.5. 判断曲线221x y =在(1,21)处是否有切线,如果有,求出切线的方程. 6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本.。
(整理)变化率与导数学案70447
![(整理)变化率与导数学案70447](https://img.taocdn.com/s3/m/399dac05376baf1ffc4fad8a.png)
§1.1 变化率与导数学案§1.1.1 变化率问题学习目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.教学重点:平均变化率的概念、函数在某点处附近的平均变化率.教学难点:平均变化率的概念.教学过程:一、学习背景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等.导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二、新课学习(一)问题提出问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当V从0增加到1时,气球半径增加了气球的平均膨胀率为(2)当V从1增加到2时,气球半径增加了气球的平均膨胀率为可以看出:思考: 当空气容量从V1增加到V2时,气球的平均膨胀率是多少?问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系105.69.4)(2++-=ttth.如何用运动员在某些时间段内的平均速v度粗略地描述其运动状态?思考计算: 5.00≤≤t和21≤≤t的平均速度探究: 计算运动员在49650≤≤t这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?(二)平均变化率概念1.上述问题中的变化率可用式子1212)()(xxxfxf--表示,称为函数)(xf从1x到2x的平均变化率.2.若设12xxx-=∆, )()(12xfxff-=∆(这里x∆看作是对于1x的一个“增量”可用xx∆+1代替2x,同样)()(12xfxfyf-=∆=∆)则平均变化率为=∆∆=∆∆xfxyxxfxxfxxxfxf∆-∆+=--)()()()(111212思考: 观察函数)(xf的图象平均变化率=∆∆xf1212)()(xxxfxf--表示什么?h三、典例分析例1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-则=∆∆xy. 解:例2 求2x y =在0x x =附近的平均变化率.解:四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 . 2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率. 3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线, 求出当1.0=∆x 时割线的斜率. 五、课堂反馈1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0 C ()x x f ∆⋅0 D ()()00x f x x f -∆+ 2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A -4B -8C 6D -63. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A R R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为( )A 21+∆+∆x xB 21-∆-∆x xC 2+∆xD xx ∆-∆+12 5. 在高台跳水运动中,若运动员离水面的高度h (单位:m )与起跳后时间t (单位:s )的函数关系是()105.69.42++-=t t t h ,则下列说法不正确的是( )A 在10≤≤t 这段时间里,平均速度是s m /6.1B 在49650≤≤t 这段时间里,平均速度是s m /0 C 运动员在⎥⎦⎤⎢⎣⎡4965,0时间段内,上升的速度越来越慢 D 运动员在[]2,1内的平均速度比在[]3,2的平均速度小6.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的7.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的8.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 9.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大? 10.甲、乙两人跑步路程与时间关系以及百米赛跑路程与时间关系分别如图(1)(2)所示,试问:(1)甲、乙两人哪一个跑得较快?(2)甲、乙两人百米赛跑,问接近终点时,谁跑得较快?11.