(完整版)高中物理小船过河问题含答案,推荐文档
高三物理小船渡河问题分析试题答案及解析
高三物理小船渡河问题分析试题答案及解析1.一只小船渡河,水流速度各处相同且恒定不变,方向平行于岸边,小船相对于水分别做匀加速、匀减速、匀速直线运动,运动轨迹如图所示,船相对于水的初速度大小均相同,方向垂直于岸边,且船在渡河过程中船头方向始终不变,由此可以确定船()A.沿AD轨迹运动时,船相对于水做匀减速直线运动B.沿三条不同路径渡河的时间相同C.沿AB轨迹渡河所用的时间最短D.沿AC轨迹船到达对岸的速度最小【答案】 A【解析】做曲线运动的物体所受合外力的方向指向轨迹曲线的凹侧,即加速度指向曲线凹侧,由图可知,船沿AB、AC、AD轨迹运动时,小船相对于水分别做匀速、匀加速、匀减速直线运动,故选项A正确;船渡河时的时间取决于垂直河岸方向的速度,即小船相对于水的速度,因此小船相对于水做匀加速直线运动时的时间最短,做匀减速直线运动时的时间最长,故选项B、C错误;船到达对岸的速度为沿河岸方向与垂直河岸方向速度的矢量和,在沿河岸方向船的速度始终等于水流速度,不变,因此垂直河岸方向的速度越小,合速度越小,因此当船沿AD轨迹运动时到达对岸的速度最小,故选项D错误。
【考点】本题主要考查了运动的合成与分解的应用问题。
2.一只小船在静水中的速度为3m/s,它要渡过一条宽为30m的河,河水流速为4m/s,则这只船:()A.过河时间不可能小于10sB.不能沿垂直于河岸方向过河C.可以渡过这条河,而且所需时间可以为6sD.不可能渡过这条河【答案】AB【解析】船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动。
垂直河岸方向位移即河的宽度,而垂直河岸方向的最大分速度即船自身的速度3m/s,所以渡河最短时间答案A对C错。
只要有垂直河岸的分速度,就可以渡过这条河答案D错。
船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向,一个分速度沿河岸向下,与合速度垂直,那么在速度合成的平行四边形中船的速度即斜边,要求船的速度大于水的速度,而本题目中船的速度小于河水的速度不可能垂直河岸方向过河答案B对。
高三物理小船渡河问题分析试题答案及解析
高三物理小船渡河问题分析试题答案及解析1.如图所示,小船过河时,船头偏向上游与水流方向成α角,船相对于静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 ( )A.减小α角,增大船速vB.增大α角,增大船速vC.减小α角,保持船速v不变D.增大α角,保持船速v不变【答案】B【解析】据题意,设船速为v1和水速为v2,当水速v2增加后,要使航线保持不变,即合运动的方向不变,要准时到达,则据:可知水速v1也要增加,再据可知当水速增加后,要保持时间不变,则需要使水速与合运动方向的夹角θ变大,故B选项正确。
【考点】本题考查小船渡河问题。
2.如右图所示,一条小船位于200 m宽的河正中A点处,从这里向下游处有一危险的急流区,当时水流速度为4 m/s,为使小船避开危险区沿直线到达对岸,小船在静水中的速度至少为:A.B.C.D.【答案】C【解析】小船在河水中运动时,运动速度合成如下图所示,当小船在静水中的速度与合速度垂直时,小船在静水中的速度最小,最小速度为,所以正确选项为C。
【考点】本题考查了小船渡河模型的应用。
3.一条河宽100m,船在静水中的速度为4m/s,水流速度是5m/s,则()A.该船能垂直河岸横渡到对岸B.当船头垂直河岸横渡时,过河所用的时间最短C.当船头垂直河岸横渡时,船的位移最小,是100mD.该船渡到对岸时,船对岸的位移可能小于100m【答案】BD【解析】据题意,由于船速为v1=4m/s,而水速为v2=5m/s,船速小于水速,则无论船头指向哪里,都不可能使船垂直驶向对岸,A选项错误;据t=L/v1cosθ,要使t最小需要使θ最大,即使船头与河岸垂直,B选项正确;要使船的渡河位移最短,需要使船速方向与合运动方向垂直,则有合速度为v=3m/s;渡河时间为,则船的合位移为vt’=125m,所以C选项错误;船沿对岸的位移为:(v2-v14/5)t’=75m,所以D选项正确。
高中物理小船过河问题含答案讲解
小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
(完整版)小船渡河模型(含答案)
运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t短=d v1(d为河宽).②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1.③过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv2=1805s=36 sv=v21+v22=52 5 m/sx=v t=90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v2sin α=v1,得α=30°所以当船头向上游偏30°时航程最短.x′=d=180 m.t′=dv2cos 30°=180523s=24 3 s答案(1)垂直河岸方向36 s90 5 m (2)向上游偏30°24 3 s180 m2、一条船要在最短时间内渡过宽为100 m的河,已知河水的流速v1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v2与时间t的关系如图乙所示,则以下判断中正确的是()A.船渡河的最短时间是25 s B.船运动的轨迹可能是直线。
