中学专题复习二次函数与直角三角形
压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似)-2023年中考
2023年中考数学压轴题专项训练压轴题05二次函数与三角形存在性问题(与等腰、直角、等腰直角三角形、相似三角形)题型一:二次函数与等腰三角形存在性问题例1.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.题型二:二次函数与直角三角形存在性问题例2.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A在点B 的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当P A=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.题型三:二次函数与等腰直角三角形存在性问题例3.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.题型四:二次函数与相似三角形存在性问题例4.(2023•宜兴市一模)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣2的图象经过点A(﹣1,0),B(3,0),与y轴交于点C,连接BC、AC.(1)求二次函数的函数表达式;(2)设二次函数的图象的顶点为D,求直线BD的函数表达式以及sin∠CBD的值;(3)若点M在线段AB上(不与A、B重合),点N在线段BC上(不与B、C重合),是否存在△CMN 与△AOC相似,若存在,请直接写出点N的坐标,若不存在,请说明理由.一.解答题(共20小题)1.(2023•绥宁县模拟)如图,一次函数y=12x+2与x轴,y轴分别交于A、C两点,二次函数y=ax2+bx+c的图象经过A、C两点,与x轴交于另一点B,其对称轴为直线x=−3 2.(1)求该二次函数表达式;(2)在y轴的正半轴上是否存在一点M,使以点M、O、B为顶点的三角形与△AOC相似,若存在,求出点M的坐标,若不存在,请说明理由;(3)在对称轴上是否存在点P,使△P AC为等腰三角形,若存在,求出点P的坐标;若不存在,请说明理由.2.(2023•泗阳县校级一模)如图,二次函数y=ax2+bx+4与x轴交于点A(4,0)、B(﹣1,0),与y轴交于点C.(1)求函数表达式及顶点坐标;(2)连接AC,点P为线段AC上方抛物线上一点,过点P作PQ⊥x轴于点Q,交AC于点H,当PH =2HQ时,求点P的坐标;(3)是否存在点M在抛物线上,点N在抛物线对称轴上,使得△BMN是以BN为斜边的等腰直角三角形,若存在,直接写出点M的横坐标;若不存在,请说明理由.3.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.4.(2023•崂山区开学)如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4).与x轴交于点B,C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c(a≠0)的表达式;(2)判断△ABC的形状,并说明理由;(3)如图2,若点N在线段BC上运动(不与点B,C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标;(4)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.5.(2023•泰山区校级一模)已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)求出二次函数表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,求出此时点N的坐标,并说明理由;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.(2023•灞桥区校级二模)如图,二次函数y=−12x2−x+4的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)若点P在抛物线对称轴上,且在x轴上方,当△PBC为等腰三角形时,求出所有符合条件的点P 的坐标.7.(2023春•仓山区校级期中)如图抛物线y=﹣x2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求二次函数的解析式及顶点P的坐标;(2)过定点(1,3)的直线l:y=kx+b与二次函数的图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形.8.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.9.(2023•广水市模拟)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B',E',当四边形BEB'E'的面积为12时,求t的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x 轴的垂线,交抛物线于点P.是否存在点M使△PBC为直角三角形,若存在,请直接写出点M的坐标,若不存在,请说明理由.10.(2023•江油市模拟)抛物线y=ax2+114x−6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx﹣6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求二次函数与一次函数的解析式;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.11.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数的表达式;(2)点M为一次函数下方抛物线上的点,△ABM的面积最大时,求点M的坐标;(3)设一次函数y=0.5x+2的图象与二次函数的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.12.(2023•儋州一模)如图,在直角坐标系中有Rt△AOB,O为坐标原点,A(0,3),B(﹣1,0),将此三角形绕原点O顺时针旋转90°,得到Rt△COD,二次函数y=ax2+bx+c的图象刚好经过A,B,C三点.(1)求二次函数的解析式及顶点P的坐标;(2)过定点Q的直线l:y=kx﹣k+3与二次函数图象相交于M,N两点.①若S△PMN=2,求k的值;②证明:无论k为何值,△PMN恒为直角三角形;③当直线l绕着定点Q旋转时,△PMN外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.13.(2023•保亭县一模)如图,二次函数y=ax2+bx+5的图象经过点(1,8),且与x轴交于A、B两点,与y轴交于点C,其中点A(﹣1,0),M为抛物线的顶点.(1)求二次函数的解析式;(2)求△MCB的面积;(3)在坐标轴上是否存在点N,使得△BCN为直角三角形?若存在,求出点N的坐标;若不存在,请说明理由.14.(2022秋•蔡甸区期末)如图,一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.15.(2023•二道区校级一模)已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.(1)求a、b的值;(2)如图1,M为∠APC内一点,且PM=1,E,F分别为边P A和PC上两个动点,求△MEF周长的最小值;(3)若△P AC是直角三角形,求点C的坐标.16.(2023•靖江市一模)已知二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴交于点A,与y轴交于点(0,−32),顶点为C(﹣1,﹣2).(Ⅰ)求该二次函数的解析式;(Ⅱ)过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E处.若点F在这个二次函数的图象上,且△DEF是以EF为斜边的等腰直角三角形,求点F的坐标;(Ⅲ)当p+q≥﹣2时,试确定实数p,q的值,使得当p≤x≤q时,p≤y≤q.17.(2023•泰山区一模)二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y 轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)连接BD,当t=32时,求△DNB的面积;(3)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.18.(2023•东营区一模)如图,已知二次函数的图象与x轴交于A(1,0)和B(﹣3,0)两点,与y轴交于点C(0,﹣3),直线y=﹣2x+m经过点A,且与y轴交于点D,与抛物线交于点E.(1)求抛物线的解析式;(2)如图1,点M在AE下方的抛物线上运动,求△AME的面积最大值;(3)如图2,在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由.19.(2023•铁西区模拟)如图①,已知抛物线y=mx2﹣3mx﹣4m(m<0)的图象与x轴交于A、B两点(A 在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴交于点E,且OC=2OE.(1)求出抛物线的解析式;(2)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,若△MCN与△BQM相似,请求出Q的坐标;(3)如图②Q(t,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M',是否存在点Q,使得M'恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.20.(2023•东胜区模拟)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣2,0),B(4,0),C(0,8)三点,点P是直线BC上方抛物线上的一个动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC的面积最大,求此时P点坐标及△PBC面积的最大值;(3)在y轴上是否存在点Q,使以O,B,Q为顶点的三角形与△AOC相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.。
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)
中考数学复习---二次函数中三角形存在性问题压轴题练习(含答案解析)一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x 轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C 坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△P AB为直角三角形,请求出点P 的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D (t ,t 2+t ﹣4),连接OD .令y =0,则x 2+x ﹣4=0,解得x =﹣4或2,∴A (﹣4,0),C (2,0),∵B (0,﹣4),∴OA =OB =4,∵S △ABD =S △AOD +S △OBD ﹣S △AOB =×4×(﹣﹣t +4)+×4×(﹣t )﹣×4×4=﹣t 2﹣4t =﹣(t +2)2+4,∵﹣1<0,∴t =﹣2时,△ABD 的面积最大,最大值为4,此时D (﹣2,﹣4); (3)如图2中,设抛物线的对称轴交x 轴于点N ,过点B 作BM ⊥抛物线的对称轴于点M .则N (﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC 于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P 运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE 内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S△OPE =S△OPG+S△EPG=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M4(1,1).13.(2023•三亚一模)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC 与抛物线的对称轴l交于点E.(1)求抛物线的解析式和直线BC的解析式;(2)求四边形ABDC的面积;(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC =S△ABC时,求点P的坐标;(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),∴,解得,∴抛物线的解析式为y=﹣x2+3x+8.令y=0,得.解得x1=﹣2,x2=8.∴点B的坐标为(8,0).设直线BC的解析式为y=kx+b.把点B(8,0),C(0,8)分别代入y=kx+b,得,解得,∴直线BC的解析式为y=﹣x+8.(2)如图1,设抛物线的对称轴l与x轴交于点H.∵抛物线的解析式为,∴顶点D的坐标为.∴S四边形ABDC =S△AOC+S梯形OCDH+S△BDH===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC 于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0)41。
【中考压轴必刷50题】专题1:二次函数与直角三角形
二次函数与直角三角形分类标准:讨论直角的位置或者斜边的位置例如:请在抛物线上找一点p使得A、B、P三点构成直角三角形,则可分成以下几种情况(1)当为直角时,(2)当为直角时,(3)当为直角时,1 .已知,抛物线y=-x²+bx+c经过点A(-1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.【答案】(1);(2)存在,当的值最小时,点的坐标为;(3)点的坐标为、、或【解析】【分析】(1)由点、的坐标,利用待定系数法即可求出抛物线的解析式;(2)连接交抛物线对称轴于点,此时取最小值,利用二次函数图象上点的坐标特征可求出点的坐标,由点、的坐标利用待定系数法即可求出直线的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点的坐标;(3)设点的坐标为,则,,,分、和三种情况,利用勾股定理可得出关于的一元二次方程或一元一次方程,解之可得出的值,进而即可得出点的坐标.【详解】解:(1)将、代入中,得:,解得:,抛物线的解析式为.(2)连接交抛物线对称轴于点,此时取最小值,如图1所示.当时,有,解得:,,点的坐标为.抛物线的解析式为,抛物线的对称轴为直线.设直线的解析式为,将、代入中,得:,解得:,直线的解析式为.当时,,当的值最小时,点的坐标为.(3)设点的坐标为,则,,.分三种情况考虑:①当时,有,即,解得:,,点的坐标为或;②当时,有,即,解得:,点的坐标为;③当时,有,即,解得:,点的坐标为.综上所述:当是直角三角形时,点的坐标为、、或.【点睛】本题考查待定系数法求二次(一次)函数解析式、二次(一次)函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线解析式;(2)由两点之间线段最短结合抛物线的对称性找出点的位置;(3)分、和三种情况,列出关于的方程.2 .如图,在平面直角坐标系中,直线与轴交于点,与抛物线交于点,此抛物线与轴的正半轴交于点,且.(1)求抛物线的解析式;(2)点是直线上方抛物线上的一点.过点作垂直于轴于点,交线段于点,使.①求点的坐标;②在直线上是否存在点,使为以为直角边的直角三角形?若存在,直接写出符合条件的点的坐标;若不存在,说明理由.【答案】(1);(2)①点坐标是;②存在,或【解析】【分析】(1)根据题意,分别求出点C的坐标,利用AC=2BC求出点A的坐标,在利用待定系数法求出抛物线的解析式即可;(2)①设点P的坐标为(a,-a2-3a+4),利用待定系数法求出直线AB的解析式,用含a的式子表示出点E的坐标,用含a的式子表示出DE和PE的长度,由DE=3PE,得到关于a的方程,求得a的值,即可得到点P的坐标;②设点M的坐标为,分别求得AB、AM、BM的长度,根据△ABM是以AB为直角边的直角三角形,所以可分为两种情况:一是AM为斜边,二是BM为斜边,利用勾股定理列出关于m的方程,求解即可.【详解】解:(1)∵直线与轴交于点.∴∵∴∵∴∵直线与轴交于点.∴点坐标为把点、标代入解析式得解得:∴抛物线的解析式为:(2)①∵是直线上方的抛物线上一点∴设点为坐标为设直线解析式:将点、坐标代入解析式,得解得:∴∵轴于,交于点∴点坐标为∴∵∴解得:(舍去),当时,∴点坐标是②∵点M在直线PD上,∴设点M的坐标为∵点A(-2,6),点B(1,0),∴∵△ABM为以AB为直角边的直角三角形,Ⅰ:当BM为斜边时,可得:AB2+AM2=BM2,∴,∴∴点M的坐标为Ⅱ:当AM为斜边时,可得:AB2+BM2=AM2,∴,∴∴点M的坐标为综上所述,符合题意的点M的坐标为或【点睛】本题主要考查二次函数、勾股定理的综合应用,解决第(2)②小题的题目种,构成直角三角形的问题时,若能求得三角形的长度,则可以利用勾股定理解决,同时此类问题中,要注意分类讨论思想的应用.3 .已知抛物线与轴交于点和点,与直线交于点和点,为抛物线的顶点,直线是抛物线的对称轴.(1)求抛物线的解析式及点的坐标.(2)点为直线上方抛物线上一点,设为点到直线的距离,当有最大值时,求点的坐标.(3)若点为直线上一点,作点关于轴的对称点,连接,,当是直角三角形时,直接写出点的坐标.【答案】(1),点的坐标为;(2)点的坐标为;(3)点的坐标为或.【解析】【分析】(1)先由直线解析式求出B点坐标,再把A,B坐标代入抛物线解析式中,求出a,c的值,从而求出抛物线解析式,再把抛物线解析式化成顶点式,求出顶点坐标即可;(2)过点作轴,交于点,连接,,设点的坐标为,则,写出△PCB面积的表达式,求出△PCB面积最大值所对应的m,从而求出P点坐标;(3)由题意,知,.设点的坐标为,分别求出,,,在分类讨论①当时,,②当时,,求出t,即可求出F的坐标.【详解】解:(1)∵直线,令y=0,解得x=3,∴,将点,代入抛物线中,得,解得∴抛物线的解析式为,∵,∴点的坐标为;(2)过点作轴,交于点,连接,,如解图所示,由题意,可知有最大值时,有最大值,设点的坐标为,则,∴,∴,∵,,∴当时,有最大值,且最大值为,此时有最大值,∴点的坐标为;(3)由题意,知,.设点的坐标为,则,,,由题,易知,则当是直角三角形时,需分以下两种情况进行讨论,①当时,,即,解得,∴点的坐标为;②当时,,即,解得(与点重合,故舍去)或,∴点的坐标为,综上所述,点的坐标为或.【点睛】本题是对二次函数的综合考查,熟练掌握二次函数解析式和图像性质是解决本题的关键,属于中考压轴题,难度较大.4 .定义:在平面直角坐标系xOy中,直线y=a(x﹣m)+k称为抛物线y=a(x﹣m)2+k的关联直线.(1)求抛物线y=x2+6x﹣1的关联直线;(2)已知抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,求这条抛物线的表达式;(3)如图,顶点在第一象限的抛物线y=﹣a(x﹣1)2+4a与它的关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,连结AC、BC.当△ABC为直角三角形时,求a的值.【答案】(1)y=x+3﹣10=x﹣7;(2)y=2x2+3或y=2(x+1)2+1;(3)a=1或a=.【解析】【分析】(1)先将抛物线的解析式化为顶点式,然后根据关联直线的定义即可得出答案;(2)由题意可得a=2,c=3,设抛物线的顶点式为y=2(x-m)2+k,可得,可求m和k的值,即可求这条抛物线的表达式;(3)由题意可得A(1,4a),B(2,3a),C(-1,0),可求AB2=1+a2,BC2=9+9a2,AC2=4+16a2,分BC,AC为斜边两种情况讨论,根据勾股定理可求a的值.