一水库的蓄水量与时间关系如图所示,试指出哪一段时间(以两个月计)蓄水效果最好?哪一段时间蓄水效果最差?12.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:孤度)由函数()23.04tt t -=ϕ(单位:秒)给出(1)求t =2秒时,P 点转过的角度(2)求在t t ∆+≤≤22时间段内P 点转过的平均角速度,其中①1=∆t ,②1.0=∆t ③01.0=∆thto§1.1.2 导数的概念学习目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数. 教学重点:瞬时速度、瞬时变化率的概念、导数的概念. 教学难点:导数的概念. 学习过程: 一、创设情景 (一)平均变化率: (二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题: (1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:二、学习新知 1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势? 结论: 小结:2.导数的概念从函数)(x f y =在0x x =处的瞬时变化率是:0000()()lim lim x x f x x f x f xx ∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =即0000()()()lim x f x x f x f x x∆→+∆-'=∆说明:(1)导数即为函数)(x f y =在0x x =处的瞬时变化率;(2)0x x x ∆=-,当0x ∆→时,0x x →,所以0000()()()lim x x f x f x f x x x →-'=-.三、典例分析例1 (1)求函数23x y =在1=x 处的导数.(2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数.分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求x y ∆∆,最后求xyx ∆∆→∆0lim .解: (1)(2)例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C o)为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为. 2.求曲线3)(x x f y ==在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五、课堂反馈1.自变量由0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数( )A 在区间],[10x x 上的平均变化率B 在0x 处的变化率C 在1x 处的变化率D 在区间],[10x x 上的导数2.下列各式中正确的是( ) Ax x f x x f y x x x ∆-∆-=→∆=)()(|000'lim 0 B x x f x x f x f x ∆∆-∆-=→∆)()()(000'lim Cx x f x x f y x x x ∆+∆+=→∆=)()(|000'lim0 D x x x f x f x f x ∆∆--=→∆)()()(0000'lim3.设4)(+=ax x f ,若2)1('=f ,则a 的值( ) A 2 B . -2C 3D -34.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( ) A 0B 3C -2D t 23-5.函数xx y 1+=, 在1=x 处的导数是6.13-=x y ,当2=x 时 ,=∆∆→∆xyx lim 07.设圆的面积为A ,半径为r ,求面积A 关于半径r 的变化率。
高中数学《变化率问题 导数的概念》导学案
![高中数学《变化率问题 导数的概念》导学案](https://img.taocdn.com/s3/m/c310538bf7ec4afe05a1df99.png)
3.1.1~3.1.2 变化率问题 导数的概念1.自变量的改变量,因变量的改变量对于函数y =f (x ),从其图象上的点A (x 1,y 1)到点B (x 2,y 2),自变量的改变量是□01x 2-x 1,记作Δx ;因变量的改变量是y 2-y 1,记作□02Δy . 即Δx =□03x 2-x 1,Δy =□04y 2-y 1=□05f (x 2)-f (x 1). 2.平均变化率函数f (x )从x 1到x 2的平均变化率Δy Δx =□06f (x 2)-f (x 1)x 2-x 1.若函数y =f (x )在点x =x 0及其附近有定义,则函数y =f (x )在x 0到x 0+Δx 之间的平均变化率是Δy Δx =□07f (x 0+Δx )-f (x 0)Δx.3.瞬时变化率设函数y =f (x )在x 0附近有定义,当自变量在x =x 0附近改变Δx 时,函数值的改变量Δy =□08f (x 0+Δx )-f (x 0). 