高一物理:小船渡河(1)(答案)
高一物理:小船渡河(1)(参考答案)一、例题精讲1.【答案】 B【解析】水流速度和船速的合速度方向沿虚线方向,水流速度变大,船速也应变大,河宽不变,过河时间变短,B项正确。
2.【答案】B【解析】当船朝正对岸运动时,渡河所用时间最短,B正确;由于船在静水中的速度大于水流速度,故船可以到达正对岸,但此时船头应斜向上游,A、C、D错误.3.【答案】C【解析】船的实际速度是v1和v2的合速度,v1与河岸平行,对渡河时间没有影响,所以v2与河岸垂直即船头指向对岸时,渡河时间最短,为t min=d/v2,式中d为河宽,此时合速度与河岸成一定夹角,船的实际路线应为④所示;最短位移即为d,应使合速度垂直河岸,则v2应指向河岸上游,实际路线为⑤所示,综合可得C项正确。
4.【答案】A【解析】解:A、B、C:因为分运动具有等时性,所以分析过河时间时,只分析垂直河岸方向的速度即可,渡河时小船船头垂直指向河岸,即静水中的速度方向指向河岸,而其大小不变,因此,小船渡河时间不变,∴A选项正确,B、C选项错误.D、当水流速度突然增大时,由矢量合成的平行四边形法则知船的合速度变化,因而小船到达对岸地点变化,∴D选项错误.5.【答案】A【解析】当沿AD轨迹运动时,则加速度方向与船在静水中的速度方向相反,因此船相对于水做匀减速直线运动,故A正确;船相对于水的初速度大小均相同,方向垂直于岸边,因运动的性质不同,则渡河时间也不同,故B错误;沿AB轨迹,做匀速直线运动,则渡河所用的时间大于沿AC轨迹运动渡河时间,故C错误;沿AC轨迹,船是匀加速运动,则船到达对岸的速度最大,故D错误。
6.【答案】 D二、自我检测7.【答案】AB【解析】当船头垂直指向河岸时,船在静水中的速度与水流速度的合速度方向偏向下游,故A正确,C错误;当船头偏上游时,若船在静水中的速度与水流速度的合速度垂直河岸,则船的运动轨迹垂直河岸,故B 正确;当船头偏向下游时,船在静水中的速度与水流速度的合速度方向应偏向下游,故D错误。
(word完整版)高中物理小船过河问题含答案,推荐文档
(2)渡河航程最短有两种情况: ①船速 v2 大于水流速度 v1 时,即 v2>v1 时,合速度 v 与河岸垂直时,最短航程就是河 宽; ②船速 v2 小于水流速度 vl 时,即 v2<v1 时,合速度 v 不可能与河岸垂直,只有当合速 度 v 方向越接近垂直河岸方向,航程越短。可由几何方法求得,即以 v1 的末端为圆心,以 v2 的长度为半径作圆,从 v1 的始端作此圆的切线,该切线方向即为最短航程的方向,如图 所示。
1/9
arccos v船 ,船沿河漂下的最短距离为: v水
xmin
(v水
v船
cos )
v船
d sin
此时渡河的最短位移: s d dv水 cos v船
【例题】河宽 d=60m,水流速度 v1=6m/s,小船在静水中的速度 v2=3m/s,问: (1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少? ★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间
设船在 θ 角位置经△t 时间向左行驶△x 距离,滑轮右侧的绳长缩短△L,如图 2 所示, 当绳与水平方向的角度变化很小时,△ABC 可近似看做是一直角三角形,因而有
L x cos ,两边同除以△t 得: L x cos
小船过河问题 轮船渡河问题: (1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中 过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水 的运动(即在静水中的船的运动),船的实际运动是合运动。
v船
v1
v2 θ
V水
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间
小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长? (3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cos θ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3t=s v d 93100=(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示: cos β=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ; (2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
高中物理:题型一:小船渡河问题
小船渡河问题的分析:
(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船在静水中的速度v1,水流速度v2,船的实际速度v.
