完整版一元一次不等式教学案全章
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
《一元一次不等式》第一课时参考教案
1.4 一元一次不等式(一)●教学目标(一)教学知识点1.知道什么是一元一次不等式?2.会解一元一次不等式.(二)能力训练要求1.归纳一元一次不等式的定义.2.通过具体实例,归纳解一元一次不等式的基本步骤.(三)情感与价值观要求通过观察一元一次不等式的解法,对比解一元一次方程的步骤,让学生自己归纳解一元一次不等式的基本步骤.●教学重点1.一元一次不等式的概念及判断.2.会解一元一次不等式.●教学难点当不等式的两边都乘以或除以同一个负数时,不等号的方向要改变.●教学方法自觉发现——归纳法教师通过具体实例让学生观察、归纳、独立发现解一元一次不等式的步骤.并针对常见错误进行指导,使他们在以后的解题中能引起注意,自觉改正错误.●教具准备投影片两张第一张:(记作§1.4.1 A)第二张:(记作§1.4.1 B)●教学过程Ⅰ.创设问题情境,引入新课[师]在前面我们学习了不等式的基本性质,不等式的解,不等式的解集,解不等式的内容.并且知道根据不等式的基本性质,可以把一些不等式化成“x>a”或“x<a”的形式.那么,什么样的不等式才可以运用不等式的基本性质而被化成“x>a”或“x<a”的形式呢?又需要哪些步骤呢?本节课我们将进行这方面的研究.Ⅱ.讲授新课1.一元一次不等式的定义.[师]大家已经学习过一元一次方程的定义,你们还记得吗?[生]记得.只含有一个未知数,未知数的指数是一次,这样的方程叫做一元一次方程.[师]很好.我们知道一元指的是一个未知数,一次指的是未知数的指数是一次,由此大家可以类推出一元一次不等式的定义,可以吗?[生]只含有一个未知数,未知数的最高次数是一次,这样的不等式叫一元一次不等式.[师]好.下面我们判断一下,以下的不等式是不是一元一次不等式.请大家讨论.投影片(§1.4.1 A)下列不等式是一元一次不等式吗?(1)2x-2.5≥15;(2)5+3x>240;1(3)x<-4;(4)>1.x[生](1)、(2)、(3)中的不等式是一元一次不等式,(4)不是.[师](4)为什么不是呢?1[生]因为x在分母中,不是整式.x[师]好,从上面的讨论中,我们可以得出判断一元一次不等式的条件有三个,即未知数的个数,未知数的次数,且不等式的两边都是整式.请大家总结出一元一次不等式的定义.[生]不等式的两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式,叫做一元一次不等式(linear inequality with one unknown).2.一元一次不等式的解法.[师]在前面我们接触过的不等式中,如2x-2.5≥15,5+3x>240都可以通过不等式的基本性质化成“x>a”或“x<a”的形式,请大家来试一试.[例1]解不等式3-x<2x+6,并把它的解集表示在数轴上.[分析]要化成“x>a”或“x<a”的形式,首先要把不等式两边的x或常数项转移到同一侧,变成“ax>b”或“ax<b”的形式,再根据不等式的基本性质求得.[解]两边都加上x,得3-x+x<2x+6+x合并同类项,得3<3x+6两边都加上-6,得3-6<3x+6-6合并同类项,得-3<3x两边都除以3,得-1<x即x>-1.这个不等式的解集在数轴上表示如下:图1-9[师]观察上面的步骤,大家可以看出,两边都加上x,就相当于把左边的-x改变符号后移到了右边,这种变形叫什么呢?[生]叫移项.[师]由此可知,移项法则在解不等式中同样适用,同理可知两边都加上-6,可以看作把6改变符号后从右边移到了左边.因此,可以把这两步合起来,通过移项求得.两边都除以3,就是把x的系数化成1.现在请大家按刚才分析的过程重新写一次步骤.[生]移项,得3-6<2x+x合并同类项,得-3<3x两边都除以3,得-1<x 即x >-1.[师]从刚才的步骤中,我们可以感觉到解一元一次不等式的过程和解一元一次方程的过程有什么关系?[生]有相似之处.[师]大家还记得解一元一次方程的步骤吗?[生]记得.有去分母;去括号;移项;合并同类项;系数化成1.[师]下面大家仿照上面的步骤练习一下解一元一次不等式.[例2]解不等式≥,并把它的解集在数轴上表示出来.22-x 37x -[生]解:去分母,得3(x -2)≥2(7-x )去括号,得3x -6≥14-2x 移项,合并同类项,得5x≥20两边都除以5,得x≥4.这个不等式的解集在数轴上表示如下:图1-10[师]这位同学做得很好.看来大家已经对解一元一次不等式的步骤掌握得很好了,请大家判断以下解法是否正确.若不正确,请改正.投影片(§1.4.1 B )解不等式:≥5312-+-x 解:去分母,得-2x+1≥-15移项、合并同类项,得-2x≥-16两边同时除以-2,得x≥8.[生]有两处错误.第一,在去分母时,两边同时乘以-3,根据不等式的基本性质3,不等号的方向要改变,第二,在最后一步,两边同时除以-2时,不等号的方向也应改变.[师]回答非常精彩.这也就是我们在解一元一次不等式时常犯的错误,希望大家要引起注意.3.解一元一次不等式与解一元一次方程的区别与联系.[师]请大家讨论后发表小组的意见.[生]联系:两种解法的步骤相似.区别:(1)不等式两边都乘以(或除以)同一个负数时,不等号的方向改变;而方程两边乘以(或除以)同一个负数时,等号不变.(2)一元一次不等式有无限多个解,而一元一次方程只有一个解.Ⅲ.课堂练习解下列不等式,并把它们的解集分别表示在数轴上:(1)5x >-10;(2)-3x+12≤0;(3)<;21-x 354-x (4)-1<.27+x 223+x 解:(1)两边同时除以5,得x >-2.这个不等式的解集在数轴上表示如下:图1-11(2)移项,得-3x≤-12,两边都除以-3,得x≥4,这个不等式的解集在数轴上表示为:图1-12(3)去分母,得3(x -1)<2(4x -5),去括号,得3x -3<8x -10,移项、合并同类项,得5x >7,两边都除以5,得x >,57不等式的解集在数轴上表示为:图1-13(4)去分母,得x+7-2<3x+2,移项、合并同类项,得2x>3,3两边都除以2,得x>,2不等式的解集在数轴上表示如下:图1-14Ⅳ.课时小结本节课学习了如下内容:1.一元一次不等式的定义.2.一元一次不等式的解法.3.解一元一次不等式与解一元一次方程的区别与联系.Ⅴ.课后作业习题1.4Ⅵ.活动与探究求下列不等式的正整数解:(1)-4x>-12;(2)3x-9≤0.解:(1)解不等式-4x>-12,得x<3,因为小于3的正整数有1,2两个,所以不等式-4x>-12的正整数解是1,2.(2)解不等式3x-9≤0,得x≤3.因为不大于3的正整数有1,2,3三个,所以不等式3x-9≤0的正整数解是1,2,3.●板书设计§1.4.1 一元一次不等式(一)一、1.一元一次不等式的定义.2.一元一次不等式的解法.例1例2判断题3.解一元一次不等式与解一元一次方程的区别与联系.二、课堂练习三、课时小结四、课后作业●备课资料同解不等式看下面两个等式x+3<6 (1)x+9<12 (2)可以知道,不等式(1)的解集是x<3,不等式(2)的解集也是x<3,就是说,不等式(1)与(2)的解集相同.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式.从上面知道,(1)与(2)是同解不等式.因为不等式(2)实际上就是x+3+6<6+6所以不等式(1)的两边都加上6,所得不等式(即不等式x+9<12)与不等式(1)同解.一般地,有不等式同解原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得的不等式与原不等式是同解不等式.不等式同解原理2:不等式的两边都乘以(或除以)同一个正数,所得的不等式与原不等式是同解不等式.不等式同解原理3:不等式的两边都乘以(或除以)同一个负数,并且把不等号改变方向后,所得的不等式与原不等式是同解不等式.我们在前面解不等式所作的变形都符合不等式的同解原理(特别要注意不等式两边都乘以或除以同一个负数后,改变不等号的方向),这就保证最后得出的解集就是原不等式的解集.。
第8章《一元一次不等式》单元教案