如果当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数L ,则常数L 称为函数f (x )在x 0的瞬时变化率,记作□09lim Δx →0f (x 0+Δx )-f (x 0)Δx=L .4.导数一般地,函数y =f (x )在点x 0的瞬时变化率是lim Δx →0 Δy Δx =□10lim Δx →0 f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或□11y ′|x =x,即f ′(x 0)=□12lim Δx →0f (x 0+Δx )-f (x 0)Δx.简言之:函数y=f(x)在x=x0处的导数就是y=f(x)在x=x0处的□13瞬时变化率.导数概念的理解(1)Δx→0是指Δx从0的左右两侧分别趋向于0,但永远不会等于0.(2)若f′(x0)=limΔx→0ΔyΔx存在,则称f(x)在x=x0处可导并且导数即为极限值.(3)令x=x0+Δx,得Δx=x-x0,于是f′(x0)=limΔx→0f(x)-f(x0)x-x0与概念中的f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx意义相同.1.判一判(正确的打“√”,错误的打“×”)(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.()(2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.()(3)在导数的定义中,Δx,Δy都不可能为零.()答案(1)√(2)×(3)×2.做一做(请把正确的答案写在横线上)(1)自变量x从1变到2时,函数f(x)=2x+1的函数值的增量与相应自变量的增量之比是________.(2)函数f(x)=x2在x=1处的瞬时变化率是________.(3)函数y=f(x)=1x在x=-1处的导数可表示为________.答案(1)2(2)2(3)f′(-1)或y′|x=-1探究1求函数的平均变化率例1求函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率,并求当x0=2,Δx=0.1时平均变化率的值.[解]函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为f(x0+Δx)-f(x0) (x0+Δx)-x0=[3(x0+Δx)2+2]-(3x20+2)Δx=6x0·Δx+3(Δx)2Δx=6x0+3Δx.当x0=2,Δx=0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.[结论探究]在例1中,分别求函数在x0=1,2,3附近Δx取12时的平均变化率k1,k2,k3,并比较其大小.解由例题可知,函数在[x0,x0+Δx]上的平均变化率为6x0+3Δx.当x0=1,Δx=12时,函数在[1,1.5]上的平均变化率为k1=6×1+3×0.5=7.5;当x0=2,Δx=12时,函数在[2,2.5]上的平均变化率为k2=6×2+3×0.5=13.5;当x0=3,Δx=12时,函数在[3,3.5]上的平均变化率为k3=6×3+3×0.5=19.5.所以k1<k2<k3.拓展提升求平均变化率可根据定义代入公式直接求解,解题的关键是弄清自变量的增量Δx与函数值的增量Δy,主要步骤是:(1)先计算函数值的改变量Δy=f(x1)-f(x0);(2)再计算自变量的改变量Δx=x1-x0;(3)得平均变化率ΔyΔx=f(x1)-f(x0)x1-x0.【跟踪训练1】(1)若函数f(x)=x2-1,图象上点P(2,3)及其邻近一点Q(2+Δx,3+Δy),则ΔyΔx=()A.4 B.4Δx C.4+Δx D.Δx答案 C解析∵Δy=(2+Δx)2-1-(22-1)=4Δx+(Δx)2,∴Δy Δx =4Δx+(Δx)2Δx=4+Δx.(2)y=x在x0到x0+Δx之间的平均变化率为________.答案1x0+Δx+x0解析∵Δy=x0+Δx-x0,∴y=x在x0到x0+Δx之间的平均变化率为Δy Δx =x0+Δx-x0Δx=1x0+Δx+x0.探究2求平均速度与瞬时速度例2 若一物体运动的位移s 与时间t 关系如下:(位移单位:m ,时间单位:s)s =⎩⎨⎧3t 2+2,t ≥3,29+3(t -3)2,0≤t <3. 求:(1)物体在t ∈[3,5]上的平均速度; (2)物体的初速度v 0;(3)物体在t =1时的瞬时速度.[解] (1)因为物体在t ∈[3,5]的时间变化量为Δt =5-3=2,物体在t ∈[3,5]上的位移变化量为Δs =3×52+2-(3×32+2)=3×(52-32)=48,所以物体在t ∈[3,5]上的平均速度为 Δs Δt =482=24 (m/s).(2)求物体的初速度v 0,即求物体在t =0时的瞬时速度. 