人教版高中(必修3)第一章算法初步 1.1.1 算法的概念 学案
高中数学人教版必修3教案1-1-1算法的概念1
教学重点
算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点
把自然语言转化为算法语言。
教学方法
写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用.
举例生活中的算法:菜谱是做菜肴的算法;洗衣机的使用说明书是操作洗衣机的算法;歌谱是一首歌曲的算法;渡河题.
③练习:写出解方程组 的算法.
活动三:合作学习,探究新知学(18分钟)
典例剖析:
2.教学几个典型的算法:
1出示例1:任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判断.
提问:什么叫质数?如何判断一个数是否质数?→写出算法.
教学过程:
批注
活动一:创设情景,揭示课题(5分钟)
我们古代的计算工具?近代计算手段?(算筹与算盘→计算器与计算机,见章头图)2.提问:①小学四则运算的规则?(先乘除,后加减)②初中解二元一次方程组的方法?(消元法)③高中二分法求方程近似解的步骤?(给定精度ε,二分法求方程根近似值步骤如下:A.确定区间 ,验证 ,给定精度ε;B.求区间 的中点 ;C.计算 :若 ,则 就是函数的零点;若 ,则令 (此时零点 );若 ,则令 (此时零点 );D.判断是否达到精度ε;即若 ,则得到零点零点值a(或b);否则重复步骤2~4.
课题:1.1.1算法的概念(一)第个教案
课型:新授课年月日
教
学
目
标
(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。
人教版高中数学必修3第一章算法初步-《1.1.1算法的概念》教案(2)
1.1.1 算法的概念【教学目标】1.了解算法的含义,体会算法的思想。
2.能够用自然语言叙述算法。
3.掌握正确的算法应满足的要求。
【重点与难点】教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点:把自然语言转化为算法语言。
【教学过程】1.情境导入:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
因此,算法其实是重要的数学对象。
2.探索研究算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的算法、作图的算法,等等。
3.例题分析例1.任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
人教版高中必修3第一章算法初步教学设计
9.穷举法
10.分治法
11.贪心法
12.动态规划法
13.回溯法
2.3 算法的描述
14.伪代码
15.流程图
2.4 排序算法
16.直接插入排序
17.希尔排序
18.直接选择排序
19.堆排序
20.冒泡排序
21.快速排序
三、教学重难点
22.算法的基本特性和分类。
23.算法设计的基本思想和方法,及其在实际问题中的应用。
20min
算法的基本概念
讲授
定义算法,介绍算法的特性、分类及应用。
30min
算法的设计基本思想与方法
讲授、案例分析
分别介绍穷举法、分治法、贪心法、动态规划法、回溯法,结合实例分析。
20min
算法的描述
讲授、技能演练
介绍伪代码和流程图描述算法的方法,让学生自行练习。
40min
排序算法
讲授、案例分析
分别介绍直接插入排序、希尔排序、直接选择排序、堆排序、冒泡排序、快速排序,结合实例分析。
10min
课堂小结
讲授
确认本节课ห้องสมุดไป่ตู้教学目标是否达到,回答学生提问。
6.2 教学评价
在教学过程中通过课堂讨论和技能演练等教学手段,了解学生在学习过程中的理解和掌握情况,及时发现问题并进行调整。针对教学目标制定评价表,根据学生的表现进行评价。
七、教学反思
本节课通过讲授、案例分析、技能演练等多种教学手段,较好地实现了教学目标。在后续教学过程中,需要进一步引导学生熟练掌握算法的设计方法,有效实现问题求解。同时,需要注重计算机语言和实现细节的教学,以便学生能够更好地应用所学算法。
[精品]新人教A版必修三高中数学第一章1.1.1算法的概念导学案
111算法的概念一、习目标:1.要求生了解算法的含义,体会算法的思想2.在分析实例的基础上了解算法的基本特征3.能够用自然语言描述一些具体问题的算法二、习重点:算法的含义以及基本特征习难点:简单的算法设计三、教过程:一、问题引入:问题1:根据生活经验,请设计完成洗衣服的过程中有哪几个步骤?问题2:请写出二元一次方程组><=-><-=+112212{yxyx的解答过程。
问题3:你们所写的解答过程和课本上的解答有什么不同?课本提供的解答有什么特点?问题4:对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a , 其中a 1b 2-a 2b 1≠0,可以写出类似的求解步骤:第一步, 第二步, 第三步, 第四步, 第五步,二、归纳新知:1算法的定义: 2算法的要求: 3算法的基本特征:三、例题讲解:例1(1)设计一个算法,判断7是否为质数 (2)设计一个算法,判断35是否为质数思考:1整数89是否是质数?2.写出“判断整数n (n >2)是否为质数”的算法?体验:电视节目中,有一种有趣的“猜数”游戏现有一商品,价格在0到800元之间,主持人每次对观众的报价给出“高了”或“低了”的提示,釆取怎样的策略才能在较短的时间内猜出最接近的价格呢?例2.用二分法求解方程写出方程2-2=0(>0)的近以解的算法 【知识链接】质数:只能被1和自身整除的大于1的整数。
【知识链接】二分法:对于在区间[a,b]上连续不断,且满足f(a)·f(b)<0的函数,通过不断地把函数y=f()的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法.思考:1为什么算法第一步要设计“给定精确度d ”这个环节,能否省略?2算法第三步中确定区间为[]2,1,能否换成[]100,1或[]10,2行吗?请说明理由。