第8章一元一次不等式8.1认识不等式1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”等数学术语.3.理解不等式的解的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.重点理解并会用不等式表达数学量之间的关系,知道不等式的解的意义.难点不等号的准确应用;不等式的解.一、创设情境,问题引入问题:世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元.某班有27名少先队员去世纪公园进行活动.当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,究竟李敏的提议对不对呢?是不是真的“浪费”呢?二、探索问题,引入新知同学们的探索过程如下:买27张票,付款:5×27=135(元);买30张票,付款:4×30=120(元).显然 120<135.这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,而实际上节省了.思考:(1)我们只用120元就买了30张票,买30张票,我们不仅省钱,而且多买了票,那么剩下的3张票如何处理呢?(2)买30张票比买27张票付的款还要少,这是不是说任何情况下都是多买票反而花钱少?(3)至少要有多少人去参观,多买票反而合算呢?能否用数学知识来解决?设有x人要进世纪公园,如果x≥30,显然按实际人数买票,每张票只要付4元.如果x<30,那么:按实际人数买票x张,要付款5x(元),买30张票,要付款4×30=120(元),如果买30张票合算,那么应有120<5x.现在的问题就是:x取哪些数值时,上式成立?前面已经算过,当x=27时,上式成立.让我们再取一些值试一试,将结果填入课本P51页的表格中.由上表可见,当x=________时,不等式120<5x成立.也就是说,少于30人时,至少要有________人进公园时,买30张票反而合算.像上面出现的120<135,x<30,120<5x那样用不等号“<”或“>”表示不等关系的式子,叫做不等式.不等式120<5x中含有未知数x.能使不等式成立的未知数的值,叫做不等式的解.【例1】判断下列各式哪些是等式,哪些是不等式.(1)4<5;(2)x2+1>0;(3)x<2x-5;(4)x=2x+3;(5)3a2+a;(6)a2+2a≥4a-2.分析:根据不等式的定义对各小题进行逐一判断即可.解:(1)4<5是不等式;(2)x2+1>0是不等式;(3)x<2x-5是不等式;(4)x=2x+3是方程;(5)3a2+a是代数式;(6)a2+2a≥4a-2是不等式.故(1),(2),(3),(6)是不等式.点评:熟知用不等号连结的式子叫不等式是解答此题的关键.【例2】 用适当的符号表示下列关系: (1)x 的13与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.分析:(1)非正数用“≤0”表示;(2),(4)不小于就是大于等于,用“≥”来表示;(3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重.用“≥”表示. 解:(1)13x +2x≤0; (2)设炮弹的杀伤半径为r ,则应有r≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a +4b≤268;(4)用P 表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b. 点评:一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠.三、巩固练习1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2≤3,其中不等式有( )A .2个B .3个C .4个D .5个2.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x +30y≥500”表示的实际意义是( )A .两种客车总的载客量不少于500人B .两种客车总的载客量不超过500人C .两种客车总的载客量不足500人D .两种客车总的载客量恰好等于500人3.x 与y 的平方和一定是非负数,用不等式表示为________.4.下列各数:0,-3,3,4,-0.5,-20 ,-0.4中,________是方程x +3=0的解;________是不等式x +3>0的解;________是不等式2x +3<x 的解.5.用不等式表示. (1)x 的23与5的差小于1; (2)x 与6的和大于9;(3)8与y 的2倍的和是正数;(4)a 的3倍与7的差是负数; (5)x 的3倍大于或等于1;(6)x 与5的和不小于0.四、小结与作业小结通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?作业1.教材第52页“习题8.1”中第1,2 题.2.完成练习册中本课时练习.本节教学过程中,始终通过师生互动,鼓励学生积极思考,努力探索,合作交流,关注学生能否发现问题,提出问题,能否敢于发表自己的见解,吸取正确的见解;关注学生学习过程中表现的学习习惯、个性品质、情感态度等. 通过游戏、分组竞赛等激发学生的积极性,培养团队精神.通过例题和闯关游戏,检测学生学习情况,及时反馈调节;通过不同层次的变式题,评价各层学生的学习效果,增强学习信心.留给学生思考、探究的时间和空间.对学生回答是否正确、全面都给予及时的肯定和鼓励,时刻注意激发学习内驱力,确保学生学得更多、更快、更好!总之,本节教学既贴近生活,又超越生活,既努力从生活中来,又努力到生活中去,实现了:生活世界、数学世界、教学世界的融会贯通!8.2 解一元一次不等式8.2.1 不等式的解集1.使学生掌握不等式的解集的概念,以及什么是解不等式.2.使学生能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想.重点1.认识不等式的解集的概念.2.将不等式的解集表示在数轴上.难点不等式的解集的概念.一、创设情境,问题引入问题1:已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n-m______0;(2)m+n______0;(3)m-n______0; (4)n+1______0;(5)m·n______0; (6)m+1______0.问题2:下列各数中,哪些是不等式x+2>5的解?哪些不是?-3,-2,-1,0,1.5,3,3.5,5,7二、探索问题,引入新知在上面问题2中,我们发现3.5,5,7都是不等式x+2>5的解.由此可以看出,不等式x+2>5有许多个解.进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解.由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集.结论:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集的过程,叫做解不等式.不等式x+2>5的解集,可以表示成x>3,它也可以在数轴上直观地表示出来,如图所示.同样,如果某个不等式的解集为x≤-2,也可以在数轴上直观地表示出来,如图所示.观察讨论:这两条折线所指的方向为什么不同?它们有什么规律吗?数轴上空心的圆点和实心的圆点是什么意义?结论:不等式的解集在数轴上可直观地表示出来,但应注意不等号的类型,小于在左边,大于在右边.当不等号为“>”“<”时用空心圆圈,当不等号为“≥”“≤”时用实心圆圈.【例1】在数轴上表示下列不等式的解集:(1)x<-2;(2)x≥1;分析:(1)在-2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.解:(1)如图所示:(2)如图所示:点评:熟知实心圆点与空心圆点的区别是解答此题的关键.【例2】在数轴上表示不等式-4≤x<1的解集,并写出其整数解.分析:根据“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线,可得答案.解:在数轴上表示不等式-4≤x<1的解集,如图:整数解为:-4,-3,-2,-1,0.点评:不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.三、巩固练习1.方程3x=6的解有________个,不等式3x<6的解有________个.2.在数轴上表示下列不等式的解集.(1)x>-4;(2)x≤3.5;(3)-2.5<x≤4.3.请用不等式表示如图的解集.(1)(2)(3)(4)(5)四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第2,3题.2.完成练习册中本课时练习.本节课属于一节概念课,按照“情境诱导—学生自学—展示归纳—巩固练习”的步骤进行.但从教学中来看,部分学生不会自学,个别学生不积极参与到小组活动之中.通过本节课的教学让我深深认识到,作为一名数学教师,要想让自己的学生出类拔萃,一定要在平时培养学生的自学习惯,自学能力,表达能力,教师要舍得时间,不能急躁.8.2.2不等式的简单变形1.通过本节的学习让学生在自主探索的基础上,联系方程的基本变形得到不等式的基本性质.2.掌握一次不等式的变形求解一元一次不等式基本方法.3.体会一元一次不等式和方程的区别与联系.重点掌握不等式的三条基本性质.难点正确应用不等式的三条基本性质进行不等式变形.一、创设情境、复习引入复习等式的基本性质一:在等式的两边都________或________同一个________或________,等式仍然成立.等式的基本性质二:在等式的两边都________或________同一个________,等式仍然成立.不等式有哪些基本性质?解一元一次方程有哪些基本步骤呢?一元一次不等式的解与方程的解是不是步骤类似呢?二、探索问题,引入新知在解一元一次方程时,我们主要是对方程进行变形.在研究解不等式时,我们同样应先探究不等式的变形规律.如图,一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然a>b),如果在两边盘内分别加上等量的砝码c,那么盘子仍然像原来那样倾斜(即a+c>b+c).结论:不等式的性质1:如果a>b,那么a+c>b+c,a-c>b-c.这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等式的方向不变.