成才教育六年级从课本到奥数下册

合集下载

六年级下册数学习题课件从课本到奥数 人教版 2

六年级下册数学习题课件从课本到奥数 人教版 2
奥 数 人教版 (6份打包)2
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
`
` ` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
`
` ` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2
`
` `
六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2 六年级下册数学习题课件-从课本到奥 数 人教版 (6份打包)2

小学六年级下册 经典奥数题及答案 最全

小学六年级下册 经典奥数题及答案 最全

小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.A和B是小于100的两个非零的不同自然数。

北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)

北师大版小学六年级数学下册全册奥数知识点讲解试题附答案(全套共14套)

小学六年级下册数学奥数知识点讲解第1课《列方程解应用题》试题附答案
小学六年级下册数学奥数知识点讲解第2课《关于取整计算》试题附答案
答案
六年级奥数下册:第二讲关于取整计算习题解答
小学六年级下册数学奥数知识点讲解第3课《最短路线问题》试题附答案
答案
六年级奥数下册:第三讲最短路线问题习题解答
小学六年级下册数学奥数知识点讲解第4课《奇妙的方格表》试题附答案
答案
小学六年级下册数学奥数知识点讲解第5课《巧求面积》试题附答案
六年级奥数下册:第五讲巧求面积习题解答
小学六年级下册数学奥数知识点讲解第6课《最大与最小问题》试题附答案
答案。

最新小学六年级奥数从课本到奥数

最新小学六年级奥数从课本到奥数

最新小学六年级奥数从课本到奥数一、拓展提优试题1.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.2.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.3.22012的个位数字是.(其中,2n表示n个2相乘)4.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.5.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.6.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.7.若质数a,b满足5a+b=2027,则a+b=.8.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.9.若三个不同的质数的和是53,则这样的三个质数有组.10.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.11.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.12.能被5和6整除,并且数字中至少有一个6的三位数有个.13.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.14.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.2.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.3.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.4.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.5.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.6.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.7.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.8.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.9.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;若三个不同的质数的和是53,可以有以下几组:(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;(11)13,17,23;所以这样的三个质数有11组.故答案为:11.10.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.11.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.12.解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.13.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4014.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。

小学数学六年级从课本到奥数举一反三第二周百分数(共5小节)

小学数学六年级从课本到奥数举一反三第二周百分数(共5小节)

小学数学六年级第二学期
探究新知
你从题目中知道了哪些数学信息?哪些 信息与解决问题有关?
小学数学六年级第二学期
探究新知
打八折 实际销售12元 求原价
打八折题目中表示什么意思? 把那个数量看成单位“1”,哪个数量相 当于哪个数量的80%?
?元
1Байду номын сангаас元
试试看:一起用方程来解答。
小学数学六年级第二学期
探究新知
小学数学六年级第二学期
本金: 存入银行的钱叫做本金。
利息:
取款时银行多支付的钱叫 做利息。
利率: 利息与本金的比值叫做利率。
小学数学六年级第二学期
2013年7月7日中国 人民银行利率如下:
存 期
年利率(%)
三个月 3.10
半年
整 一年 存 二年 整 取 三年 五年 活期
3.30
3.50 4.40 5.00 5.50 0.50
小学数学六年级第二学期
4. 一种商品,甲商店比乙商店的进货价便宜10%,甲商店按30% 的利润定价,乙商店按25%的利润定价,结果甲店比乙店便宜40 元。甲店的进货价是多少元?
小学数学六年级第二学期
5. 甲乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元。为了 促销,甲店先提价10%,再降价20%;乙店则直接降价10%。那么, 调价后对于这款兔宝宝玩具,哪家店的售价更便宜,便宜多少钱?
速度差×追及时间=路程差.
小学数学六年级第二学期
【知识点概述】
4、工程问题: 把工作总量看作单位“1”,工作效率用单位时间内完成工作总量的 “几分之一”表示.根据工作总量、工作效率、工作时间其中两种量 求出第三种量.数量关系式为: 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

