概率论与数理统计(二)笔记

合集下载

概率论与数理统计复习资料(二) (1)

概率论与数理统计复习资料(二) (1)

<概率论>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。

2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。

3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。

4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。

5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。

6.设样本的频数分布为则样本方差2s =_____________________。

7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。

8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。

若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。

9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。

10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。

11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记

交通学院 学号1126002026 姓名 吕立正 课堂笔记第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x )证明:设x A ={X ≤x+ 1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()n n P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim(arctan x)=a-02x A B B π→∞+= 所以A=12 B= 1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P (X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

概率论与数理统计 第二章 随机变量及其分布 第二节 离散型随机变量及其概率分布

以X记“第1人维护的20台中同一时刻发生故障的台 数”以Ai ( i 1,2,3,4)表示事件“第i人维护的20台中 ,
发生故障时不能及时维修”, 则知80台中发生故障
而不能及时维修的概率为
三、几种常见离散型随机变量的概率分布
P ( A1 A2 A3 A4 ) P ( A1 )
三、几种常见离散型随机变量的概率分布
3、独立重复试验与二项分布 (1)独立重复试验
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
例5 某射手在一定条件下,独立地向目标连续射 击4次,如果每次击中目标的概率为0.8,求 ①恰好中三次的概率;②至少击中三次的概率。
三、几种常见离散型随机变量的概率分布
练习1 某类灯泡使用时数在1000小时以上 的概率是0.2,求三个灯泡在使用1000 小时以后最多只有一个坏了的概率.
解: 设X为三个灯泡在使用10ห้องสมุดไป่ตู้0小时已坏的灯泡数 . 把观察一个灯泡的使用 时数看作一次试验, “使用到1000小时已坏” P{X 1} =P{X=0}+P{X=1} 视为事件A .每次试验, A )3+3(0.8)(0.2)2 =(0.2出现的概率为0.8
本例中,n=20,p=0.2, 所以,(n+1)p=4.2, 故k0=4。
三、几种常见离散型随机变量的概率分布
练习3 设有80台同类型设备,各台工作是相互独立 的发生故障的概率都是 0.01,且一台设备的故障能 由一个人处理. 考虑两种配备维修工人的方法 , 其 一是由四人维护,每人负责20台; 其二是由3人共同 维护台80.试比较这两种方法在设备发生故障时不 能及时维修的概率的大小. 解 按第一种方法

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。

在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。

二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。

根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。

离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。

2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。

对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。

通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。

三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。

这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。

2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。

这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。

四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。

通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。

通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。

个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。

通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。

结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。

《概率论与数理统计》第二章考点手册

《概率论与数理统计》第二章考点手册

《概率论与数理统计》第二章随机变量及其概率分布考点10 随机变量的概念(★三级考点,选择、填空)设Ω={ω}是试验的样本空间,如果对每个ω∈Ω,总有一个实数X(ω)与之对应,则称Ω上的实值函数X(ω)为E的一个随机变量。

随机变量常用X、Y、Z等表示。

考点11 离散型分布变量及其分布律(★★二级考点,选择、填空、计算)1.若随机变量X取值x1,x2,…,x n,…且取这些值的概率依次为p1,p2,…,p n,…,则称X为离散型随机变量,而称P{X=x k}=p k,(k=1,2,…)为X的分布律或概率分布。

可表为X~P{X=x k}=p k,(k=1,2,…),2.分布律的矩阵(表格)表示方法:3.分布律的性质1)p k ≥0,k=1,2,…;2)∑≥11kkp=考点12 0-1分布与二项分布(★★★一级考点,选择、填空)1.0-1分布设E是一个只有两种可能结果的随机试验,用Ω={ω1,ω2}表示其样本空间。

P({ω1})=p,P({ω2})=1-p记则称X服从参数p的(0-1)分布(或两点分布),记成X~B(1,p)。

2.二项分布设试验E只有两个结果AA或,记p=P(A),将试验E独立重复进行n次,则称这n次试验为n重伯努利试验。

若以X表示n重贝努里试验事件A发生的次数,则称X服从参数为n,p的二项分布。

记作X~B(n,p)其分布律为:),...,1,0(,)1(}{nkppkXP k nkknC=-==-考点13 泊松分布(★★★一级考点,选择、填空)1.泊松分布:设随机变量X所有可能取的值为:0,1,2,…,概率分布为:其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为X~P (λ)。

2.二项分布与泊松分布的关系(泊松定理)对二项分布B (n ,p ),当n 充分大,p 又很小时,对任意固定的非负整数k ,有近似公式 .,!)1(), ( n k np e k p p C p n k k k n k k n <=»-=--,其中;l l l B 理解:泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布。