四、训练反馈1下列关于算法的说法中,正确的是:①求解某一类问题的算法是唯一的; ②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊; ④设计算法要本着简单方便的原则。
人教版高中数学必修三第一章第1节 1.1.1 算法的概念
质数:只能被1和自身整除的大于1的整数叫质 数。
探究:2,3,4,5,6是否为质数。
例1、设计一个算法判断7是否为质数。
第一步:用2除7,得到余数1。因为余数不为0,所以2不能整除7。
第二步:用3除7,得到余数1。因为余数不为0,所以3不能整 除7。
第一步:令 f (x) x2 2,并且d=0.005.
第二步:确定区间[a,b],满足f(a)·f(b)<0.
第三步:取区间中点m a b .
第四步:若f(a)·f(m)<0,则含2 零点的区间为[a,m];
否则,含零点的区间为[m,b]. 将新得到的含零点的区间仍记为[a,b];
第五步:判断|a-b|<d是否成立或f(m)是否等于0. 若是,则m是方程的近似解; 否则,返回 第三步.
分析问题
二分法: 对于区间[a,b ]上连续不断、
且f(a)f(b)<0的函数y=f(x),通过不断地把函 数f(x)的零点所在的区间一分二,使区间
的两个端点逐步逼近零点,进而得到零点 近似值的方法叫做二分法.
a 1 1 1.25 1.375 1.375 1.406 25 1.406 25 1.414 625 1.414 062 5
据悉,卡梅伦利用其配备的800兆赫兹AMD芯片的电脑 加入到全球分布式计算网络中,花费45天的时间得到了这一 结果。尽管这台电脑自身性能并不高,但由于分布式计算网络 连接了全球数十万台电脑,这些电脑自身有富裕资源的时候就 通过网络进行运算,因此总的运算速度可达到每秒2万亿次, 相当于一台超级计算机。
第二步:解③得 y a1c2 a2c1 ; a1b2 a2b1
人教版高中必修3第一章算法初步课程设计
人教版高中必修3第一章算法初步课程设计课程目标本课程旨在帮助学生了解算法的基本概念和常用算法的实现方式,以及培养学生的编程思维能力和解决问题的能力。
教学内容1.算法的基本概念2.常用排序算法:冒泡排序、选择排序、插入排序、快速排序3.常用查找算法:顺序查找、二分查找4.算法的复杂度分析教学重点和难点教学重点•算法的基本概念和特点•常用排序算法和查找算法的原理和实现方式教学难点•快速排序的原理和实现方式•算法的复杂度分析教学方法本课程采用“理论讲授+案例分析+编程实践”的教学方法,具体如下:1.理论讲授:教师通过讲解PPT、示意图等形式,介绍算法的基本概念、常用算法的原理和实现方式。
2.案例分析:教师通过具体的案例,让学生在实践中理解算法的应用和优化。
3.编程实践:教师通过提供一些编程练习题,让学生进行算法实现和分析。
并在课堂上展示部分学生的优秀代码。
课程安排本课程共计4个课时,具体安排如下:1.第1课时:算法的基本概念。
介绍算法的定义、特点、效率和正确性等基本概念。
2.第2-3课时:排序算法。
介绍冒泡排序、选择排序、插入排序、快速排序的实现方式和时间复杂度分析。
3.第4课时:查找算法和复杂度分析。
介绍顺序查找、二分查找的实现方式和时间复杂度分析,以及算法的复杂度分析方法。
课程评价本课程考核方式为闭卷笔试和编程实践,笔试占60%,编程实践占40%。
针对学生的不同水平,编程实践的难度分为初级和高级两个难度级别,学生可以自主选择挑战。
同时,教师也将根据学生的课堂表现和编程作业进度,对学生进行平时成绩评价。
总结本课程以算法初步为主要内容,重点介绍了排序算法和查找算法,并通过编程实践提高学生的编程能力和解决问题的能力。
希望学生能通过本课程的学习,了解算法的概念和特点,掌握常用算法的实现方式,培养良好的编程思维和解决问题的能力,为后续专业学习打下基础。
最新人教版高中数学必修3第一章“算法的概念”教案3
1.1.1算法的概念1、了解算法的含义,体会算法的思想,2、掌握正确的算法应满足的要求。
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
算法不一定要有运算结果,问题答案可以由计算机解决.设计一个解决某类问题的算法的核心内容是设计算法的步骤,它没有一个固定的模式,但有以下几个基本要求: (1)符合运算规则,计算机能操作; (2)每个步骤都有一个明确的计算任务; (3)对重复操作步骤作返回处理; (4)步骤个数尽可能少;知识探究(一):算法的概念 思考1:在初中,对于解二元一次方程组你学过哪些方法? 思考2:用加减消元法解二元一次方程组 ⎩⎨⎧=+-=-1212y x y x 的具体步骤是什么? 第一步,①+②×2,得 5x=1 . ③ 第二步, 第三步, 第四步,第五步, 思考3:参照上述思路,一般地,解方程组 ⎩⎨⎧=+=+222111c y b x a c y b x a ()01221≠-b a b a的基本步骤是什么? 第一步, 第二步, 第三步, 第四步,第五步,思考4:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”。
我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?思考5:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的。
你认为:(1)这些步骤的个数是有限的还是无限的?(2)每个步骤是否有明确的计算任务?思考6:有人对哥德巴赫猜想“任何大于4的偶数都能写成两个质数之和”设计了如下操作步骤:第一步,检验6=3+3,第二步,检验8=3+5,第三步,检验10=5+5,……利用计算机无穷地进行下去!请问:这是一个算法吗?思考7:根据上述分析,你能归纳出算法的概念吗?知识探究(二):算法的步骤设计思考1:如果让计算机判断7是否为质数,如何设计算法步骤?第一步,用2除7,得到余数1,所以2不能整除7.第二步,第三步,第四步,第五步,因此,7 质数。
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