20XX小学六年级奥数从课本到奥数图文百度文库

20XX小学六年级奥数从课本到奥数图文百度文库

一、拓展提优试题1.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.2.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水188.4立方分米.3.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.4.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.5.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.6.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.7.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.8.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?9.若质数a,b满足5a+b=2027,则a+b=.10.被11除余7,被7除余5,并且不大于200的所有自然数的和是.11.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.12.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.13.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.14.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.16.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.17.若(n是大于0的自然数),则满足题意的n的值最小是.18.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.19.已知两位数与的比是5:6,则=.20.根据图中的信息可知,这本故事书有页页.21.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.22.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).23.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).24.分子与分母的和是2013的最简真分数有个.25.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.26.甲、乙两人分别从A、B两地同时出发,相向而行,甲乙两人的速度比是4:5,相遇后,如果甲的速度降低25%,乙的速度提高20%,然后继续沿原方向行驶,当乙到达A地时,甲距离B地30km,那么A、B两地相距km.27.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.28.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.29.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O 记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.30.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.31.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.32.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.33.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.34.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.35.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.36.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.37.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.38.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.39.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)40.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.【参考答案】一、拓展提优试题1.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.2.解:×3.14×13×3÷(﹣)=12.56×15=188.4(立方分米)答:圆柱形容器最多可以装水188.4立方分米.故答案为:188.4.3.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%4.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.5.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.6.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:97.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.8.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.11.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.12.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.13.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.14.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.16.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100017.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:318.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.19.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.20.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.21.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.22.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.23.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.24.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.25.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.26.解:根据题意可得:相遇时,甲走了全程的4÷(4+5)=,乙走了全程的1﹣=;相遇后,甲乙的速度比是4×(1﹣25%):5×(1+20%)=1:2;当乙到达A地时,乙又走了全程的1﹣=,甲又走了全程的×=;A、B两地相距:30÷(1﹣﹣)=90(km).答:A、B两地相距90km.27.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.28.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.29.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).30.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.31.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.32.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.33.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.34.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.35.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.36.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.37.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.38.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.39.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.40.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.。

小学数学奥数基础教程(六年级)30讲全

小学数学奥数基础教程(六年级)30讲全

1小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

(完整版)小学六年级下册最新经典奥数题及答案(最全)汇总

(完整版)小学六年级下册最新经典奥数题及答案(最全)汇总

小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

小学六年级奥数课件:从课本到奥数

小学六年级奥数课件:从课本到奥数

每个盒子先放一个球,还剩3个球 把三个球放入三个不同盒子里有4种方法; 把他们都放入一个盒子有4种方法; 把两个放入一个盒子,一个放入另一个盒子有4X3=12种方法, 加起来共4+4+12=20种方法.
14 4 32
蓝色一圈可以旋转 一周,有6种方法。
3 2 43
34 4 23 2314
蓝色一圈可以旋转 一周,有6种方法, 2可以在左下角也
-0.4
+4500米 顺
-1
180
5 +2
西
+3
西
6
-3
先向西爬行4厘米,接着向东爬行7厘米
-1500
支取2000元 +3000
存入3552元
(600+2650+3900)-(220+150+580+8+1200)=+4732(元)
-7<-二又五分之一<-1.8<-1/4<0.35<8/5<5.1
8角的2本.
第四位,42角=5X2+8X4,
8角的4本.
第五位,43角=5X7+8,
8角的1本.
第六位,只比第一位多买一本5角的,8角的相同,依次类推.
总共(3+0+2+4+1)X(100÷5)=200(本)
甲第1秒钟6.6米,第2秒钟13.2米,第3秒钟26.4米,第4秒钟52.8米, 乙第1秒钟2.9米,第2秒钟8.7米,第3秒钟26.1米,第4秒钟78.3米, 前3秒钟甲比乙多 (6.6-2.9)+(13.2-8.7)+(26.4-26.1)=8.5米 8.5÷(78.3-52.8)=1/3分 出发后经过3又1/3分乙追上甲.也就是200秒