(3)三种情形
①过河时间最短:船头正对河岸时,过河时间最短,短 =1
(d为河宽)。
②过河路径最短
a. v2<v1时,合速度垂直于河岸,航程最短,短 =d,船头指向上游,与河岸夹
的角度。
D.小船不可能垂直河岸到达对岸。
答案:BD
2.河宽为d,水流速度为v1,小汽艇在静水中航行速度为v2,且v1<v2,如果小
汽艇航向与河岸成夹角,斜向上游,求:
B
A
C
(1)它过河需要多少时间?
(2)到达对岸的位置?
(3)如果它以最短时间渡河,航向应如何?
(4)如果它要直达正对岸,航向又应怎样?
角为a,cosa=2
。
1
b. v2>v1,合速度不可能垂直于河岸,无法垂直渡河。确定方法如下
如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的
始端向圆弧作切线,则合速度沿此切线方向航程最短。
短
v1 d v1
a
2
1
由图可知:cosa=1
,最短航程:
航行方向是实际运动方向,也就是合速度方向。
(2)小船过河最短时间与水流速度无关。
典例
1.小船渡河,河宽90米,船在静水中的速度是3m/s,水流速度是4m/s,那么
(
)(多选)
A.小船渡河最短时间为18s.
B.小船渡河最短时间为30s.
C.要使小船能垂直河岸以最短路程到达对岸,船头要偏向上游与河岸夹一定
小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关.②过河路径最短:在v 船〉v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速.【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3t=s v d 93100= v 1 dv v 2 v 1 θ v v 2(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
(完整版)小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动. (2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1。
5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短: t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示:v 1 dvv 2v 1θvv 2cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m; (2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
高一物理:小船渡河(答案)
高一物理:小船渡河(参考答案)一、知识清单1.【答案】二、例题精讲2.【答案】 D3.【答案】AB【解析】船在过河过程同时参与两个运动,一个沿河岸向下游的水流速度,一个是船自身的运动.垂直河岸方向位移即河的宽度d=30 m,而垂直河岸方向的最大分速度即船自身的速度3 m/s,所以渡河最短时间t=d3 m/s =10 s,A对、C错.只要有垂直河岸的分速度,就可以渡过这条河,D错.船实际发生的运动就是合运动,如果船垂直河岸方向过河,即合速度垂直河岸方向.一个分速度沿河岸向下,与合速度垂直,那么在速度合成的三角形中船的速度即斜边,要求船的速度大于河水的速度,而本题目中船的速度小于河水的速度,故不可能垂直河岸方向过河,B对.4.【答案】AD【解析】5.【答案】BC【解析】联系“小船渡河模型”可知,射出的箭同时参与了v1、v2两个运动,要想命中目标且射出的箭在空中飞行时间最短,箭射出的方向应与马运动的方向垂直,故箭射到固定目标的最短时间为t=dv2,箭的速度v=v21+v22,所以运动员放箭处离固定目标的距离为x=vt=v21+v22v2d,B、C正确.6.【答案】 A【解析】当船的速度与河岸垂直时,渡河时间最短,t=dv船=3004s=75 s,故A正确;船在沿河岸方向上做变速运动,在垂直于河岸方向上做匀速直线运动,两运动的合运动是曲线运动,故B错误;要使船以最短时间渡河,船在行驶过程中,船头必须始终与河岸垂直,故C错误;要使船以最短时间渡河,船在航行中与河岸垂直,根据速度的合成可知,船在河水中的最大速度是5 m/s,故D错误.7.【答案】A【解析】当沿AD轨迹运动时,则加速度方向与船在静水中的速度方向相反,因此船相对于水做匀减速直线运动,故A正确;船相对于水的初速度大小均相同,方向垂直于岸边,因运动的性质不同,则渡河时间也不同,故B错误;沿AB轨迹,做匀速直线运动,则渡河所用的时间大于沿AC轨迹运动渡河时间,故C错误;沿AC轨迹,船是匀加速运动,则船到达对岸的速度最大,故D错误。