最新人教版高中数学必修三电子课本名师优秀教案
人教版高中数学必修三电子课本篇一:人教版高一数学必修三课本教材word版第一章算法初步第一章算法初步第一节算法与程序框图 1.1.1 算法概念:实际上,算法对我们来说并不陌生(回顾二元一次方程组我们可以归纳出以下步骤: 第一步,???×2,第三步,?,?×2,得得?x?2y??1??2x?y?1? ?的求解过程,5x?1?第二步,解?,第四步,解?,得得x?y?115 355y?3 ??x?????y???1535第五步,得到方程组的解为思考,能写出求解一般的二元一次方程组的步骤吗, 对于一般的二元一次方程组?a1x?b1y?c1??a2x?b2y?c2? ?其中a1b2?a2b1?0,可以写出类似的求解步骤:得第一步,?×b2,?×b1,第二步,解?第三步,?×a1,?×a2 第四步,解?(a1b2?a2b1)x?b2c1?b1c2 ?得x?b2c1?b1c2a1b2?a2b1得(a1b2?a2b1)y?a1c2?a2c1 ?y?2a1c2?a2c1a1b2?a2b1得第五步,得到方程组的解为得??x????y???b2c1?b1c2a1b2?a2b1a1c2?a2c1a1b2?a2b1上述步骤构成了解二元一次方程组的一个算法,我们可以进一步根据这一算法编制计算机程序,让计算机来解二元一次方程组。
算法? (algorithm)一词出现于12 世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
现在,算法通常可以编成计算机程序,让计算机执行并解决问题( 例1 (1)设计一个算法,判断7 是否为质数(2)设计一个算法,判断35 是否为质数只能被1和自身整除的大于1的正是叫质数算法分析:(1)根据质数的定义,可以这样判断:依次用 26 除7 ,如果它们中有一个能整除7,则7 不是质数。
算法概念的说课稿
《算法的概念》说课稿一、教材分析(1)课题内容课题内容是《算法的概念》,出自普通高中课程标准实验教科书人教A版高中数学必修三1.1.1。
(2)地位和作用《算法初步》不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础。
而算法的概念是《算法初步》的奠基石,为后面学习算法的逻辑结构,基本算法语句做了良好的铺垫。
算法的思想,贯穿整个高中的学习中,对整个高中学习有着源与流的关系。
(3)重点、难点重点:了解算法概念及特征,体会算法的思想,用自然语言描述算法。
难点:从一般的解法中抽象的概括算法的概念,用自然语言来描述算法。
二、学情分析知识方面:学生在以前的学习过程中,已经接触到了大量的算法,(如:求解二元一次方程组、解一元二次方程、质数的判定、用二分法求二次函数的零点等等)但是,尚算法明朗化,概念化,这就需要对算法有一个从经验到概念,从感性到理性的引导过程。
能力方面:高二的学生已经具备了一定的归纳总结,抽象概括以及从具体的问题中提炼数学思想的能力。
本节课对学生的抽象概括能力要求较高,需要进一步提高其逻辑思维能力,有条理的思考问题能力。
情感方面:由于本节课与计算机有关,学生有较强的学习兴趣。
、三、教学目标(1)知识与技能:了解算法的概念及特征,培养学生归纳总结能力。
学会用自然语言描述算法,增强利用算法来解决问题的意识。
(2)过程与方法:通过分析,抽象概括出一般一元二次方程组的算法,以及例题中写出质数判定的算法,写出用二分法求方程解的近似值的算法等等,体会算法的思想,发展从具体问题提炼算法的能力,以及有条理的思考问题的能力。
(3)情感与态度:“数学源于实践,服务于实践”,通过应用数学软件解决问题感受算法的价值,提高学习数学的兴趣。
四、教学分析教法分析:本节采用“引导探究”的教学方法(1)利用章头图引入课题,展示中国古代的数学成就,激发学生学习算法的兴趣。
(2)引导学生从简单,具体的求解二元一次方程组出发归纳总结出一般的二元一次方程组的解法,进一步抽象概括出算法的概念。
人教版数学必修三答案
人教版数学必修三答案【篇一:人教版高中数学必修3全套教案】=txt>【必修3教案|全套】目录第一章算法初步 ....................................................................................................... .. (1)1.1.2 程序框图与算法的基本逻辑结构 .......................................................................................................7 1.2.1 输入语句、输出语句和赋值语句 .....................................................................................................29 1.2.2 条件语句 ....................................................................................................... ...................................... 36 1.2.3循环语句 ....................................................................................................... ......................................... 44 1.3 算法案例 ....................................................................................................... ......................................... 