【详解】解:(1)∵y=x2+6x﹣1=(x+3)2﹣10,∴关联直线为y=x+3﹣10=x﹣7;(2)∵抛物线y=ax2+bx+c与它的关联直线y=2x+3都经过y轴上同一点,∴a=2,c=3,可设抛物线的顶点式为y=2(x﹣m)2+k,则其关联直线为y=2(x﹣m)+k=2x﹣2m+k,∴,解得或,∴抛物线解析式为y=2x2+3或y=2(x+1)2+1;(3)由题意:A(1,4a)B(2,3a)C(﹣1,0),∴AB2=1+a2,BC2=9+9a2,AC2=4+16a2,显然AB2<BC2且AB2<AC2,故AB不能成为△ABC的斜边,当AB2+BC2=AC2时:1+a2+9+9a2=4+16a2解得a=±1,当AB2+AC2=BC2时:1+a2+4+16a2=9+9a2解得a=,∵抛物线的顶点在第一象限,∴a>0,即a=1或a=.【点睛】本题是二次函数综合题,考查了直角三角形的性质,熟练掌握二次函数图象上点的坐标特征和二次函数的性质,理解坐标与图象性质,记住两点间的距离公式,注意分情况讨论思想的应用.5 .已知:抛物线:(为正整数),抛物线的顶点为(1)当k=1时,的坐标为;当k=2时,的坐标为;(2)抛物线的顶点是否在同一条直线上?如在,请直接写出这条直线的解析式;(3)如图(2)中的直线为直线,直线与抛物线的左交点为,求证:与重合;(4)抛物线与x轴的右交点为,是否存在是直角三角形?若存在,求k的值,若不存在,请说明理由.【答案】(1)(1,2),(2,3)(2)在,(3)见解析(4)存在,k=3.【解析】【分析】(1)直接把k=1,k=2代入二次函数解析式进行求解即可;(2)把二次函数的解析式化为顶点式即可求解;(3)由(2)及题意可得,然后联立一次函数解析式及二次函数可求解;(4)根据题意对的三个顶点作为直角顶点进行讨论即可,然后结合直角三角形的性质求解.【详解】解:(1)当k=1时,则有,所以;当k=2时,则有,所以;故答案为;(2)在同一直线上,解析式为,理由如下:由可得,所以顶点坐标为,满足函数关系式为;(3):解得:∴∴∴与重合;(4)存在,理由:分三种情况,,过点、分别作轴,轴,交x轴于点C、E、D,如图所示:①∠=90°则以为直径作圆,它与抛物线只有两个交点、,不存在②∠=90°,D=1,D=1 ∴∠=45°∴∠=45°,∴∴k=0(舍去)③∠=90°则∠=45°∴∠=45°∴,解得(舍去),.综上所述,存在,k=3.【点睛】本题主要考查二次函数的综合,关键是根据题意把二次函数的解析式转化为顶点式,然后根据直角三角形的分类讨论进行求解即可.6 .如图,已知抛物线与轴交于点、,顶点为M.(1)求抛物线的解析式和点M的坐标;(2)点E是抛物线段BC上的一个动点,设的面积为S,求出S的最大值,并求出此时点E的坐标;(3)在抛物线的对称轴上是否存在点P,使得以A、P、C为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1),M(1,4);(2)当时,S最大=,E(,);(3)存在,P1(1,),P2(1,),P3(1,1),P4(1,2).【解析】【分析】(1)将点、的坐标代入函数解析式,列出方程组,通过解方程组求得、的值即可;利用配方法将函数解析式转化为顶点式,即可得到点的坐标;(2)利用待定系数法确定直线解析式,由函数图象上点的坐标特征求得点、的坐标,然后根据两点间的距离公式求得长度,结合三角形的面积公式列出函数式,根据二次函数最值的求法求得点的横坐标,易得其纵坐标,则点的坐标迎刃而解了;(3)需要分类讨论:点、、分别为直角顶点,利用勾股定理求得答案.【详解】解:(1)抛物线与轴交于点、,.解得.,则;(2)如图,作轴交于点,,直线解析式为:.设,则...当时,S.最大此时,点的坐标是,;(3)设,、,,,.①当时,,即.解得.②当时,,即.解得.③当时,,即.解得或2.综上所述,存在,符合条件的点的坐标是或或或,【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.7 .如图,抛物线经过A(-3,6),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分;(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形.若存在,求出点M的坐标;若不存在,说明理由.【答案】(1);(2)详见解析;(3)存在,点M的坐标为(,-9)或(,11).【解析】【分析】(1)将A(-3,0),B(5,-4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【详解】解:(1)将A(-3,0),B(5,-4)两点的坐标分别代入,得解得故抛物线的表达式为y=.(2)证明:∵AO=3,OC=4,∴AC==5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD==5.∵C(0,-4),B(5,-4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)存在.如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=,则AE=.∵A(-3,0),B(5,-4),∴tan∠EAB=.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(,11).同理:tan∠MBF=2.又∵BF=,∴FM=5,∴M(,-9).∴点M的坐标为(,11)或(,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM和M′E的长是解题的关键8 .如图1,在平面直角坐标系中,直线与直线相交于点,点是直线上的动点,过点作于点,点的坐标为,连接.设点的纵坐标为,的面积为.(1)当时,请直接写出点的坐标;(2)关于的函数解析式为其图象如图2所示,结合图1、2的信息,求出与的值;(3)在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.【答案】(1)(2);(3)存在,见解析【解析】【分析】(1)根据A点坐标求出直线AB的解析式,然后和直线进行联立即可求出B点的坐标;(2)将,代入,可求出b的值,由题可知,当时,达到最大值,通过求出s,然后由即可求出a的值;(3)若为的直角顶点,则,可求出AC的长度,从而得到结果;若为的直角顶点,过作垂线交于,,则,在中,由勾股定理可求出t,从而得到结果.【详解】(1)当时,,∵直线,,∴可设直线AB的解析式为,将代入,得,∴直线AB的解析式为,联立得,∴;依题有,当时,故得当时,达到最大值,则代入得,解得若为的直角顶点,则此时的方程为,令得,此时若为的直角顶点,过作垂线交于则在中,由勾股定理得即解得:或此时或;或当为的直角顶点,此种情况不存在,当在上方时为锐角,当在下方时,为钝角,故不存在.【点睛】本题考查了函数和几何综合问题,题目较难,明确题意,注意分类讨论的思想是解题的关键.9 .如图,在平面直角坐标系中,抛物线与x轴交于点,与y 轴交于点C,且直线过点B,与y轴交于点D,点C与点D关于x轴对称.点P是线段上一动点,过点P作x轴的垂线交抛物线于点M,交直线于点N.(1)求抛物线的函数解析式;(2)当的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以三点为顶点的三角形是直角三角形,若存在,直接写出点Q的坐标;若不存在,说明理由.【答案】(1);(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,)或(0,).【解析】【分析】(1)根据直线求出点B和点D坐标,再根据C和D之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P坐标为(m,0),表示出M和N的坐标,再利用三角形面积求法得出S△BMD=,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线过点B,点B在x轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B(6,0),D(0,-6),∵点C和点D关于x轴对称,∴C(0,6),∵抛物线经过点B和点C,代入,,解得:,∴抛物线的表达式为:;(2)设点P坐标为(m,0),则点M坐标为(m,),点N坐标为(m,m-6),∴MN=-m+6=,∴S△BMD =S△MNB+S△MND===-3(m-2)2+48当m=2时,S△BMD最大=48,此时点P的坐标为(2,0);(3)存在,由(2)可得:M(2,12),N(2,-4),设点Q的坐标为(0,n),当∠QMN=90°时,即QM⊥MN,如图,可得,此时点Q和点M的纵坐标相等,即Q(0,12);当∠QNM=90°时,即QN⊥MN,如图,可得,此时点Q和点N的纵坐标相等,即Q(0,-4);当∠MQN=90°时,MQ⊥NQ,如图,分别过点M和N作y轴的垂线,垂足为E和F,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME,∴△MEQ∽△QFN,∴,即,解得:n=或,∴点Q(0,)或(0,),综上:点Q的坐标为(0,12)或(0,-4)或(0,)或(0,). 【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.10 .如图,直线分别与x轴,y轴交于点A,B两点,点C为OB的中点,抛物线经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且的面积为,求点D的坐标;(3)点P为抛物线上一点,若是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.【答案】(1);(2)(2,-3);(3)或或. 【解析】【分析】(1)由直线解析式求出A、B坐标,然后得出C点坐标,再用待定系数法求出抛物线解析式;(2)过点D作DE⊥x轴,交直线AB于点E,设D(m,),利用S△==得出方程,解出m值即可;ABD(3)分点A是直角顶点和点B是直角顶点,结合图像,表示出△ABP三边长度,利用勾股定理得出方程,求解即可.【详解】解:(1)直线中,令x=0,则y=10,令y=0,则x=5,∴A(5,0),B(0,10),∵点C是OB中点,∴C(0,5),将A和C代入抛物线中,,解得:,∴抛物线表达式为:;(2)联立:,解得:或,∴直线AB与抛物线交于点(-1,12)和(5,0),∵点D是直线AB下方抛物线上的一点,设D(m,),∴-1<m<5,过点D作DE⊥x轴,交直线AB于点E,∴E(m,-2m+10),∴DE==,===,∴S△ABD解得:m=2,∴点D的坐标为(2,-3);(3)抛物线表达式为:,∵△APB是以AB为直角边的直角三角形,设点P(n,),∵A(5,0),B(0,10),∴AP2=,BP2=,AB2=125,当点A为直角顶点时,BP2= AB2+ AP2,解得:n=或5(舍),当点B为直角顶点时,AP2= AB2+ BP2,解得:n=或,而抛物线对称轴为直线x=3,则3-=,-3=,3-=,综上:点P到抛物线对称轴的距离为:或或.【点睛】本题是二次函数综合题,主要考查了一次函数图象上坐标点的特征,待定系数法求二次函数解析式,三角形面积的铅垂高表示法,解一元二次方程,勾股定理,相似三角形的判定与性质等重要知识点,综合性强,难度较大.。
中考复习专题2二次函数与直角三角形问题(含解析)
专题2二次函数与直角三角形问题我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1图2图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3,0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341m m-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.对于代数法,可以采用两条直线的斜率之积来解决.【例1】.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A 在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【分析】(1)根据坐标轴上点的特点求出点A,C的坐标,即可求出答案;(2)设出点P的坐标,利用PA=PC建立方程求解,即可求出答案;(3)分三种情况,利用等腰直角三角形的性质求出前两种情况,利用三垂线构造出相似三角形,得出比例式,建立方程求解,即可求出答案.【解析】(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∵点P为该抛物线对称轴上,∴设P(1,p),∴PA==,PC==,∵PA=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【分析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,即可求解;(2)过点D作DG⊥AB交于G,交AC于点H,设D(n,﹣n2﹣3n+4),H(n,n+4),由DH∥OC,可得==,求出D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,证明△MDF≌△NOD(AAS),可得D点纵坐标为2,求出D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,证明△KDF≌△LFO(AAS),得到D点纵坐标为4,求得D(0,4)或(﹣3,4).【解析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).【例3】(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【分析】(1)把点B,C两点坐标代入抛物线的解析式,解方程组,可得结论;(2)存在.如图1中,设D(t,t2+t﹣4),连接OD.构建二次函数,利用二次函数的性质,解决问题;(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4),分三种情形:∠PAB=90°,∠PBA=90°,∠APB=90°,分别求解可得结论.【解析】(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣∵S△ABD(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).【例4】.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG 的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【分析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,解二元一次方程组即可得b,c的值,令y =0即可得m的值;(2)设D(x,﹣x2+4x+5),则E(4﹣x,﹣x2+4x+5),表示出四边形DEFG的周长,根据二次函数的最值即可求解;(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,证明△MCH≌△NCK,根据全等三角形的性质得NK=MH=4,CK=CH=2,则N(﹣4,3),利用待定系数法可得直线BN的解析式为y=﹣x+,可得Q(0,),设P(2,p),利用勾股定理表示出PQ2、BP2、BQ2,分两种情况:①当∠BQP=90°时,②当∠QBP=90°时,利用勾股定理即可求解.【解析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,得,解得.∴这个抛物线的解析式为:y=﹣x2+4x+5,令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,∴B(5,0),∴m=5;(2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,设D(x,﹣x2+4x+5),∵DE∥x轴,∴E(4﹣x,﹣x2+4x+5),∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,∴四边形DEFG是矩形,∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,∴当x=3时,四边形DEFG的周长最大,∴当四边形DEFG的周长最大时,点D的坐标为(3,8);(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,∴∠NKC=∠MHC=90°,由翻折得CN=CM,∠BCN=∠BCM,∵B(5,0),C(0,5).∴OB=OC,∴∠OCB=∠OBC=45°,∵CH⊥对称轴于H,∴CH∥x轴,∴∠BCH=45°,∴∠BCH=∠OCB,∴∠NCK=∠MCH,∴△MCH≌△NCK(AAS),∴NK=MH,CK=CH,∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,M(2,9),∴MH=9﹣5=4,CH=2,∴NK=MH=4,CK=CH=2,∴N(﹣4,3),设直线BN的解析式为y=mx+n,∴,解得,∴直线BN的解析式为y=﹣x+,∴Q(0,),设P(2,p),∴PQ2=22+(p﹣)2=p2﹣p+,BP2=(5﹣2)2p2=9+p2,BQ2=52+()2=25+,分两种情况:①当∠BQP=90°时,BP2=PQ2+BQ2,∴9+p2=p2﹣p++25+,解得p=,∴点P的坐标为(2,);②当∠QBP=90°时,P′Q2=BP′2+BQ2,∴p2﹣p+=9+p2+25+,解得p=﹣9,∴点P′的坐标为(2,﹣9).综上,所有符合条件的点P的坐标为(2,),(2,﹣9).1.(2022•公安县模拟)如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;的最大值以及此时E点的坐标;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.【分析】(1)先求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式可得到关于b、c的方程组,从而可求得b、c的值;(2)过点E作EF∥y轴交线段AB于点F,设点E(t,﹣t2+2t+3),则F(t,t+1),则可得到EF与x 的函数关系式,利用配方法可求得EF的最大值以及点E的坐标,最后根据EF的最大值可得△ABE的面积;(3)存在,设E(m,﹣m2+2m+3),分三种情况:分别以A,B,E为直角顶点,作出辅助线,构造相似列出方程,解方程即可.【解析】(1)∵点A(﹣1,0),C(2,0),∴AC=3,OC=2,∵AC=BC=3,∴B(2,3),把A(﹣1,0)和B(2,3)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=﹣x2+2x+3;(2)∵直线AB经过点A(﹣1,0),B(2,3),设直线AB的解析式为y=kx+b′,∴,解得:,∴直线AB的解析式为:y=x+1,如图,过点E作EF∥y轴交线段AB于点F,∴设点E(t,﹣t2+2t+3),则F(t,t+1),∴EF=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),最大,S△ABE=•EF•(x B−x A)=××(2+1)=.∴此时S△ABE(3)在问题(2)的条件下,存在点E使得△ABE为直角三角形;设E(m,﹣m2+2m+3),①当点A为直角顶点,过点A作AB的垂线,与AB之间的抛物线无交点,故不可能存在点E使得△ABE为以点A为直角顶点的直角三角形,②当点B为直角顶点,如下图,此时∠EBA=90°,过点E作EG⊥CB,交CB延长线于点G,∵BC⊥x轴于点C,且AC=BC,∴△ABC是等腰直角三角形,∠ABC=45°,∴∠EBG=45°,∴△BEG是等腰直角三角形,EG=BG,∵EG的长为点E与直线BC的距离,即2﹣m,且BG=CG﹣BC=﹣m2+2m+3﹣3=﹣m2+2m,∴2﹣m==﹣m2+2m,解得m=1或m=2(舍),∴E(1,4);③如下图,此时∠AEB=90°,作EM∥x轴,交CB的延长线于点M,过点A作AN⊥x轴交ME的延长线于点N,∴∠BEM+∠AEN=90°,∵在Rt△AEN中,∠EAN+∠AEN=90°,∴∠BEM=∠EAN,∴△AEN∽△BEM,∴BM:EN=EM:AN,∴(﹣m2+2m):(m+1)=(2﹣m):(﹣m2+2m+3),即﹣m(2﹣m)(m+1)(m﹣3)=(2﹣m)(m+1),∵2﹣m≠0,m+1≠0,∴m2﹣3m+1=0,解得m=或m=(舍).∴E(,)综上,根据问题(2)的条件,存在点E(1,4)或(,)使得△ABE为直角三角形.2.(2022•高邮市模拟)如图,抛物线y=ax2+bx﹣3经过A(﹣1,0),与y轴交于点C,过点C作BC∥x 轴,交抛物线于点B,连接AC、AB,AB交y轴于点D,若.