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

(1)|φ (t)|≤φ (0)=1.
——————
——————
(2)φ (-t)=φ (t),其中φ (t)表示 φ (t)的共轭.
(3)若 y=aX+b,其中 a,b 是常数,则 φ Y(t)=eibtφ X(at).
(4)独立随机变量和的特征函数为每个随机变量的特征函数的积.即设 X 与 Y 相互独
5 / 167
圣才电子书 十万种考研考证电子书、题库视频学习平台
P
Xn a
P
Yn b
则有 ①
P
X n Yn a b

1 / 167
圣才电子书

十万种考研考证电子书、题库视频学习平台
P
X n Yn a b

P
Xn Yn a b(b 0)
2.按分布收敛、弱收敛
(1)按分布收敛
设随机变量 X,X1,X2,…的分布函数分别为 F(X),F1(X),F2(X),….若对 F(x)
p(x) x e n/21 x/2 ,x 0 Γ (n / 2)2n/2
exp
it
2t 2
2
(1 it )1
(1 it )
(1 2it )n / 2
贝塔分布
Be(a,b)
p(x) Γ (a b) xa1 (1 x)b1,0 x 1 Γ (a)Γ (b)
Γ (a b)
(it)k Γ (a k)
P
Xn x
或者说,绝对偏差|Xn-x|小于任一给定量的可能性将随着 n 增大而愈来愈接近于 1, 即等价于 P(|Xn-x|<ε)→1(n→∞).
特别当 x 为退化分布时,即 P(X-c)=1,则称序列{Xn}依概率收敛于 C. (2)依概率收敛于常数的四则运算性质如下: 设{Xn},{Yn}是两个随机变量序列,a,b 是两个常数.如果

概率论与数理统计笔记(重要公式)

概率论与数理统计笔记(重要公式)

r = A 中样本点数 / Ω 中样本点总数 n
= A 所包含的基本事件数 / 基本事件总数 条件概率:
对偶律: A B = A B , P ( AB ) 设 A, B 是两个事件, 且 P(B)>0, 称 P(A|B)= 为 贝叶斯公式: P( B) 在事件 B 发生条件下事件 A 发生的条件概率。显然, 当 P(A)>0 时,P(B|A)=
二项分布 X ~ B(n, p): 指数分布 X ~ E(λ) 若随机变量 X 只取两个可能值 0, 1, …, n, 而 X 的分布律为 e x x 0 若随机变量 X 的概率密度为 f ( x) k k nk pk =P {X= xk }= Cn p q , k=0, 1, 2, …, n, x0 0

设 X 为离散型随机变量, 可能取值为 x1, x2, …, xk, … 且 P 概率密度的性质: (1) f(x)≥0 {X= xk }= pk, k=1, 2, …, 则称{pk}为 X 的分布律 表格形式: f ( x)dx =1 (2) X x1, x2, …, xk, … b P p1, p2, …, pk, … (3) P{a<X≤b}= F(b)-F(a)= f ( x)dx , a≤b a {pk}性质: (4) 设 x 为 f(x)的连续点,则 F’(x)存在,且 (1) pk≥0, k=1, 2, … F’(x)= f(x) (2) pk =1 均匀分布 X ~ U (a, b) k 1 若随机变量 X 的概率密度为 在求离散型随机变量的分布律时,首先要找出其所有可能 1 , a≤x≤b 的取值,然后再求出每个值相应的概率 ba f(x) = 在实际应用中,有时还要求“X 满足某一条件”这样事件的 概率, 求法就是把满足条件的 xk 所对应的概率 pk 相加可得 0, 其他 则称 X 服从区间[a,b]上的均匀分布,其分布函数为 其分布函数 F(x) = pk xk x 0, x≤a 0-1 分布: xa F(x) = , a<x<b 若随机变量 X 只取两个可能值 0, 1,且 ba P {X=1}=p, P{X=0}=q 1, x≥b 其中 0<p<1, q=1-p, 则称 X 服从 0-1 分布. X 的分布律为 设 X ~ U (a, b), a≤c<d≤b,即[a,b] [c,d],则 X 0 1 d c P{c≤X≤d}= P q p ba

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计第二章随机变量及其分布

概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,

概率论与数理统计(经管类)第二章知识点总结

概率论与数理统计(经管类)第二章知识点总结

第二章 随机变量及其概率分布1. 离散型随机变量()01k K K KP X x p p ==≥⎧⎪⎨=⎪⎩∑ 例1 设 ,则3.02.05.01=--=c------------------------------------------------------------------------------------------------ 8.知识点:离散型随机变量的分布律性质下列各表中可作为某随机变量分布律的是( ) A . B .C .D .答案:C解:A 事件概率不可能为负值 B ,D1i iP ≠∑返回:第二章 随机变量及其概率分布------------------------------------------------------------------------------------------------2.常见离散型随机变量(1)0—1分布:设X ~),1(p B ,则应用背景:一次抽样中,某事件A 发生的次数X ~),1(p B ,其中EX X P A P p ====)1()(例2 设某射手的命中率为p ,X 为其一次射击中击中目标的次数,则X ~),1(p B(2)二项分布:设X ~),(p n B ,则()(1),0,1,2,,k k n kn P X k C p p k n -==-=应用背景:n 次独立重复抽样中某事件A 发生的次数X ~),(p n B ,其中()p P A =为事件A 在一次抽样中发生的概率。