思考:不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?试一试:将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”,“>”或“=”填空:7×3________4×3,7×2________4×2,7×1________4×1,7×0________4×0,7×(-1)________4×(-1),7×(-2)________4×(-2),7×(-3)________4×(-3),……从中你能发现什么?结论:不等式的性质2:如果a>b ,并且c>0,那么ac>bc.不等式的性质3:如果a>b ,并且c<0,那么ac<bc.这就是说,不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变.与解方程一样,解不等式的过程,就是要将不等式变形成x>a 或x<a 的形式.【例1】 根据不等式的基本性质,把下列不等式化成“x>a”或“x <a”的形式:(1)4x >3x +5;(2)-2x <17.分析:(1)根据不等式的性质1:两边都减3x ,可得答案;(2)根据不等式的性质3:不等式的两边都除以-2,可得答案. 解:(1)两边都减3x ,得x >5; (2)两边都除以-2,得x >-172. 点评:不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.【例2】 根据不等式性质解下列不等式.(1)x +3>5; (2)-23x <50; (3)5x +5<3x -2.分析:根据不等式的基本性质对各不等式进行逐一分析解答即可. 解:(1)根据不等式性质1,不等式两边都减3,不等号的方向不变,得x +3-3>5-3,即x >2; (2)根据不等式性质2,不等式两边都乘以-32,不等号的方向改变,得-23x×(-32)>50×(-32),即x >-75; (3)根据不等式性质1,2,不等式两边同时减去(5+3x),然后除以2,不等号的方向不变,得(5x +5-5-3x)÷2<(3x -2-5-3x)÷2,即x <-72. 点评:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.三、巩固练习1.已知实数a ,b 满足a +1>b +1,则下列选项错误的是( ) A .a >b B .a +2>b +2C .-a <-bD .2a >3b2.若3x >-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.如果a <b ,则12-3a________12-3b(用“>”或“<”填空). 4.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b -3a <0,则b <3a ;________(2)如果-5x >20,那么x >-4;________(3)若a >b ,则 ac 2>bc 2;________(4)若ac 2>bc 2,则a >b ;________(5)若a >b ,则 a(c 2+1)>b(c 2+1); (6)若a >b >0,则1a <1b .________ 5.指出下列各式成立的条件: (1)由mx <n ,得x >n m ; (2)由a <b ,得m 2a <m 2b ;(3)由a >-2,得a 2≤-2a.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第58页“练习”.2.完成练习册中本课时练习.让学生参与知识的形成过程的学习,有利于培养学生动手实践,积极探索的科学学习方法,有利于培养学生的良好学习习惯和严谨的学习态度,有利于发展学生的直觉思维、形象思维和逻辑思维能力,有利于培养学生的独立钻研、相互交流和共同协作的科学态度,符合新课标的思想.8.2.3 解一元一次不等式第1课时 一元一次不等式的解法1.掌握一元一次不等式的概念.2.体会解不等式的步骤,体会数学学习中比较和转化的作用.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.重点掌握一元一次不等式的解法.难点掌握一元一次不等式的解法.一、创设情境、复习引入1.不等式的三条基本性质是什么?2.一个方程是一元一次方程的三个条件是什么?3.解一元一次方程的一般步骤是什么?二、探索问题,引入新知让同学们观察下列不等式: ①x-7≥2;②3x<2x +1;③13x≤5;④-4x >8.它们有什么共同点?你能借鉴一元一次方程给它下个定义吗? 结论:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.我们再来解一些一元一次不等式. 【例1】 下列各式:(1)-x≥5;(2)y -3x <0;(3)x π+5<0;(4)x 2+x≠3;(5)3x +3≤3x;(6)x +2<0是一元一次不等式的有哪些? 分析:利用一元一次不等式的定义判断即可. 解:(1)-x≥5,是;(2)y -3x <0,不是;(3)x π+5<0,是;(4)x 2+x≠3,不是;(5)3x +3≤3x,不是;(6)x +2<0,是.如何来解一元一次不等式呢?【例2】 解不等式,并把解集在数轴上表示出来:(1)2(5x +3)≤x-3(1-2x); (2)1+x 3>5-x -22. 分析:(1)先去括号,然后通过移项、合并同类项,化未知数系数为1解不等式;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1解不等式.解:(1)去括号,得:10x +6≤x-3+6x ,移项、合并同类项,得:3x≤-9,系数化为1,得:x≤-3;表示在数轴上为:(2)去分母,得:6+2x >30-3x +6,移项、合并同类项,得:5x >30,系数化为1,得:x >6.表示在数轴上为:点评:需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.结论:解一元一次不等式的步骤:1.去括号,去分母;2.利用不等式的性质移项;3.合并同类项;4.系数化为1.三、巩固练习1.下列各式中,一元一次不等式是( ) A .x ≥5x B .2x >1-x 2 C .x +2y <1 D .2x +1≤3x2.不等式x +1≥2的解集在数轴上表示正确的是( )3.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =________.4.不等式组m(x -5)>2m -10的解集是x >m ,则m 的值是________.5.解不等式2(x +6)≥3x-18,并将其解集在数轴上表示出来.6.解不等式2x +13-5x -12≥-1,并把它的解集在数轴上表示出来. 四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1教材第61页“习题8.2”中第1,4 题.2.完成练习册中本课时练习.在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣.但是部分学生在作业中存在以下问题:由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向.第2课时 列一元一次不等式解决实际问题1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.2.通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系.重点寻找实际问题中的不等关系,建立数学模型.难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.一、创设情境,问题引入在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛.育才中学有25名学生通过了预选赛,通过者至少答对了多少道题?有哪些可能的情形.二、探索问题,引入新知讨论:(1)试解决这个问题(不限定方法).你是用什么方法解决的?有没有其他方法?与你的同伴讨论和交流一下.(2)如果利用不等式的知识解决这个问题,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述?分析:如果用不等式,必须找出不等关系.根据题意可知,答对题的得分减去答错题的扣分大于或等于80分.所以这个问题的关键是表示出答对的题数和答错或不答的题数.解:设通过者答对了x道题,答错或不答的题有(20-x)道,根据题意可得,10x-5(20-x)≥80,解得:x≥12,所以,通过者至少要答对12道题.你能类比列一元一次方程解决实际问题的方法,总结出列不等式解决实际问题的步骤吗?结论:用一元一次不等式解决实际问题的步骤:(1)审题,找出不等关系; (2)设未知数;(3)列出不等式;(4)求出不等式的解集; (5)找出符合题意的值; (6)作答.【例1】学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?分析:先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x ≤70040,x ≤1712.答:最多还能买词典17本. 【例2】 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?