(1)求点B的坐标;(2)点P为抛物线对称轴上一点,且位于x轴上方,连接PA、PC,若△PAC是以AC为直角边的直角三角形,求点P的坐标.【分析】(1)根据A(﹣1,0),得到OA=l,对于y=ax2+bx﹣3,令x=0,则y=﹣3,得到C(0,﹣3),OC=3,根据BC∥x轴,得到△AOD∽△BCD,推出,得到BC=2,即可得B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,求得a=1,b=﹣2,得到抛物线解析式并配方为y=x2﹣2x﹣3=(x﹣1)2﹣4,得到抛物线的对称轴是直线x=1,设P(1,m),写出PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.根据△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.得到m2+4+10=(m+3)2+1,求得m=;当∠PCA=90°时,PC2+AC2=AP2,得到(m+3)2+1+10=m2+4,求出m=﹣;即可得点P的坐标.【解析】∵A(﹣1,0),∴OA=l,在y=ax2+bx﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),∴OC=3,∵BC∥x轴,∴△AOD∽△BCD,∴,∴BC=2,∴B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴是直线x=1,设P(1,m),∴PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.∵△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.∴m2+4+10=(m+3)2+1,解得m=;当∠PCA=90°时,PC2+AC2=AP2,∴(m+3)2+1+10=m2+4,解得m=﹣(不符合题意,舍去).∴P(1,).3.(2022•碑林区校级模拟)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点.(1)求b,c的值;(2)点E为抛物线y=﹣x2+bx+c上一点,且点E在x轴上方,连接BE,以点E为直角顶点,BE为直角边,作等直角△BED,使得点D恰好落在直线y=x上,求出满足条件的所有点E的坐标.【分析】(1)运用待定系数法即可求得答案;(2)设D(m,m),E(n,﹣n2+2n+8),分两种情况:当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,利用等腰直角三角形性质,添加辅助线构造全等三角形,再利用全等三角形的性质建立方程求解即可得出答案.【解析】(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,∴,解得:,∴b=2,c=8;(2)∵点D在直线y=x上,点E在抛物线解析式为y=﹣x2+2x+8上,∴设D(m,m),E(n,﹣n2+2n+8),当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,如图,过点E1作E1G∥x轴,过点B作BF⊥EG 于点F,过点D1作D1G⊥E1G于点G,则∠BFE1=∠E1GD1=90°,BF=﹣n2+2n+8,E1F=4﹣n,E1G=m﹣n,D1G=m﹣(﹣n2+2n+8)=n2﹣2n﹣8+m,∴∠E1BF+∠BE1F=90°,∵∠D1E1G+∠BE1F=90°,∴∠E1BF=∠D1E1G,在△BE1F和△E1D1G中,,∴△BE1F≌△E1D1G(AAS),∴E1F=D1G,BF=E1G,∴,解得:,当n=2时,﹣n2+2n+8=﹣22+2×2+8=8,∴E1(2,8);当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,如图,过点E2作E2H⊥x轴于点H,过点D2作D2K⊥E2H于点K,则∠BHE2=∠E2KD2=90°,BH=4﹣n,E2H=﹣n2+2n+8,E2K=﹣n2+2n+8﹣m,D2K=n﹣m,同理可得△BE2H≌△E2D2K(AAS),∴E2H=D2K,BH=E2K,∴,解得:或,∴E(1+,2)或(1﹣,2);综上所述,满足条件的所有点E的坐标为(2,8)或(1+,2)或(1﹣,2).4.(2022•雁峰区校级模拟)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴交于点C,直线y=x+1与x轴交于点E,与y轴交于点D.(1)求抛物线的解析式;(2)P为抛物线上的点,连接OP交直线DE于Q,当Q是OP中点时,求点P的坐标;(3)M在直线DE上,当△CDM为直角三角形时,求出点M的坐标.【分析】(1)根据抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,列方程组,于是得到答案;(2)令x=0,则y=x+1=1,求得OD=1,作PH⊥OB,垂足为H,得到∠COA=∠PHO=90°,根据平行线的性质得到∠P=∠DOQ,∠PFQ=∠ODQ,根据全等三角形的性质得到PF=OD=1,设P点横坐标为x,得到方程﹣x2+2x+3﹣(x+1)=1,求得x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y=,于是得到答案;(3)求得CD=OC﹣OD=2,设M(a,a+1),分两种情况①当∠CMD=90°时,②当∠DCM=90°时,根据勾股定理即可得到结论.【解析】(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式是y=﹣x2+2x+3;(2)令x=0,则y=x+1=1,∴OD=1,如图,作PH⊥OB,垂足为H,交ED于F,则∠COA=∠PHO=90°,∴PH∥OC,∴∠OPF=∠DOQ,∠PFQ=∠ODQ,又Q是OP中点,∴PQ=OQ,∴△PFQ≌△ODQ(AAS),∴PF=OD=1设P点横坐标为x,则﹣x2+2x+3﹣(x+1)=1,解得:x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y=,∴点P的坐标是(2,3)或(﹣,);(3)令x=0,则y=﹣x2+2x+3=3,∴OC=3,∴CD=OC﹣OD=2,设M(a,a+1),∴CM2=a2+(3﹣a﹣1)2=a2﹣2a+4,DM2=a2+(a+1﹣1)2=a2,①当∠CMD=90°时,∴CD2=CM2+DM2,∴22=a2﹣2a+4+a2,解得:a1=,a2=0(舍去),当a=时,a+1=,∴M(,);②当∠DCM=90°时,∴CD2+CM2=DM2,∴22+a2﹣2a+4=a2,解得:a=4,当a=4时,a+1=3,∴M(4,3);解法二:∵∠DCM=90°,∴CM∥x轴,∴a+1=3,解得a=4,∴M(4,3);综上所述:点M的坐标为(,)或(4,3).5.(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)设y=(x﹣2)2+k,用待定系数法可得抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,设P(m,m2﹣4m﹣5),根据∠PAB=45°知AM=PM,即|m2﹣4m﹣5|=m+1,解得m的值,即可得P的坐标是(6,7)或P(4,﹣5);(3)由y=x2﹣4x﹣5求出B(5,0),C(0,﹣5),设Q(2,t),有BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,分三种情况:当BC为斜边时,9+t2+4+(t+5)2=50,当BQ为斜边时,50+4+(t+5)2=9+t2,当CQ为斜边时,50+9+t2=4+(t+5)2,分别解得t的值,即可求出相应Q的坐标.【解析】(1)设y=(x﹣2)2+k,把A(﹣1,0)代入得:(﹣1﹣2)2+k=0,解得:k=﹣9,∴y=(x﹣2)2﹣9=x2﹣4x﹣5,答:抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,如图:设P(m,m2﹣4m﹣5),则PM=|m2﹣4m﹣5|,∵A(﹣1,0),∴AM=m+1∵∠PAB=45°∴AM=PM,∴|m2﹣4m﹣5|=m+1,即m2﹣4m﹣5=m+1或m2﹣4m﹣5=﹣(m+1),当m2﹣4m﹣5=m+1时,解得:m1=6,m2=﹣1(不合题意,舍去),当m2﹣4m﹣5=﹣(m+1),解得m3=4,m4=﹣1(不合题意,舍去),∴P的坐标是(6,7)或P(4,﹣5);(3)在抛物线的对称轴上存在一点Q,使得△BCQ是直角三角形,理由如下:在y=x2﹣4x﹣5中,令x=0得y=﹣5,令y=0得x=﹣1或x=5,∴B(5,0),C(0,﹣5),由抛物线y=x2﹣4x﹣5的对称轴为直线x=2,设Q(2,t),∴BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,当BC为斜边时,BQ2+CQ2=BC2,∴9+t2+4+(t+5)2=50,解得t=﹣6或t=1,∴此时Q坐标为(2,﹣6)或(2,1);当BQ为斜边时,BC2+CQ2=BQ2,∴50+4+(t+5)2=9+t2,解得t=﹣7,∴此时Q坐标为(2,﹣7);当CQ为斜边时,BC2+BQ2=CQ2,∴50+9+t2=4+(t+5)2,解得t=3,∴此时Q坐标为(2,3);综上所述,Q的坐标为(2,3)或(2,﹣7)或(2,1)或(2,﹣6).6.(2022•太原一模)综合与实践如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.点D在直线AC 下方的抛物线上运动,过点D y轴的平行线交AC于点E.(1)求直线AC的函数表达式;(2)求线段DE的最大值;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标.【分析】(1)分别令x=0,y=0,求得点C、A的坐标,再运用待定系数法即可求得答案;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),可得DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,运用二次函数的性质即可求得线段DE的最大值;(3)设F(﹣1,n),根据两点间距离公式可得:AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,分三种情况:①当∠AFC=90°时,②当∠CAF=90°时,③当∠ACF=90°时,分别建立方程求解即可.【解析】(1)在y=x2+2x﹣8中,令x=0,得y=﹣8,∴C(0,﹣8),令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣2x﹣8;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),∵点D在点E的下方,∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,∵﹣1<0,∴当m=﹣2时,线段DE最大值为4;(3)∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的对称轴为直线x=﹣1,设F(﹣1,n),又A(﹣4,0),C(0,﹣8),∴AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,①当∠AFC=90°时,∵AF2+CF2=AC2,∴n2+9+n2+16n+65=80,解得:n1=﹣4﹣,n2=﹣4+,∴F(﹣1,﹣4﹣)或(﹣1,﹣4+);②当∠CAF=90°时,∵AF2+AC2=CF2,∴n2+9+80=n2+16n+65,解得:n=,∴F(﹣1,);③当∠ACF=90°时,∵CF2+AC2=AF2,∴n2+16n+65+80=n2+9,解得:n=﹣,∴F(﹣1,﹣);综上所述,点F的坐标为(﹣1,﹣4﹣)或(﹣1,﹣4+)或(﹣1,)或(﹣1,﹣).7.(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=﹣与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【分析】(1)令x=0,y=0,可分别求出A、B、C三点坐标,在求出函数的对称轴即可求D点坐标,利用待定系数法求直线解析式即可;(2)设E(t,﹣t+2),分三种情况讨论:①当∠CAE=90°时,AC2+AE2=CE2,②当∠ACE =90°时,AC2+CE2=AE2,③当∠AEC=90°时,AE2+CE2=AC2,分别利用勾股定理求解即可.【解析】(1)令y=0,则﹣=0,解得x=﹣2或x=6,∴A(﹣2,0),B(6,0),令x=0,则y=2,∴C(0,2),∵y=﹣=﹣(x﹣2)2+,∴抛物线的对称轴为直线x=2,∴D(2,0),设直线CD的解析式为y=kx+b,∴,解得,∴y=﹣x+2;(2)在点E,使△ACE为直角三角形,理由如下:设E(t,﹣t+2),∴AC2=16,AE2=4t2﹣8t+16,CE2=4t2,①当∠CAE=90°时,AC2+2CE2,∴16+4t2﹣8t+16=4t2,∴t=4,∴E(4,2);②当∠ACE=90°时,AC2+CE2=AE2,∴16+4t2=4t2﹣8t+16,∴t=0(舍);③当∠AEC=90°时,AE2+CE2=AC2,∴4t2﹣8t+16+4t2=16,∴t=0(舍)或t=1,∴E(1,);综上所述:E点坐标为(4,2)或(1,).8.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3).(1)求抛物线的解析式.(2)若点M是抛物线上B,C之间的一个动点,线段MA绕点M逆时针旋转90°得到MN,当点N恰好落在y轴上时,求点M,点N的坐标.(3)如图2,若点E坐标为(2,0),EF⊥x轴交直线BC于点F,将△BEF沿直线BC平移得到△B'E'F',在△B'E'F'移动过程中,是否存在使△ACE'为直角三角形的情况?若存在,请直接写出所有符合条件的点E′的坐标;若不存在,请说明理由.【分析】(1)将A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c,即可求解;(2)过点M作HG∥y轴,交H,过点N作NG⊥HG交于点G,证明△AMH≌△MNG(AAS),设M(t,t2﹣2t﹣3),由HM=NG,可求t=即可求M、N点的坐标;(3)设△BEF沿x轴方向平移t个单位长,则沿y轴方向平移t个单位长,则E'(2+t,t),分三种情况讨论:①当∠ACE'=90°时,过点E'作E'H⊥y轴交于点H,可得△ACO∽△CE'H,利用相似比可求E'(﹣,﹣);当N点与E'重合时,也符合题意;②当∠CAE'=90°时,过点A作MN⊥x轴,过点C作CN⊥MN交于N点,过点E'作E'M⊥MN交于M点,可得△AME'∽△CNA,利用相似比可求E'(,);③当∠AE'C=90°时,过点E'作ST⊥x轴交于S点,过点C作CT⊥ST交于T点,可得△ASE'∽△E'TC,利用相似比可求E'(1,﹣1).【解析】(1)将A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c,∴,∴,∴y=x2﹣2x﹣3;(2)过点M作HG∥y轴,交x轴于点H,过点N作NG⊥HG交于点G,∴∠AMH+∠NMG=90°,∵∠AMH+∠MAH=90°,∴∠NMG=∠MAH,∵AM=MN,∴△AMH≌△MNG(AAS),∴AH=MG,HM=NG,设M(t,t2﹣2t﹣3),∴HM=﹣t2+2t+3,NG=t,∴﹣t2+2t+3=t,∴t=,∵点M是抛物线上B,C之间,∴0<t<3,∴t=,∴M(,﹣),∴AH=1+=,∴HG=+=2+,∴N(0,﹣2﹣);(3)存在使△ACE'为直角三角形,理由如下:∵OB=OC,∴∠OBC=45°,设△BEF沿x轴方向平移t个单位长,则沿y轴方向平移t个单位长,∵E(2,0),∴E'(2+t,t),①如图2,当∠ACE'=90°时,过点E'作E'H⊥y轴交于点H,∴∠ACO+∠E'CH=90°,∵∠ACO+∠CAO=90°,∴∠E'CH=∠CAO,∴△ACO∽△CE'H,∴=,∵AO=1,CO=3,CH=﹣3﹣t,E'H=﹣2﹣t,∴=,解得t=﹣,∴E'(﹣,﹣);②如图3,当∠CAE'=90°时,过点A作MN⊥x轴,过点C作CN⊥MN交于N点,过点E'作E'M⊥MN交于M点,∴∠MAE'+∠NAC=90°,∵∠MAE'+∠ME'A=90°,∴∠NAC=∠ME'A,∴△AME'∽△CNA,∴=,∵NC=1,AN=3,AM=t,ME'=3+t,∴=,解得t=,∴E'(,);当E'点与N重合时,△ACE'为直角三角形,∴E'(﹣1,﹣3);③如图3,当∠AE'C=90°时,过点E'作ST⊥x轴交于S点,过点C作CT⊥ST交于T点,∴∠AE'S+∠CE'T=90°,∵∠AE'S+∠E'AS=90°,∴∠CE'T=∠E'AS,∴△ASE'∽△E'TC,∴=,∵AS=3+t,SE'=﹣t,CT=2+t,E'T=t+3,∴=,解得t=﹣1,∴E'(1,﹣1);综上所述:E'的坐标为(﹣,﹣)或(,)或(1,﹣1)或(﹣1,﹣3).9.(2022•东坡区校级模拟)如图,抛物线y=x2﹣(m+2)x+4的顶点C在x轴的正半轴上,直线y=x+2与抛物线交于A,B两点,且点A在点B的左侧.(1)求m的值;(2)点P是抛物线y=x2﹣(m+2)x+4上一点,当△PAB的面积是△ABC面积的2倍时,求点P的坐标;(3)将直线AB向下平移k(k>0)个单位长度,平移后的直线与抛物线交于D,E两点(点D在点E 的左侧),当△DEC为直角三角形时,求k的值.【分析】(1)令y=0得x2﹣(m+2)x+4=0,由Δ=0求得;(2)作CD∥AB交y轴于D,求得CD的函数表达式是y=x﹣2,在DF的延长线上截取EF=2DF=8,过点E作EG∥AB,求得EG的函数表达式,与抛物线函数表达式联立求得;(3)当∠CDE=90°时,可得直线CD的函数表达式是:y=﹣x+2,求出它与抛物线的交点即可,当∠DCE=90°时,设平移后的表达式是y=x+b,与抛物线的表达式联立求得D和E的坐标,再求出DE中点坐标,根据DE=2CI,进而求得b,根据平移的距离得出k值.【解析】(1)令y=0,∴x2﹣(m+2)x+4=0,∵Δ=(m+2)2﹣4×1×4=0,∴m=2或m=﹣6,又﹣,∴m>﹣2,∴m=2;(2)当m=2时,y=x2﹣4x+4=(x﹣2)2,如图1,作CD∥AB交y轴于D,∴CD的函数表达式是y=x﹣2,∴D(0,﹣2),∵y=x+=2与y轴交点F(0,2),∴DF =4,在DF 的延长线上截取EF =2DF =8,过点E 作EG ∥AB ,∴EG 的函数表达式是:y =x +10,由x 2﹣4x +4=x +10得,x =﹣1或x =6,当x =﹣1时,y =﹣1+10=9,当x =6时,y =6+10=16,∴P (﹣1,9)或P (6,16);作CM ⊥AB 于M 交EG 于N ,∵CD ∥AB ∥EG ,∴==,∴点P 到AB 的距离是点C 到AB 距离的2倍,∴△PAB 的面积是△ABC 面积的2倍.(3)当∠CDE =90°时,∴直线CD 的函数表达式是:y =﹣x +2,由x 2﹣4x +4=﹣x +2得,x =1或x =2(舍去),当x =1时,y =﹣1+2=1,∴y =x +(2﹣k )过(1,1),∴1+(2﹣k )=1,∴k =2,当∠DCE =90°时,设平移后的表达式是y =x +b ,由x 2﹣4x +4=x +b 得,化简得,x 2﹣5x +(4﹣b )=0,∴x 1=,x 2=,∴x1+x2=5,y1+y2=5+2b,∴DE的中点I(,),∴x1﹣x2=,∴y1﹣y2=x1+b﹣(x2+b)=x1﹣x2=,∵DE2=(x1﹣x2)2+(y1﹣y2)2=()2+()2=2(9+4b),CI2=(﹣2)2+()2=,由DE=2CI得,2(9+4b)=16+4b2+20b,∴b=﹣1或b=﹣2(舍去),∴k=3,综上所述,k=2或3.10.(2022•海沧区二模)抛物线y1=ax2﹣2ax+c(a<2且a≠0)与x轴交于A(﹣1,0),B两点,抛物线的对称轴与x轴交于点D,点M(m,n)在该抛物线上,点P是抛物线的最低点.(1)若m=2,n=﹣3,求a的值;(2)记△PMB面积为S,证明:当1<m<3时,S<2;(3)将直线BP向上平移t个单位长度得直线y2=kx+b(k≠0),与y轴交于点C,与抛物线交于点E,当x<﹣1时,总有y1>y2.当﹣1<x<1时,总有y1<y2.是否存在t≥4,使得△CDE是直角三角形,若存在,求t的值;若不存在,请说明理由.【分析】(1)将点A(﹣1,0)代入抛物线y1=ax2﹣2ax+c中,可得c=﹣3a,所以抛物线y1=ax2﹣2ax ﹣3a.