例3 某射手的命中率为0.8,X 为其5次射击中命中目标的次数,则X 取的可能值为5,,1,0 ,52()0.80.2k k k P X k C -==,即X ~)8.0,5(B记住:若X ~),(p n B ,则np EX =,)1(p np DX -=------------------------------------------------------------------------------------------------ 9.知识点:事件的关系及二项分布设每次试验成功的概率为)10(<<p p ,则在3次独立重复试验中至少成功一次的概率为( ) A .3)1(1p -- B .2)1(p p - C .213)1(p p C -D .32pp p ++答案:A解: 利用对立事件求解。

概率论与数理统计总结之第二章

概率论与数理统计总结之第二章

第二章 随机变量及其分布 随机变量:设随机试验的样本空间为S={e},X=X{e}是定义在样本空间S 上的实值单值函数,称X=X{e}为随机变量一般以大写字母X,Y,Z,W,…表示随机变量,而以小写字母x,y,z,……表示实数离散型随机变量:全部可能取到的不相同的值是有限个或可列无限多个的随机变量 ?怎么判断可列无限多个呢? 离散型随机变量的分布律: 1)等式形式表示为{},2,1,===k p x X P k k … 2)表格形式表示:X 1x 2x … n x … i p1p2p…n p…三种重要的离散型随机变量: 1.(0-1)分布设随机变量X 只能取0与1两个值,它的分布律是 {})10(1,0,)1(1<<=-==-p k p p k X P k k 则称X 服从(0-1)分布或两点分布 其分布律也可写成:X0 1 i p1-pp2.伯努利试验、二项分布伯努利试验:设试验E 只有两个可能结果:A 及A ,则称E 为伯努利试验,设P(A)=p(0<p<1),此时P(A )=1-p 。

将E 独立地重复进行n 次,则称这一串重复的独立试验为n 重伯努利试验设X 为n 重伯努利试验中事件A 发生的次数,则X 是一个随机变量,且满足n k q p C k X P kn k k n ,^,2,1,0,)(===-,称随机变量X 服从参数为n,p 的二项分布,记为X ~b(n,p)3.泊松分布设随机变量X 所以可能取的值为0,1,2,…,而取各个值的概率为 !}{k e k X P k λλ-==,k=0,1,2,……其中λ>0是常数,则称X 服从参数为λ的泊松分布,记为X ~π(λ)非离散型随机变量:其可能取值不能一个一个地列举出来非离散型随机变量取任一指定的实数值的概率都等于0 分布函数:设X 是一个随机变量,x 是任意实数,函数F(x)=P{X ≤x}称为X 的分布函数 对于任意实数1x ,2x (1x <2x ),有)()(}{}{}{121221x F x F x X P x X P x X x P -=<-≤=≤<分布函数完整地描述了随机变量的统计规律性。

概率论与数理统计第二章笔记

概率论与数理统计第二章笔记

第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x ) 证明:设x A ={X ≤x+1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()nn P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim (arctan x )=a-02x A B B π→∞+= 所以A=12B=1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P(X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。

考研数学概率论与数理统计笔记知识点(全)

考研数学概率论与数理统计笔记知识点(全)
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围

《概率论与数理统计》第二章基础知识小结

《概率论与数理统计》第二章基础知识小结

《概率论与数理统计》第二章基础知识小结第二章、基础知识小结一、 离散型分布变量分布函数及其分布律 1. 定义:),3,2,1(}{ ===i p x X P i iX1x 2x 3x … k x …P1p 2p 3p … k p …2.分布律}{k p 的性质: (1);,2,1,0 =≥k p k (2)11=∑∞=k k p3.离散型随机变量的分布函数:∑≤=≤=xx kk px X P x F }{)(4.分布函数F (X )的性质: (1)1)(0≤≤x F(2))(x F 是不减函数,0)()(}{1221≥-=≤<x F x F x X x P(3)1)(,0)(=+∞=-∞F F ,即1)(lim ,0)(lim ==+∞→-∞→x f x f x x (4))(x F 右连续,即)()(lim )0(0x F x x F x F x =∆+=+→∆(5))()(}{}{}{a F b F a X P b X P b X a P -=≤-≤=≤<)(1}{1}{a F a X P a X P -=≤-=>5.三种常见的离散型随机变量的概率分布(1)0-1分布(),1(~p B X )X 0 1 Pp q(2)二项分布(),(~p n B X )n k q p C k X P p kn k k n k ,,2,1,0,}{ ====-(3)泊松分布()(~λP X ),,,2,1,0,!}{n k e k k X P p kk ====-λλ二、连续型随机变量分布函数及其概率密度 1.连续型随机变量的分布函数即概率密度定义:dt t f x X P x F x⎰∞-=<=)(}{)(其中,)(x F 为X 的分布函数,)(x f 为X 的概率密度。