分析:(1)设甲队胜了x 场,则负了(10-x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a 场,根据积分超过15分才能获得参赛资格,进而得出答案.解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2.答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5.答:乙队在初赛阶段至少要胜6场.点评:正确表示出球队的得分是解题关键.三、巩固练习1.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个2.甲、乙两人从相距24 km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8 km /hB .大于8 km /hC .小于4 km /hD .大于4 km /h3.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.4.某工人计划在15天内加工408个零件,最初三天中每天加工24个.问以后每天至少加工多少个零件,才能在规定的时间内超额完成任务?四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第6 ,7 题.2.完成练习册中本课时练习.本节课是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题.这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径.通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题.经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程.促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法.8.3一元一次不等式组第1课时解一元一次不等式组1.了解一元一次不等式组及其解集的概念.2.探索不等式组的解法及其步骤.重点1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况.2.一元一次不等式组的解法.难点一元一次不等式组的解法.一、创设情境,问题引入1.解下列不等式,并把解集在数轴上表示出来.(1)3x>1-x ;(2)6x -7<2-4x.2.问题:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么需要多少时间能将污水抽完?二、探索问题,引入新知对问题2的分析:设需要x 分钟能将污水抽完,那么总的抽水量为30x 吨,由题意可知30x≥1200,并且30x≤1500.在这个实际问题中,未知量x 应同时满足这两个不等式,我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:⎩⎪⎨⎪⎧30x≥1200 ①,30x ≤1500 ②,分别求这两个不等式的解集,得⎩⎪⎨⎪⎧x≥40x≤50 在同一数轴上表示出这两个不等式的解集,可知其公共部分是40和50之间的数(包括40和50),记作40≤x≤50.这就是所列不等式组的解集.所以,需要40到50分钟能将污水抽完.结论:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集.解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分,利用数轴可以帮我们得到一元一次不等式组的解集.探究:设a ,b 是已知实数,且a >b ,在数轴上表示下列不等式组的解集. (1)⎩⎪⎨⎪⎧x>a ,x>b ;(2)⎩⎪⎨⎪⎧x<a ,x<b ;(3)⎩⎪⎨⎪⎧x<a ,x>b ;(4)⎩⎪⎨⎪⎧x>a ,x<b. 解:(1)解集为:x>a (2)解集为:x<b (3)解集为:b<x<a (4)无解结论:皆大取大,皆小取小,大小小大取中间,大大小小是无解. 【例1】 下列不等式组:①⎩⎪⎨⎪⎧x>-2,x<3;②⎩⎪⎨⎪⎧x>0,x +2>4;③⎩⎪⎨⎪⎧x 2+1<x ,x 2+2>4;④⎩⎪⎨⎪⎧x +3>0,x<-7;⑤⎩⎪⎨⎪⎧x +1>0,y -1<0.其中是一元一次不等组的有哪些? 分析:根据一元一次不等式组的定义,只含一个未知数且有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.【例2】 解不等式组,并把解集在数轴上表示出来. (1)⎩⎪⎨⎪⎧1-3x≤5-x ,4-5x>-x ; (2)⎩⎪⎨⎪⎧3(x -2)≥x -4,2x +13>x -1. 分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可. 解:(1)⎩⎪⎨⎪⎧1-3x≤5-x ①,4-5x>-x ②, 由①得:x≥-2,由②得:x <1,∴不等式组的解集为:-2≤x<1.如图,在数轴上表示为:(2)∵解不等式3(x -2)≥x-4得:x≥1,解不等式2x +13>x -1得:x <4,∴不等式组的解集是1≤x <4,在数轴上表示不等式组的解集是:. 【例3】 若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -a>0,1-x>x -1无解,求a 的取值范围.分析:先求出各不等式的解集,再与已知解集相比较求出a 的取值范围. 解:由x -a >0得,x >a ;由1-x >x -1得,x <1,∵此不等式组的解集是空集,∴a ≥1.故答案为:a≥1.点评:熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、巩固练习1.将不等式组⎩⎪⎨⎪⎧2x -6≤0,x +4>0的解集表示在数轴上,下面表示正确的是( )2.解集如图所示的不等式组为( )A .⎩⎨⎪⎧x>-1x≤2B .⎩⎪⎨⎪⎧x≥-1x>2C .⎩⎪⎨⎪⎧x≤-1x<2D .⎩⎪⎨⎪⎧x>-1x<2 3.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( ) A .m ≥5 B .m >5C .m ≤5D .m <5 4.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是________. 5.解不等式组,并把解集表示在数轴上. (1)⎩⎪⎨⎪⎧x -23+3<x -1,1-3(x +1)≥6-x ; (2)⎩⎪⎨⎪⎧2x -1≥0,3x +1>0,3x -2<0.四、小结与作业小结 先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第65页“习题8.3”中第1,2 题.2.完成练习册中本课时练习.教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法.用“皆大取大,皆小取小,大小小大取中间,大大小小是无解”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力.在教学中我要求学生在解不等式(组)时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想.第2课时 列一元一次不等式组解决实际问题。
浙教版数学八年级上册《第3章 一元一次不等式》全章教案
浙教版数学八年级上册《第3章一元一次不等式》全章教案一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式乘法等基础知识后的进一步拓展。
本章主要通过引入一元一次不等式,让学生掌握不等式的概念、性质和运算方法,培养学生解决实际问题的能力。
本章内容在初中数学中占据重要地位,为后续学习一元二次不等式、不等式组等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对整式、有理数等概念有一定的了解。
但部分学生在解决实际问题时,还不能很好地将数学知识运用其中。
因此,在教学过程中,要注重培养学生运用数学知识解决实际问题的能力,激发学生的学习兴趣。
三. 教学目标1.理解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,并能运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.一元一次不等式的概念和性质。
2.一元一次不等式的解法。
3.运用一元一次不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,引导学生主动探究、合作交流,培养学生的数学素养。
六. 教学准备1.教材、教案、PPT等教学资料。
2.练习题、测试题等。
3.教学工具(如黑板、粉笔等)。
七. 教学过程1.导入(5分钟)利用生活实例引入不等式概念,如:“小明有5个苹果,小华有3个苹果,谁的数量多?”引导学生思考,引出不等式的概念。
2.呈现(10分钟)讲解一元一次不等式的定义、性质和表示方法。
通过PPT展示一元一次不等式的图像,让学生直观理解不等式的性质。