小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河最短时间是多少船的位移是多大(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河渡河时间多长(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河船的最小航程是多少[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100= (3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
((完整版))高中物理小船渡河模型典型例题(含答案)【经典】,推荐文档
考点四:小船渡河模型1.(小船渡河问题)小船在200 m 宽的河中横渡,水流速度是2 m/s ,小船在静水中的航速是4 m/s.求:(1)要使小船渡河耗时最少,应如何航行?最短时间为多少?(2)要使小船航程最短,应如何航行?最短航程为多少?答案 (1)船头正对河岸航行耗时最少,最短时间为50 s.(2)船头偏向上游,与河岸成60°角,最短航程为200 m.解析 (1)如图甲所示,船头始终正对河岸航行时耗时最少,即最短时间tmin == s =50 s.d v 船2004(2)如图乙所示,航程最短为河宽d ,即最短航程为200 m ,应使v 合的方向垂直于河岸,故船头应偏向上游,与河岸成α角,有 cos α===,解得α=60°.v 水v 船24122、一小船渡河,河宽d =180 m ,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s ,求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 m (2)船头向上游偏30° 24 s 180 m533、已知某船在静水中的速率为v1=4 m/s ,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m ,河水的流动速度为v2=3 m/s ,方向与河岸平行.试分析:(1)欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?(2)欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?解析 (1)根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短.设船头指向上游且与上游河岸夹角为α,其合速度v 与分运动速度v1、v2的矢量关系如图所示.河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sin α,则船渡河所用时间为t =.dv1sin α显然,当sin α=1即α=90°时,v⊥最大,t 最小,此时船身垂直于河岸,船头始终垂直指向对岸,但船实际的航向斜向下游,如图所示.渡河的最短时间tmin == s =25 s 船的位移为l =tmin =×25 m =125 md v11004v21+v2242+32船渡过河时到达正对岸的下游A 处,其顺水漂流的位移为x =v2tmin =3×25 m =75 m.(2)由于v1>v2,故船的合速度与河岸垂直时,船的航行距离最短.设此时船速v1的方向(船头的指向)斜向上游,且与河岸成θ角,如图所示,则cos θ==,θ=arccos .v2v13434船的实际速度为v 合== m/s =m/s 故渡河时间:t′== s = s.v21-v2242-327d v 合100710077答案 (1)t=25s ,x=75m ,l=125m (2)t=s 100774、河宽60 m ,水流速度v1=6 m/s ,小船在静水中的速度v2=3 m/s ,则:(1)它渡河的最短时间是多少?(2)最短航程是多少?答案 (1)20 s (2)120 m 5.(单选)一小船在静水中的速度为3 m/s ,它在一条河宽为150 m ,水流速度为4 m/s 的河流中渡河,则该小船( ). 答案 CA .能到达正对岸B .渡河的时间可能少于50 sC .以最短时间渡河时,它沿水流方向的位移大小为200 mD .以最短位移渡河时,位移大小为150 m6.一只小船在静水中的速度为5 m/s ,它要渡过一条宽为50 m 的河,河水流速为4 m/s ,则( ) 答案 CA.这只船过河位移不可能为50 mB.这只船过河时间不可能为10 sC.若河水流速改变,船过河的最短时间一定不变D.若河水流速改变,船过河的最短位移一定不变7.(运动的合成和分解)某河宽为600 m ,河中某点的水流速度v 与该点到较近河岸的距离d 的关系如图所示.船在静水中的速度为4 m/s ,要想使船渡河的时间最短,下列说法正确的是( ) 答案 ADA.