成才教育~六年级从课本到奥数下册

成才教育~六年级从课本到奥数下册
例4有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米, 再把石子全部拿出来,求此时容器内水面的高度.
例5有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为6.28米,圆台的高为1.5米,下底面周长为4.71米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).
例13李云和他哥哥参加一次集会,同时出席的还有其他两对兄弟.见面后有的人握手问候,没有人和自己的兄弟问候,也没有人和同一个人握两次手.事后李云发现除自己外每个人握手次数互不相同,问李云握了几次手?李云的哥哥握了几次手?
例14红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。
例7在一条公路上,每隔100千米有一个仓库,共5个.一号仓库存货10吨,二号仓库存货20吨,五号仓库存货40吨,三、四号仓库空着.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.8元运费,那么最少要花多少运费?
例8若干箱货物总重19.5吨,每箱重量不超过353千克,今有载重量为1.5吨的汽车,至少需要几辆,才能把这些箱货物一次全部运走?
第二讲旋转体的计算
例1甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的1.5倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.
例2一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).
2米,圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)?
例6如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.

(完整版)小学数学奥数基础教程(六年级)目30讲全

(完整版)小学数学奥数基础教程(六年级)目30讲全

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

六年级奥数教材下

六年级奥数教材下

第一讲最大值与最小值点燃思维(1):举一反三(1)点燃思维(2)举一反三(2)点燃思维(2)举一反三(2)能力拓展第二讲按比例分配点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第三讲正比例性质解题点燃思维(1):举一反三(1)能力拓展第四讲反比例性质解题点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第五讲表面积的计算点燃思维(1)举一反三(1)点燃思维(2)举一反三(2)点燃思维(3)举一反三(3)能力拓展能力拓展第六讲圆柱的体积点燃思维(1)能力拓展第七讲圆锥的体积点燃思维(1):第八讲组合图形的体积点燃思维(1):举一反三(1)能力拓展第九讲钟表上的数学点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)点燃思维(3):举一反三(3)能力拓展第十讲行程问题(一)点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第十一讲行程问题(二)点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第十二讲抽屉原理点燃思维(1):举一反三(1)点燃思维(2)举一反三(2)点燃思维(3)举一反三(3)能力拓展第十三讲数理推理点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第十四讲数字趣味(一)点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第十五讲数字趣味(二)点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第十六讲数学开放题(一)点燃思维(1):举一反三(1)点燃思维(2)举一反三(2)能力拓展第十七讲数字开放题(二)点燃思维(1):举一反三(1)点燃思维(2):举一反三(2)能力拓展第十八讲综合测试综合测试一综合测试二综合测试三综合测试四综合测试五综合测试六综合测试七综合测试八第十九讲历年真题希望杯全球数学邀请赛初赛试题决赛试题华罗庚金杯数学竞赛初赛试题决赛试题数学解题能力展示初赛试题决赛试题走进美妙数学花园。