51 第二章统计 ....................................................................................................... .. (75)2.1 随机抽样 ....................................................................................................... ......................................... 76 2.1.1 简单随机抽样 ....................................................................................................... .............................. 76 2.1.2 系统抽样 ....................................................................................................... ...................................... 81 2.1.3 分层抽样 ....................................................................................................... ...................................... 85 2.2 用样本估计总体 ....................................................................................................... ............................. 89 2.2.1 用样本的频率分布估计总体分布 .....................................................................................................89 2.2.2 用样本的数字特征估计总体的数字特征.......................................................................................... 97 2.3变量间的相关关系 ....................................................................................................... ....................... 107 2.3.1 变量之间的相关关系 ....................................................................................................... ................ 107 2.3.2 两个变量的线性相关 ....................................................................................................... ................ 107 第三章概率 ....................................................................................................... . (115)3.1 随机事件的概率 ....................................................................................................... ............................115 3.1.1 随机事件的概率 ....................................................................................................... .........................115 3.1.2 概率的意义 ....................................................................................................... .................................118 3.1.3 概率的基本性质 ....................................................................................................... ........................ 121 3.2.1 古典概型 ....................................................................................................... .................................... 124 3.2.2 (整数值)随机数(random numbers)的产生 ............................................................................. 128 3.3.1 几何概型 ....................................................................................................... .................................... 