2.概率密度的性质 (1)0)(≥x f (2)1)(=⎰+∞∞-dx x f(3)dx x f a F b F b X a P ba ⎰=-=≤<)()()(}{ (4))()(x f x F ='3.三种常见的连续型随机变量 (1)均匀分布(),(~b a U X )⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a a b x f(2)指数分布()(~λE X )⎩⎨⎧≤>=-0,00,)(x x e x f x λλ(3)正态分布(),(~2σμN X )+∞<<-∞=--x ex f x ,21)(222)(σμσπ(4)标准正态分布()1,0(~N X )及其性质+∞<<-∞=-x ex f x ,21)(22π性质:A.)(1)(x x ΦΦ-=-B.21)0(=Φ(5)非标准正态分布标准化 设),(~2σμN X ,则z =x −μσ~N(0,1)三、随机变量函数的概率分布 1.离散型随机变量函数的概率分布 设离散型随机变量X 的分布律为:X1x 2x 3x …k x …P1p 2p 3p …k p …则X 的函数)(X g Y =的分布律为:X)(1x g )(2x g )(3x g … )(k x g …P1p 2p 3p …k p …2.连续型随机变量函数的分布设X 的连续型随机变量,其概率密度为)(x f X 。

概率论与数理统计 笫二章内容

概率论与数理统计 笫二章内容
k!
, k 0,1, 2,3,L , 0
则称离散型随机变量 X 服从参数为 的泊松分布,记作
X : P()
有了泊松分布的定义,上述定理就可表述为:
设由事件 A 形成的某随机事件流是一个泊松流,令
X=该泊松流中长度为 T 的某时间段内事件 A 发生的次数

X : P()
泊松分布的概率可查泊松分布表查到。
则称 X服从参数为 的 指数,分记布为
( 0) X ~ e()
若 X ~ e() , 则X的分布函数为
0, F (x) 1 ex ,
Y~U(0, 5) 从而
p P(0 Y 1) 1 0.2 5

X~b(10, 0.2)
从而 候车的10位乘客中只有一位等待时间超过 4分钟的概率为:
P( X 1) C110 (0.2)(0.8)9
如果随机变量 X的密度函数为
f
(
x)

e x

0,
,
x0 x0
离散型随机变量 X 的分布律也可简记为
P{X = xk } = pk , k = 1, 2,L
给定一个离散型随机变量,我们要能够把它的分布律
求出来,因为分布律是研究离散型随机变量的最基本
的工具。
例1. 某射手一次射击命中目标的概率为 p, 射击进行 到第一次命中目标为止. 试求射击次数 X 的分布 律.
为伯努利试验. 若将伯努利试验 E 在相同条件下独立重复进行 n 次试验, 则称这 n 次试验为 n 重伯努利试验.
二项分布的定义:若离散随机变量 X 的所有可能取值为 0,1, 2,L , n ,且其分布律为
P( X k) Cnk pk (1 p)nk , k 0,1, 2,L , n ,

概率论与数理统计02(2)

概率论与数理统计02(2)