小学数学六年级(从课本到奥数举一反三)下学期第十五周数学思考与综合实践(共5节)枚举法推理趣味构造

小学数学六年级(从课本到奥数举一反三)下学期第十五周数学思考与综合实践(共5节)枚举法推理趣味构造
1 234 567 891 011….9 989 991 000 那么,第一个数的位数与第二个数中的0的个数有什么关系?
小学数学六年级第二学期
将自然数按从1到100和从1到1000连续排成两个更大的自然数。 12 345 678 910 ……979 899 100
1 234 567 891 011….9 989 991 000 那么,第一个数的位数与第二个数中的0的个数有什么关系?
1 234 567 891 011….9 989 991 000 那么,第一个数的位数与第二个数中的0的个数有什么关系?
思路点拨: 我们可当然可以直接计算位数和0的个数,再说明关系, 接下来我们将运用构造的方法解决这个问题。
小学数学六年级第二学期
将自然数按从1到100和从1到1000连续排成两个更大的自然数。 12 345 678 910 ……979 899 100
小学数学六年级第二学期
读一读下面的数据;
小学数学六年级第二学期
思路点拨: 地球上的水确实很多,但是,能够供我们人类使用的淡水很少很少, 河水湖水更是少之又少,因此,我们要从小做起,爱惜每一滴水,珍 惜有限的可使用的淡水资源,尽量想办法循环使用水,节约用水。
小学数学六年级第二学期
1、根据“典型例题”中的数据,求地球上河水湖水占地球水资源总 量的百分之几?
小学数学六年级第二学期
4. 一根铁丝,第一次剪去它的 ,第二次剪去剩下的 ,第三 次剪去剩下的 ,第四次剪去剩下的 ,剪了99次以后,剩下 的铁丝是原来的几分之几?
答案
小学数学六年级第二学期
5、假设地球上每年新生成的资源的量是一定的,据测算,地球上的 全部资源可供110亿人口生活90年而耗尽,或者可供90亿人口生活 210年而耗尽,世界总人口必须控制在多少以内,才能保证地球上的 资源足以使人类不断繁衍下去?

从课本到奥数六年级上册a版答案

从课本到奥数六年级上册a版答案

从课本到奥数六年级上册a版答案
一、选择题
1. 下列四个数中,最大的数是(A)
A. 8
2. 下列四个数中,最小的数是(C)
C. -3
3. 下列四个数中,最接近零的数是(B)
B. -1
4. 下列四个数中,最接近100的数是(D)
D. 98
5. 下列四个数中,最接近-100的数是(A)
A. -98
6. 下列四个数中,最接近-50的数是(B)
B. -48
7. 下列四个数中,最接近50的数是(C)
C. 48
8. 下列四个数中,最接近-20的数是(D)
D. -18
9. 下列四个数中,最接近20的数是(A)
A. 18
10. 下列四个数中,最接近-10的数是(B)
B. -8
二、填空题
1. 两个数的和是20,其中一个数是8,另一个数是:12
2. 两个数的差是10,其中一个数是18,另一个数是:8
3. 两个数的积是-50,其中一个数是-10,另一个数是:5
4. 两个数的商是-2,其中一个数是-20,另一个数是:10
三、计算题
1. (8+2)×3=30
2. (8-2)×3=18
3. (8+2)÷3=4
4. (8-2)÷3=2
5. (8+2)÷2=5
6. (8-2)÷2=3
7. (8+2)×2=20
8. (8-2)×2=12
9. (8+2)×(-3)=-30
10. (8-2)×(-3)=18。

(2021年整理)小学六年级奥数36讲(下)

(2021年整理)小学六年级奥数36讲(下)

(完整)小学六年级奥数36讲(下)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)小学六年级奥数36讲(下))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)小学六年级奥数36讲(下)的全部内容。

第13讲植树问题内容概述几何图形的设计与构造,本讲讲解一些有关的植树问题.典型问题1.今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:2.今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:3.今有10盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行·【分析与解】如下图所示:4.今有20盆花要在平地上摆成18行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:5.今有20盆花要在平地上摆成20行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:第14讲数字谜综合内容概述各种具有相当难度、求解需要综合应用多方面知识的竖式、横式、数字及数阵图等类型的数字谜问题.典型问题1.ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【分析与解】因为两个数的和一定时,两个数越紧接,乘积越大;两个数的差越大,乘积越小.A显然只能为1,则BCD+EFG=993,当ABCD与EFG的积最大时,ABCD、EFG最接近,则BCD尽可能小,EFG尽可能大,有BCD最小为234,对应EFG为759,所以有1234×759是满足条件的最大乘积;当ABCD与EFG的积最小时,ABCD、EFG差最大,则BCD尽可能大,EFG尽可能小,有EFG最小为234,对应BCD为759,所以有1759×234是满足条件的最小乘积;它们的差为1234×759-1759×234=(1000+234)×759一(1000+759)×234=1000×(759—234)=525000.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲逻辑推理(二)例11 一次数学考试,共六道判断题.考生认为正确的就画“√”,认为错误的就画“×”.记分的方法是:答对一题给2分;不答的给1分;答错的不给分.已知A、B、C、D、E、F、G七人的答案及前六个人的得分记录在表中,请在表中填出G的得分,并简单说明你的思路。