当m=2,n=﹣3时,M(2,﹣3),将点M的坐标代入函数解析式,求解即可;(2)过点M作x轴的垂线,交直线BP于点Q,根据题意可知,P(a,﹣4a),B(3,0),所以直线BP 的解析式为:y=2ax﹣6a,设M(m,am2﹣2am﹣3a),则Q(m,2am﹣6a),根据三角形的面积公式可得出S和a的函数关系式,再根据二次函数的性质求解即可;(3)由平移可知,y2=2ax+2a,点C(0,2a),联立可得E(5,12a).根据题意当△ECD是直角三角形时,需要分三种情况讨论:①当∠ECD=90°时,过点E作y轴的垂线交y轴于点F,②当∠CDE =90°时,过点E作x轴的垂线于点F,③当∠CED=90°时,分别求解即可.【解答】(1)解:将点A(﹣1,0)代入抛物线y1=ax2﹣2ax+c中,∴a+2a+c=0,∴c=﹣3a,∴抛物线y1=ax2﹣2ax﹣3a.当m=2,n=﹣3时,M(2,﹣3),∴4a﹣4a﹣3a=﹣3,解得a=1;(2)证明:过点M作x轴的垂线,交直线BP于点Q,∵点P为y1=ax2﹣2ax﹣3a的最低点,∴P(a,﹣4a),令y1=ax2﹣2ax﹣3a=0,解得x=﹣1或x=3,∴B(3,0),∴直线BP的解析式为:y=2ax﹣6a,设M(m,am2﹣2am﹣3a),∴Q(m,2am﹣6a),∴QM=2am﹣6a﹣(am2﹣2am﹣3a)=﹣am2+4am﹣3a,∴S=|x B﹣x P|•QM=﹣am2+4am﹣3a=﹣a(m﹣2)2+a,∵﹣a<0,开口向下,∴当m=2时,S的最大值为a,∵a<2,∴当1<m<3时,S=a<2.(3)解:∵当x<﹣1时,总有y1<y2,∴直线l必经过点A(﹣1,0),将点A代入直线l:y2=kx+b,∴﹣k+b=0,∵直线l:y2=kx+b由直线PB:y=2ax﹣6a向上平移t个单位长度得到,∴k=b=2a,b=﹣6a+t=2a,∴t=8a,∴y2=2ax+2a,点C(0,2a),令2ax+2a=ax2﹣2ax﹣3a,解得x=﹣1或x=5,∴E(5,12a).①当∠ECD=90°时,过点E作y轴的垂线交y轴于点F,∴△FEC∽△OCD,∴EF:OC=CF:OD,即5:2a=10a:1,∴a=或a=﹣(舍);∴t=8a=4≥4,符合题意;②当∠CDE=90°时,过点E作x轴的垂线于点F,∴△OCD∽△FDE,∴EF:OD=DF:OC,即12a:1=4:2a,解得a=或a=﹣(舍),∴t=8a=<=4,不符合题意;③当∠CED=90°时,显然不存在.综上,存在,且t的值为.11.(2021•葫芦岛模拟)如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B (﹣2,3),已知抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D(﹣2,﹣1)在直线BC上,点E为y轴右侧抛物线上一点,连接BE、AE,DE,若S△BDE=4S△ABE,求E点坐标;(3)如图2,在(2)的条件下,P为射线DB上一点,作PQ⊥直线DE于点Q,连接AP,AQ,PQ,若△APQ为直角三角形,请直接写出P点坐标.【分析】(1)求出A点坐标,将A、B点坐标代入y=﹣x2+bx+c即可求解;==2(m+2),S△ABE=m2+m,再由已知得到方程2(m+2)(2)设E(m,﹣m2﹣m+3),求得S△BDE=4(m2+m),求出m的值即可求E点坐标;(3)先求出直线DE的解析式为y=x+1,分三种情况讨论:①当P点与B点重合,此时△APQ为等腰直角三角形,则P(﹣2,3);②过点Q作QM⊥AB交BA的延长线于点M,证明△PAB∽△AQM,设P(﹣2,t),则Q(,),分别求出PB=t﹣3,AB=2,AM=,QM=﹣3=,再由三角形相似可得=,求出t即可求P点坐标;当PQ⊥AP时,AP∥DE,则直线AP的解析式为y=x+3,即可求P点坐标.【解答】解:(1)∵B(﹣2,3),矩形OABC,∴A(0,3),∵抛物线y=﹣x2+bx+c经过点A和点B,∴,∴,∴y=﹣x2﹣x+3;(2)∵D(﹣2,﹣1),∴BD=4,设E(m,﹣m2﹣m+3),=×4×(m+2)=2(m+2),∴S△BDE∵AB=2,=×2×(3+m2+m﹣3)=m2+m,∴S△ABE=4S△ABE,∵S△BDE∴2(m+2)=4(m2+m),解得m=﹣2或m=,∵E点在y轴由侧,∴m=,∴E(,);(3)∵E(,),D(﹣2,﹣1),设直线DE的解析式为y=kx+b,∴,∴,∴y=x+1,∴直线与y轴的交点为(0,1),如图1,当P点与B点重合,Q点为(0,1),此时△APQ为等腰直角三角形,∴P(﹣2,3);如图2,过点Q作QM⊥AB交BA的延长线于点M,∵∠PAQ=90°,∠PBA=90°,∠QME=90°,∴∠PAB=∠AQM,∴△PAB∽△AQM,∴=,设P(﹣2,t),∵直线DE的解析式为y=x+1,PQ⊥DE,∴∠PDQ=45°,∴Q(,),∴PB=t﹣3,AB=2,AM=,QM=﹣3=,∴=,∴t=9,∴P(﹣2,9);如图3,当PQ⊥AP时,∵∠PAQ+∠AQP=90°,∠∠AQE=90°,∴∠APQ=∠AQE,∴AP∥DE,∴直线AP的解析式为y=x+3,∴P(﹣2,1);综上所述:P点的坐标为(﹣2,1)或(﹣2,3)或(﹣2,9).12.(2021•和平区一模)如图,抛物线y=ax2+bx﹣,交y轴于点A,交x轴于B(﹣1,0),C(5,0)两点,抛物线的顶点为D,连接AC,CD.(1)求直线AC的函数表达式;(2)求抛物线的函数表达式及顶点D的坐标;(3)过点D作x轴的垂线交AC于点G,点H为线段CD上一动点,连接GH,将△DGH沿GH翻折到△GHR(点R,点G分别位于直线CD的两侧),GR交CD于点K,当△GHK为直角三角形时.①请直接写出线段HK的长为;②将此Rt△GHK绕点H逆时针旋转,旋转角为α(0°<α<180°),得到△MHN,若直线MN分别与直线CD,直线DG交于点P,Q,当△DPQ是以PQ为腰的等腰三角形时,请直接写出点P的纵坐标为﹣或﹣.【分析】(1)先根据抛物线y=ax2+bx﹣,交y轴于点A,求出点A坐标,再运用待定系数法求直线AC的函数表达式即可;(2)将B(﹣1,0),C(5,0)代入抛物线y=ax2+bx﹣求出a,b,即可得抛物线解析式,运用配方法将抛物线解析式化为顶点式即可得出顶点坐标;(3)①根据△GHK为直角三角形,且点R,点G分别位于直线CD的两侧,可分三种情况:∠GHK=90°或∠HGK=90°或∠GKH=90°,经分析仅有∠GKH=90°符合题意,过点H作HL⊥DG于点L,则HL=HK,先证明△GDK∽△CDF,再运用面积法即可求出答案;②由△DPQ是以PQ为腰的等腰三角形,可分两种情况:PQ=DQ或PQ=DP,分别求出点P的纵坐标即可.【解答】解:(1)设直线AC的函数表达式为:y=kx+c,∵抛物线y=ax2+bx﹣,交y轴于点A,∴A(0,﹣),将A(0,﹣),C(5,0)分别代入y=kx+c,得:,解得:,∴直线AC的函数表达式为:y=x﹣,(2)∵抛物线y=ax2+bx﹣经过B(﹣1,0),C(5,0)两点,∴,解得:,∴抛物线的解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣2)2﹣4,∴顶点D的坐标为(2,﹣4);(3)①如图1,∵△GHK为直角三角形,且点R,点G分别位于直线CD的两侧,∴∠GHK=90°或∠HGK=90°或∠GKH=90°,当∠GHK=90°时,∠GHD=90°,点R落在直线DC上,不符合题意,当∠HGK=90°时,∠DGH=∠HGK=90°,点R,点G位于直线CD的同侧,不符合题意,当∠GKH=90°时,点R,点G分别位于直线CD的两侧,符合题意,∴∠GKH=90°,∠DGH=∠RGH,过点H作HL⊥DG于点L,则HL=HK,∵D(2,﹣4),DG⊥x轴,∴G (2,﹣),F (2,0),∴DG =﹣﹣(﹣4)=,CF =5﹣2=3,DF =4,∴CD ===5,∵∠DFC =∠GKH =90°,∠GDK =∠CDF ,∴△GDK ∽△CDF ,∴==,即==,∴GK =,DK =,∵S △GKH +S △GDH =S △GDK ,∴××HK +××HL =××,故答案为:;②∵△DPQ 是以PQ 为腰的等腰三角形,∴PQ =DQ 或PQ =DP ,当PQ =DQ 时,如图2,由旋转知:点H 到PQ 、DQ 的距离相等,∴QH ⊥DP ,DH =HP ,由①知HL =HK =,∵HL ∥CF ,∴=,即=,∴DL =,∴L 的纵坐标为﹣4=﹣,即H 的纵坐标为﹣,∵H 为D 、P 的中点,∴P 的纵坐标为﹣,当PQ =DP 时,如图3,点P 为DQ 的垂直平分线与CD 的交点,∵H (,﹣),∴经过点H平行MN的直线为y=﹣x+,∵点H到直线MN的距离为,∴直线MN的解析式为y=﹣x﹣,∵直线CD的解析式为y=x﹣,∴P(,﹣);综上所述,点P的纵坐标为﹣或﹣.13.(2021•莱芜区三模)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B′,E′,当四边形BEB'E'的面积为12时,求t 的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x 轴的垂线,交抛物线于点P.当以点B、C、P为顶点的三角形是直角三角形时,求所有满足条件的点M 的坐标.【分析】(1)根据抛物线与x轴的交点坐标,设抛物线解析式为y=a(x+1)(x+3),将C(0,﹣3)代(2)如图1,连接EE′、BB′,延长BE,交y轴于点Q.利用待定系数法求出直线BE的解析式,根据抛物线y=﹣x2﹣4x﹣3绕点T(0,t)旋转180°,可得四边形BEB′E′是平行四边形,运用平行四边形性质即可求得答案;(3)设P(x,﹣x2﹣4x﹣3),根据以点B、C、P为顶点的三角形是直角三角形,分三种情况分别讨论即可:①当∠BP1C=90°时,③当∠P3BC=90°时,③当∠P3BC=90°时,④当∠BCP4=90°时.【解答】解:(1)∵二次函数过点A(﹣1,0),B(﹣3,0),∴设抛物线解析式为y=a(x+1)(x+3),将C(0,﹣3)代入,得:3a=3,解得:a=﹣1,∴二次函数的解析式为:y=﹣x2﹣4x﹣3;(2)如图1,连接EE′、BB′,延长BE,交y轴于点Q.由(1)得y=﹣x2﹣4x﹣3=﹣(x+2)2+1,。
初三数学专题——二次函数与直角三角形存在性问题
二次函数中直角三角形存在性问题 姓名____________学号__________ 知识储备:一、“k ”型图解决问题:如图,当︒=∠90ACB 时,可作辅助线构造直角三角形利用勾股定理把AC 、BC 、AB 的三边分别表示出来,再利用222AB BC AC =+求解。
解:222CD AD AC +=222OB OC BC +=222AE BE AB +=且有222AB BC AC =+二、利用121-=⋅k k 解决定问题定理:若直线11b x k y +=与直线22b x k y +=互相垂直,则121-=⋅k k例:若B 的坐标为(3,0),C 的坐标为(0,6),直线l 为直线1=x ,问在直线l 上是否存在一点P ,使︒=∠90BCP .解:设直线BC 的解析式为11b x k y +=,把(3,0)和(0,6)代入可得:直线BC 的解析式为62+-=x y设直线CP 的解析式为22b x k y +=直线BC 与直线CP 垂直∴122-=⋅-k ∴212=k 把点C (0,6)代入221b x y +=中得, CP 的解析式为621+=x y 当1=x 时,2136121=+⨯=y ∴点P 的坐标为(1,213)三、分类讨论在直线l 上找一点使PAB ∆为直角三角形有下列几种情况。
练习1:如图,已知抛物线的对称轴为直线1-=x ,且抛物线经过点A (1,0),C (0,3)两点,与x 轴交于B 点 (1)求抛物线的解析式和直线BC 的解析式; (2)设点P 为抛物线对称轴上的一个动点,求BPC ∆为直角三角形时的点P 的坐标。
练习2:如图,抛物线n mx x y ++-=2与x 轴分别交于点A (4,0),B (2-,0),与y 轴交于点C(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在这样的点P ,使得PAC ∆为直角三角形?若存在,请求出所有可能点P 的坐标;若不存在,请说明理由。
2019数学中考复习——二次函数中直角三角形存在性问题
二次函数中直角三角形存在性问题
解题方法
一、代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
二、几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。
专题训练
例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
几何法:
例2.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB ,动点P 在过A ,B ,C 三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;
例3.如图,在平面直角坐标系中,直线交轴于点,交轴于点,抛物线的图象过点,并与直线相交于、两点. 求抛物线的解析式(关系式);
过点作交轴于点,求点的坐标;
除点外,在坐标轴上是否存在点,使得是直角三角形?若存在,请求出点的坐标,若不存在,请说明理由.
123y x =-
+x P y A 212
y x bx c =-++(1,0)E -A B ⑴⑵A AC AB ⊥x C C ⑶C M MAB ∆M。
二次函数综合题--二次函数与直角三角形有关的问题(解析版)-中考数学重难点题型专题汇总
二次函数综合题-中考数学重难点题型二次函数与直角三角形有关的问题(专题训练)1.(2022·山东滨州)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴相交于点C ,连接,AC BC .(1)求线段AC 的长;(2)若点Р为该抛物线对称轴上的一个动点,当PA PC =时,求点P 的坐标;(3)若点M 为该抛物线上的一个动点,当BCM 为直角三角形时,求点M 的坐标.【答案】()11,-(3)()14-,或()25-,或⎝⎭或⎫⎪⎪⎝⎭【分析】(1)根据解析式求出A ,B ,C 的坐标,然后用勾股定理求得AC 的长;(2)求出对称轴为x=1,设P (1,t ),用t 表示出PA 2和PC 2的长度,列出等式求解即可;(3)设点M(m,m 2-2m-3),分情况讨论,当222CM BC BM +=,222BM BC CM +=,222BM CM BC +=分别列出等式求解即可.(1)223y x x =--与x 轴交点:令y=0,解得121,3x x =-=,即A (-1,0),B (3,0),223y x x =--与y 轴交点:令x=0,解得y=-3,即C (0,-3),∴AO=1,CO=3,∴AC ==(2)抛物线223y x x =--的对称轴为:x=1,设P (1,t ),∴()()22221104PA t t =++-=+,()()()222210313PC t t =-++=++,∴24t +()213t =++∴t=-1,∴P (1,-1);(3)设点M (m,m 2-2m-3),()()()()22222223230323BM m m m m m m =-+---=-+--,()()()222222202332CM m m m m m m =-+--+=+-,()()222300318BC =-++=,①当222CM BC BM +=时,()()()222222218323m m m m m m +-+=-+--,解得,10m =(舍),21m =,∴M (1,-4);②当222BM BC CM +=时,()())222222323182m m m m m m-+--+=+-,解得,12m =-,23m =(舍),∴M (-2,5);③当222BM CM BC +=时,()()()222222323218m m m m m m -+--++-=,解得,m =,∴M ⎝⎭或⎫⎪⎪⎝⎭;综上所述:满足条件的M 为()14-,或()25-,或1522⎛+ ⎪ ⎪⎝⎭或1522⎛⎫⎪ ⎪⎝⎭.【点睛】本题是二次函数综合题,考查了与坐标轴交点、线段求值、存在直角三角形等知识,解题的关键是学会分类讨论的思想,属于中考压轴题.2.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x 轴分别交于A 、B 两点,与y 轴交于点C (0,6),抛物线的顶点坐标为E (2,8),连结BC 、BE 、CE .(1)求抛物线的表达式;(2)判断△BCE 的形状,并说明理由;(3)如图2,以C 为半径作⊙C ,在⊙C 上是否存在点P ,使得BP +12EP 的值最小,若存在,请求出最小值;若不存在,请说明理由.【答案】(1)y=12-x 2+2x+6;(2)直角三角形,见解析;(3)存在,2【分析】(1)用待定系数法求函数解析式;(2)分别求出三角形三边的平方,然后运用勾股定理逆定理即可证明;(3)在CE 上截取CF=2(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.【详解】解:(1)∵抛物线的顶点坐标为E (2,8),∴设该抛物线的表达式为y=a (x-2)2+8,∵与y 轴交于点C (0,6),∴把点C (0,6)代入得:a=12-,∴该抛物线的表达式为y=12-x 2+2x+6;(2)△BCE 是直角三角形.理由如下:∵抛物线与x 轴分别交于A 、B 两点,∴当y=0时,12-(x-2)2+8=0,解得:x 1=-2,x 2=6,∴A (-2,0),B (6,0),∴BC 2=62+62=72,CE 2=(8-6)2+22=8,BE 2=(6-2)2+82=80,∴BE 2=BC 2+CE 2,∴∠BCE=90°,∴△BCE 是直角三角形;(3)如图,在CE 上截取CF=2(即CF 等于半径的一半),连接BF 交⊙C 于点P ,连接EP ,则BF 的长即为所求.连接CP ,∵CP 为半径,∴12CF CP CP CE ==,又∵∠FCP=∠PCE ,∴△FCP ∽△PCE ,∴12CF FP CP PE ==,FP=12EP ,∴BF=BP+12EP ,由“两点之间,线段最短”可得:BF 的长即BP+12EP 为最小值.∵CF=14CE ,E (2,8),∴F (12,132),∴2【点睛】本题考查二次函数综合,待定系数法,二次函数图象和性质,勾股定理及其逆定理,圆的性质,相似三角形的判定和性质等,题目综合性较强,属于中考压轴题,熟练掌握二次函数图象和性质,圆的性质,相似三角形的判定和性质等相关知识是解题关键.3.(2021·湖北中考真题)在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点C ,顶点D 的坐标为()1,4-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足PCB CBD ∠=∠,求点P 的坐标;(3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当QMN 为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标【答案】(1)223y x x =--;(2)()14,5P ,257,24P ⎛⎫- ⎪⎝⎭;(3)154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;(35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【分析】(1)由()1,0A -和D ()1,4-,且D 为顶点列方程求出a 、b 、c ,即可求得解析式;(2)分两种情况讨论:①过点C 作1//CP BD ,交抛物线于点1P ,②在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ;(3)QMN 为等腰直角三角形,分三种情况讨论:当90QM MN QMN =∠=︒,;②当90QN MN QNM =∠=︒,;③当90QM QN MQN =∠=︒,.【详解】解:(1)将()1,0A -和D ()1,4-代入2y ax bx c=++得04a b c a b c -+=⎧⎨++=-⎩又∵顶点D 的坐标为()1,4-∴12ba-=-∴解得123a b c =⎧⎪=-⎨⎪=-⎩∴抛物线的解析式为:223y x x =--.(2)∵()3,0B 和()1,4D -∴直线BD 的解析式为:26y x =-∵抛物线的解析式为:223y x x =--,抛物线与y 轴交于点C ,与x 轴交于点()1,0A -和点B,则C 点坐标为()0,3-,B 点坐标为()3,0.①过点C 作1//CP BD ,交抛物线于点1P ,则直线1CP 的解析式为23y x =-,结合抛物线223y x x =--可知22323x x x --=-,解得:10x =(舍),24x =,故()14,5P .