船在航行过程中,船头应与河岸垂直B.船在河水中航行的轨迹是一条直线C.渡河的最短时间为240 sD.船离开河岸400 m 时的速度大小为2 m/s58. (多选)小船横渡一条两岸平行的河流,船本身提供的速度(即静水速度)大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( ) 答案 ACA .越接近河岸水流速度越小B .越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响9. (单选)有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( ) 答案 BA. B. C. D.kv k2-1v 1-k2kv 1-k2vk2-1解析 设大河宽度为d ,小船在静水中的速度为v0,则去程渡河所用时间t1=,回程渡河所用时间t2=.由题知=k ,联立以上各式dv0dv20-v2t1t2得v0=,选项B 正确,选项A 、C 、D 错误.v1-k210. (单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为H ,河水流速为,划船速度u 为,出发时两船相距,甲、乙船头均与岸边成角,且乙船恰好能v H 332 60直达对岸的A 点,则下列判断正确的是( D )A .甲、乙两船到达对岸的时间不同B .两船可能在未到达对岸前相遇C .甲船在A 点右侧靠岸D .甲船也在A 点靠岸11.如图所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1=3 m/s ,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:(1)发动机未熄火时,轮船相对于静水行驶的速度大小;(2)发动机熄火后,轮船相对于河岸速度的最小值.答案 (1)5 m/s (2)2.4 m/s 解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v1方向垂直,如图所示,故此时船相对于静水的速度v2的大小:v2==m/s=5 m/s,设v 与v2的夹角为θ,则cos θ==0.8.(2)熄火前,船的v2+v2142+32vv2牵引力沿v2的方向,水的阻力与v2的方向相反,熄火后,牵引力消失,在阻力作用下,v2逐渐减小,但其方向不变,当v2与v1的矢量和与v2垂直时,轮船的合速度最小,则vmin =v1cos θ=3×0.8 m/s =2.4 m/s.12.如图所示,河宽d =120 m ,设小船在静水中的速度为v1,河水的流速为v2.小船从A 点出发,在渡河时,船身保持平行移动.若出发时船头指向河对岸上游的B 点,经过10 min ,小船恰好到达河正对岸的C 点;若出发时船头指向河正对岸的C 点,经过8 min ,小船到达C 点下游的D 点.求:(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河中小船被冲向下游的距离sCD.答案 (1)0.25 m/s (2)0.15 m/s (3)72 m解析 (1)小船从A 点出发,若船头指向河正对岸的C 点,则此时v1方向的位移为d ,故有v1== m/s =0.25 m/s.d tmin 12060×8(2)设AB 与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C 点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t =,所以sin α==0.8,故v2=v1cos α=0.15 m/s.d v1sin αd v1t (3)在第二次渡河中小船被冲向下游的距离为sCD =v2tmin =72 m.。
小船过河问题分析与题解(6页)
小船过河问题分析与题解(6页)Good is good, but better carries it.精益求精,善益求善。
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v船(即船在静水中的速度),水的流速为v水(即水对地的速度),船的合速度为v(即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v船>v水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v船<v水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v水矢量末端为圆心,以v船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v1表船速,v2表水速)("《)&@》>¥"@;~…\?>),{\%[!|"$-!、2与题点的应有问动杂理,求法量式换利考个动运一来不假运个动不以我,的于相,汽对车驶在。