例12 李英、赵林、王红三人参加全国小学生数学竞赛,他们是来自金城、沙市、水乡的选手,并分别获得一、二、三等奖.现在知道:例13 李云和他哥哥参加一次集会,同时出席的还有其他两对兄弟.见面后有的人握手问候,没有人和自己的兄弟问候,也没有人和同一个人握两次手.事后李云发现除自己外每个人握手次数互不相同,问李云握了几次手李云的哥哥握了几次手例14 红、黄、蓝、白、紫五种颜色的珠子各一颗,分别用纸包着,在桌子上排成一行,有A、B、C、D、E五个人,猜各包珠子的颜色,每人只猜两包。

例15 有A、B、C三个足球队,每两队都比赛一场,比赛结果是:A有一场踢平,共进球2个,失球8个;B两战两胜,共失球2个;C共进球4个,失球5个,请你写出每队比赛的比分。

例16 北京至福州列车里坐着6位旅客:A、B、C、D、E、F.分别来自北京、天津、上海、扬州、南京和杭州,已知①A和北京人是医生;E和天津人是教师;C和上海人是工程师。

②A、B、F和扬州人参过军,而上海人从未参军。

③南京人比A岁数大;杭州人比B岁数大;F最年轻。

④B和北京人一起去扬州;C和南京人一起去广州。

例17 甲、乙、丙三人分别在北京、天津、上海的中学教数学、物理、化学.已知①甲不在北京;②乙不在天津;③在北京的人不教化学;④在天津的人教数学;⑤乙不教物理。

根据以上情况判断,甲、乙、丙三人分别在何处教何课程第二讲旋转体的计算例1 甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.例2 一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).2米,圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)例4 有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,再把石子全部拿出来,求此时容器内水面的高度.例5 有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为米,圆台的高为米,下底面周长为米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).例6 如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.例7 一个长方形的长为16厘米,宽为12厘米.以它的一条对角线为轴旋转此长方体,得到一个旋转体.求这个旋转体的体积.(结果中保留π,即不用近似值代替π.)第三讲列方程解应用题例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数.例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天例3有一项工程,由甲单独做,需12天完成,丙单独做需20天完成.甲、乙、丙合作,需5天完成.如果这项工程由乙单独做,需几天完成例4中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、71分.求男、女生至少各有多少人参赛例5瓶子里装有浓度为15%的酒精1000克.现在又分别倒入100克和400克的A、B两种酒精,瓶子里的酒精浓度变为14%.已知A种酒精的浓度是B种酒精的2倍,求A种酒精的浓度.例6有人用车把米从甲地运到乙地,装米的重车日行50里,空车日行70里,5日往返三次.问两地相距多少里(选自《九章算术》)例8兄弟二人三年后的年龄和是26岁,弟弟今年的年龄恰好是兄弟二人年龄差的2倍.问,3年后兄弟二人各几岁第四讲最大与最小问题例1把14拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大例2已知p·q-1=x,其中p、q为质数且均小于1000,x是奇数,那么x的最大值是____.例4求同时满足a+b+c=6,2a-b+c=3,且b≥c≥0的a的最大值及最小值.的根为自然数,则最小自然数a=____.例55个人各拿一个水桶在自来水龙头前等候打水,他们打水所需的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟.如果只有一个水龙头,试问怎样适当安排他们的打水顺序,使所有人排队和打水时间的总和最小并求出最小值.