②过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,由OB OC =可知四边形OBGC 为正方形,∵直线1CP 的解析式为23y x =-∴1CP 与x 轴交于点3,02E ⎛⎫⎪⎝⎭,在BC 下方作BCF BCE ∠=∠交BG 于点F ,交抛物线于2P ∴OCE FCG∠=∠又∵OC=CG ,90COE G ∠=∠=︒∴OEC △≌()GFC ASA ,∴32FG OE ==,33,2F ⎛⎫- ⎪⎝⎭,又由()0,3C -可得直线CF 的解析式为132y x =-,结合抛物线223y x x =--可知212332x x x --=-,解得10x =(舍),252x =,故257,24P ⎛⎫- ⎪⎝⎭.综上所述,符合条件的P 点坐标为:()14,5P ,257,24P ⎛⎫- ⎪⎝⎭.(3)∵()3,0B ,()0,3C -∴直线BC 的解析式为3BC y x =-设M 的坐标为()3m m -,,则N 的坐标为()223m m m --,∴()22=3233MN m m m m m----=-∵()1,0A -,()0,3C -∴直线BC 的解析式为33AC y x =--∵QMN 为等腰直角三角形∴①当90QM MN QMN =∠=︒,时,如下图所示则Q 点的坐标为33m m ⎛⎫-- ⎪⎝⎭,∴4=33m mQM m ⎛⎫--=⎪⎝⎭∴24=33mm m -解得:10m =(舍去),2133m =,353m =∴此时154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;②当90QN MN QNM =∠=︒,则Q 点的坐标为222233m m m m ⎛⎫--- ⎪⎝⎭,∴222=33m m m mQM m -+-=∴22=33m mm m +-解得:10m =(舍去),25m =,32m =∴此时()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;③当90QM QN MQN =∠=︒,时,如图所示则Q 点纵坐标为()()22211113236=32222m m m m m m m -+--=----∴Q 点的坐标为22111136622m m m m ⎛⎫--- ⎪⎝⎭,∴Q 点到MN 的距离=221151+6666m m m m m--=∴22511+=3662m m m m ⋅-(直角三角形斜边上的中线等于斜边的一半)解得:10m =(舍去),27m =,31m =∴此时()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.综上所述,点M 及其对应点Q 的坐标为:154,33M ⎛⎫- ⎪⎝⎭,154,93Q ⎛⎫-- ⎪⎝⎭;2134,33M ⎛⎫ ⎪⎝⎭,2134,93Q ⎛⎫- ⎪⎝⎭;()35,2M ,()35,12Q -;()42,1M -,()40,3Q -;()51,2M -,()50,3Q -;()67,4M ,()67,18Q -.【点睛】本题主要考查二次函数与几何图形.该题综合性较强,属于中考压轴题.4.(2021·湖北中考真题)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF 的面积;(3)若()3,P t 是对称轴上一定点,Q 是抛物线上的动点,求PQ 的最小值(用含t 的代数式表示).【答案】(1)263y x x =-+-;(2)4;(3)6(6)116(6)211()2t t PQ t t t ⎧⎪-≥⎪⎪=-<<⎨≤【分析】(1)与y 轴相交于点()0,3C -,得到3b =-,再根据抛物线对称轴,求得1a =-,代入即可.(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,可知E 、F 两点关于对称轴对称,DEF 是等腰直角三角形得到45FED ∠=︒,设(,)(0)E m n n >,根据等腰直角三角形的性质求得E 点坐标,从而求得DEF 的面积.(3)(,)(6)Q p q q ≤,根据距离公式求得222(21)6PQ q t q t =-+++,注意到q 的范围,利用二次函数的性质,对t 进行分类讨论,从而求得PQ 的最小值.【详解】解:(1)由抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -得到3b =-抛物线的对称轴为3x =,即232b a--=,解得1a =-∴抛物线的方程为263y x x =-+-(2)过点E 作EM AB ⊥交AB 于点M ,过点F 作FN AB ⊥,交AB 于点N ,如下图:∵DEF 是等腰直角三角形∴DE DF =,45FED ∠=︒又∵EF x ∥轴∴45EDM ∠=︒∴EMD 为等腰直角三角形∴EM DM=设(,)(0)E m n n >,则(,0)M m ,3,DM m EM n=-=∴3n m=-又∵263n m m =-+-∴2363m m m -=-+-2760m m -+=解得1m =或6m =当1m =时,2n =,符合题意,2,4DM EM MN ===142DEF S MN EM =⨯=△当6m =时,30n =-<,不符合题意综上所述:4DEF S = .(3)设(,)(6)Q p q q ≤,Q 在抛物线上,则263q p p =-+-222222(3)()692PQ p q t p p q tq t =-+-=-++-+将263q p p =-+-代入上式,得222(21)6PQ q t q t =-+++当112t >时,2162t +>,∴6q =时,2PQ 最小,即PQ 最小22223612661236(6)PQ t t t t t =--++=-+=-PQ =6(6)6116(6)2t t t t t -≥⎧⎪-=⎨-<<⎪⎩当112t ≤时,2162t +≤,∴212t q +=时,2PQ 最小,即PQ 最小22344t PQ -=,2PQ =综上所述6(6)116(6)211()2t t PQ t t t ⎧⎪-≥⎪⎪=-<<⎨≤【点睛】此题考查了二次函数的对称轴、二次函数与三角形面积、等腰直角三角形的性质以及距离公5.(2020•泸州)如图,已知抛物线y =ax 2+bx+c 经过A (﹣2,0),B (4,0),C (0,4)三点.(1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若BD =5DE .①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若△PQR 是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.【分析】(1)根据交点式设出抛物线的解析式,再将点C坐标代入抛物线交点式中,即可求出a,即可得出结论;(2)①先利用待定系数法求出直线AC的解析式,再利用相似三角形得出比例式求出BF,进而得出点E坐标,最后用待定系数法,即可得出结论;②先确定出点Q的坐标,设点P(x,−12x2+x+4)(1<x<4),得出PG=x﹣1,GQ=−12x2+x+3,再利用三垂线构造出△PQG≌△QRH(AAS),得出RH=GQ=−12x2+x+3,QH=PG=x﹣1,进而得出R(−12x2+x+4,2﹣x),最后代入直线BD的解析式中,即可求出x的值,即可得出结论.【解析】(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=−12,∴抛物线的解析式为y=−12(x+2)(x﹣4)=−12x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得−2k+b'=0b'=4,∴k=2b'=4,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴OB BF=BD BE,∵B(4,0),∴OB=4,∵BD=5DE,∴BD BE=BD BD+DE=5DE5DE+BE=56,∴BF=BE BD×OB=65×4=245,∴OF=BF﹣OB=245−4=45,将x=−45代入直线AC:y=2x+4中,得y=2×(−45)+4=125,∴E(−45,125),设直线BD的解析式为y=mx+n,∴4m+n=0−45m+n=125,∴m=−12n=2,∴直线BD的解析式为y=−12x+2;②∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,−12x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=−12x2+x+4﹣1=−12x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ =∠HQR ,∴△PQG ≌△QRH (AAS ),∴RH =GQ =−12x 2+x+3,QH =PG =x ﹣1,∴R (−12x 2+x+4,2﹣x ),由①知,直线BD 的解析式为y =−12x+2,∴x =2或x =4(舍),当x =2时,y =−12x 2+x+4=−12×4+2+4=4,∴P (2,4).6.(2020·甘肃兰州?中考真题)如图,抛物线24y ax bx =+-经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求出点M 的坐标;若不存在,说明理由.【答案】(1)215466y x x =--;(2)详见解析;(3)存在,点M 的坐标为(52,-9)或(52,11).【解析】【分析】(1)将A (-3,0),B (5,-4)代入抛物线的解析式得到关于a 、b 的方程组,从而可求得a 、b 的值;(2)先求得AC 的长,然后取D (2,0),则AD=AC ,连接BD ,接下来,证明BC=BD ,然后依据SSS 可证明△ABC ≌△ABD ,接下来,依据全等三角形的性质可得到∠CAB=∠BAD ;(3)作抛物线的对称轴交x 轴与点E ,交BC 与点F ,作点A 作AM′⊥AB ,作BM ⊥AB ,分别交抛物线的对称轴与M′、M ,依据点A 和点B 的坐标可得到tan ∠BAE=12,从而可得到tan ∠M′AE=2或tan ∠MBF=2FM 和M′E 的长,故此可得到点M′和点M 的坐标.【详解】解:(1)将A (-3,0),B (5,-4)两点的坐标分别代入,得9340,25544a b a b --=⎧⎨+-=-⎩,解得1,65,6a b ⎧=⎪⎪⎨⎪=-⎪⎩故抛物线的表达式为y =215466y x x =--.(2)证明:∵AO=3,OC=4,∴.取D (2,0),则AD=AC=5.由两点间的距离公式可知=5.∵C (0,-4),B (5,-4),∴BC=5.∴BD=BC .在△ABC 和△ABD 中,AD=AC ,AB=AB ,BD=BC ,∴△ABC ≌△ABD ,∴∠CAB=∠BAD ,∴AB 平分∠CAO ;(3x 轴与点E ,交BC 与点F .抛物线的对称轴为x=52,则AE=112.∵A (-3,0),B (5,-4),∴tan ∠EAB=12.∵∠M′AB=90°.∴tan ∠M′AE=2.∴M′E=2AE=11,∴M′(52,11).同理:tan ∠MBF=2.又∵BF=52,∴FM=5,∴M (52,-9).∴点M 的坐标为(52,11)或(52,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM 和M′E 的长是解题的关键7.(2020·内蒙古通辽?中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于点,A B ,与y 轴交于点C ,且直线6y x =-过点B ,与y 轴交于点D ,点C 与点D 关于x 轴对称.点P 是线段OB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,交直线BD 于点N .(1)求抛物线的函数解析式;(2)当MDB △的面积最大时,求点P 的坐标;(3)在(2)的条件下,在y 轴上是否存在点Q ,使得以,,Q M N 三点为顶点的三角形是直角三角形,若存在,直接写出点Q 的坐标;若不存在,说明理由.【答案】(1)256y x x =-++;(2)(2,0);(3)存在,(0,12)或(0,-4)或(0,4+)或(0,4-).【解析】【分析】(1)根据直线6y x =-求出点B 和点D 坐标,再根据C 和D 之间的关系求出点C 坐标,最后运用待定系数法求出抛物线表达式;(2)设点P 坐标为(m ,0),表示出M 和N 的坐标,再利用三角形面积求法得出S △BMD =231236m m -++,再求最值即可;(3)分当∠QMN=90°时,当∠QNM=90°时,当∠MQN=90°时,三种情况,结合相似三角形的判定和性质,分别求解即可.【详解】解:(1)∵直线6y x =-过点B ,点B 在x 轴上,令y=0,解得x=6,令x=0,解得y=-6,∴B (6,0),D (0,-6),∵点C 和点D 关于x 轴对称,∴C (0,6),∵抛物线2y x bx c =-++经过点B 和点C ,代入,03666b c c =-++⎧⎨=⎩,解得:56b c =⎧⎨=-⎩,∴抛物线的表达式为:256y x x =-++;(2)设点P 坐标为(m ,0),则点M 坐标为(m ,256m m -++),点N 坐标为(m ,m-6),∴MN=256m m -++-m+6=2412m m -++,∴S △BMD =S △MNB +S △MND =()2141262m m ⨯-++⨯=231236m m -++=-3(m-2)2+48当m=2时,S △BMD 最大=48,此时点P 的坐标为(2,0);(3)存在,由(2)可得:M (2,12),N (2,-4),设点Q 的坐标为(0,n ),当∠QMN=90°时,即QM ⊥MN ,如图,可得,此时点Q 和点M 的纵坐标相等,即Q (0,12);当∠QNM=90°时,即QN ⊥MN ,如图,可得,此时点Q 和点N 的纵坐标相等,即Q (0,-4);当∠MQN=90°时,MQ⊥NQ,如图,分别过点M和N作y轴的垂线,垂足为E和F,∵∠MQN=90°,∴∠MQE+∠NQF=90°,又∠MQE+∠QME=90°,∴∠NQF=∠QME,∴△MEQ∽△QFN,∴ME EQQF FN=,即21242nn-=+,解得:n=4+或4-,∴点Q(0,4+)或(0,4-),综上:点Q的坐标为(0,12)或(0,-4)或(0,4+)或(0,4-).【点睛】本题是二次函数综合题,考查了二次函数的表达式,相似三角形的判定和性质,直角三角形的性质,二次函数的最值,解一元二次方程,解题时要注意数形结合,分类讨论思想的运用.。
专题22 二次函数与等腰直角三角形存在问题-2022中考数学二次函数重点题型专题(全国通用版解析版)
专题22 二次函数与等腰直角三角形存在问题1.(2021·湖南怀化·中考真题)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N . (1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程.(4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)228y x x =-++;(2)存在,()1,2P 或171,2P ⎛⎫ ⎪⎝⎭;(3)点()2,0,1,23E F ⎛⎫ ⎪⎝⎭,最短路程为(4)存在,当以点Q 为直角顶点的等腰Rt CQR △时,点Q ⎝⎭或Q ⎝⎭,理由见详解. 【分析】(1)由题意易得()()()2,0,4,0,0,8A B C -,然后设二次函数的解析式为()()24y a x x =+-,进而代入求解即可;(2)由题意易得BMN CMP ∠=∠,要使以点P 、C 、M 为顶点的三角形与△MNB 相似,则可分①当90CPM MNB ∠=∠=︒时,②当90PCM MNB ∠=∠=︒时,进而分类求解即可; (3)由题意可得作点D 关于x 轴的对称点H ,作点C 关于抛物线的对称轴的对称点I ,然后连接HI ,分别与x 轴、抛物线的对称轴交于点E 、F ,此时的点E 、F 即为所求,HI 即为动点G 所走过的最短路程,最后求解即可;(4)由题意可分①当点Q 在第二象限时,存在等腰Rt CQR △,②当点Q 在第一象限时,存在等腰Rt CQR △,然后利用“k 型”进行求解即可.【详解】解:(1)∵2OA =,4OB =,8OC =,∴()()()2,0,4,0,0,8A B C -,设二次函数的解析式为()()24y a x x =+-,代入点C 的坐标可得:88a -=,解得:1a =-, ∴二次函数的解析式为()()24y x x =-+-,即为228y x x =-++;(2)存在以点P 、C 、M 为顶点的三角形与△MNB 相似,理由如下:由(1)可得抛物线的解析式为228y x x =-++,则有对称轴为直线1x =,设直线BC 的解析式为y kx b =+,代入点B 、C 坐标可得:408k b b +=⎧⎨=⎩, 解得:28a b =-⎧⎨=⎩, ∴直线BC 的解析式为28y x =-+,∴点()1,6M ,()1,0N ,∴由两点距离公式可得3,6,BN MN BM CM ====若使以点P 、C 、M 为顶点的三角形与△MNB 相似,则有BMN CMP ∠=∠,①当90CPM MNB ∠=∠=︒时,则有//CP x 轴,如图所示:∴点()1,8P ,②当90PCM MNB ∠=∠=︒时,如图所示:∴PM BM CM MN === ∴52PM =, ∴点171,2P ⎛⎫ ⎪⎝⎭; (3)由题意得:动点G 从点D 出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .根据轴对称的性质及两点之间线段最短可知要使点G 走过的路程最短则有作点D 关于x 轴的对称点H ,作点C 关于抛物线的对称轴的对称点I ,然后连接HI ,分别与x 轴、抛物线的对称轴交于点E 、F ,此时的点E 、F 即为所求,HI 即为动点G 所走过的最短路程,如图所示:∵OC =8,点D 为CO 的中点,∴OD =4,∴()0,4D ,∵抛物线的对称轴为直线1x =,∴()()2,8,0,4I H -,设直线HI 的解析式为y kx b =+,则把点H 、I 坐标代入得:284k b b +=⎧⎨=-⎩, 解得:64k b =⎧⎨=-⎩, ∴直线HI 的解析式为64y x =-,当y =0时,则有064x =-,解得:23x =, 当x =1时,则有6142y =⨯-=, ∴点()2,0,1,23E F ⎛⎫ ⎪⎝⎭,∴点G 走过的最短路程为HI ==(4)存在以点Q 为直角顶点的等腰Rt CQR △,理由如下:设点()2,28Q a a a -++,则有: ①当点Q 在第二象限时,存在等腰Rt CQR △时,如图所示:过点Q 作QL ⊥x 轴于点L ,过点C 作CK ⊥QL ,交其延长线于点K ,如图所示,∴90CKQ QLR LOC ∠=∠=∠=︒,∴四边形COLK 是矩形,∴CK =OL ,∵等腰Rt CQR △,∴,90CQ QR CQR =∠=︒,∴90CQK KCQ CQK LQR ∠+∠=∠+∠=︒,∴KCQ LQR ∠=∠,∴()KCQ LQR AAS ≌,∴QL CK =,∴QL CK OL ==,∵点()2,28Q a a a -++, ∴228a a a -=-++,解得:123322a a ==,∴Q ⎝⎭;②当点Q 在第一象限时,存在等腰Rt CQR △时,如图所示:同理①可得228a a a =-++,解得:12a a =(不符合题意,舍去),∴Q ⎝⎭;综上所述:当以点Q 为直角顶点的等腰Rt CQR △时,点Q ⎝⎭或Q ⎝⎭.【点睛】本题主要考查二次函数的综合、相似三角形的性质与判定、轴对称的性质及等腰直角三角形的性质,熟练掌握二次函数的综合、相似三角形的性质与判定、轴对称的性质及等腰直角三角形的性质是解题的关键.2.(2021·四川广安·中考真题)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少? (3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3) 【分析】(1)利用待定系数法求解即可;(2)过点P 作PE ⊥x 轴,垂足为E ,利用S 四边形BCPQ =S △ABC -S △APQ 表示出四边形BCPQ 的面积,求出t 的范围,利用二次函数的性质求出最值即可;(3)画出图形,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,证明△PFM ≌△QEP ,得到MF =PE =t ,PF =QE =4-2t ,得到点M 的坐标,再代入二次函数表达式,求出t 值,即可算出M 的坐标.