因为物体在t =0附近的平均变化率为Δs Δt =29+3[(0+Δt )-3]2-29-3(0-3)2Δt=3Δt -18, 所以物体在t =0处的瞬时变化率为 lim Δx →0ΔsΔt =lim Δx →0(3Δt -18)=-18,即物体的初速度为-18 m/s.(3)物体在t =1时的瞬时速度即为函数在t =1处的瞬时变化率.因为物体在t=1附近的平均变化率为Δs Δt =29+3[(1+Δt)-3]2-29-3(1-3)2Δt=3Δt-12,所以物体在t=1处瞬时变化率为lim Δt→0ΔsΔt=limΔt→0(3Δt-12)=-12.即物体在t=1时的瞬时速度为-12 m/s.拓展提升求物体的初速度,即求物体在t=0时刻的速度,很容易误认为v0=0,有些函数表达式刻画的直线运动并不一定是从静止开始的直线运动.【跟踪训练2】已知质点M做直线运动,且位移随时间变化的函数为s=2t2+3(位移单位:cm,时间单位:s).(1)当t=2,Δt=0.01时,求Δs Δt;(2)当t=2,Δt=0.001时,求Δs Δt;(3)求质点M在t=2时的瞬时速度.解ΔsΔt=s(t+Δt)-s(t)Δt=2(t+Δt)2+3-(2t2+3)Δt=4t+2Δt.(1)当t=2,Δt=0.01时,ΔsΔt=4×2+2×0.01=8.02(cm/s).(2)当t=2,Δt=0.001时,ΔsΔt=4×2+2×0.001=8.002(cm/s).(3)v=limΔt→0ΔsΔt=limΔt→0(4t+2Δt)=4t=4×2=8(cm/s).探究3求函数f(x)在某点处的导数例3求函数y=f(x)=2x2+4x在x=3处的导数.[解]Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3) =12Δx+2(Δx)2+4Δx=2(Δx)2+16Δx∴Δy Δx =2(Δx)2+16ΔxΔx=2Δx+16.∴y′|x=3=limΔx→0ΔyΔx=limΔx→0(2Δx+16)=16.拓展提升(1)求函数在某点处的导数可以分为以下三步:①计算Δy;②计算ΔyΔx;③计算limΔx→0ΔyΔx.(2)求函数在某点处的导数,一种方法是直接求函数在该点的导数;另一种方法是先求函数在x=x0处的导数表达式,再代入变量求导数值.【跟踪训练3】(1)函数y=x+1x在x=1处的导数是()A.2 B.52C.1 D.0答案 D解析因为y′=limΔx→0f(x+Δx)-f(x)Δx=limΔx→0x+Δx+1x+Δx-⎝⎛⎭⎪⎫x+1xΔx=limΔx→0⎣⎢⎡⎦⎥⎤1-1x(x+Δx)=1-1x2,所以y′|x=1=1-1=0.故选D.(2)若函数f(x)在x=a处的导数为m,那么limΔx→0f(a+Δx)-f(a-Δx)Δx=________.答案2m解析∵limΔx→0f(a+Δx)-f(a)Δx=m,则limΔx→0f(a-Δx)-f(a)-Δx=m.∴lim Δx→0f(a+Δx)-f(a-Δx)Δx=limΔx→0f(a+Δx)-f(a)+f(a)-f(a-Δx)Δx=limΔx→0f(a+Δx)-f(a)Δx+limΔx→0f(a-Δx)-f(a)-Δx=m+m=2m.1.函数在一点处的导数就是该点的函数值的改变量与自变量的改变量之比的极限,它是个常数,不是变量.2.函数y=f(x)在x=x0处的导数,就是其导函数y=f′(x)在x=x0处的函数值.1.函数y=f(x)的自变量x由x0改变到x0+Δx时,函数值的改变量Δy为() A.f(x0+Δx) B.f(x0)+ΔxC.f(x0)·Δx D.f(x0+Δx)-f(x0)答案 D解析分别写出x=x0和x=x0+Δx对应的函数值f(x0)和f(x0+Δx),两式相减,就得到了函数值的改变量Δy=f(x0+Δx)-f(x0).故选D.2.若函数f(x)=2x2的图象上有点P(1,2)及邻近点Q(1+Δx,2+Δy),则Δy Δx的值为()A.4 B.4xC.4+2(Δx)2D.4+2Δx 答案 D解析ΔyΔx=2(1+Δx)2-2×12Δx=4+2Δx.故选D.3.已知函数f(x)=2x-3,则f′(5)=________.答案 2解析因为Δy=f(5+Δx)-f(5)=[2(5+Δx)-3]-(2×5-3)=2Δx,所以Δy Δx =2,所以f′(5)=limΔx→0ΔyΔx=2.4.某汽车启动阶段的路程函数为s(t)=2t3-5t2,其中路程s的单位:m;时间的单位:s,则t=2 s时,汽车的瞬时速度是________.答案 4 m/s解析s′(2)=limΔt→02(2+Δt)3-5(2+Δt)2-(2×23-5×22)Δt=limΔt→0(4+7Δt+2Δt2)=4.5.一质点的运动方程为s=8-3t2,其中s表示位移,t表示时间.(1)求质点在[1,1+Δt]这段时间内的平均速度;(2)求质点在t=1时的瞬时速度.解(1)质点在[1,1+Δt]这段时间内的平均速度为ΔsΔt=8-3(1+Δt)2-8+3×12Δt=-6-3Δt.(2)由(1)知ΔsΔt=-6-3Δt,当Δt无限趋近于0时,limΔt→0ΔsΔt=-6,所以质点在t=1时的瞬时速度为-6.A级:基础巩固练一、选择题1.如图,函数y=f(x)在A,B两点间的平均变化率是()A.1 B.-1C.2 D.