132 3.3.2 均匀随机数的产生 ....................................................................................................... .. (136)第一章算法初步本章教材分析算法是数学及其应用的重要组成部分,是计算科学的重要基础.算法的应用是学习数学的一个重要方面.学生学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题.通过算法的学习,对完善数学的思想,激发应用数学的意识,培养分析问题、解决问题的能力,增强进行实践的能力等,都有很大的帮助. 本章主要内容:算法与程序框图、基本算法语句、算法案例和小结.教材从学生最熟悉的算法入手,通过研究程序框图与算法案例,使算法得到充分的应用,同时也展现了古老算法和现代计算机技术的密切关系.算法案例不仅展示了数学方法的严谨性、科学性,也为计算机的应用提供了广阔的空间.让学生进一步受到数学思想方法的熏陶,激发学生的学习热情.在算法初步这一章中让学生近距离接近社会生活,从生活中学习数学,使数学在社会生活中得到应用和提高,让学生体会到数学是有用的,从而培养学生的学习兴趣.“数学建模”也是高考考查重点.本章还是数学思想方法的载体,学生在学习中会经常用到“算法思想” “转化思想”,从而提高自己数学能力.因此应从三个方面把握本章:(1)知识间的联系;(2)数学思想方法;(3)认知规律.1.1 算法与程序框图 1.1.1 算法的概念整体设计教学分析1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法. 课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课新知探究提出问题(1)解二元一次方程组有几种方法??x?2y??1,(1)(2)结合教材实例?总结用加减消元法解二元一次方程组的步骤.2x?y?1,(2)?(3)结合教材实例??x?2y??1,(1)总结用代入消元法解二元一次方程组的步骤.?2x?y?1,(2)(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组?x?2y??1,(1)的求解过程,我们可以归纳出以下步骤: ?2x?y?1,(2)?1. 53. 51?x?,??5第五步,得到方程组的解为??y?3.?5?(3)用代入消元法解二元一次方程组?x?2y??1,(1)我们可以归纳出以下步骤: ??2x?y?1,(2)第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y=3.⑤ 5351. 5第四步,把⑤代入③,得-1=1?x?,??5第五步,得到方程组的解为?3?y?.?5?(4)对于一般的二元一次方程组??a1x?b1y?c1,(1)ax?by?c,(2)22?2其中a1b2-a2b1≠0,可以写出类似的求解步骤:b2c1?b1c2.a1b2?a2b1a1c2?a2c1.a1b2?a2b1b2c1?b1c2?x?,?a1b2?a2b1?第五步,得到方程组的解为??y?a1c2?a2c1.?a1b2?a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数.点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练请写出判断n(n2)是否为质数的算法.分析:对于任意的整数n(n2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质数”的算法包含下面的重复操作:用i除n,得到余数r.判断余数r是否为0,若是,则不是质数;否则,将i的值增加1,再执行同样的操作.这个操作一直要进行到i的值等于(n-1)为止. 算法如下:第一步,给定大于2的整数n. 第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示. 第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x2-2=0 (x0)的近似解的算法.a?b. 2第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.【篇二:高中人教版数学必修3课本练习_习题参考答案】参考答案高中数学必修③课本练习,习题参考答案新心希望教育:renyongsheng第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积s2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”i不是n的因数;第五步:使的值增加l,仍用第六步,判断“”1.1.21. 解;算法步骤:第一步,给定精确地i=1 第二步,取出i位的不足近似值,记为a;取出的到小数点后第ib,i的值增加1,返回第二步.程序框图如下图所示:第 1 页共 1 页人教版普通高中课程标准实验教科书数学必修③练习,习题参考答案第 2 页共 2 页人教版普通高中课程标准实验教科书数学必修③练习,习题参考答案2.解:算法如下:第一步,i=1,s=0. 第二步,判断第三步,,i=i+1第四步,输出s. 程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。
人教版高中数学必修3教案:1.1.1 算法的概念