【详解】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0), 则09301b c b c =-++⎧⎨=--+⎩, 解得:23b c =⎧⎨=⎩;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PEt ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦ =21262t t -+∵当其中一点到达终点时,另一点随之停止运动,AC=AB =4,∴0≤t ≤3,∴当t =2122--⨯=2时,四边形BCPQ 的面积最小,即为2122262⨯-⨯+=4;(3)∵点M 是线段AC 上方的抛物线上的点,如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F ,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP (AAS ),∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∵点M 在抛物线y =-x 2+2x +3上,∴4-t =-(3-2t )2+2(3-2t )+3,解得:t (舍),∴M .【点睛】本题考查了二次函数综合,涉及到全等三角形的判定和性质,等腰直角三角形的性质,三角形面积,用方程的思想解决问题是解本题的关键.3.(2021·云南昆明·中考三模)如图1,在平面直角坐标系xOy 中,抛物线21(1)2y x k =-+与x 轴交于点A ,B (点A 在点B 的左侧),交y 轴于点C ,且经过点(5,6)D .(1)求抛物线的解析式及点A ,B 的坐标;(2)在平面直角坐标系xOy 中,是否存在点P ,使APD △是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;(3)在直线AD 下方,作正方形ADEF ,并将21(1)2y x k =-+沿对称轴平移||t 个单位长度(规定向上平移时t 为正,向下平移时t 为负,不平移时t 为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t 的取值范围.【答案】(1)21(1)22y x =--,(1,0)A -,(3,0)B ;(2)存在,1(5,0)P ,2(1,6)P -,3(11,0)P ,4(5,6)P -,5(1,12)P -,6(7,6)P -;(3)9482t -≤≤ 【分析】(1)利用待定系数法求函数解析式,然后令y =0,求得x 的值,从而求解;(2)求得直线AD 的解析式,然后利用一次函数的性质求得45DAB ∠=︒,然后根据等腰直角三角形的判定和性质求解;(3)根据正方形的性质求得点E 的坐标是(11,0),点F 的坐标是(5,6)-,然后设平移后的抛物线解析式为21(1)22y x t =--+,结合二次函数和一次函数的性质联立方程组求解. 【详解】解:(1)依题意,将点(5,6)D 代入21(1)2y x k =-+, 得21642k =⨯+,解得2k =-, ∴抛物线的解析式为21(1)22y x =--. 令0y =,得21(1)202x --=,解得11x =-,23x =. (1,0)A ∴-,(3,0)B .(2)设直线AD 的式为(0)y mx n m =+≠,将(1,0)A -,(5,6)D 两点坐标代入得,056m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩ ∴直线AD 的解析式为1y x =+.如图1,设直线AD 与y 轴交于点E ,令0x =,得1y =,1OA OE ∴==,45DAB ∴∠=︒,过点D 作1DP x ⊥轴,过点A 作2//APy 轴, 过点D 作2//DP x 轴,2AP 与2DP 交于点2P , 延长1AP 至3P ,使113AP PP =,连接3DP , 延长1DP 至4P ,使114DPPP =,连接4AP , 延长2AP 至5P ,使225AP P P =,连接5DP , 延长2DP 至6P ,使226DP P P =,连接6AP , 则1APD △,2AP D △,3AP D △,4AP D △,5AP D △, 6AP D △为所有符合题意的等腰直角三角形. 1(5,0)P ∴,2(1,6)P -,3(11,0)P ,4(5,6)P -,5(1,12)P -,6(7,6)P -. (3)如图2,由(2)可知,∵在正方形ADEF 中,A (-1,0),点D (5,6) ∴点E 的坐标是(11,0),点F 的坐标是(5,6)-,直线AD 的解析式是1y x =+, 设平移后的抛物线解析式为21(1)22y x t =--+, 结合图象可知,当抛物线经过点E 时,是抛物线平移后与正方形ADEF 有公共点的最低位置,将点(11,0)代入21(1)22y x t =--+, 得210(111)22t =⨯--+,解得48t =-. 当抛物线与AD 边有唯一公共点时,是抛物线平移后与正方形ADEF 有公共点的最高位置,将1y x =+与21(1)22y x t =--+联立方程组,211(1)22y x y x t =+⎧⎪⎨=--+⎪⎩ 化简,得24250x x t -+-=,只有唯一解,即此一元二次方程有两个相等的实数根, 2(4)41(25)0t ∴∆=--⨯⨯-=,解得92t =. t ∴的取值范围9482t -≤≤. 【点睛】本题考查二次函数综合,掌握待定系数法求函数解析式,二次函数图象上点的坐标特征,利用数形结合思想解题是关键.4.(2021·江苏溧阳·中考一模)如图所示,抛物线()()()150y a x x a =+-≠的图像与x 轴交于A 、B 两点,与y 轴交于点C .(1)当25a =-时 ,①求点A 、B 、C 的坐标;②如果点P 是抛物线上一点,点M 是该抛物线对称轴上的点,当OMP 是以OM 为斜边的等腰直角三角形时,求出点P 的坐标;(2)点D 是抛物线的顶点,连接BD 、CD ,当四边形OBDC 是圆的内接四边形时,求a 的值.【答案】(1)①1,0A ,()5,0B ,()0,2C ;②159,22P ⎛⎫-- ⎪⎝⎭;2(4,2)P 3(0,2)P ;4139,22P ⎛⎫- ⎪⎝⎭;(2)【分析】(1)①当25a =-时,函数的表达式为2(1)(5)5y x x =-+-,即可求解;②证明()PFM OEP AAS ≅△△,则PE MF =,则2(1)(5)25x x x -+-=-,解得52x =-或4,即可求解;(2)当四边形OBDC 是圆的内接四边形时,则BC 的中点为该圆的圆心,故OQ DQ =,即可求解. 【详解】解:对于(1)(5)(0)y a x x a =+-≠,令(1)(5)0y a x x =+-=, 解得5x =或1-,令0x =,则5y a =-,故点A 、B 、C 的坐标分别为(5,1)、(1,0)-、(0,5)a -, 当2x =时,(1)(5)9y a x x a =+-=-,顶点的坐标为(2,9)a -. (1)①当25a =-时,函数的表达式为2(1)(5)5y x x =-+-,则点A 、B 、C 的坐标分别为(5,1)、(1,0)-、(0,2);②过点P 作y 轴的平行线交过点M 与x 轴的平行线于点F ,交x 轴于点E ,设点P 的坐标为2,(1)(5)5x x x ⎡⎤-+-⎢⎥⎣⎦,90MPO ∠=︒, 90MPF OPE ∴∠+∠=︒, 90OPE POE ∠+∠=︒, POE MPF ∴∠=∠,90PFM OEP ∠=∠=︒,PM PO =,()PFM OEP AAS ∴≅△△,PE MF ∴=,则2(1)(5)25x x x -+-=-,解得52x =-或4,故点P 的坐标为5(2-,9)2-或(4,2);(2)点B 、C 的坐标分别为(1,0)-、(0,5)a -,顶点D 的坐标为(2,9)a -.当四边形OBDC 是圆的内接四边形时,则BC 的中点为该圆的圆心,设BC 的中点为点Q ,由中点坐标公式得,点5(2Q ,5)2a -, 则OQ DQ =,即22225555()()(2)(9)2222a a a +-=-+-+,解得a = 【点睛】本题是二次函数综合题,主要考查了一次函数的性质、圆的基本知识、三角形全等、勾股定理的运用等,综合性强,难度适中.5.(2021·江西·新余市中考模拟预测)如图,抛物线2y ax bx =+过(4,0)A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出ABC ∆的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,是否存在以点C 、M 、N 为顶点的三角形为等腰直角三角形?若存在,求出其值;若不存在,请说明理由.【答案】(1)24y x x =-+;(2)3(3)C ,,3;(3)N 点坐标为(2,0)或(4,0)-或(2,0)-或(4,0),见解析. 【分析】(1)把把(4,0)A ,()1,3B 代入抛物线,求解即可;(2)求得对称轴为2x =,再根据点C 和点B 关于对称轴对称,即可求得点C 坐标,面积也可求解;(3)分别以点C M N 、、为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM 或CN 的长,即可求解.【详解】解:(1)把(4,0)A ,()1,3B 代入抛物线2y ax bx =+中,得01643a b a b =+⎧⎨=+⎩,解得14a b =-⎧⎨=⎩,所以该抛物线表达式为24y x x =-+; (2)224(2)4y x x x =-+=--+,∴抛物线对称轴为直线2x =,点C 和点B 关于对称轴对称,点B 的坐标为(1,3),(3,3)C ,又2BC =,∴12332ABC S ∆=⨯⨯=; (3)以点C 、M 、N 为顶点的三角形为等腰直角三角形时,分三类情况讨论: ①以点M 为直角顶点且M 在x 轴上方时,如图,CM MN =,90CMN ∠=︒,在CBM ∆和MHN ∆中, CBM MHN BMC HNM CM MN ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CBM MHN AAS ∴∆∆≌,2BC MH ∴==,321BM HN ==-=,(2,0)N ∴;②以点M 为直角顶点且M 在x 轴下方时,如图,作辅助线,构建如图所示的两直角三角形:Rt NEM △和Rt MDC , 同理得Rt NEM Rt MDC △≌△, 5EM CD ∴==,1OH =,514ON NH OH ∴=-=-=,(4,0)N ∴-;③以点N 为直角顶点且N 在y 轴左侧时,如图,CN MN =,90CMN ∠=︒,做辅助线,同理得Rt NEM Rt MDC △≌△,3ME NH DN ∴===,312ON ∴=-=,(2,0)N ∴-;④以点N 为直角顶点且N 在y 轴右侧时,如图,做辅助线,同理得3ME DN NH ===,134ON ∴=+=,(4,0)N ∴;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形;综上可知当CMN ∆为等腰直角三角形时N 点坐标为(2,0)或(4,0)-或(2,0)-或(4,0). 【点睛】此题考查了二次函数的综合应用,涉及了待定系数法求解析式,二次函数图像性质,等腰直角三角形的性质,全等三角形的判定与性质,解题的关键是熟练掌握相关基本性质并灵活运用. 6.(2021·重庆市育才中学九年级期末)如图,在平面直角坐标系中,抛物线()2904y ax bx a =+-≠与y 轴交于点C ,与x 轴交于A 、B 两点(点A 在点B 左侧),且A点的坐标为(),直线BC 的解析式为94y -.(1)求抛物线的解析式;(2)如图,过A 作//AD BC ,交抛物线于点D ,点P 为直线BC 下方抛物线上一动点,连接PB PC ,,BD CD ,,求四边形PBDC 面积的最大值:(3)将抛物线2904y ax bx a =+-≠()E ,连接BE ,将线段BE 沿y 轴平移得到线段11B E (1B 为B 的对应点,1E 为E 的对应点),直线11B E 与x 轴交于点F ,点Q 为原抛物线对称轴上一点,连接1E Q FQ ,,1E FQ 能否成为以1E F为直角边的等腰直角三角形?若能,请直接写出所有符合条件的点Q 的坐标;若不能,请说明理由.【答案】(1)()219044y x x a =-≠;(2;(3)能,点Q 的坐标为3)或3)或Q或. 【分析】(1)利用一次函数解析式,将点B 、C 的坐标写出来,再利用待定系数法即可;(2)四边形PBDC 面积最大时,即BCP 的面积最大,利用过P 作//PH y 轴交BC 于点H ,将三角形利用分割的方法计算出面积即可;(3)分以FQ 为斜边和以E 1Q 为斜边,两种大的情况讨论,分别作出图形,利用特殊角的三角函数值以及全等三角形的判定和性质求解即可. 【详解】(1)∵直线BC的解析式为94y =-,∴()9,0,4B C ⎛⎫- ⎪⎝⎭,将()(),A B代人()2904y ax bx a =+-≠得:903490274a a ⎧=-⎪⎪⎨⎪=+-⎪⎩,解得:14a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线解析式为21944y x =-; (2)连接AC ,∵//AD BC∴1924DBCABCSS==⨯⨯ ∴四边形PBDC 面积最大时,即BCP 的面积最大设219,44P a a ⎛⎫- ⎪ ⎪⎝⎭,过P 作//PH y 轴交BC 于点H∴94H a ⎛⎫- ⎪ ⎪⎝⎭,∴214PH a =-∴21124BCPSPH a ⎫=⨯=-⎪⎪⎝⎭∴当4516P ⎫-⎪⎪⎝⎭时,BCP∴四边形PBDC(3)抛物线21944y x x =-的对称轴为:x =∵将抛物线21944y x x =-∴平移后的抛物线解析式为22191(3444y x x x =++-=-,∴E (0,-3),∵B 0),∴在Rt △BOE 中,tanOEB ∠= ∴∠OBE =30°,∠OEB =60°, ∵E 1F ∥BE ,∴∠E 1FO =30°,∠FE 1O =60°, ∵∠QE 1F =90°, ∴∠QE 1O =30°,以FQ 为斜边,且E 1在x 轴上方时,过Q 作QH ⊥y 轴于H ,设Q m ),在Rt △QHE 1中,QH∴HE 1=3,QE 1∵1E FQ 能否成为以1E F 为直角边的等腰直角三角形, ∴E 1F = QE 1, ∴△E 1FO ≅△QE 1H ,∴E 1O= QH∴E 1H =E 13m =,∴3m =,∴Q 3);以FQ 为斜边,且E 1在x 轴下方时,同理可得3m=,∴Q3);以E1Q为斜边,且Q在x轴上方时,同理可证△QPF≅△FOE1,∠PQF =30°,设Q m),∴PQ=OF=m,PF=m在Rt△QPF中,PQ,∴m=∴Q;以E1Q为斜边,且Q在x轴下方时,同理可证△QPF ≅△FOE 1,∠PQF =30°,设Q m ),∴PQ =OF =-m ,PF m ,在Rt △QPF 中,PQ ,∴m =∴Q ;综上,能,点Q 的坐标为3)或3)或Q )或. 【点睛】本题考查二次函数解析式,一次函数,三角形的面积,特殊角的三角函数值,全等三角形的判定和性质等,解答本题的关键是明确题意,找出所求问题需要的条件.7.(2021·广东普宁·中考一模)在平面直角坐标系中,抛物线213y x bx c =-++交x 轴于()30A -,,()4,0B 两点,交y 轴于点C .(1)求抛物线的表达式; (2)如图,直线3944y x =+与抛物线交于A ,D 两点,与直线BC 交于点E .若(),0P m 是线段AB 上的动点,过点P 作x 轴的垂线,交抛物线于点F ,交直线AD 于点G ,交直线BC 于点H .①当0m <时,是否存在一个m 值,使得EFG OEG S S =△△,如果存在,求出m 的值,如果不存在,请说明理由;②当EFH △是以点F 为直角顶点的等腰直角三角形时,求出点P 的坐标.【答案】(1)211433y x x =-++;(2)①不存在,见解析;②⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】(1)把()30A -,,()4,0B 代入抛物线的解析式,列方程组,解方程组即可得到答案; (2)①如图1,先求解点C 的坐标为()0,4,再求解BC 的解析式为:4y x =-+,可得()1,3E ,再表示39,44G m m ⎛⎫+ ⎪⎝⎭,211,433F m m m ⎛⎫-++ ⎪⎝⎭,()112EFG G S FG x =⨯-△,求解直线AD 与y 轴的交点N 的坐标为90,4⎛⎫⎪⎝⎭,表示OEG ONG ONE S S S =+△△△()112G ON x =⨯-,结合EFG OEG S S =△△,建立方程可得答案;②如图2, 当EFH △以点F 为直角顶点时,可证明此时EFH △是以点F 为直角顶点的等腰直角三角形. 由①知:()1,3E ,再列方程,解方程可得答案. 【详解】解:(1)∵抛物线213y x bx c =-++交x 轴于()30A -,,()4,0B 两点, ∴03316043b c b c =--+⎧⎪⎨=-++⎪⎩,解得134b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式211433y x x =-++; (2)①如图1,当0x =时,4y =, ∴点C 的坐标为()0,4,设BC 的解析式为:y kx b =+,把()4,0B ,()0,4C 代入得,则404k b b +=⎧⎨=⎩,解得14k b =-⎧⎨=⎩,∴BC 的解析式为:4y x =-+, 当39444x x -+=+时, 解得:1x =, ∴()1,3E ,∵(),0P m ,且PH x ⊥轴,∴39,44G m m ⎛⎫+ ⎪⎝⎭,211,433F m m m ⎛⎫-++ ⎪⎝⎭,∴()()11122EFGE G G SFG x x FG x =-=-, 在直线3944y x =+上,当0x =,94y =,∴直线AD 与y 轴的交点N 的坐标为90,4⎛⎫⎪⎝⎭,则1122OEGONG ONEG E SSSON x ON x =+=+()()11122E G G ON x x ON x =-=-, ∴若EFG OEG S S =△△,则FG ON =, ∴211399433444m m m ⎛⎫-++-+= ⎪⎝⎭,化简得24560m m ++=,25446710∆=-⨯⨯=-<,方程无解.∴当0m <时,不存在一个m 值,使得EFG OEG S S =△△.②如图2,∵FH x ⊥轴,∴当EFH △以点F 为直角顶点时,即FH EF ⊥时,//EF x 轴, ∵4OB OC ==,90COB ∠=︒, ∴45OBC ∠=︒, ∴45HEF OBC ∠=∠=︒,此时EFH △是以点F 为直角顶点的等腰直角三角形.∵(),0P m ,FH x ⊥轴, ∴211,433F m m m ⎛⎫-++ ⎪⎝⎭,由①知:()1,3E , ∴2114333m m -++=,解得:1m =,2m =,∴点P 的坐标为:⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.【点睛】本题考查的是二次函数的综合题,利用待定系数法求解二次函数,一次函数的解析式,函数的交点,一元二次方程的根的判别式,等腰直角三角形的判定与性质,熟练运用以上知识是解题的关键.8.(2021·黑龙江·哈尔滨市九年级月考)如图1,在平面直角坐标系中,点O 为坐标原点,直线3yx与x 轴交于点A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点B 与x 轴交于两点C ,D ,直线与抛物线的另一个交点E 的纵坐标为1.(1)求抛物线的解析式;(2)点P 为线段AO 上一点,点Q 是OB 延长线上一点,AP BQ =,点M 是第一象限内一点,PMQ 是以PQ 为斜边的等腰直角三角形,连接OM ,设POM 的面积为S ,AP t =,求S 与t 的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,点N 为直线AB 上方抛物线上一点,直线MN 交直线AB 于点F ,当5MN FN =时,求点N 的坐标.【答案】(1)23y x x =--+;(2)()2130322S t t t =-+<<;(3)113,24⎛⎫- ⎪⎝⎭或39,24⎛⎫- ⎪⎝⎭【分析】(1)先求出点B ,点E 坐标,用待定系数法可求抛物线解析式;(2)如图1,过点M 作MH ⊥OD ,MG ⊥OQ ,由“AAS ”可证△PMH ≌△QMG ,可得GM =MH ,QG =PH ,可得OH =AP =t ,即可求S 与t 的函数关系式;(3)如图2,过点N 作NL ⊥AD ,过点F 作FR ⊥NL ,过点M 作MK ⊥NL ,通过证明△NFR ∽△NMK ,可得NF NR RFMN NK MK==,可求点F 坐标,代入直线AB 解析式,可求a 的值,即可求点N 坐标. 