-2答案 B解析 Δy Δx =f (3)-f (1)3-1=1-32=-1.2.某个沿直线运动的物体,从时间t 到t +Δt ,物体的位移为Δs ,则ΔsΔt 为( ) A .物体从时间t 到t +Δt 的平均速度 B .在t 时刻时该物体的瞬时速度 C .当时间为Δt 时物体的速度 D .物体从时间t 到t +Δt 的加速度 答案 A解析 根据平均变化率的物理意义易知选A.3.函数y =x 2+1在[1,1+Δx ]上的平均变化率是( ) A .2 B .2x C .2+Δx D .2+(Δx )2答案 C解析 自变量的改变量为Δx ,函数改变量为Δy =f (1+Δx )-f (1)=(Δx )2+2Δx ,∴平均变化率为ΔyΔx =Δx +2.4.已知lim Δx →0f (x 0+2Δx )-f (x 0)Δx=1,则f ′(x 0)=( )A .2B .-2 C.12 D .-12 答案 C解析 f ′(x 0)=lim Δx →0 f (x 0+2Δx )-f (x 0)2Δx=12lim Δx →0f (x 0+2Δx )-f (x 0)Δx =12.5.质点M 的运动规律为s =4t +4t 2,则质点M 在t =t 0时的瞬时速度为( ) A .4+4t 0 B .0 C .8t 0+4 D .4t 0+4t 20 答案 C解析 Δs =s (t 0+Δt )-s (t 0)=4(Δt )2+4Δt +8t 0Δt ,Δs Δt =4Δt +4+8t 0,lim Δt →0ΔsΔt =lim Δt →0(4Δt +4+8t 0)=4+8t 0.6.设函数f(x)=ax3+2,若f′(-1)=3,则a等于()A.-1 B.12C.1 D.13答案 C解析∵f′(-1)=limΔx→0f(-1+Δx)-f(-1)Δx=limΔx→0a(-1+Δx)3+2-a(-1)3-2Δx=a limΔx→0(-1+Δx)3+1Δx=a limΔx→0(Δx2-3Δx+3)=3a,∴3a=3,∴a=1.二、填空题7.一物体的运动方程为s=7t2-13t+8,且在t=t0时的瞬时速度为1,则t0=________.答案 1解析∵Δs=7(t0+Δt)2-13(t0+Δt)+8-7t20+13t0-8=14t0·Δt-13Δt+7(Δt)2,∴lim Δt→0ΔsΔt=limΔt→0(14t0-13+7Δt)=14t0-13=1.∴t0=1.8.若f′(x0)=2,则limk→0f(x0-k)-f(x0)2k的值为________.答案-1解析limk→0f(x0-k)-f(x0)2k=-12limk→0f(x0-k)-f(x0)-k=-12f′(x0)=-12×2=-1.9.已知函数y=f(x)=1x,则f′(1)=________.答案-1 2解析f′(1)=limΔx→0f(1+Δx)-f(1)Δx=limΔx→011+Δx-1Δx=limΔx→0-11+Δx(1+1+Δx)=-12.三、解答题10.若函数f(x)=2x2+4x在x=x0处的导数是8,求x0的值.解根据导数的定义:∵Δy=f(x0+Δx)-f(x0)=[2(x0+Δx)2+4(x0+Δx)]-(2x20+4x0)=2(Δx)2+4x0Δx+4Δx,∴f′(x0)=limΔx→0Δy Δx=limΔx→02(Δx)2+4x0Δx+4ΔxΔx=limΔx→0(2Δx+4x0+4)=4x0+4.∴f′(x0)=4x0+4=8,解得x0=1.B级:能力提升练1.若函数f(x)=-x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于-1,求Δx 的范围.解∵函数f(x)在[2,2+Δx]上的平均变化率为:Δy Δx =f(2+Δx)-f(2)Δx=-(2+Δx)2+(2+Δx)-(-4+2)Δx=-4Δx+Δx-(Δx)2Δx=-3-Δx,∴由-3-Δx≤-1,得Δx≥-2.又∵Δx>0,即Δx的取值范围是(0,+∞).2.航天飞机发射后的一段时间内,第t s时的高度h(t)=5t3+30t2+45t+4,其中h的单位为m,t的单位为s.(1)h(0),h(1)分别表示什么;(2)求第1 s内高度的平均变化率;(3)求第1 s末高度的瞬时变化率,并说明它的意义.解(1)h(0)表示航天飞机未发射时的高度,h(1)表示航天飞机发射1 s后的高度.(2)ΔhΔt=h(1)-h(0)1-0=80(m/s),即第1 s内高度的平均变化率为80 m/s.(3)h′(1)=limΔt→0ΔhΔt=limΔt→0h(1+Δt)-h(1)Δt=limΔt→0[5(Δt)2+45Δt+120]=120,即第1 s末高度的瞬时变化率为120 m/s.它说明在第1 s末附近,航天飞机的高度大约以120 m/s的速度增加.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习 14.变化率与导数学案
【学习目标】
1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点 处的导数的定义和导数的几何意义,理解导函数的概念.