运外确止动中其,互运于运动运于相动运则物参的选果成运几参物有说也体一对成必:点个采成动定边四都分成是位、量矢的相间行动和时等运分代,效决运各合效等效产进动各分个同立独质性四动直方两果按线是用常曲杂。
际与物一动确则行利效合速定确际由速运体就度速分首解分行定边行必,成的以速位,分成。
分行交取,分的动根动寻据通解运叫求运成动合动际体定运性时动运合性独具相互之运论要。
的际这就个几运动几动发体这们,果生动两另的动的际体如等速向杆(一注运分动的垂(运分运沿(;为实物)路要绳物度的车图,图运向的绳一重绳二周向针轮端一使一个产个度动合的速的果运少为速小为速物,成方与侧轮问升沿小过,下沿重,。
小船过河问题分析与题解
小船过河问题分析与题解【问题概说】(1)船的实际运动是水流的运动和船相对静水的运动的合运动。
(2)三种速度:船相对水的速度为v 船(即船在静水中的速度),水的流速为v 水(即水对地的速度),船的合速度为v (即船对地的速度,船的实际速度,其方向就是船的航向)。
(3)三种情景:①过河时间最短:当船头垂直河岸,渡河时间最短,且渡河时间与水的流速无关。
②过河路径最短:在v 船>v 水的条件下,当船的合速度垂直于河岸时,渡河位移(航程或路径)最小并等于河宽。
在v 船<v 水的条件下,当船头与船的合速度垂直时,渡河位移(航程或路径)最小。
此种情况下,合速度不可能垂直于河岸,无法垂直渡河。
最短航程确定如下:如图所示,以v 水矢量末端为圆心,以v 船矢量的大小为半径画弧,从v 水矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。
(下图中v 1表船速,v 2表水速)③最小渡河速度:水速和航向一定,船速垂直航向有最小船速。
【典型题例】两河岸平行,河宽d=100m ,水流速度v 1=3m/s ,求:(1)船在静水中的速度是4m/s 时,欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船的位移是多大?(2)船在静水中的速度是6m/s 时,欲使船航行距离最短,船应怎样渡河?渡河时间多长?(3)船在静水中的速度为1.5m/s 时,欲使船渡河距离最短,船应怎样渡河?船的最小航程是多少?[思路分析](1)当船头垂直于河岸时,渡河时间最短:t min =d/v 2=100/4=25s 合速度v=s m v v /543222221=+=+ 船的位移大小s=v t min =125m(2)欲使船航行距离最短,需船头向上游转过一定角度使合速度方向垂直于河岸,设船的开行速度v 2与岸成θ角,则cosθ=216321==v v , 所以θ=600,合速度v=v 2sin600=3s m /3 t=s v d 93100=(3)船在静水中速度小于水流的速度,船头垂直于合速度v 时,渡河位移最小, 设船头与河岸夹角为β,如图所示: cosβ=2135.112==v v 所以β=600 最小位移s min =m d 20060cos 100cos 0==β [答案](1) 船头垂直于河岸时,渡河时间最短:t min =25s ,s =125m ;(2) 船头向上游转过一定角度, 与岸成600角航程最短,t=s 93100; (3) 船头垂直于合速度,船头与河岸夹角600时航程最短,s min =m 200。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结:解题流程:①选取合适的连结点(该点必须能明显地体现出参与了某个分运动);②确定该点合速度方向(物体的实际速度为合速度)且速度方向始终不变;③确定该点合速度的实际运动效果从而依据平行四边形定则确定分速度方向;④作出速度分解的示意图,寻找速度时,即v2>v1时,合速度v与河岸垂直时,最短航程就是河宽;
②船速v2小于水流速度vl时,即v2<v1时,合速度v不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。可由几何方法求得,即以v1的末端为圆心,以v2的长度为半径作圆,从v1的始端作此圆的切线,该切线方向即为最短航程的方向,如图所示。
即收绳速率 ,因此船的速率为:
图2
总结:“微元法”。可设想物体发生一个微小位移,分析由此而引起的牵连物体运动的位移是怎样的,得出位移分解的图示,再从中找到对应的速度分解的图示,进而求出牵连物体间速度大小的关系。
解法三(能量转化法):由题意可知:人对绳子做功等于绳子对物体所做的功。人对绳子的拉力为F,则对绳子做功的功率为 ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F,则绳子对物体做功的功率为 ,因为 所以 。