3.操练(10分钟)让学生独立完成练习题,如解以下不等式:2x + 3 > 7。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)讲解练习题的解题思路,分析解题过程中容易出现的问题。
让学生互相讨论,加深对一元一次不等式的理解。
5.拓展(10分钟)引导学生运用一元一次不等式解决实际问题,如:“一个数的平方大于另一个数,求这个数的范围。
《一元一次不等式》说课稿(精选5篇)
《一元一次不等式》说课稿(精选5篇)《一元一次不等式》说课稿1一、教学内容的分析1、教材的地位和作用(1)本节内容、是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上、把实际问题和一元一次不等式结合在一起、既是对已学知识的运用和深化、又为今后用不等式组解决实际问题以及更广泛的应用数学建模的思想方法奠定基础、具有在代数学中承上启下的作用;(2)通过本节的学习、学生将继续经历把生活中的数和数量关系转化为数学符号的体验过程、体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中、引导学生注意估算意识、体会算式结果所对应的实际意义、渗透建立数学模型、分类讨论等数学思想、对提升学生应用数学意识思考和解决问题的能力起到积极的作用。
2、教学的重点和难点对于用不等式解决实际问题、学生容易出现的认知困难主要有两个方面:①哪类的实际问题需要用一元一次不等式来解决;②如何将实际问题转化为一元一次不等式并加以解决。
根据以上的分析和《数学课程标准》对本课内容的教学要求、本节课的教学重点是:一元一次不等式在决策类实际问题中的应用;难点是:如何将实际问题中的数量关系符号化、并根据解集和结合实际情况分类讨论得出合理结论。
二、教学目标的确定根据本课教材的特点、《数学课程标准》对本节课的教学要求以及学生的认知水平、我从三个方面确定了以下教学目标:1、能进一步熟练的解一元一次不等式、能从实际问题中抽象出不等关系的数学模型、并结合解集解决简单的实际问题。
2、通过观察、实践、讨论等活动、积累利用一元一次不等式解决实际问题的经验、提高分类考虑、讨论问题的能力、感知方程与不等式的内在联系、体会不等式和方程同样都是刻画现实世界数量关系的重要模型。
3、在积极参与数学学习活动的过程中、体会实事求是的态度和从数学的角度思考问题的习惯;学会在解决困难时、与其他同学交流、相互启发、培养合作精神。
9.2一元一次不等式解法(教案)
-对于绝对值不等式的求解,如|2x-3| > 1,如何分为2x-3 > 1和2x-3 < -1两种情况进行讨论,以及如何求解每个分情况下的不等式。
四、教学流程
(一)导入新课(用时5分钟)
9.2一元一次不等式解法(教案)
一、教学内容
本节课选自九年级数学教材第九章第二节“一元一次不等式解法”。教学内容主要包括以下两个方面:
1.掌握一元一次不等式的性质,理解不等式两边同时乘以或除以同一个正数、负数时,不等号的方向如何变化。
2.学会运用不等式的性质,解决实际问题中一元一不等式的求解,包括以下几种情况:
2.教学难点
-理解并正确运用不等式性质中的“同乘同除法则”,尤其是当除以负数时,不等号方向改变的情况。
-在实际问题中,能够准确地识别并建立一元一次不等式模型,尤其是含有绝对值、分式等复杂情况。
-对于含有绝对值的一元一次不等式,如何分情况讨论并求解。
举例解释:
-难点在于理解为什么当不等式两边同时除以负数时,不等号的方向会改变。可以通过具体例子,如-2x > -6,两边同时除以-2,得到x < 3,并解释原因。
五、教学反思
在今天的一元一次不等式解法的教学中,我发现学生们对于不等式的性质和求解方法的理解有了明显的提高。通过引入日常生活中的例子,他们能够更好地将数学概念与实际情境联系起来,这让我感到很欣慰。不过,我也注意到几个需要改进的地方。
在理论介绍环节,我尝试用简洁明了的语言解释一元一次不等式的概念,但可能对于一些基础薄弱的学生来说,这些概念还是显得有些抽象。我考虑在下次课中,可以结合更多的图形和实际操作,帮助学生更直观地理解不等式的含义。
一元一次不等式组教案
一元一次不等式组教案第一章:一元一次不等式概念引入1.1 教学目标让学生理解一元一次不等式的概念。
学生能够写出一元一次不等式的标准形式。
学生能够解一元一次不等式。
1.2 教学内容引入不等式的概念,解释不等式的意义。
介绍一元一次不等式的定义和标准形式。
演示如何解一元一次不等式。
1.3 教学方法使用实例和图形来帮助学生理解一元一次不等式的概念。
通过练习题让学生巩固一元一次不等式的解法。
分组讨论和分享,促进学生之间的交流和合作。
1.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式的理解程度。
观察学生在解题过程中的思路和方法,评估他们的解题能力。
第二章:一元一次不等式组的解法2.1 教学目标让学生理解一元一次不等式组的概念。
学生能够解一元一次不等式组。
2.2 教学内容引入一元一次不等式组的概念,解释不等式组的解法。
介绍解一元一次不等式组的基本原则和步骤。
2.3 教学方法使用实例和图形来帮助学生理解一元一次不等式组的解法。
通过练习题让学生巩固一元一次不等式组的解法。
分组讨论和分享,促进学生之间的交流和合作。
2.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式组的解法理解程度。
观察学生在解题过程中的思路和方法,评估他们的解题能力。
第三章:一元一次不等式组的图像表示3.1 教学目标让学生理解一元一次不等式组的图像表示方法。
学生能够通过图像来解一元一次不等式组。
3.2 教学内容介绍一元一次不等式组的图像表示方法。
解释如何通过图像来解一元一次不等式组。
3.3 教学方法使用图形和实例来帮助学生理解一元一次不等式组的图像表示方法。
通过练习题让学生巩固一元一次不等式组的图像解法。
分组讨论和分享,促进学生之间的交流和合作。
3.4 教学评估通过课堂练习题和小组讨论,评估学生对一元一次不等式组的图像解法的理解程度。
观察学生在解题过程中的思路和方法,评估他们的解题能力。
第四章:一元一次不等式组的应用4.1 教学目标让学生理解一元一次不等式组在实际问题中的应用。
(完整版)一元一次不等式教案经典
第8章一元一次不等式8.1 认识不等式教学重、难点及教学突破重点:不等式的概念和不等式的解的概念。
难点:对文字表述的数量关系能列出不等式。
教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处。
在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别。
在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式。
教学过程:一. 研究问题:世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?那么,究竟李敏的提议对不对呢?是不是真的浪费呢二. 新课探究:分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票? ②若x<30, 则又该如何买票呢?结论:至少要有多少人进公园时,买30张票才合算?概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,<,≥,≤.2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.3、不等式的分类:⑴恒不等式:-7<-5,3+4>1+4,a+2>a+1.⑵条件不等式:x+3>6,a+2>3,y-3>-5.三、基础训练。
例1、用不等式表示:⑴ a是正数;⑵ b不是负数;⑶ c是非负数;⑷ x 的平方是非负数;⑸ x的一半小于-1;⑹ y与4的和不小于3.注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系。
一元一次不等式教案
一元一次不等式教案人教版一元一次不等式教案作为一位不辞辛劳的人民教师,很有必要精心设计一份教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
如何把教案做到重点突出呢?下面是店铺精心整理的人教版一元一次不等式教案,欢迎大家借鉴与参考,希望对大家有所帮助。
一元一次不等式教案篇1本节通过介绍不等式的变形,对解不等式作了理论上的准备,并引导学生体会不等式与方程的区别。
知识与能力1、通过本节的学习让学生在自主探索的基础上,联系方程的基本变形得到不等式的基本性质。
2、启发学生在不的概念式的变形中分辨情况,正确应用。
3、教会学生直接应用一次不等式的变形求解一元一次不等式,并指导学生掌握基本方法。
4、在教学过程中要引导学生体会一元一次不等式和方程的区别与联系。
过程与方法1、通过回顾一元一次方程的变形进入对不等式的变形的讨论。
2、通过具体的实例引导学生探索不等式的基本性质(加法性质)。
3、引导学生发现不等式变形与方程变形的联系,从而引导学生概括不等式另外的性质。
4、通过对不等式的性质的讨论,应用其解简单的不等式。
5、练习巩固,能将本节内容与上节内容联系起来。
情感、态度与价值观1、通过学生的自主讨论培养学生的观察力和归纳的能力。
2、通过在教学中发挥学生的主体作用,加深在学习中“转化”思想的渗透。
3、通过学生的讨论使学生进一步体会集体的作用,培养其集体合作的精神。