【详解】 解:(1)∵直线3yx与x 轴交于点A ,与y 轴交于点B ,∴点()30A -,,点()0,3B , ∵直线与抛物线的另一个交点E 的纵坐标为1. ∴点()2,1E -,∵抛物线2y x bx c =-++经过点B ,点E ,∴3142c b c =⎧⎨=--+⎩,∴13b c =-⎧⎨=⎩,∴抛物线解析式为:23y x x =--+;(2)如图1,过点M 作MH OD ⊥,MG OQ ⊥, ∵MH OD ⊥,MG OQ ⊥,90BOD ∠=︒, ∴四边形GMHO 是矩形,∴GM OH =,GO MH =,90GMH ∠=︒, ∵PMQ 是等腰直角三角形,∴PM QM =,90PMQ GMH ∠=∠=︒,∴QMG PMH ∠=∠,且90QGM PHM ∠=∠=︒,PM QM =, ∴()PMH QMG AAS ≅△△, ∴GM MH =,QG PH =, ∴OG OH MH GM ===,∵点()30A -,,点()0,3B , ∴3OA OB ==,∵PH QG =,AP BQ t ==, ∴AO OH AP OB BQ OG +-=+-, ∴33OH t t OH +-=+-, ∴OH t MH ==,∴POM 的面积为12S OP MH =⨯⨯,∴()()2113303222S t t t t t =-=-+<<;(3)如图2,过点N 作NL AD ⊥,过点F 作FR NL ⊥,过点M 作MK NL ⊥,设点()2,3N a a a --+,∴LO a =-,23NL a a =--+, 由(2)可知:点(),M t t ,∴23NK a a t =--+-,MK t a =-, ∵//FR MK , ∴NFR NMK △△, ∴NF NR RFMN NK MK==,且5MN NF =, ∴()211355NR NK a a t ==--+-,11()55FR MK t a ==-, ∴点2144412,555555t F t a a a ⎛⎫+--++ ⎪⎝⎭,∵点F 在直线AB 上,∴24412143555555t a a t a --++=++,∴12a =-或32-,∴点N 坐标113,24⎛⎫- ⎪⎝⎭或39,24⎛⎫- ⎪⎝⎭.【点睛】本题是二次函数综合题,考查了二次函数的性质和应用,待定系数法求解析式,全等三角形的判定和性质,相似三角形的判定和性质等知识,利用相似三角形的性质求出点F 坐标是本题的关键.9.(2021·浙江湖州·中考模拟预测)二次函数()20y ax bx c a =++≠的图象与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点()0,2C -,直线():3l x m m =>与x 轴交于点D .(1)求二次函数的解析式:(2)在直线l 上找点P (点P 在第一象限),使得以点P ,D ,B 为顶点的三角形与以点A ,C ,O 为顶点的三角形相似,求点P 的坐标(用含m 的代数式表示):(3)在(2)成立的条件下,抛物线上是否存在第一象限内的点Q ,使得BPQ ∆是以P 为直角顶点的等腰直角三角形?若存在,求出点Q 的坐标:若不存在,请说明理由.【答案】(1)224233y x x =--;(2)3,2m m -⎛⎫ ⎪⎝⎭或(,26)m m -;(3)存在;73,22Q ⎛⎫⎪⎝⎭ 【分析】(1)运用待定系数法求解即可;(2)设点P 坐标为(m ,n ),由于90AOC PDB ∠=∠=︒则以P ,D ,B 为顶点的三角形与以A 、C 、O 为顶点的三角形相似时,分两种情况:OCA DBP ∆∆和OCA DPB ∆∆,根据相似三角形的性质可得点P 的坐标;(3)运用AAS 证明BDP PMQ ≌△△得QM PD =,PM BD =,再分P 为3,2m m -⎛⎫⎪⎝⎭和P 为(),26m m -列出方程求解即可.【详解】(1)将()1,0A -,()3,0B ,()0,2C -代入()20y ax bx c a =++≠,得:09302a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得,23a =,43b =-,2c =-,∴抛物线的解析式为:224233y x x =--; (2)设P (m ,n ),∵90AOC PDB ∠=∠=︒,∴当以P ,D ,B 为顶点的三角形与以A 、C 、O 为顶点的三角形相似时,分两种情况: ①若OCA DBP ∆∆时,则OA OCDP DB=, ∴123n m =-, ∴32m n -=, ∴3,2m P m -⎛⎫ ⎪⎝⎭, ②若OCA DPB ∆∆时,则OA OCDB DP=, ∴123m n=-, ∴26n m =-,∴点P 的坐标为:(,26)m m -或(,62)m m -(舍去), ∵点P 在第一象限,∴点P 的坐标为3,2m m -⎛⎫ ⎪⎝⎭或(,26)m m -(3)如图,过点Q 作QM l ⊥于点M ,∵BPQ 为等腰直角三角形,90BPQ ∠=︒,PQ BP =, 又∵90QMP BDP ∠=∠=︒, ∴BDP PMQ ≌△△, ∴QM PD =,PM BD =, ①当P 为3,2m m -⎛⎫⎪⎝⎭时,32m QM PD -==, ()3393222DM PM PD m m =+=-=-,∴339,222m Q m +⎛⎫-⎪⎝⎭, 代入224233y x x =--, 解得:14m =,23m =(舍去) ∴73,22Q ⎛⎫⎪⎝⎭,②当P 为(),26m m -时,26QM PD m ==-,39DM PM PD m =+=-,∴()6,39Q m m --, 代入224233y x x =--, 解得:1232m =,23m =(舍去) ∴1151,22Q ⎛⎫- ⎪⎝⎭,此时的点Q 不在第一象限内,故舍去, 综上,可得73,22Q ⎛⎫⎪⎝⎭【点睛】此题是二次函数综合题,涉及到二次函数解析式的确定,相似三角形的判定和性质,全等三角形的判定与性质等知识,在解题时一定注意分类讨论思想,以免漏解.10.(2021·重庆南开中学九年级月考)如图,在平面直角坐标系xOy 中,抛物线y =a 2x +94x+c (a≠0)与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,其中A (﹣2,0),tan ∠ACO =13.(1)求该抛物线的解析式;(2)如图1,点D 、E 是线段BC 上的两点(E 在D 的右侧),DE =52,过点D 作DP ∥y 轴,交直线BC 上方抛物线于点P ,过点E 作EF ⊥x 轴于点F ,连接FD 、FP ,当△DFP 面积最大时,求点P 的坐标及△DFP 面积的最大值;(3)如图2,在(2)的条件下,将抛物线水平向左平移,使得平移后的抛物线恰好经过点F ,G 为平移后的抛物线的对称轴直线l 上一动点,连接BP ,将线段沿直线BC 平移,平移后的线段记为B 'P ',是否存在以B 'P '为直角边的等腰Rt △G B 'P '?若存在,请直接写出点G 的坐标,若不存在,请说明理由.【答案】(1)y=239684x x -++; (2)P(4,9),DPF S 的最大值为6;(3)存在,点G (1,112-)或点G (1,12). 【分析】(1)A (﹣2,0),tan ∠ACO =13,确定OA=2,解直角三角形,确定OC=6,从而确定点C(0,6),把A ,C 的坐标代入解析式求解即可;(2)根据B ,C 的坐标确定直线的解析式,设点D 的横坐标为m ,用直线的解析式表示点D 的纵坐标,用二次函数的解析式表示点P 的纵坐标,于是利用D ,P 的纵坐标可以表示DP 的长,过点E 作EQ ⊥DP ,垂足为Q ,利用直角三角形COB ,可以确定直角三角形DEQ 中∠DEQ 的正弦值,余弦值,从而确定了EQ 的长,也就是三角形DPF 底边PD 上的高,用三角形面积公式,构造用m 的二次函数表示的面积,利用二次函数的最值求解即可;(3)分过点B 垂直BP 且等于BP 的点在对称轴上,过点P 垂直BP 且等于BP 的点在对称轴上两种情形求解即可,【详解】(1)如图1,∵A (﹣2,0),∴OA=2,在直角三角形ACO 中,∵tan ∠ACO =13, ∴213OA OC OC ==, ∴OC=6,∴点C(0,6),把A ,C 的坐标代入解析式,得29(2)(2)046a c c ⎧⨯-+⨯-+=⎪⎨⎪=⎩, 解得386a c ⎧=-⎪⎪⎨⎪=⎪⎩, ∴二次函数的解析式为y=239684x x -++;(2)如图1,令y=0,得239684x x -++=0, 解得x= -2或x=8,∴B (8,0);设直线BC 的解析式为y=kx+6,∴8k+6=0,解得k=34-, ∴直线的解析式为y=34-x+6, 设点D 的横坐标为m ,则点D (m ,34-m+6),点P (m ,239684m m -++), ∴PD=239684m m -++-(34-m+6) =2338m m -+, 过点E 作EQ ⊥DP ,垂足为Q ,则EQ ∥AB ,∴∠DEQ=∠EBA ,∵OB=8,OC=6,∴,∴cos ∠EBA=OB BC =45, ∴cos ∠DEQ=EQ DE =45, ∵DE=52, ∴EQ=2,∵DP ∥EF ,∴底边PD 上的高为2,∴DPF S =122PD ⨯⨯=2338m m -+, ∵38-<0, ∴DPF S 有最大值,当m=3432()8-=⨯-时,面积最大,且最大为234348-⨯+⨯=6 当m=4时,239684m m -++=23944684-⨯+⨯+=9, ∴P(4,9),故点P(4,9),DPF S 的最大值为6;(3)∵y=239684x x -++ =2375(3)88x --+, 不妨设向左平移n 个单位,函数图像经过点F ,则新函数的解析式为y=2375(3)88x n --++, 由(2)得F (6,0), ∴2375(63)88n --++=0, 解得n=2或n= -8(舍去)∴新函数的解析式为y=2375(1)88x --+, ∴直线l =1,如图2,当等腰直角三角形的顶点在B处时,过点P作PR⊥AB,垂足为R,过点M作MN ⊥AB,垂足为N,∵∠PBR+∠NBM=90°,∠NMB+∠NBM=90°,∴∠PBR=∠NMB,∵∠MNB=∠PRB=90°,BP=BM,∴△NMB≌△RPB,∴MN=BR=8-4=4,NB=RP=9,∵OB=8,∴ON=1,∴点M(-1,-4),由(2)知,当BP沿着BC方向平移n个单位时,其水平方向平移45n个单位,竖直方向平移35n个单位,∴平移后点M到点G的位置,此时点G的坐标为(-1+45n,-4-35n),∴-1+45n=1,∴n=52,∴-4-35n= -432-=112-,故点G(1,112 -);如图3,当等腰直角三角形的顶点在B处时,过点P作PS⊥BP,过点M作MS⊥MB,二线交于点S,设S(m,n),∵MB=BP=PS=MS,∠PBM=90°,∴四边形MBPS是正方形,∴MS∥PB,PS∥BM,∴490148nm+-=+-,940418nm-+=-+∴94250 49650m nm n++=⎧⎨-+=⎩,解得4859748597mn⎧=-⎪⎪⎨⎪=⎪⎩∴点S(48597-,48597),由(2)知,当BP沿着BC方向平移n个单位时,其水平方向平移45n个单位,竖直方向平移35n个单位,∴平移后点M到点G的位置,此时点G的坐标为(48597-+45n,48597-35n),∴48597-+45n=1,∴48597-35n =12,故点G(1,12).故这样的点G存在,且点G(1,112-)或点G(1,12)..【点睛】本题考查了二次函数解析式的确定,二次函数中的平移,二次函数的最值,用坐标表示平行y 轴直线上两点间的距离,锐角三角函数的定义,图像的交点问题,熟练掌握用坐标表示特殊线段的长,配方法确定平移后解析式,准确应用平移的规律,灵活运用分类思想是解题的关键.11.(2021·辽宁·中考一模)在平面直角坐标系中,点O 为坐标原点,抛物线23y ax bx =++与x 轴交于点(1,0)A -,(3,0)B .(1)求抛物线的解析式;(2)点E 为抛物线上一点,且点E 的横坐标为a ,若2EBA ACO ∠=∠,请求出a 的值; (3)点P 从A 点出发,以每秒1个单位长度的速度沿x 轴向右运动,运动时间为s t ,点M 为射线AC 上一动点,过点M 作//MN x 轴交抛物线对称轴右侧部分于点N .点P 在运动过程中,是否存在以P ,M ,N 为顶点的三角形为等腰直角三角形,若存在,请直接写出t 的值;若不存在,请说明理由.【答案】(1)2y x 2x 3=-++;(2)14-或74-;(3)存在,1316或134或10049【分析】(1)把A 、B 两点的坐标分别代入函数解析式中,得关于a 、b 的方程组,解方程组即可; (2)作AC 的垂直平分线交x 轴于点K ,连接AK ,则可得EBA AKO ∠=∠,过点E 作EH x ⊥轴于H ,则在Rt △AOK 中可计算出OK ,易证EHB AOK ∽,分点E 在x 轴上方和下方两种情况,根据相似三角形的性质即可求得a 的值;(3)首先求出直线AC 的解析式,设点M 的坐标为(m ,3m +3),由MN ∥x 轴,可得点N 的纵坐标与点M 的纵坐标相等.分三种情况一一加以讨论,求出点N 的横坐标,根据点N 在抛物线上,即可求得m 的值,从而可求得t 的值.【详解】解:(1)将(1,0)A -和(3,0)B 代入23y ax bx =++中得30930a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩∴抛物线解析式为2y x 2x 3=-++.(2)作AC 的垂直平分线交x 轴于点K ,连接AK ,作EBA AKO ∠=∠,过点E 作EH x ⊥轴于H ,由作图知CK AK =,∴ACK CAK ∠=∠,∴2AKO ACO ∠=∠,∴2EBA ACO ∠=∠.∴EBA AKO ∠=∠设OK x =,则3AK CK x ==-,又1AO =∴在Rt AOK 中,222AO KO AK +=,即2221(3)x x +=- 解得43x =. ∴43OK = 又90EHB KOA ∠=∠=︒,∴EHB AOK ∽, ∵34EH AO BH KO == ①当点E 在x 轴的上方时,223334a a a -++=-,解得121,34a a =-=(舍) ②当点E 在x 轴的下方时,223334a a a --=-,解得127,34a a =-=(舍)综上所述,a 的值14-或74-. (3)存在理由如下:在2y x x =-++23中,令x =0,得y =3∴C (0,3)设直线AC 的解析式为y =kx +3,其中k ≠0,把A 点的坐标代入直线解析式中,得:k =3 ∴直线AC 的解析式为y =3x +3设M (m ,3m +3),-1<m <1∵MN ∥x 轴∴33N M y y m ==+①若∠MPN =90,PM =PN如图①,过点M 作MQ ⊥x 轴于点Q ,过点N 作NR ⊥x 轴于点R∵MN ∥x 轴∴MQ =NR =3m +3∴Rt △MQP ≌Rt △NRP (HL )∴PQ =PR ,∠MPQ =∠NPR =45゜∴MQ =PQ =PR =NR =3m +3∴N M x x =+3m +3+3m +3=7m +6∴N (7m +6,3m +3)∴−(7m +6)2+2(7m +6)+3=3m +3解得m 1=−1(舍去),m 2=2449- ∴t =AP =AQ +PQ =m -(-1)+3m +3=4m +4=10049②若∠PMN =90°,PM =MN如图②,则MN =PM =3m +3∴N M x x =+3m +3=4m +4∴N (4m +3,3m +3)∴−(4m +3)2+2(4m +3)+3=3m +3解得m 1=−1(舍去),m 2=316-∴t =AP =m -(-1)=31311616-+= ③若∠PNM =90°,PN =MN如图③,则MN =PN =3m +3∴N (4m +3,3m +3)−(4m +3)2+2(4m +3)+3=3m +3解得m 1=−1(舍去),m 2=316- ∴'t =AP =OA +OP =1+4m +3=134综上所述,存在以P ,M ,N 为顶点的三角形为等腰直角三角形, t 的值为1316或134或10049.【点睛】本题是二次函数的综合,考查了待定系数法求函数解析式,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程,三角形全等等知识,考查了分类讨论的思想.第(2)题的关键是作线段AC 的垂直平分线,把倍角转化为等角,第(3)问的关键是分类讨论,且分类要不重不漏.。
中考复习函数专题28 二次函数中的三角形问题(学生版)
专题28 二次函数中的三角形问题知识对接考点一、二次函数中的三角形问题考点分析:二次函数与三角形的综合解答题一般涉及到这样几个方面:1.三角形面积最值问题2.特殊三角形的存在问题包括等腰等边和直角三角形。
这类题目一般出现在压轴题最后两道上,对知识的综合运用要求比较高。
考点二、解决此类题目的基本步骤与思路1.抓住目标三角形,根据动点设点坐标2.根据所设未知数去表示三角形的底和高,一般常用割补法去求解三角形的面积从而得出面积的关系式3. 根据二次函数性质求出最大值.4.特殊三角形问题首先要画出三角形的大概形状,分类讨论的去研究。
例如等腰三角形要弄清楚以哪两条边为要,直角三角形需要搞清楚哪个角作为直角都需要我们去分类讨论。
要点补充:1.简单的直角三角形可以直接利用底乘高进行面积的表示2.复杂的利用“补”的方法构造矩形或者大三角形,整体减去部分的思想3.利用“割”的方法时,一般选用横割或者竖割,也就是做坐标轴的垂线。
4.利用点坐标表示线段长度时注意要用大的减去小的。
5.围绕不同的直角进行分类讨论,注意检验答案是否符合要求。
6.在勾股定理计算复杂的情况下,灵活的构造K字形相似去处理。
要点补充:一、单选题1.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s (阴影部分),则s与t的大致图象为()A .B .C .D .2.定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.如图,直线l :13y x b =+经过点10,4M ⎛⎫ ⎪⎝⎭一组抛物线的顶点()111B y ,,()222,B y ,()333,B y ,…(),n n B n y (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()11,0A x ,()22,0A x ,()33,0A x ,…()11,0n n A x ++(n 为正整数).若()101x d d =<<,当d 为( )时,这组抛物线中存在美丽抛物线A .512或712B .512或1112C .712或1112D .7123.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是A .16B .15C .14D .134.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,A,B,C的横坐标x A,x B,x C满足x A<x C<x B,那么符合上述条件的抛物线条数是()A.7B.8C.14D.165.如图,在矩形纸片ABCD中,AB=3,BC=2,沿对角线AC剪开(如图△);固定△ADC,把△ABC沿AD方向平移(如图△),当两个三角形重叠部分的面积最大时,移动的距离AA′等于()A.1B.1.5C.2D.0.8或1.26.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.7.如图,正三角形ABC和正三角形ECD的边BC,CD在同一条直线上,将ABC向右平移,直到点B 与点D 重合为止,设点B 平移的距离为x ,=2BC ,4CD =.两个三角形重合部分的面积为Y ,现有一个正方形FGHI 的面积为S ,已知sin 60Y S=︒,则S 关于x 的函数图像大致为( )A .B .C .D .8.以下说法正确的是( )A .三角形的外心到三角形三边的距离相等B .顺次连接对角线相等的四边形各边中点所得的四边形是菱形C .分式方程11222x x x -=---的解为x =2 D .将抛物线y =2x 2-2向右平移1个单位后得到的抛物线是y =2x 2-39.二次函数2(1)22y m x mx m =+-+-的图象与x 轴有两个交点()1,0x 和()2,0x ,下列说法:△该函数图象过点(1,1)-;△当0m =时,二次函数与坐标轴的交点所围成的三角形面积是△若该函数的图象开口向下,则m 的取值范围为21m -<<-;△当0m >,且21x --时,y 的最大值为(92)m +.正确的是( )A .△△△B .△△△C .△△△D .△△△△ 10.以下四个命题:△如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;△在实数-7.54-π,)2中,有4个有理数,2个无理数;△的圆柱等高,如果这个圆锥的侧面展开图是半圆,那么它的母线长为43; △二次函数221y ax ax =-+,自变量的两个值x 1,x 2对应的函数值分别为y 1,y 2,若|x 1-1|>|x 2-1|,则a (y 1-y 2)>0.其中正确的命题的个数为( )A .1个B .2个C .3个D .4个二、填空题11.定义[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1-m ,-1-m ]的函数的一些结论:△当m ≠0时,点(1,0)一定在函数的图象上;△当m >0时,函数图象截x 轴所得的线段长度大于32;△当m <0时,函数在14x >时,y 随x 的增大而减小;△当m >0,若抛物线的顶点与抛物线与x 轴两交点组成的三角形为等腰直角三角形,则13m =,正确的结论是________.(填写序号)12.如图,在第一象限内作与x 轴的夹角为30°的射线OC ,在射线OC 上取点A ,过点A作AH △x 轴于点H ,在抛物线y =x 2(x >0)上取一点P ,在y 轴上取一点Q ,使得以P ,O ,Q 为顶点的三角形与△AOH 全等,则符合条件的点A 有____个.13.如图,直线l :1134y x =+经过点M(0,14),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3)…B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0)…,A n+1(x n+1,0)(n 为正整数),设x 1=d (0<d <1)若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d (0<d <1)的大小变化时美丽抛物线相应的d 的值是__.14.如图,抛物线与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点()0,3C ,设抛物线的顶点为D .坐标轴上有一动点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似.则点P 的坐标______.。