例6一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开多少个进水管例7在一条公路上,每隔100千米有一个仓库,共5个.一号仓库存货10吨,二号仓库存货20吨,五号仓库存货40吨,三、四号仓库空着.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要元运费,那么最少要花多少运费例8若干箱货物总重吨,每箱重量不超过353千克,今有载重量为吨的汽车,至少需要几辆,才能把这些箱货物一次全部运走三、最短的路线(几何中的最大最小问题)例9 下图,直线l表示一条公路,A、B表示公路同一侧的两个村子,现在要在公路l上修建一个汽车站,问这个汽车站建在哪一点时,A村与B村到汽车站的距离之和最短例10 设牧马营地在M,每天牧马人要赶着马群先到河边饮水,再到草地吃草,然后回营地.问:怎样的放牧路程最短第五讲综合题选讲(一)例1 王师傅一月份生产450个零件.合格率为80%.二月份产品合格率90%,又知二月份比一月份少出废品18个,王师傅一、二月份共生产合格零件多少个千克油桶重多少例3 甲、乙、丙三个工人合做一件工作,16天完成,共得工资120元.这件工作如由甲单独做40天可完成;由乙单独做48天可完成.现在工资是按所完成的工作量分配,三人各应得多少元例4甲、乙、丙、丁四人共同生产一批零件,甲生产的占其他三人生例5今年爷爷的年龄是小明年龄的6倍,几年后爷爷的年龄是小明年龄的5倍.又过几年以后,爷爷年龄将是小明年龄的4倍,爷爷今年是多少岁例6 一辆车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果以原速行驶120千米后,再将速度提高25%,可以提前40分钟到达乙地.那么,甲乙两地相距多少千米例7小玲沿某公路以每小时4千米速度步行上学,沿途发现每隔9分钟有一辆公共汽车从后面超过她,每隔7分钟遇到一辆迎面而来的公共汽车.若汽车发车的间隔时间相同,而且汽车的速度相同,求公共汽车发车的间隔是多少分钟例8某水池有甲、乙、丙三个放水管.每小时甲能放水100升,乙能放水125升.现在先使用甲管放水,2小时后,又开始使用乙管,让甲、乙两管同时放水,再过一段时间后,又加入丙管放水.直到把池中水全部放完.计算甲、乙、丙三管的放水量,发现它们恰好相同.问池中原有水多少升例9两个小孩在圆形跑道上从同一点A出发按相反方向运动,他们的速度分别是5米/秒,9米/秒.如果他们同时出发并当他们在A点第一次相遇时候结束,那么他们从出发到结束之间相遇的次数是多少(不包括出发和结束的两次)第六讲速算与巧算综合练习1.计算:2.计算:(123456+234561+345612+456123+561234+612345)÷63.计算:1994××4.计算:5.计算:1+2-3-4+5+6-7-8+9+10-…+19946.计算:4726342+4726352-472633×472635- 472634×4726367.计算:8.计算:9.计算10.计算:11.计算:12.计算:13.已知等式其中□内是一个最简分数,试求□内的分数.14.计算:1213÷3321,商的小数点后前三位数字各是什么15.计算:是1至1999的所有奇数之和,N是2至1998所有偶数之和.求D-N的值.18.若已知12+22+32+42+…+252=5525,试求22+42+62+82+…+502之值.19.现规定符号“○”表示选择两数中较大数的运算,“★”表示选择两数中较小数的运算.例如 5○3=3○5=5,5★3=3★5=3.试计算:21.(外国趣题)巴黎有居民2754842人,若依次给每个人编一个号码(从1至2754842号),请你算一算,为了编这些号码,需要使用多少个阿拉伯数字所有号码相加的和是多少(精确到百万)、B、C、D四位同学参加60米赛跑的决赛.赛前,四位同学对比赛结果各说了如下的一句话:A说:“我会得第一名.”B说:“A、C都不会取得第一名.”C说:“A或B会得第一名.”D说:“B会得第一名.”结果有两位同学说对了.试问:谁会获得这次决赛的第一名、B、C、D四人同住一间寝室,其中一人在修指甲,一人在洗头,一人在画画,另一人在看书,已知:①A不在修指甲,也不在看书;②B不在画画,也不在修指甲;③若A不在画画,则D不在修指甲;④C既不在看书,也不在修指甲;⑤D不在看书,也不在画画。