1.1.1 算法的概念一、序言算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础. 在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具. 听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域. 那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、实例分析例1:写出你在家里烧开水过程的一个算法.解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.(以上算法是解决某一问题的程序或步骤)例2:给出求1+2+3+4+5的一个算法.解: 算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;第四步:将第三步中的运算结果10与5相加,得到15.算法2 可以运用公式1+2+3+…+=直接计算 第一步:取=5;第二步:计算; 第三步:输出运算结果.(说明算法不唯一)例3:(课本第2页,解二元一次方程组的步骤)(可推广到解一般的二元一次方程组,说明算法的普遍性)例4:用“待定系数法”求圆的方程的大致步骤是:第一步:根据题意,选择标准方程或一般方程;第二步:根据条件列出关于,,或,,的方程组;第三步:解出,,或,,,代入标准方程或一般方程.三、算法的概念通过对以上几个问题的分析,我们对算法有了一个初步的了解.在解决某些问题时,需要设计出一系列可操作或可计算的步骤,通过实施这些步骤来解决问题,通常把这些 n 2)1(+n n n 2)1(+n n a b r D E F a b r D E F在数学中,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题的程例6:(课本第4页例2)练习2:设计一个计算1+2+…+100的值的算法.解:算法1 按照逐一相加的程序进行第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6;第三步:将第二步中的运算结果6与4相加,得到10;……第九十九步:将第九十八步中的运算结果4950与100相加,得到5050. 算法2 可以运用公式1+2+3+…+=直接计算 第一步:取=100;第二步:计算; 第三步:输出运算结果.练习3:(课本第5页练习1)任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积.解:第一步:输入任意正实数;第二步:计算;第三步:输出圆的面积.五、课堂小结1. 算法的特性:①有穷性:一个算法的步骤序列是有限的,它应在有限步操作之后停止,而不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③可行性:算法中的每一步操作都必须是可执行的,也就是说算法中的每一步都能通过手工和机器在有限时间内完成.④输入:一个算法中有零个或多个输入..⑤输出:一个算法中有一个或多个输出.2. 描述算法的一般步骤:①输入数据.(若数据已知时,应用赋值;若数据为任意未知时,应用输入) ②数据处理. n 2)1(+n n n 2)1(+n n r 2r S π=S③输出结果.。
高中数学第一章算法初步1.1.1算法的概念学案(含解析)新人教版必修3
1.1 算法与程序框图1.1.1算法的概念内容标准学科素养1。
通过回顾解二元一次方程组的方法,了解算法的思想。
2。
了解算法的含义和特征。
3.会用自然语言表述简单的算法。
提升数学运算发展逻辑推理应用数学抽象授课提示:对应学生用书第1页[基础认识]知识点一算法的概念预习教材P2-3,思考并完成以下问题一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.(1)试问他们怎样渡过河去?提示:第一步,两个小孩同船过河去;第二步,一个小孩划船回来;第三步,一个大人划船过河去;第四步,对岸的小孩划船回来;第五步,两个小孩同船渡过河去.(2)设计的过河方法有什么特点?提示:由于船小,不能同时坐三个人,这样就需要遵循这一规则,然后按照一定的步骤一步一步的把三人运到河对岸.知识梳理在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.知识点二算法与计算机知识梳理计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.思考:与一般的解决问题的过程相比,算法最重要的特征是什么?提示:最重要的特征是步骤的有序性、明确性和有限性.[自我检测]下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=0解析:A、B两选项给出了解决问题的方法和步骤,是算法.C项,利用公式计算也属于算法.D项,只提出问题没有给出解决的方法,不是算法.答案:D授课提示:对应学生用书第2页探究一算法的概念[例1]下列关于算法的说法,正确的个数为()①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A.1B.2C.3 D.4[解析]由于算法具有有限性、确定性、输出性等特点,因而②③④正确,而解决某类问题的算法不一定唯一,从而①错.[答案] C方法技巧1。
人教版高中必修3(B版)第一章算法初步教学设计
人教版高中必修3(B版)第一章算法初步教学设计教学背景本设计是为人教版高中必修3(B版)第一章——算法初步编写的,旨在让学生在学习计算机基本概念的同时,掌握算法的概念、基本算法及计算复杂度分析。
教学目标•了解算法的概念及其在计算机上的应用;•掌握算法的一些基本的思想方法和算法模板;•能够分析算法的时间、空间复杂度。
教学内容知识点1.算法基本概念2.时间、空间复杂度分析3.基本算法——贪心、分治和动态规划教学方式本课程主要采用授课法和案例演示法相结合的方式进行教学。
教学步骤第一步:算法基本概念1.讲解算法的定义、特性、应用等内容。
2.通过一些简单的例子,让学生理解什么是算法。
第二步:时间、空间复杂度分析1.介绍时间复杂度和空间复杂度的概念及分析方法。
2.通过一些实例演示,让学生能够对算法的复杂度进行分析。
第三步:基本算法——贪心1.介绍贪心算法的思想。
2.通过一些案例,让学生了解贪心算法的应用场景。
3.给学生一些练习题,巩固对贪心算法思路的掌握。
第四步:基本算法——分治1.介绍分治算法的思想。
2.通过一些案例,让学生了解分治算法的应用场景。
3.给学生一些练习题,巩固对分治算法思路的掌握。