教学重、难点及教学突破重点1、掌握不等式的三条基本性质,尤其是不等式的基本性质3。
2、对简单的不等式进行求解。
难点正确应用不等式的三条基本性质进行不等式变形。
教学突破由于这一节探索性较强,在这一节中要让学生自主探索或联系方程的基本变形进行归纳。
在这一过程中关键是启发学生注意在不等式的变形中分辨情况,正确应用。
在探索简单不等式的解法时要注意不等式性质的应用,引导和鼓励学生自主探索一元一次不等式的一般解法,并注意在教学过程中“转化”思想的渗透。
浙教版数学八年级上册《第3章 一元一次不等式》全章教学设计
浙教版数学八年级上册《第3章一元一次不等式》全章教学设计一. 教材分析《浙教版数学八年级上册》第3章《一元一次不等式》是学生在学习了有理数、整式等知识的基础上进一步探究不等式知识的章节。
本章主要通过引入一元一次不等式,让学生了解不等式的概念、性质以及解法,培养学生解决实际问题的能力。
教材通过丰富的实例和具有启发性的问题,引导学生逐步理解和掌握一元一次不等式的解法和应用,为后续学习更复杂的不等式打下基础。
二. 学情分析学生在七年级时已经接触过一些简单的不等式知识,对不等式的基本概念和性质有所了解。
但如何将实际问题转化为不等式问题,以及如何灵活运用不等式的性质进行求解,仍需进一步指导。
此外,学生在解决不等式问题时,常常会受到有理数运算的影响,容易出错。
因此,在教学过程中,需要关注学生对不等式性质的掌握,以及将实际问题转化为数学问题的能力。
三. 教学目标1.知识与技能:使学生理解一元一次不等式的概念,掌握一元一次不等式的解法,能运用一元一次不等式解决实际问题。
2.过程与方法:通过实例引导学生认识一元一次不等式,培养学生运用不等式解决实际问题的能力。
3.情感态度与价值观:激发学生学习不等式的兴趣,培养学生勇于探索、积极思考的科学精神。
四. 教学重难点1.重点:一元一次不等式的概念、解法及其应用。
2.难点:一元一次不等式的解法,以及如何将实际问题转化为不等式问题。
五. 教学方法1.情境教学法:通过生活实例引入一元一次不等式,让学生感受到不等式的实际意义。
2.引导发现法:在教学过程中,引导学生发现一元一次不等式的性质和解法,培养学生的探索精神。
3.练习法:通过大量的练习题,巩固学生对一元一次不等式的理解和应用。
六. 教学准备1.教具:多媒体教学设备、黑板、粉笔。
2.学具:笔记本、练习本、相关学习资料。
3.教学素材:准备一些与生活实际相关的不等式问题,用于引导学生学习一元一次不等式。
七. 教学过程1.导入(5分钟)利用生活实例引入一元一次不等式,如“小明比小红高,小红比小华高,请问小明、小红、小华的身高关系是什么?”让学生感受到不等式的实际意义。
《一元一次不等式组》教案
《一元一次不等式组》教案(1)教学目标1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。
2、知道一元一次不等式组及其解集的意义,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
3、通过用不等式组解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点:一元一次不等式组及其解集的意义教学难点:用数轴确定解集教学方法:讨论探索法.教学过程一、创设问题情境,引入新课某种杜鹃花适宜生长在平均气温为17~20℃的山区,已知这一地区海拔每升高100m,气温下降℃,现测出山脚下的气温是23℃。
估计适宜种植这种杜鹃花的山坡的高度。
二、探索活动1、由几个含有的组成的不等式组叫做一元一次不等式组。
答:同一个未知数、一次不等式。
2、不等式组中所有不等式的解集的,叫做这个不等式组的解集。
答:公共部分。
3、求不等式组的的过程,叫做解不等式组。
答:解集4、一元一次不等式组的两个步骤:(1)求出这个不等式组中各个;(2)利用求出这些不等式的解集的公共部分,即求出这个不等式组的。
答:不等式的解集;数轴;解集。
⎪⎩⎪⎨⎧<--+-≥-②① 1213124326x x x x 三、分组讨论如何求一元一次不等式组的解集呢?(1)不等式组⎩⎨⎧-≥>12x x 的解集是 。
(2)不等式组⎩⎨⎧-<-<12x x 的解集是 。
(3)不等式组⎩⎨⎧><14x x 的解集是 。
(4)不等式组⎩⎨⎧-<>45x x 的解集是 。
答:(1);(2)2x <-;(3)1x 4;(4)无解你能得到什么结论?四、例题教学例1、解不等式组21131x x +<-⎧⎨-≥⎩例2、 解不等式组:,并把它的解集在数轴上表示出来。
例3、解不等式:531x 23≤-<。
思路点拨:(1)本题实质是一个不等式组⎪⎪⎩⎪⎪⎨⎧≤->-②① 5312 3312x x然后解不等式①②,再求出解集的公共部分即原不等式组的解。
一元一次不等式(一)教案
一元一次不等式(一)教案一、教学目标:1. 让学生理解一元一次不等式的概念,掌握一元一次不等式的解法。
2. 培养学生运用不等式解决问题的能力。
3. 引导学生通过自主学习、合作交流,提高数学素养。
二、教学内容:1. 一元一次不等式的定义及例题解析。
2. 一元一次不等式的解法及步骤。
3. 解不等式组的方法。
三、教学重点与难点:1. 重点:一元一次不等式的定义,解法及应用。
2. 难点:不等式组的解法及应用。
四、教学方法:1. 采用自主学习、合作交流的教学方法,让学生在探究中掌握知识。
2. 利用多媒体课件,直观展示一元一次不等式的解法。
3. 设计具有梯度的练习题,巩固所学知识。
五、教学过程:1. 导入新课:通过复习相关知识,引导学生回顾已学过的一元一次方程,为新课的学习做好铺垫。
2. 自主学习:让学生自主探究一元一次不等式的定义,并列出几个例子进行分析。
3. 课堂讲解:讲解一元一次不等式的解法,引导学生掌握解题步骤。
4. 合作交流:学生分组讨论,互相解释不等式解法,分享解题心得。
5. 练习巩固:设计一些练习题,让学生独立解答,检验学习效果。
6. 课堂小结:对本节课的主要内容进行总结,强调重点知识点。
7. 课后作业:布置一些有关一元一次不等式的练习题,让学生课后巩固。
8. 教学反思:在课后对教学过程进行反思,总结成功与不足之处,为下一步教学做好准备。
六、教学评价:1. 通过课堂表现、练习解答和课后作业,评价学生对一元一次不等式的掌握程度。
2. 关注学生在解题过程中的思维过程,培养学生的逻辑思维能力。
3. 鼓励学生积极参与课堂讨论,提高学生的合作能力。
七、教学资源:1. 教材:一元一次不等式相关章节。
2. 多媒体课件:用于展示和解题演示。
3. 练习题:涵盖不同难度的题目,用于巩固所学知识。
4. 小组讨论工具:如白板、便签纸等。
八、教学进度安排:1. 第1-2课时:介绍一元一次不等式的定义和基本性质。
2. 第3-4课时:教授一元一次不等式的解法和应用。
一元一次不等式教案(9篇)
一元一次不等式教案(9篇)我为你精心整理了9篇《一元一次不等式教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的范文。
篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x 台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
一元一次不等式教案--【教学参考】
教案:一元一次不等式教案--【教学参考】第一章:一元一次不等式的概念及性质1.1 不等式的定义教学目标:使学生理解不等式的概念,掌握不等式的基本性质。
教学内容:介绍不等式的定义,举例说明不等式的形式。
教学方法:采用讲解法,结合具体例子进行分析。
教学步骤:(1)引入不等式的概念,给出不等式的定义。
(2)举例说明不等式的形式,如2x > 3,5y ≤7等。
1.2 不等式的基本性质教学目标:使学生掌握不等式的基本性质,能够运用性质进行不等式的变形。
教学内容:介绍不等式的加减乘除性质,不等式的传递性质。
教学方法:采用讲解法,结合具体例子进行分析。
教学步骤:(1)介绍不等式的加减乘除性质,如不等式两边加减同一数,不等号方向不变;不等式两边乘除同一正数,不等号方向不变等。
(2)举例说明不等式的传递性质,如如果a > b,b > c,a > c。
(3)引导学生运用不等式的性质进行不等式的变形,如解不等式2x > 3。
第二章:一元一次不等式的解法2.1 解一元一次不等式教学目标:使学生掌握解一元一次不等式的方法,能够正确解不等式。
教学内容:介绍解一元一次不等式的方法,如去分母、去括号、移项等。
教学方法:采用讲解法,结合具体例子进行分析。
教学步骤:(1)介绍解一元一次不等式的方法,如去分母、去括号、移项等。
(2)举例说明解一元一次不等式的具体步骤,如解不等式3x 4 > 2。
(3)引导学生进行不等式的解法练习,巩固所学方法。
2.2 不等式的应用教学目标:使学生能够运用一元一次不等式解决实际问题。
教学内容:介绍不等式在实际问题中的应用,如长度、面积的计算等。
教学方法:采用案例分析法,结合具体例子进行分析。
教学步骤:(1)介绍不等式在实际问题中的应用,如利用不等式解决长度、面积的计算问题。
(2)举例说明不等式在实际问题中的应用,如计算一个矩形的长度,已知宽度为3cm,面积为12cm²。
(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课
4、议一议:
1. 讨论下列式子的正确与错误.