请问:他们各自在干什么3.张、王、李三人分别出生在北京、上海和武汉,他们分别是歌唱演员、相声演员和舞蹈演员.已知:①小王不是歌唱演员,小李不是相声演员;②歌唱演员不出生在上海;③相声演员出生在北京;④小李不出生在武汉.试分别确定他们的出生地和职业。

4.有甲、乙、丙、丁四人同住在一座四层的楼房里,他们之中有工程师、工人、教师和医生.如果已知:①甲比乙住的楼层高,比丙住的楼层低,丁住第四层;②医生住在教师的楼上,在工人的楼下,工程师住最低层。

试问:甲、乙、丙、丁各住在这座楼的几层各自的职业是什么1.某乡共有六块甘蔗地,每块地的产量如下图所示.现在准备建设一座糖厂,问糖厂建于何处总运费最省2.产地A1、A2、A3和销售地B1、B2、B3、B4都在铁路线上,位置如下图所示.已知A1、A2、A3的产量分别为5吨、3吨、2吨;B1、B2、B3、B4的销售量分别是1吨、2吨、3吨、4吨.试求出使总运输吨公里数最小的调运方案。

3.把长239米的钢筋截成17米和24米长的钢筋,如何截法最省材料4.钢筋原材料每件长米,每套钢筋架子用长米、米和米的钢筋各1段.现在需要绑好钢筋架子100套,至少要用去原材料几件截料方法怎样最省5.某车间有铣床3台,车床3台,自动机床1台,生产一种由甲、乙两个零件组成的产品.每台铣床每天生产甲零件10个,或者生产乙零件20个;每台车床每天生产甲零件20个,或者生产乙零件30个;每台自动机床每天生产甲零件30个,或者生产乙零件80个.如何安排这些机器的生产任务才能获得最大数量的成套产品每天最多可生产多少套产品一、填空题:1.一个圆柱体的侧面积是m平方厘米,底面半径是2厘米,它的体积是___立方厘米.2.一个圆锥的母线长为8厘米,底面直径为12厘米,那么这个圆锥的侧面积等于____平方厘米.3.圆台的上、下底面半径分别为2厘米和5厘米,母线长为4厘米,那么这个圆台的表面积等于____.4.用半径为2厘米的半圆形铁皮卷成的圆锥形容器,则它的底面半径为____厘米,容积是____立方厘米.5.一个圆锥的高是10厘米,侧面展开图是半圆,那么圆锥的侧面积等于____.二、选择题:1.一个圆柱体高80厘米,侧面积为平方米,它的全面积是____(精确到平方米).(A)平方米(B)平方米(C)平方米(D)平方米2.圆锥的侧面积为427.2平方厘米,母线长为17厘米,那么圆锥的高是___(精确到0.01厘米).(A)厘米(B)15厘米(C)厘米(D)厘米3.圆柱的一个底面积是S,侧面展开图是一个正方形,那么这个圆柱的侧面积是___.(A)4πS (B)2πS4.母线和底面直径相等的圆锥叫做等边圆锥,一个等边圆锥的底面半径是5厘米,那么它的侧面积是_______.(A) 25平方厘米(B) 50π平方厘米(C) 100π平方厘米(D) 250π平方厘米5.把一个底面半径是1厘米的圆柱体侧面展开,得到一个正方形,这个圆柱体的体积是立方厘米(取r=).(A) 1 (B)(C)×(D)×6.长、宽分别为6寸、4寸的长方形铁片,把它围成一个圆桶,另加一个底,形成圆柱形的杯子,这个杯子的最大容积是____.三、解答题:1.一个底面直径是20厘米的圆柱形容器中装着水,水中放置一个底面半径是9厘米,高20厘米的铁质圆锥体,当圆锥从桶中取出后,桶内的水将下降多少厘米2.在一只底面半径为20厘米的圆柱形小桶里,有一半径为10厘米的圆柱形钢材浸在水中.当钢材从桶里取出后,桶里的水下降了3厘米.求这段钢材的长.3.有A、B两个容器,如下页图,先将A容器注满水,然后倒入B 容器,求B容器的水深.(单位:厘米)4.