第五步:基本算法——动态规划1.介绍动态规划算法的思想。
2.通过一些案例,让学生了解动态规划算法的应用场景。
3.给学生一些练习题,巩固对动态规划算法思路的掌握。
第六步:课堂小结1.小结本节课所学内容。
2.引导学生思考如何对不同场景下的问题选择合适的算法,扩展学生的算法思维。
教学评估1.每个章节结束后进行小测试,测试学生掌握的知识点。
2.每个章节最后留出时间给学生提问和互动交流。
3.在完成练习题后,对学生提交的答案进行点评和改进。
结束语本教学设计注重启发学生思考能力,通过案例演示和举例分析的方式,激发学生对算法和计算机的兴趣,提高对算法的理解和能力。
新课标人教A版高中数学必修3全册教案(word版)
第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
高中数学 第一章 算法初步 1.1.1 算法的概念导学案(无答案)新人教A版必修3(2021年整理)
山东省平邑县高中数学第一章算法初步1.1.1 算法的概念导学案(无答案)新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省平邑县高中数学第一章算法初步1.1.1 算法的概念导学案(无答案)新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省平邑县高中数学第一章算法初步1.1.1 算法的概念导学案(无答案)新人教A版必修3的全部内容。
第一章算法初步1。
1.1 算法的概念【学习目标】1。
了解算法的含义,体会算法的思想;2.能够用自然语言叙述算法,知道正确的算法应满足的要求;3.会写出数值性计算的算法问题和解线性方程(组)的算法;【新知自学】问题1。
你知道在家里烧开水的基本过程吗?问题2。
两个大人和两个小孩一起渡河,渡口只有一条小船,每次最多能渡 1 个大人或两个小孩,他们四人都会划船,但都不会游泳。
试问他们怎样渡过河去?请写出一个渡河方案。
问题3.猜物品的价格游戏:现在一商品,价格在0~8000元之间,解决这一问题有什么策略?新知梳理:1。
算法的概念:数学中的算法通常是指;现代算法通常是指。
2。
算法与计算机计算机解决任何问题都要依赖于 ,只有将解决问题的过程分解为若干个 ,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能解决问题.3.算法的特点:(1)确定性;(2)有限性;(3)普遍性;(4)不唯一性.对点练习:1。
下列关于算法的描述正确的是( )A 。
算法与求解一个问题的方法相同 B.算法只能解决一个问题,不能重复使用 C.算法过程要一步一步执行,每步执行的操作必须确切D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章算法初步
§1.1算法与程序框图
1.1.1算法的概念
【明目标、知重点】
1.通过解二元一次方程组的方法,体会算法的基本思想.
2.了解算法的含义和特征.
3.会用自然语言表述简单的算法.
【填要点、记疑点】
1.算法的概念
2
计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.【探要点、究所然】
[情境导学]赵本山和宋丹丹的小品《钟点工》中有这样一个问题:宋丹丹:要把大象装入冰箱,总共分几步?哈哈哈哈,三步.第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上.
探究点一算法的概念
思考1一个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1个大人或两个小孩,他们三人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.答第一步,两个小孩同船过河去;
第二步,一个小孩划船回来;
第三步,一个大人划船过河去;
第四步,对岸的小孩划船回来;
第五步,两个小孩同船渡过河去.
小结 广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法.在数学中,主要研究计算机能实现的算法,即按照某种步骤一定可以得到结果的解决问题的程序.
思考2 在初中,对于解二元一次方程组你学过哪些方法?解二元一次方程组
⎩⎪⎨⎪⎧
x -2y =-1 ①2x +y =1 ②的具体步骤是什么? 答 解二元一次方程组有加减消元法和代入消元法.
解方程组的步骤:
方法一 第一步,②-①×2得5y =3.③
第二步,解③得y =35
. 第三步,将y =35代入①,得x =15
. 第四步,得方程组的解为⎩⎨⎧
x =15,y =35.
方法二 第一步,①+②×2,得5x =1.③ 第二步,解③,得x =15. 第三步,②-①×2,得5y =3.④
第四步,解④,得y =35
. 第五步,得方程组的解为⎩⎨⎧ x =15,
y =35.
思考3 写出求方程组⎩⎪⎨⎪⎧
A 1x +
B 1y +
C 1=0 ①A 2x +B 2y +C 2=0 ②(A 1B 2-B 1A 2≠0)的解的算法. 答 第一步,②×A 1-①×A 2,得(A 1B 2-A 2B 1)y +A 1C 2-A 2C 1=0.③
第二步,解③,得y =A 2C 1-A 1C 2A 1B 2-A 2B 1
. 第三步,将y =A 2C 1-A 1C 2A 1B 2-A 2B 1代入①,得x =-B 2C 1+B 1C 2A 1B 2-A 2B 1
. 第四步,得方程组的解为⎩⎪⎨⎪⎧ x =-B 2C 1+B 1C 2A 1B 2-A 2B 1,
y =A 2C 1-A 1
C 2A 1B 2-A 2B 1.
思考4 由思考3我们得到了二元一次方程组的求解公式,利用此公式可得到思考2的另一
个算法,请写出此算法.
答 第一步,取A 1=1,B 1=-2,C 1=1,A 2=2,B 2=1,C 2=-1.
第二步,计算x =-B 2C 1+B 1C 2A 1B 2-A 2B 1与y =A 2C 1-A 1C 2A 1B 2-A 2B 1
. 第三步,输出运算结果.