2.熟记基本导数公式,掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数.
预 习 案 1.导数的概念
(1)f(x)在0x x =处的导数就是f(x)在0x x =处的 ,记作:0
/
x x y =或()0/
x f
即
(2)当把上式中的0x 看做变量x 时,f ′(x)即为f(x)的 ,简称导数,即
3.基本初等函数的导数公式
(1)C ′= (C 为常数); (2)(x n )′= (n ∈Q *
); (3)(sin x )′= ; (4)(cos x )′= ; (5)(a x )′= ; (6)(e x
)′= ; (7)(log a x )′= ; (8)(ln x )′= . 4.两个函数的四则运算的导数 若u (x )、v (x )的导数都存在,则
(1)(u ±v )′= ; (2)(u ·v )′= ; (3)(u v
)′= ; (4)(cu )′= (c 为常数). 【预习自测】
1.某汽车的路程函数是s (t )=2t 3-12
gt 2(g =10 m/s 2
),则当t =2 s 时,汽车的加速度是( )
A .14 m/s
2
B .4 m/s
2
C .10 m/s
2
D .-4 m/s
2
2.计算:(1)(x 4-3x 3
+1)′=________. (2)(ln 1x
)′=________.
(3)(x e 2x )′=________. (4)函数y =log 2(ax 3
)的导数为________.
3.曲线y =x e x
+2x +1在点(0,1)处的切线方程为________.
4.设正弦函数y =sin x 在x =0和x =
π
2
附近的平均变化率为k 1,k 2,则k 1,k 2的大小关系为( ) A .k 1>k 2 B .k 1<k 2 C .k 1=k 2 D .不确定
5.若曲线y =x α
+1(α∈R )在点(1,2)处的切线经过坐标原点,则α=________.
探究案题型一利用定义求系数
例1 (1)用导数的定义求函数f(x)=1
x
在x=1处的导数.
(2)设f(x)=x3-8x,则li m
Δx→0f+Δx-f
Δx
=______;
li m
x→2f x-f
x-2
=______; li m
k→0
f-k-f
2k
=______.
探究1.(1)已知f′(a)=3,则lim
h→0f a+3h-f a-h
h
=________.
(2)求函数y=x2+1在x0到x0+Δx之间的平均变化率
题型二导数的运算
例2. 求下列函数的导数:
(1)y=(3x3-4x)(2x+1); (2)y=x2sin x
2
cos
x
2
;
(3)y=3x e x-2x+e; (4)y=
ln x
x2+1
.
(5)y=-sin x
2
(1-2cos2
x
4
);(6)y=tan x;
题型三复合函数的导数
例3.求下列函数的导数:
(1)y=e2x cos3x; (2)y=ln x2+1;
(3)y=(2x-3)5. (4)f(x)=ln(x-1)2;
(5)f(x)=cos(π
3
-2x); (6)f(x)=e-2x sin(2x).
题型四导数的几何意义
例4.已知曲线y=1
3
x3+
4
3
. (1)求曲线在点P(2,4)处的切线方程;
(2)求曲线过点P(2,4)的切线方程; (3)求满足斜率为1的曲线的切线方程.
探究2.求过点(1,-1)的曲线y=x3-2x的切线方程.
拓展:1.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.
2.若曲线y=3
2
x2+x-
1
2
的某一切线与直线y=4x+3平行,则切点坐标为________,切线
方程为________
我的学习总结:
(1)我对知识的总结 . (2)我对数学思想及方法的总结。