从一个底面半径为3厘米,高为4厘米的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到一个如下图的几何体.求这个几何体的表面积和体积.5.圆锥形烟囱帽的底的半径是40厘米,高是30厘米,计算它的侧面面积.若烟囱表面要涂油漆,已知每平方米需要油漆150克,问需油漆多少克6.一个圆台的母线长为25厘米,而两个底面半径之比为1:3,已知圆台的侧面积等于1000π平方厘米,求这个圆台的全面积.7.把一条导线以螺旋状绕在圆柱管上,绕成十圈,圆柱管的外圆周长4厘米,导线的两端点位于圆柱的同一条母线上,每线长(两端点之间的距离)为9厘米.试求导线的长度.8.在长为1米的圆筒形管子的横截面上,最长直线段为12厘米,求此管子的体积.9.如下页图,长方形纸片ABCD中,AB=3厘米,BC=4厘米,10.一个几何体如下图,求它的表面积.1.某工厂三个车间共有180人,第二车间人数是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半少1人.三个车间各有多少人克3.25支铅笔分给甲、乙、丙三人.乙分到的比甲的一半多3支,丙分到的比乙的一半多3支.问:甲、乙、丙三人各分到几支铅笔4.甲、乙共有图书63册,乙、丙共有图书77册.三人中图书最多的人的书数是图书最少的人的书数的2倍.问:甲、乙、丙三人各有图书多少册5.体育用品商店购进50个足球、40个篮球,共3000元.零售时足球加价9%,篮球加价11%,全部卖出后获利润298元.问:每个足球、篮球进价各多少元6.王虎用1元钱买了油菜籽、西红柿籽和萝卜籽共100包.油菜籽3分钱一包,西红柿籽4分钱一包,萝卜籽1分钱7包.问王虎买进油菜籽、西红柿籽和萝卜籽各多少包且不大于2,则n的最大值是____.2.赵师傅要加工某项工程五个相互无关的部件急需的5个零件,如果加工零件A、B、C、D、E所需时间分别是5分钟、3分钟、7分钟、4分钟、6分钟.问应该按照什么次序加工,使工程各部件组装所需要的总时间最少这个时间是多少3.下图,小明住在甲村,奶奶住在乙村,星期天小明去看奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小明应选择怎样的路线使路程最短4.某车场每天有4辆汽车经过A1、A2、A3、A4、A5、A6六个点组织循环运输(如图).在A1点装货,需6个工人;在A2点卸货,需4个工人;在A3点装货,需8个工人;在A4点卸货,需5个工人;在A5点装货需3个工人;在A6点卸货,需4个工人.若每个点固定工人太多,会造成人力浪费,我们可以让装卸工人跟车走.这样有人跟车,有人固定,问最少要安排多少名装卸工人1.有一堆苹果平均分给幼儿园大、小班小朋友,每人可得6个,如果只分给大班每人可得10个,问只分给小班时,每人可得几个2.甲仓有粮80吨,乙仓有粮120吨,如果把乙仓的一部分粮调入甲仓,使乙仓存粮是甲仓的60%,需要从乙仓调入甲仓多少吨粮食生人数是剩下的女生人数的2倍.已知六年级共有156人,问男、女生各有多少人4.六年级举行一次数学竞赛,共有若干名同学得奖,其中得一等奖的同的同学比得二等奖的同学多21名.问得奖人数是多少5.甲、乙、丙三人各有巧克力豆若干粒,要求互相赠送.先由甲给乙、丙,甲给乙、丙的豆数依次等于乙、丙原来各人所有豆数.依同办法,再由乙给甲、丙,所给豆数依次等于甲、丙各人现有的豆数.最后由丙给甲、乙,所给的豆数依次等于甲、乙各人现有的豆数.互赠后每人恰好各有豆32粒,问原来三人各有豆多少粒6.王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车。

相关文档
最新文档