(1)如果 a<b,那么 a+c<b+c;
(2)如果 a<b,那么 a-c<b-c;
(3)如果 a<b,那么 ac<bc; 2.设 a>b,用“<”或“>”号填空.
(4)如果 a<b,且 c≠0,那么 a > b . cc
(1)a+1 b+1;
(2)a-3 b-3;
教学重点 掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
教学难点 一元一次不等式的解法。
教法、学法
分析
自主探究与小组合作交流相结合.
媒体使用 和选择
教学过程
二次备课
1、 创设情境,引入新课
(1) 不等式的三条基本性质是什么?
(2) 运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
(1)a-3 b-3; (2) a
b;
22
5b;
(5)当 a>0,b 0 时,ab>0;
(7)当 a<0,b 0 时,ab>0;
三、课堂小结:
(3)-4a -4b; (4)5a
(6)当 a>0,b (8)当 a<0,b
0 时,ab<0; 0 时,ab<0.
四、作业:
板书设计
2.不等式的基本性质
教学反思
(3)3a 3b;
(4) a
b;
4
4
(5)- a 7
- b ; (6)-a -b. 7
5、变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;
(2)6x<5x-1; (3) 1 x>5; 2
(4)-4x>3.
《一元一次不等式》教案
2.4 一元一次不等式(一)●教学目标教学知识点 1.理解一元一次不等式的概念2.会解一元一次不等式.能力训练要求 1.归纳一元一次不等式的定义.2.通过具体实例,归纳解一元一次不等式的基本步骤.情感与价值观要求通过观察一元一次不等式的解法,对比解一元一次方程的步骤,让学生自己归纳解一元一次不等式的基本步骤.●教学重点 1.一元一次不等式的概念及判断.2.会解一元一次不等式.●教学难点当不等式的两边都乘以或除以同一个负数时,不等号的方向要改变.●教学方法自觉发现——归纳法教师通过具体实例让学生观察、归纳、独立发现解一元一次不等式的步骤.并针对常见错误进行指导,使他们在以后的解题中能引起注意,自觉改正错误.●教学过程一.创设问题情境,引入新课导入:在前面我们学习了不等式的基本性质,不等式的解,不等式的解集,解不等式的内容.并且知道根据不等式的基本性质,可以把一些不等式化成“x>a”或“x<a”的形式.那么,什么样的不等式才可以运用不等式的基本性质而被化成“x>a”或“x<a”的形式呢?又需要哪些步骤呢?本节课我们将进行这方面的研究.二.讲授新课:回顾与思考1、什么叫一元一次方程 ?只含一个未知数、并且未知数的指数是1 的方程。
2、一元一次方程是一个等式,请问一元一次方程的(等号)两边都是怎样的式子?一元一次方程的(等号)两边都是整式、只含一个未知数,并且未知数的指数是1 。
3、一元一次方程的 (完美) 定义两个“只含一个未知数、并且未知数的指数是1 的”整式用等号连接起来的式子。
类推:两个 “只含一个未知数、并且未知数的指数是 1 的” 整式用不等号连接起来的式子。
是不叫一元一次不等式呢?观察下列不等式:(1)2x -2.5≥15;(2)5+3x >240;(3)x <-4;(4)x 1>1. (三个条件:未知数的个数,未知数的次数,且不等式的两边都是整式.)总结:不等式的两边都是整式,只含有一个未知数,并且未知数最高次数是1,这样的不等式,叫做一元一次不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学第6章《一元一次不等式》学案§ 6.1不等关系和不等式(1)教师寄语:处处留心皆学问学习目标:1.通过具体情境,感受现实世界和日常生活中存在着大量的不等关系.2.了解不等式的意义,使学生经历实际问题中数量关系的分析和抽象过程,感受不等式和等式都是刻画现实世界中数量关系的工具,发展学生的符号感.学习重点:不等式的概念学习难点:不等关系的表示学习过程:一、自主探究:1.学生自主阅读课本第162页,你能利用不等号分别表示出上述3个问题中的不等关系吗?与同学交流一下。
2.相关知识链接:某中学八年级(1)班50名学生在上体育课,老师说了这样一句话:我拿来了一些篮球,如果每5名同学玩一个篮球,有些同学没有篮球玩,如果每6名同学玩一个篮球,就会有一个篮球玩的人数少于6人,请同学们回答下面的问题:(1)你能把老师的这句话用三个式子表示出来吗?(2)你列出的式子与我们以前学过的等式有什么不同?学习新知:1.___________________________________________ 不等式的概念:叫做不等式。
并举例说明,阅读课本第162页的“加油站”。
2.例题讲解:判断下列式子哪些是不等式?哪些不是?①3>—1;②3x< —1;③2x — 1; ®s=vt;⑤2mK 8 — m;⑥5x — 3=2x+1;⑦a+b> c;⑧ 1+1M 2规律总结:一个式子是不是不等式,关键是看它是否含有常用的五中不等号其中的一种或几种,若有则是不等式;否则便不是。
强化练习:1. 设a < b,用“V”或“〉”填空。
⑴ a+1 b+1 ⑵ a-3 b-3 ⑶-a⑷-4a-5-4a-32. 用不等式表示:⑴.a⑵.X⑶.8不明白的地方(或 ' 容易出错的地方):② .a 的平方的相反数不是正数-b 四、 课堂小结:我学会了:与b 的和不是负数:_ 的2倍与3的差大于4: 与y 的2倍的和是负数:达标测试: 基础把握:1. 五、 (A 2. A 3. 在数学表达式①-2 < 0②3x-k > 0③x=1④X 丰2⑤X+2 > x-1中是不等式的有).2个 B.3 个 C.4 个 D.5 个 若a > b,那么仍能成立的不等式是 .ac > bc B. ac < bc C.a+1 > b+2 用不等式表示下列数量关系:①.X 的相反数大于X 的倒数.()D.a-c > b-c§ 6.1 不等关系和不等式(2)教师寄语:勇于探索,敢于挑战 学习目标: 1. 经历不等式三条基本性质的探索过程。
2. 能利用不等式的基本性质对不等式进行简单的变形。
学习重点:根据等式的基本性质类比发现不等式的基本性质。
学习难点:不等式基本性质 3的理解和运用。
学习过程: 一、 自学探究: ⑴.学生自学课本163 164页的内容。
与同学们交流一下。