小结 根据上述分析,用加减消元法解二元一次方程组,可以分为三、四或五个步骤进行,这些步骤就构成了解二元一次方程组的一个“算法”.在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.从以上思考中我们看到某一个问题的算法不唯一.
探究点二 算法的步骤设计
例1 设计一个算法,判断7是否为质数.
思考1 质数是怎样定义的?
答 只能被1和本身整除的大于1的整数叫质数.
思考2 根据质数的定义,怎样判断7是否为质数?
答 可以这样判断:依次用2~6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数.
解 第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
反思与感悟 设计一个具体问题的算法,通常按以下步骤:
(1)认真分析问题,找出解决此题的一般数学方法;
(2)借助有关变量或参数对算法加以表述;
(3)将解决问题的过程划分为若干步骤;
(4)用简练的语言将这个步骤表示出来.
跟踪训练1 设计一个算法,判断35是否为质数.
解 第一步,用2除35,得到余数1,所以2不能整除35.
第二步,用3除35,得到余数2,所以3不能整除35.
第三步,用4除35,得到余数3,所以4不能整除35.
第四步,用5除35,得到余数0,所以5能整除35.
因此,35不是质数.
思考3 要判断整数89是否为质数,按照例1的思路需用2~88逐一去除89求余数,需要
87个步骤,这些步骤基本是重复操作,如何改进这个算法,减少算法的步骤呢? 答 (1)用i 表示2~88中的任意一个整数,并从2开始取数;
(2)用i 除89,得到余数r .若r =0,则89不是质数;若r ≠0,将i 的值增加1,再执行同样的操作;
(3)这个操作一直进行到i 取88为止.
思考4 判断一个大于2的整数是否为质数的算法步骤如何设计?
答 第一步,给定一个大于2的整数n .
第二步,令i =2.
第三步,用i 除n ,得到余数r .
第四步,判断“r =0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i 表示.
第五步,判断“i >n -1”是否成立.若是,则n 是质数,结束算法;否则,返回第三步. 例2 写出用“二分法”求方程x 2-2=0(x >0)的近似解的算法.
解 第一步,令f (x )=x 2-2,给定精确度d .
第二步,确定区间[a ,b ],满足f (a )f (b )<0.
第三步,取区间中点m =a +b 2
. 第四步,若f (a )f (m )<0,则含零点的区间为[a ,m ];否则,含零点的区间为[m ,b ].将新得到的含零点的区间仍记为[a ,b ].
第五步,判断[a ,b ]的长度是否小于d 或f (m )是否等于0.若是,则m 是方程的近似解;否则,返回第三步.
反思与感悟 算法的特点:(1)有穷性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.
(2)确定性:算法的计算规则及相应的计算步骤必须是确定的.
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.
跟踪训练2 求2的近似值,精确度0.05.
解 第一步,确定区间[a ,b ],因2>1,2<2,设a =1,b =2.
第二步,m =a +b 2
,判断m 是否等于2,若相等,则m 为所求,否则执行第三步. 第三步,若m >2,则令b =m ,若m <2,则令a =m .
第四步,重复第二、第三步,直到|a -b |<0.05或m =2时结束算法.
【当堂测、查疑缺】
1.在用二分法求方程零点的算法中,下列说法正确的是 ( )
A .这个算法可以求所有的零点
B .这个算法可以求任何方程的零点
C .这个算法能求所有零点的近似解
D .这个算法可以求变号零点近似解
答案 D
解析 二分法的理论依据是函数的零点存在定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.
2.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求它的总分和平均分
的一个算法如下,请将其补充完整.
第一步,取A =89,B =96,C =99.
第二步,________________.
第三步,________________.
第四步,输出计算结果.
答案 计算总分D =A +B +C 计算平均分E =D 3
3.看下面的四段话,其中不是解决问题的算法是
_________________________________________________________________.
(1)从济南到北京旅游,先坐火车,再坐飞机抵达;
(2)解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;
(3)方程x 2-1=0有两个实根;
(4)求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15.
答案 (3)
解析 由于(3)不是解决某一类问题的步骤,故(3)不是解决问题的算法.
4.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:
(1)计算c =a 2+b 2;
(2)输入直角三角形两直角边长a ,b 的值;
(3)输出斜边长c 的值.
其中正确的顺序是________.
答案 (2)(1)(3)
解析 算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.
【呈重点、现规律】
1.算法的特点:有限性、确定性、逻辑性、不唯一性、普遍性.
2.算法设计的要求:
(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.
(2)要使算法尽量简单,步骤尽量少.
(3)要保证算法正确,且算法步骤能够一步一步执行,每一步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.。