19. (1)由统计物理学知, 分了运动速度的绝对值X 服从马克斯韦尔(Maxwall)分布, 其概率密度为⎩⎨⎧>=-其他00)(/22x e Ax x f b x ,其中kTm b 2=, k 为Boltzmann 常数, T 为绝对温度, m 是分子的质量,试确定常数A .(2)研究了项格兰在1875年~1951年期间, 矿山发生导致10人或10人以上死亡的事故的频繁程度, 得知相继两次事故之间的时间T (以日计)服从指数分布, 其概率密度为⎪⎩⎪⎨⎧>=-其他002411)(241/t e t f t T .求分布函数F T (t ), 并求概率P (50<T <100). 解: (1)由于⎰+∞∞-=1)(dx x f , 因此有10/22=⎰+∞-dx e Ax b x , 从而解得bb A π4=.(2)⎰⎰⎰--===-∞-tt x x tT T x e dx e dx x f t F 00241/241/)241(2411)()( 241/0241/1|t t x e e ---=-= (t ≥0),故 ⎩⎨⎧<≥-=-0001)(241/t t e t F t T . 24110024150)50()100()10050(---=-=<<e e F F T P T T .20. 某种型号的电子管的寿命X (以小时计)具有以下的概率密度:⎪⎩⎪⎨⎧>=其它010001000)(2x x x f .现有一大批此种管子(设各电子管损坏与否相互独立). 任取5只, 问其中至少有2只寿命大于1500小时的概率是多少? 解: 一个电子管寿命大于1500小时的概率为 }1500{1}1500{≤-=>X P X P⎰--=-=15001000150010002)1(1000110001x dx x 32)321(1=--=.用Y 表示任取5只此种电子管中寿命大于1500小时的电子管的个数. 则)32,5(~B Y ,)2(1)2(<-=≥Y P Y P }]1{}0{[1=+=-=Y P Y P])31()32()31[(14155⋅⋅+-=C 243232243111325115=-=⨯+-=.21. 设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布, 其概率密度为:⎪⎩⎪⎨⎧>=-其它0051)(5x e x F x X .某顾客在窗口等待服务, 若超过10分钟他就离开. 他一个月要到银行5次. 以Y 表示一个月内他未等到服务而离开窗口的次数, 写出Y 的分布律. 并求P (Y ≥1).解: 该顾客一次等待服务未成而离去的概率为21051051051)()10(-∞+-∞+-∞+=-===>⎰⎰e e dx e dx x f X P x x X , 因此Y ~B (5, e -2), 即k k k e e C k Y P ----==5225)1()((k =1, 2, 3, 4, 5).P (Y ≥1)=1-P (Y <1)=1-P (Y =0) 5552)1353363.01(1)389.711(1)1(1--=--=--=-e=1-0.86775=1-0.4833=0.5167.22. 设K 在(0, 5)上服从均匀分布, 求方程4x 2+4xK +K +2=0有实根的概率.解: 因为K 的分布密度为⎪⎩⎪⎨⎧<<-=其他050051)(K K f .要方程有根, 就是要K 满足 (4K )2-4×4×(K +2)≥0.解不等式, 得K ≥2时, 方程有实根, 所以53051)()2(5522=+==≥⎰⎰⎰∞+∞+dx dx dx x f K P .23. 设X~N (3.22).(1)求P (2<X ≤5), P (-4<X ≤10), P (|X|>2), P (X >3); 解: 因为若X~N (μ, σ 2), 则)()()(σμασμββα-Φ--Φ=≤<X P , 所以 )5.0()1()232()235()51(-Φ-Φ=-Φ--Φ=≤<X P=0.8413-0.3085=0.5328,)5.3()5.3()234()235()104(-Φ-Φ=--Φ--Φ=≤<-X P=0.9998-0.0002=0.9996. P (|X |>2)=1-P (|X |<2)= 1-P (-2<P <2) )]232()232([1--Φ--Φ-==1-Φ(-0.5)+Φ(-2.5)=1-0.3085+0.0062=0.6977.P (X >3)=1-P (X ≤3)5.05.01)233(1=-=-Φ-=.(2)确定C 使得P (X >C )=P (X ≤C );解: 因为P (X >C )=1-P (X ≤C )=P (X ≤C ), 得 P (X ≤C )=1/2=0.5.又 5.0)23(}{=-Φ=≤C C X P ,查表可得023=-C , 所以C =3.24. 某地区18岁的女青年的血压(收缩压, 以mm-Hg 计)服从N (110, 122)在该地区任选一18岁女青年, 测量她的血压X . 求: (1)P (X ≤105), P (100<X ≤120); 解: )12110105(}105{-Φ=≤X P=Φ(-0.4167)=1-Φ(0.4167)=1-0.6616=0.3384. )12110100()12110120(}120100{-Φ--Φ=≤<X P1)65(2)65()65(-Φ=-Φ-Φ==2Φ(0.8333)-1=2⨯0.7976-1=0.5952. (2)确定最小的x 使P (X >x )≤0.05. 解: 按要求, 有05.0)12110(1}{1}{≤-Φ-=≤-=>x x X P x X P ,即 95.0)12110(≥-Φx ,查表得 645.112110≥-x ,解得x ≥110+19.74=129.74, 故最小的x =129. 74.25. 由某机器生产的螺栓长度(单位: cm)服从参数为μ=10.05, σ=0.06的正态分布. 规定长度在范围10.05±0.12内为合格品, 求一螺栓为不合格的概率是多少?解: 设螺栓长度为X , 所求概率为 P (X ∉(10.05-0.12, 10.05+0.12)) =1-P (9.93<X <10.17))]06.005.1097.9()06.005.1017.10([1-Φ--Φ-==1-[Φ(2)-Φ(-2)] =1-[0.9772-0.0228] =0.0456.26. 一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160, σ的正态分布, 若要求P (120<X ≤200)≥0.80, 允许σ最大为多少? 解: 因为)160120()160200(}200120{σσ-Φ--Φ=≤<X P80.0)40()40(=-Φ-Φ=σσ,又对标准正态分布有Φ(-x )=1-Φ(x ), 所以上式变为 80.0)]40(1[)40(≥Φ--Φσσ,解得9.0)40(≥Φσ. 再查表, 得281.140≥σ, 于是25.31281.140=≤σ.27. 设随机变量X 的分布律为:求Y =X 2的分布律. 解: 由已知分布得再把X 2的取值相同的合并, 并按从小到大排列, 就得函数Y 的分布律为:28. 设随机变量X 在(0, 1)上服从均匀分布. (1)求Y =e X 的分布密度; 解: X 的分布密度为⎩⎨⎧<<=为其他x x x f 0101)(.Y =g (X )=e X 是单调增函数, 又X =h (Y )=ln Y , 反函数存在, 且 α=min{g (0), g (1)}=min{1, e }=1, β=max{g (0), g (1)}=max{1, e }=e , 所以Y 的分布密度为⎪⎩⎪⎨⎧<<⋅=⋅=为其他y ey yy h y h f y 0111|)('|)]([)(ψ. (2)求Y =-2ln X 的概率密度.