(A) (B) (C) (D)
★解析:设船速为 ,水速为 ,河宽为d ,则由题意可知 : ①
当此人用最短位移过河时,即合速度 方向应垂直于河岸,如图所示,则 ②
联立①②式可得: ,进一步得
【例题】小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比, ,x是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为 ,则下列说法中正确的是( A )
解法二(微元法):要求船在该位置的速率即为瞬时速率,需从该时刻起取一小段时间来求它的平均速率,当这一小段时间趋于零时,该平均速率就为所求速率。
设船在θ角位置经△t时间向左行驶△x距离,滑轮右侧的绳长缩短△L,如图2所示,当绳与水平方向的角度变化很小时,△ABC可近似看做是一直角三角形,因而有 ,两边同除以△t得:
2.位移最小
若
结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为
若 ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,
设船头v船与河岸成θ角。合速度v与河岸成α角。可以看出:α角越大,船漂下的距离x越短,那么,在什么条件下α角最大呢?以v水的矢尖为圆心,v船为半径画圆,当v与圆相切时,α角最大,根据 船头与河岸的夹角应为
A. B.0
C. D.
★解析:摩托艇要想在最短时间内到达对岸,其划行方向要垂直于江岸,摩托艇实际的运动是相对于水的划行运动和随水流的运动的合运动,垂直于江岸方向的运动速度为v2,到达江岸所用时间t= ;沿江岸方向的运动速度是水速v1在相同的时间内,被水冲下的距离,即为登陆点距离0点距离 。答案:C
【例题】某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T1;若此船用最短的位移过河,则需时间为T2,若船速大于水速,则船速与水速之比为()
小船过河问题
轮船渡河问题:
(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当 时,即船头的指向与河岸垂直,渡河时间最小为 ,合运动沿v的方向进行。
A、小船渡河的轨迹为曲线
B、小船到达离河岸 处,船渡河的速度为
C、小船渡河时的轨迹为直线
D、小船到达离河岸 处,船的渡河速度为
高中物理-渡河模型习题讲解
【模型概述】
在运动的合成与分解中,如何判断物体的合运动和分运动是首要问题,判断合运动的有效方法是看见的运动就是合运动。合运动的分解从理论上说可以是任意的,但一般按运动的实际效果进行分解。小船渡河和斜拉船等问题是常见的运动的合成与分解的典型问题
【模型讲解】
一、速度的分解要从实际情况出发
例1.如图1所示,人用绳子通过定滑轮以不变的速度 拉水平面上的物体A,当绳与水平方向成θ角时,求物体A的速度。
图1
解法一(分解法):本题的关键是正确地确定物体A的两个分运动。物体A的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短。绳长缩短的速度即等于 ;二是随着绳以定滑轮为圆心的摆动,它不改变绳长,只改变角度θ的值。这样就可以将 按图示方向进行分解。所以 及 实际上就是 的两个分速度,如图1所示,由此可得 。
,船沿河漂下的最短距离为:
此时渡河的最短位移:
【例题】河宽d=60m,水流速度v1=6m/s,小船在静水中的速度v2=3m/s,问:
(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?
(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?
★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间
设航程最短时,船头应偏向上游河岸与河岸成θ角,则
,
最短行程,
小船的船头与上游河岸成600角时,渡河的最短航程为120m。
技巧点拔:对第一小问比较容易理解,但对第二小问却不容易理解,这里涉及到运用数学知识解决物理问题,需要大家有较好的应用能力,这也是教学大纲中要求培养的五种能力之一。
【例题】在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,战士救人的地点A离岸边最近处O的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O点的距离为( C )
二、拉力为变力,求解做功要正确理解
例2.如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v,绳与水平面夹角为θ。问在这个过程中,人对重物做了多少功?