⑵.总结: ① 不等式的基本性质 用代数式表示为:若 ② 不等式的基本性质 用代数式表示为:若 ③ 不等式的基本性质 用代数式表示为:若 二、学习新知: 例1.根据不等式的基本性质,把下列不等式化成 X > a 或X V a 的形式: 1: ______________a > b,贝y _________ 2 : ______________ a >b,且 c >0,则 3 : ______________ a > b,且 cv 0,则 ⑴ X-7 > 2 1⑵-—X V 1 ⑶4x-5 V 5x4 针对性训练: a V b ,用“〉”或 “V”填空: 1.已知①a+7 b+7; ② a 十 7=b + 7;③ a-3 b-3; ④2a a+b; ⑤-a-3 -b-32.用“〉”或“V”填空: ① 如果a-c > b-c,那么a b ② 如果ac > bc,那么a b a b ③如果,c V 0,那么a b c c a b④如果->-,c 0 , 那么a V bc c四、综合拓展:2试比较a -2a+3与-2a+3的大小。
五、探究创新: 已知方程组试列出使x>y的7-y^2Tn-l不等式。
六、课堂小结:你对本节课的收获是什么?七、布置作业:达标检测选择题:1〉2〉如果-a V 2,那么下列各式正确的是()A .a V -2 B.a >2 C.-a+1 v 3 D.-a-1a bA.-3a>-3bB.-3>5C.3-a>3-bD.a-3 > b-3二、填空题:〉若a>b,用“>”或“V”填空:① 2a+1 2b+1 ② 3a-6 3b-6a③1-亍丄§ 6.2教师寄语:自信是成功的一半。
学习目标:1.通过分析实际问题中数量之间的不等关系,抽象出不等式。
2. 能在数轴上表示出不等式的解集。
学习重点:不等式的解集学习难点:正确地在数轴上表示出不等式的解集 学习过程: 一■.自主探究:1. 学生自学课本167 168页的内容。
与同学们交流。
2. 总结不等式的解: 举例说明:_ 不等式的解集: 举例说明:二.学习新知:例1.判断下列说法是否正确① 、5是不等式x+2> 6的解; ② 、3是不等式y-1 > 2的解;③ 、所有小于1的整数都是不等式 X+1 < 2的解。
规律总结:①判断某一个数值是不是不等式的解,就应用这个数值代替不等式中的未知数, 看不等式是否成立,若不等式成立,则该数值是不等式的解;否则便不是。
②、不等式的解与一元一次方程的解的区别: 不等式的解是不确定的,数个,而一元一次方程的解则是一个具体的数值。
例2.你能说出不等式 x+2> 8的一些解吗?你能说出它的解集吗?规律总结:不等式的解一定在不等式的解集范围之内,不等式的“解”有多个,而“解集” 却是唯一的。
例3.将下列不等式的解集在数轴上表示出来 ①x > 3②X+1 > 3③x < 5的非负整数解。
规律总结:在数轴上表示不等式的解集时,要确定边界和方向。
⑴边界:有等号的是实心圆 点,无等号的是空心圆点。
⑵方向:大于向右,小于向左。
儿一次不等式⑴般不等式的解有无三•跟踪训练:教材168页练习1、2、四. 课堂小结:五. 达标检测1. 填空:⑴ 不等式-1 < x < 2的整数解为X⑵若x >0,贝吃32. 选择题:⑶ 用不等式表示如图所示的解集,A x > 1B x > 1C x < 1D x w 1----- 1 --- 1 ----1 ---- 1 --- 1 -- \ ------ L.-4 -3 -2 -1 0 12(4)如图所示,在数轴上表示x < -2六. 布置作业:正确的是(3 4的解集,正确的是()—_1 ♦ ■_-_―■_■__ -- > -4 -3-2 -1 0 12 3 41 I I _i_I ---------------- 1_I ------ ( --- 1 -------孑-4 -3 -2 -1 0 12 3 4T -3-2 -10 12 3 4-4-3-1-1012 34Zs-I- a 1—K已知适合不等式弓—的x 的值是正数,你能确定实数a 的范围吗?§ 6.2儿一 -次不等式 (2)教师寄语: 学习目标: 敢于向困难挑战⑴知道一元一次不等式的概念⑵会解一元一次不等式难点:一元一次不等式的解法学习重、学习过程: 学前准备:观察下列含有未知数的不等式,它们有什么共同点?(1)x > -2 ⑵3y+1.25 < 5 ⑶n ■ "zt与同学们交流一下。
学习新知:一元一次不等式的概念: 例题讲解:例1解不等式3x+26< 8,并把它的解集在数轴上表示出来。
例2解不等式-1,并把它的解集在数轴上表示出来。
2 3规律总结:在解不等式时,应注意以下问题:两边同时乘以一个数时,不能漏乘一些项。
分数线有括号的作用,去分母时,应用括号将分子上的多项式括起来。
系数化为1时,若两边乘(或除以)同一个负数,则不等号的方向要改变。
在数轴上表示不等式解集时要注意“实心点”与“空心圈”的区别。
小组讨论:想一想,解一元一次不等式与解一元一次方程的步骤有哪些类似的地方?① ② ③ ④ 在解一元一次不等式时,哪些步骤可能用到不等式的基本性质 3?这时要注意什么问题?四、挑战自我:订的负整数解有()A 1个B 2 个C 3个D 4个⑵ 若ax V 1的解集是x >二 则a 一定是()aA 非负数B 非正数C 负数D 正数2. 填空题:⑶ 当k_时,关于x 的方程2x+3=k 的解为正数。
⑷ 若不等式(a-1 ) x > a-1的解集是XV 1,则a 的值满足3. 解下列不等式:2+X 2x 1八、布置作业五、跟踪练习: 解下列不等式:3(x+4) < 2(x-1)3K -3< ----- -14八、课堂小结:达标检测1.选择题:七、例1. 例2.四、§ 6.2教师寄语:勇于探索,你就会有新的发现。
学习目标:利用不等式解决实际问题学习重点:不等式的应用学习难点:不等式的应用探索学习过程:一、课前准备:小组讨论:①列方程解应用题的关键是元一次不等式(3)②列方程解应用题的步骤是___________________________ o总结:列不等式解应用题的基本步骤与列方程解应用题的步骤类似。
学习新知:1999年,新疆喀什市一位70岁的维吾尔族老人为参加新中国成立从家乡骑自行车前往北京。
他家到北京约前到达。
他先走了1400千米,于6月17 千米才能按计划到北京?50周年庆祝活动,只身5000千米,他于5月20日出发,计划9月15日日到达乌鲁木齐。
此后,他平均每天至少要行多少某商店实行打折销售。
一种电子琴每台进价低于实际售价的10%,那么电子琴的标价应在什么范围内1800元,如果按标价的八折出售,所得利润仍挑战自我:每一位学生自己编制一道有关一元一次不等式的实际问题。
与同学们交流一下。
挑战中考:(2009 .临沂)小华家距学校2.4千米。
某一天小华从家中去上学恰好行走到一半的路程时, 发现离到校时间只有12分钟了。
如果小华按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?五、课堂小结:你对本节课的收获有哪些六、达标检测1.某人要到相距3.3千米的A地去办事,他行走的速度是每分钟90米,跑步的速度是每分钟210米,若他必须在30分钟之内到达A地,他跑步的时间不能少于多少分钟?2. 育英中学学生准备组织去泰山参加夏令营活动,车站提出两种车票价格的优惠方案供学校选择。