解: Y =g (X )=-2ln X 是单调减函数, 又2)(Y e Y h X -==反函数存在, 且 α=min{g (0), g (1)}=min{+∞, 0}=0, β=max{g (0), g (1)}=max{+∞, 0}=+∞, 所以Y 的分布密度为⎪⎩⎪⎨⎧+∞<<=-⋅=⋅=--为其他y y e e y h y h f y y y 0121|21|1|)('|)]([)(22ψ.29. 设X~N (0, 1).(1)求Y =e X 的概率密度; 解: X 的概率密度是2221)(x e x f -=π(-∞<x <+∞). Y =g (X )=e X 是单调增函数, 又X =h (Y )=ln Y , 反函数存在, 且 α=min{g (-∞), g (+∞)}=min{0, +∞}=0, β=max{g (-∞), g (+∞)}=max{0, +∞}=+∞, 所以Y 的分布密度为⎪⎩⎪⎨⎧+∞<<⋅=⋅=-为其他y y y e y h y h f y y 00121|)('|)]([)(2)(ln 2πψ. (2)求Y =2X 2+1的概率密度;解: 在这里, Y =2X 2+1在(+∞, -∞)不是单调函数, 没有一般的结论可用.设Y 的分布函数是F Y (y ), 则 F Y (y )=P (Y ≤y )=P (2X 2+1≤y ))2121(-≤≤--=y X y P . 当y <1时F Y (y )=0;当y ≥1时:⎰----=⎪⎭⎫⎝⎛-≤≤--=212122212121)(y y x y dx e y X y P y F π, 故Y 的分布密度ψ(y )是:当y ≤1时, ψ(y )=[F Y (y )]'=(0)'=0;当y >1时,ψ(y )=[F Y (y )]')21(212122'=⎰----y y x dx e π41)1(21---=y e y π.(3)求Y =| X |的概率密度.解: 因为Y 的分布函数为F Y (y )=P (Y ≤y )=P (|X|≤y ), 当y <0时, F Y (y )=0;当y ≥0时, F Y (y )=P (|X|≤y )=P (-y ≤X ≤y )⎰--=yyx dx e 2221π, 所以Y 的概率密度为:当y ≤0时, ψ(y )=[F Y (y )]'=(0)'=0; 当y <0时, ψ(y )=[F Y (y )]'22222)21(y y yx edx e ---='=⎰ππ.30. (1)设随机变量X 的概率密度为f (x )(-∞<x <+∞), 求Y =X 3的概率密度.解: 因为Y =g (X )=X 3是X 单调增函数,又 31)(Y Y h X ==, 反函数存在,且 α=min{g (-∞), g (+∞)}=min{0, +∞}=-∞, β=max{ g (-∞), g (+∞)}=max{0, +∞}=+∞, 所以Y 的分布密度为323131)(|)(|)]([)(-⋅='⋅=y y f y h y h f y ψ (-∞<y <+∞), 但y ≠0, ψ(0)=0.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其它00)(x e x f x , 求Y =X 2的概率密度.解法一: 因为X 的分布密度为⎩⎨⎧≤>=-000)(x x e x f x . y =x 2是非单调函数,当x <0时, y =x 2 ↘, 反函数是y x -=; 当x <0时, y =x 2↗, y x =,所以)(())(()(~+'--=y f y y f y f Y Y ⎪⎩⎪⎨⎧≤>+=-000210y y e y y⎪⎩⎪⎨⎧≤>=-00021y y e y y .解法二: 因为)()()(~y X y P y Y P y F Y Y ≤<-=≤= )()(y X P y X P -≤-≤=⎪⎩⎪⎨⎧≤>+=⎰-0000y y dx e y x⎩⎨⎧≤>-=-001y y e y ,所以⎪⎩⎪⎨⎧≤>=-00021)(~y y e y y f Y y Y .31.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=为其他x x x x f 002)(2ππ, 求Y =sin X 的概率密度.解: 因为F Y (y )=P (Y ≤y )=P (sin X ≤y ), 当y <0时, F Y (y )=0; 当0≤y ≤1时,F Y (y )=P (sin X ≤y )=P (0≤X ≤arcsin y 或π-arcsin y ≤X ≤π)⎰⎰-+=ππππy y dx x dx x arcsin 2arcsin 0222; 当1<y 时, F Y (y )=1, 所以Y 的概率密度ψ(y )为当y ≤0时, ψ(y )=[F Y (y )]'=(0)'=0; 当0<y <1时, ψ(y )=[F Y (y )]'2arcsin 2arcsin 0212)22(ydx x dx x yy-='+=⎰⎰-πππππ; 当1≤y 时, ψ(y )=[F Y (y )]'=(1)'=0.32. 设电流I 是一个随机变量, 它均匀分布在9~11A 之间, 若此电流通过2Ω的电阻, 在其上消耗的功率W =2I 2, 求W 的概率密度.解: ⎪⎩⎪⎨⎧<<-=001199111)(i i f I .W =2I 2 ,)2()2()()(22w I P w I P w W P w F W ≤=≤=≤=.当w <0时, F W (w )=0; 当w ≥0时,)22()2()(2w i w P w I P w F W ≤≤-=≤= ⎰⎰⎰⎰=+==--2/92/992/2/2/)()()()(w I w I w I w w I di i f di i f di i f di i f .当9<i <11, 即162<w <242时,)92(2121)29()(2/9-==<<=⎰w di w I P w F w W , 故 ww F w f W W 241)()(='=. 当w ≤162时, F W (w )=0, ϕ(w )=0;当w ≥242时, F W (w )=1, ϕ(w )=0,最后得⎪⎩⎪⎨⎧<<=其他0242162241)(w w w f W .33. 某物体的温度T (︒F )是一个随机变量, 且有T ~N (98.6, 2), 试求θ(︒C )的概率密度. 已知)32(95-=T θ. 解法一: 因为T 的概率密度为22)6.98(2221)(⨯--=t e t f π(-∞<t <+∞), 又)32(95)(-==T T g θ是单调增函数. 3259)(+==θθh T 反函数存在, 且 α=min[g (-∞), g (+∞)]=min(-∞, +∞)=-∞,β=max[g (-∞), g (+∞)]=max(-∞, +∞)=+∞,所以θ的概率密度ψ(θ)为59221|)('|)]([)(4)6.983259(2⋅=⋅=-+-θπθθθψe h h f 100)37(812109--=θπe (-∞<θ<+∞). 解法二: 根据定理: 若X~N (μ, σ2), 则Y =aX+b ~N (a μ+b , a 2σ2), 由于T ~N (98.6, 2), 故⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-⨯-=295,9333295,91606.9895~91609522N N T θ, 故θ的概率密度为100)37(81295293332210929521)(--⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛--==θθππθψe e (-∞<θ<+∞).。

概率论与数理统计第二章总结

概率论与数理统计第二章总结

概率论与数理统计第二章总结
概率论与数理统计是研究生数学的重要分支,其研究内容包括概率论、数理统计、随机过程等。

第二章主要涵盖了随机事件和概率的概念、随机变量及其分布、常见的随机变量分布、随机变量的期望和方差等。

在随机事件和概率的概念方面,我们学习了随机事件的定义和分类,以及事件之间的关系和概率的计算方法。

其中,概率的定义和计算方式包括概率的基本性质、事件的概率计算方法、条件概率和贝叶斯公式等。

在随机变量及其分布方面,我们学习了随机变量的定义、表示方式和常见分布的定义和特点。

常见的随机变量分布包括离散型和连续型随机变量的分布,如离散型概率分布、连续型概率分布、二项分布、泊松分布等。

在随机变量的期望和方差方面,我们学习了随机变量期望和方差的定义、计算方法和性质。

期望和方差是随机变量的一些重要数学特征,可以用来计算随机变量的平均值和方差,并且在实际问题中有广泛的应用。

总之,第二章涵盖了概率论与数理统计的基础知识,对于后续的研究和应用具有重要的意义。

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A∪B (和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n p n p (1- p) 3.X~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为?的指数分布 ? ?26.X~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).4.F 分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。

概率论与数理统计(二)笔记

概率论与数理统计(二)笔记

概率论与数理统计(二)笔记经济数学基础二(概率论与数理统计)课程教学大纲一、课程教学目的与基本要求概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。

本课程是我院经济、管理类及计算机类专业继微积分课程之后的一门基础课。

通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。

教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。

通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。

1.要正确理解以下概念:随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念2. 要掌握下列基本理论、基本定理和公式:概率的基本性质。

概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。

切比雪夫大数定律与贝努里大数定律、中心极限定理。

常用的统计量的分布。

参数估计的基本思想。

小概率原理。

3.熟练掌握下列运算法则和方法:事件的关系与运算。

古典概型的概率计算。

一元随机变量的分布函数、二元随机变量的边缘分布计算。

标准正态分布表的查法。

随机变量的数学期望、方差、协方差计算。

4.应用方面:用数学期望、方差的概念及性质解决具体问题的计算。

利用正态分布的理论解决具体问题。

用区间估计正确解决实际问题,并能解释其结果。

运用小概率原理,对具体问题做假设检验。

用一元线性回归方程及相关性检验解决实际问题。

二、课程主要内容第一章随机事件及其概率(10学时)1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。

2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。

3. 了解概率的公理化定义。

掌握概率的基本性质及概率加法定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计(二)笔记
经济数学基础二(概率论与数理统计)课程教学大纲
一、课程教学目的与基本要求
概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。

本课程是我院经济、管理类及计算
机类专业继微积分课程之后的一门基础课。

通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。

教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。

通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。

1.要正确理解以下概念:
随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念
2. 要掌握下列基本理论、基本定理和公式:
概率的基本性质。

概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。

切比雪夫大数定律与贝努里大数定律、中心极限定理。

常用的统计量的分布。

参数估计的基本思想。

小概率原理。

3.熟练掌握下列运算法则和方法:
事件的关系与运算。

古典概型的概率计算。

一元随机变量的分布函数、二元随机变量的边缘分布计算。

标准正态分布表的查法。

随机变量的数学期望、方差、协方差计算。

4.应用方面:
用数学期望、方差的概念及性质解决具体问题的计算。

利用正态分布的理论解决具体问题。

用区间估计正确解决实际问题,并能解释其结果。

运用小概率原理,对具体问题做假设检验。

用一元线性回归方程及相关性检验解决实际问题。

二、课程主要内容
第一章随机事件及其概率(10学时)
1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。

2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。

3. 了解概率的公理化定义。

掌握概率的基本性质及概率加法定理。

4. 理解条件概率的概念,掌握概率的乘法定理,理解全概率公式和贝叶斯公式,并会运算和计算。

5. 理解事件的独立性概念,掌握贝努里概型,并会计算有关的概率问题。

第二章随机变量及其分布(8学时)
1. 理解随机变量的概念,了解离散型随机变量及分布律的概念和性质、连续型随机变量及概率密度的概念和性质。

2. 理解分布函数的概念和性质,会利用概率分布计算有关事件的概率
3. 理解0-1分布、二项分布,了解普哇松分布。

了解二项分布与普哇松分布的关系。

4. 了解均匀分布、指数分布,理解正态分布与标准正态分布的定义与关系。

熟练掌握标准正态分布表的查法,会解决具体问题。

5. 会求简单随机变量函数的概率分布。

第三章二维随机变量(8学时)
1. 理解二维随机变量的概念。

2. 了解联合分布的概念及性质,理解边缘分布的概念。

了解联合分布与边缘分布的关系。

3. 理解二维离散型随机变量,会求边缘分布律,了解二维连续型随机变量,会求边缘概率密度。

4. 理解随机变量相互独立性的概念及性质,并会应用。

第四章随机变量的数字特征(10学时)
1. 理解随机变量的数学期望与方差的概念,掌握它们的性质与计算。

2. 会计算随机变量函数的数学期望。

3. 掌握0-1分布、二项分布、普哇松分布、均匀分布、指数分布,正态分布的数学期望与方差
4. 了解协方差与相关系数的概念。

5. 了解切比雪夫不等式及其意义。

6. 了解切比雪夫大数定律与贝努里大数定律的内容与含义。

7. 了解中心极限定理的内容与含义。

第五章数理统计的基本概念(6学时)
1. 理解总体、个体、样本、统计量的概念。

了解直方图的作法。

3. 掌握样本均值、样本方差的计算。

4. 知道三种常见的分布:分布、分布、分布。

第六章参数估计(4学时)
1. 理解参数估计的基本思想,了解矩估计法与最大似然估计法,会运用这些方法估计未知参数。

2. 了解评价估计量的三个标准,会判别
无偏性。

3. 了解置信区间、置信度的概念。

掌握对正态总体均值与方差的区间估计。

会用区间估计正确解决实际问题,并能解释其结果。

第七章假设检验(4学时)
1. 理解假设检验的基本思想,掌握假设检验与区间估计的密切联系。

2. 掌握小概率原理,理解接受域、拒绝域。

了解假设检验中可能产生的两类错误。

3. 掌握对正态总体均值与方差的假设检验,会对相应的具体问题做假设检验。

第八章一元线性回归分析(4学时)
1. 了解回归概念。

2. 会建立一元线性回归方程并进行相关性检验。

3. 了解可线性化回归方程。

三、课程学时分配及教学环节安排表
授课内容提要学时备注
第一章随机事件及其概率10
第二章随机变量及其分布8
第三章二维随机变量8
第四章随机变量的数字特征10
第五章数理统计的基本概念 6
第六章参数估计 4
第七章假设检验 4
第八章一元线性回归分析 4
合计54
四、教材及主要参考书目
1. 教材:《概率论与数理统计》,上海高校《经济数学基础》编写组,立信会计出版社。

2. 参考书目:《概率论与数理统计学习与辅导》,上海高校《经济数学基础》编写组,立信会计出版社。

相关文档
最新文档