2021年九年级数学中考压轴题之《二次函数与直角三角形综合》专题训练(附答案)
2021年九年级数学中考压轴题之《二次函数与直角三角形综合》专题训练(附答案)1.如图,已知抛物线y=ax2+bx+c(a≠0)经过点A、B,与y轴负半轴交于点C,且OC =OB,其中B点坐标为(3,0),对称轴l为直线x=.(1)求抛物线的解析式;(2)在x轴上方有一点P,连接P A后满足∠P AB=∠CAB,记△PBC的面积为S,求当S=10.5时点P的坐标;(3)在(2)的条件下,当点P恰好落在抛物线上时,将直线BC上下平移,平移后的直线y=x+t与抛物线交于C′、B′两点(C′在B′的左侧),若以点C′、B′、P为顶点的三角形是直角三角形,求出t的值.2.《函数的图象与性质》拓展学习展示:【问题】如图①,在平面直角坐标系中,抛物线G1:y=ax2+bx+与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,则a=,b=.【操作】将图①中抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,G2在y轴左侧的部分与G1在y轴右侧的部分组成的新图象记为G,如图②.请直接写出图象G 对应的函数解析式.【探究】在图②中,过点C作直线l平行于x轴,与图象G交于D,E两点,如图③.求图象G在直线l上方的部分对应的函数y随x的增大而增大时x的取值范围.【应用】P是抛物线G2对称轴上一个动点,当△PDE是直角三角形时,直接写出P点的坐标.3.如图,直线y=x+4与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A,B两点,与x轴正半轴交于点C,连接BC,P为线段AC上的动点,P与A,C不重合,作PQ∥BC交AB于Q,A关于PQ的对称点为D,连接PD,QD,BD.(1)求抛物线的解析式;(2)当点D在抛物线上时,求点P的坐标;(3)设点P的横坐标为x,△PDQ与△ABC重叠部分的面积为S.①直接写出S与x的函数关系式;②当△BDQ为直角三角形时,直接写出x的值.4.如图,抛物线y=a(x2﹣2mx﹣3m2)(a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标.(2)若点E是第一象限抛物线上的点,过点E作EM⊥x轴于点M,当OM=2CD时,求证:∠EAB=∠ADC.(3)在(2)的条件下,试探究:在x轴上是否存在点P,使得以PF,AD,AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.5.如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,4)三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段AC于点E,若BD=5DE.①求直线BD的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧,点R是直线BD上的动点,若△PQR是以点Q为直角顶点的等腰直角三角形,求点P的坐标.6.如图,直线y=﹣2x+10分别与x轴,y轴交于A,B两点,点C为OB的中点,抛物线y=x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB下方的抛物线上的一点,且△ABD的面积为,求点D的坐标;(3)点P为抛物线上一点,若△APB是以AB为直角边的直角三角形,求点P到抛物线的对称轴的距离.7.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于点A,B,与y轴交于点C.且直线y=x﹣6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N.(1)求抛物线的函数解析式;(2)当△MDB的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由.8.如图,在平面直角坐标系中,函数y=﹣ax2+2ax+3a(a>0)的图象交x轴于点A、B,交y轴于点C,它的对称轴交x轴于点E.过点C作CD∥x轴交抛物线于点D,连接DE 并延长交y轴于点F,交抛物线于点G.直线AF交CD于点H,交抛物线于点K,连接HE、GK.(1)点E的坐标为:;(2)当△HEF是直角三角形时,求a的值;(3)HE与GK有怎样的位置关系?请说明理由.9.已知二次函数y=ax2+(3a+1)x+3(a<0).(1)该函数的图象与y轴交点坐标为;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.①求a的值及二次函数的表达式;②画出二次函数的大致图象(不列表,只用其与x轴的两个交点A、B,且A在B的左侧,与y轴的交点C及其顶点D,并标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P,使△PCA为直角三角形,如果存在,求出点P的坐标;如果不存在,请说明理由.10.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为t秒.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.11.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,直线y=﹣x+2经过B,C两点.(1)直接写出二次函数的解析式;(2)平移直线BC,当直线BC与抛物线有唯一公共点Q时,求此时点Q的坐标;(3)过(2)中的点Q作QE∥y轴,交x轴于点E.若点M是抛物线上一个动点,点N 是x轴上一个动点,是否存在以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似?如果存在,请直接写出满足条件的点M的个数和其中一个符合条件的点M的坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+bx+c与坐标轴交于点A(0,﹣3)、B(﹣1,0)、E(3,0),点P为抛物线上动点,设点P的横坐标为t.(1)若点C与点A关于抛物线的对称轴对称,求C点的坐标及抛物线的解析式;(2)若点P在第四象限,连接P A、PE及AE,当t为何值时,△P AE的面积最大?最大面积是多少?(3)是否存在点P,使△P AE为以AE为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于点C(0,3),点A的坐标是(3,0),抛物线的对称轴是直线x=1.(1)求抛物线的函数表达式;(2)若点P为第四象限内抛物线上一点,且△PBC是直角三角形,求点P的坐标;(3)在(2)的条件下,在直线BC上是否存在点Q,使∠PQB=∠CPB,若存在,求出点Q坐标:若不存在,请说明理由.14.在平面直角坐标系中,抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,顶点为A.将抛物线L1沿y轴对称,得到抛物线L2,顶点为B.(1)求a的值.(2)求抛物线L2的表达式.(3)请问在抛物线L1或L2上是否存在点P,使以点P、A、B为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.15.如图1.在平面直角坐标系xOy中,抛物线y=x2+k的顶点A在直线l:y=x﹣3上,将抛物线沿直线l向右上方平移,使其顶点P始终保持在直线l上,设平移后的抛物线与原抛物线交于B点.(1)请直接写出k的值;(2)若抛物线y=x2+k与直线l:y=x﹣3的另一个交点为C.当点B与点C重合时.求平移后抛物线的解析式;(3)连接AB,BP,当△ABP为直角三角形时,求出P点的坐标.16.如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S△ABF;(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.17.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧抛物线上找一点P,使得P、D、C构成以PC为底边的等腰三角形,求出点P的坐标及此时四边形PBCD的面积.18.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.19.如图,抛物线C的顶点坐标为(2,8),与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点D(0,6).(1)求抛物线C的函数表达式以及点B的坐标;(2)平移抛物线C,使平移后的抛物线C′的顶点P落在线段BD上,过P作x轴的垂线,交抛物线C于点Q,再过点Q作QE∥x轴交抛物线C于另一点E,连接PE,若△PQE是等腰直角三角形,请求出所有满足条件的抛物线C′的函数表达式.20.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点的三角形,是以AC为直角边的直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.参考答案1.解:(1)∵B(3,0),对称轴为直线x=,∴A(﹣2,0),∴抛物线的解析式为y=a(x+2)(x﹣3)=ax2﹣ax﹣6a,令x=0,则y=﹣6a,∵B(3,0),∴OB=3,∵OC=OB,∴OC=3,∴C(0,﹣3),∴﹣6a=﹣3,∴a=,∴抛物线的解析式为y=x2﹣x﹣3;(2)如图1,∵∠P AB=∠CAB,∴所以,作射线AP与y轴的交点记作点C',∵∠BAC=∠BAC',OA=OA,∠AOC=∠AOC'=90°,∴△AOC≌△AOC'(ASA),∴OC'=OC=3,∴C'(0,3),∵A(﹣2,0),∴直线AP的解析式为y=x+3,∵点P(m,n)在直线AP上,∴n=m+3,∵B(3,0),C(0,﹣3),∴直线BC的解析式为y=x﹣3,过点P作y轴的平行线交BC于F,∴F(m,m﹣3),∴PF=m+3﹣(m﹣3)=m+6,∴S=S△PBC=OB•PF=×3(m+6)=m+9(m>﹣2);∴当S=10.5时,10.5=m+9,∴m=2,∴点P(2,6)(3)由(1)知,抛物线的解析式为y=x2﹣x﹣3①由(2)知,直线AP的解析式为y=x+3②,联立①②解得,或,∴P(6,12),如图2,当∠C'PB'=90°时,取B'C'的中点E,连接PE,则B'C'=2PE,即:B'C'2=4PE2,设B'(x1,y1),C'(x2,y2),∵直线B'C'的解析式为y=x+t③,联立①③化简得,x2﹣3x﹣(2t+6)=0,∴x1+x2=3,x1x2=﹣(2t+6),∴点E(,+t),B'C'2=(x1﹣x2)2+(y1﹣y2)2=2(x1﹣x2)2=2[(x1+x2)2﹣4x1x2]=2[9+4(2t+6)]=16t+66,而PE2=(6﹣)2+(12﹣﹣t)2=t2﹣21t+,∴16t+66=4(t2﹣21t+),∴t=6(此时,恰好过点P,舍去)或t=19,当∠PC'B'=90°时,延长C'P交BC于H,交x轴于G,则∠BHC=90°,∵OB=CO,∠BOC=90°,∴∠OBC=45°,∴∠PGO=45°,过点P作PQ⊥x轴于Q,则GQ=PQ=12,∴OG=OQ+GQ=18,∴点G(18,0),∴直线C''G的解析式为y=﹣x+18④,联立①④解得或,∴C''的坐标为(﹣7,25),将点C''坐标代入y=x+t中,得25=﹣7+t,∴t=32,即:满足条件的t的值为19或32.2.解:【问题】y=ax2+bx+=a(x+1)(x﹣3),解得:a=,b=1,故答案为:﹣,1;【操作】抛物线G1沿BC方向平移BC长度的距离得到抛物线G2,相当于抛物线向左平移3个单位,向上平移个单位,G1:y=ax2+bx+=﹣x2+x+=﹣(x﹣1)2+2,G2:y=﹣(x﹣1+3)2+2+=﹣x2﹣2x+,当x<0时,y=﹣x2﹣2x+,当x≥0时,y=﹣x2﹣x+;【探究】C点的坐标为(0,).当y=时,,解得:x1=0,x2=2,∴E(2,),当时,,解得:x1=0,x2=﹣4,∴D(﹣4,),∵,,∴抛物线G1的顶点为(1,2),抛物线G2的顶点为(﹣2,),∴﹣4<x<﹣2或0<x<1时,函数y随x的增大而增大;【应用】如图,过点P作x轴的平行线交过点D与x轴的垂线于点M,交过E点与x轴的垂直的直线于点N,设点P(﹣2,m),则EN=﹣m,PN=4,DM=﹣m,PM=2,∵∠EPN+∠MPD=90°,∠MDP+∠DPM=90°,∴∠EPN=∠MDP,∴tan∠EPN=tan∠MDP,即,即,解得:m=±2,故点P的坐标为:.3.解:(1)直线y=x+4①,令x=0,则y=4,令y=0,则x=﹣3∴A(﹣3,0)B(0,4),∵抛物线经过A,B两点,∴,解得,∴;(2)设P点坐标为(x,0),令=0,解得x1=﹣3,x2=4,∴OB=OC=4,∴∠BCO=45°,又PQ∥BC,∴∠QP A=∠BCO=45°,∴∠APD=90°,∴D(x,x+3),∴,解得x1=﹣3,x2=1,∵P与A,C不重合,∴P(1,0);(3)∵PQ∥BC,∴直线PQ的表达式中的k值为﹣1,则直线PQ的表达式为:y=﹣x+b,将点P的坐标[改设为:点P(m,0)]代入上式并解得:直线PQ的表达式为:y=﹣x+m②,联立①②并解得:x=,故点Q(,);①由点B、C的坐标得,直线BC的表达式为:y=﹣x+4,由(2)知,点D(x,x+3),∵当点D在直线BC上时,即x+3=﹣x+4,解得:x=;当﹣3<x≤时,S=S△PQD=×PD×(xP﹣xQ)=×(x+3)(x﹣)=;当<x<4时,同理可得:S=;②点B的坐标(0,4),点D(x,x+3),点Q(,);(Ⅰ)当∠BDQ为直角时,如图1,过点D作y轴的平行线交过点Q与x轴的平行线于点M,交过点B与x轴的平行线于点N,∵∠NDB+∠NBD=90°,∠NDB+∠MDQ=90°,∴∠MDQ=∠NBD,∴tan∠MDQ=tan∠NBD,即,而MQ=x﹣=,MD=x+3﹣=,BN=x,ND=4﹣(x﹣3)=1﹣x,,解得:x=或﹣3(舍去﹣3),故x=;(Ⅱ)当∠BQD为直角时,如图2,同理可得:tan∠QDN=tan∠MQB,即,则,解得:x=0或﹣3(舍去);(3)当∠QBD为直角时,同理可得:x=;综上,当△BDQ为直角三角形时,x的值是或.4.解:(1)当a=1时,y=a(x2﹣2mx﹣3m2)=x2﹣2mx﹣3m2,∵与y轴交于点C(0,﹣3),∴﹣3m2=﹣3,解得:m=±1,∵m>0,∴m=1,∴抛物线解析式为:y=x2﹣2x﹣3=(x﹣1)2﹣4,∵CD∥AB,∴C,D关于直线x=1对称,∴D点坐标为:(2,﹣3);(2)如图,过点A作AN⊥CD交CD的延长线于N,对于y=a(x2﹣2mx﹣3m2),当y=0,则0=a(x2﹣2mx﹣3m2),解得:x1=﹣m,x2=3m,当x=0,y=﹣3am2,可得:A(﹣m,0),B(3m,0),C(0,﹣3am2),∵点C,点D关于对称轴直线x=m对称,∴点D(2m,﹣3am2)∴CD=2m,∵OM=2CD=4m,∴点E横坐标为4m,∴点E坐标(4m,5am2),∵A(﹣m,0),B(3m,0),C(0,﹣3am2),点E坐标(4m,5am2),点D(2m,﹣3am2),∴AM=5m,EM=5am2,DN=3m,AN=3am2,∵tan∠EAB==am,tan∠ADC==am,∴tan∠EAB=tan∠ADC∴∠EAB=∠ADC;(3)存在,理由:当x=m时,y=a(m2﹣2m2﹣3m2)=﹣4am2,∴F(m,﹣4am2),∵A(﹣m,0),点E的坐标为(4m,5am2),点D的坐标为(2m,﹣3am2),设P(b,0),∴PF2=(m﹣b)2+16(am2)2,AD2=9m2+9(am2)2,AE2=25m2+25(am2)2,∴(m﹣b)2+9m2=25m2,解得:b1=﹣3m,b2=5m∴P(﹣3m,0)或(5m,0).5.解:(1)∵抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),∴设抛物线的解析式为y=a(x+2)(x﹣4),将点C坐标(0,4)代入抛物线的解析式为y=a(x+2)(x﹣4)中,得﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)①如图1,设直线AC的解析式为y=kx+b',将点A(﹣2,0),C(0,4),代入y=kx+b'中,得,∴,∴直线AC的解析式为y=2x+4,过点E作EF⊥x轴于F,∴OD∥EF,∴△BOD∽△BFE,∴,∵B(4,0),∴OB=4,∵BD=5DE,∴==,∴BF=×OB=×4=,∴OF=BF﹣OB=﹣4=,将x=﹣代入直线AC:y=2x+4中,得y=2×(﹣)+4=,∴E(﹣,),设直线BD的解析式为y=mx+n,∴,∴,∴直线BD的解析式为y=﹣x+2;②Ⅰ、当点R在直线l右侧时,∵抛物线与x轴的交点坐标为A(﹣2,0)和B(4,0),∴抛物线的对称轴为直线x=1,∴点Q(1,1),如图2,设点P(x,﹣x2+x+4)(1<x<4),过点P作PG⊥l于G,过点R作RH⊥l于H,∴PG=x﹣1,GQ=﹣x2+x+4﹣1=﹣x2+x+3,∵PG⊥l,∴∠PGQ=90°,∴∠GPQ+∠PQG=90°,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴PQ=RQ,∠PQR=90°,∴∠PQG+∠RQH=90°,∴∠GPQ=∠HQR,∴△PQG≌△QRH(AAS),∴RH=GQ=﹣x2+x+3,QH=PG=x﹣1,∴R(﹣x2+x+4,2﹣x)由①知,直线BD的解析式为y=﹣x+2,∴﹣(﹣x2+x+4)+2=2﹣x,∴x=2或x=﹣4(舍),当x=2时,y=﹣x2+x+4=﹣×4+2+4=4,∴P(2,4),Ⅱ、当点R在直线l左侧时,记作R',设点P'(x,﹣x2+x+4)(1<x<4),过点P'作P'G'⊥l于G',过点R'作R'H'⊥l于H,∴P'G'=x﹣1,G'Q=﹣x2+x+4﹣1=﹣x2+x+3,同Ⅰ的方法得,△P'QG'≌△QR'H'(AAS),∴R'H'=G'Q=﹣x2+x+3,QH'=P'G'=x﹣1,∴R'(x2﹣x﹣2,x),由①知,直线BD的解析式为y=﹣x+2,∴﹣(x2﹣x﹣2)+2=x,∴x=﹣1+或x=﹣1﹣(舍),当x=﹣1+时,y=﹣x2+x+4=2﹣4,∴P'(﹣1+,2﹣4),即满足条件的点P的坐标为(2,4)或(﹣1+,2﹣4).6.解:(1)直线y=﹣2x+10中,令x=0,则y=10,令y=0,则x=5,∴A(5,0),B(0,10),∵点C是OB中点,∴C(0,5),将A和C代入抛物线y=x2+bx+c中,,解得:,∴抛物线表达式为:y=x2﹣6x+5;(2)联立:,解得:或,∴直线AB与抛物线交于点(﹣1,12)和(5,0),∵点D是直线AB下方抛物线上的一点,设D(m,m2﹣6m+5),∴﹣1<m<5,过点D作DE⊥x轴,交直线AB于点E,∴E(m,﹣2m+10),∴DE=﹣2m+10﹣m2+6m﹣5=﹣m2+4m+5,∴S△ABD===,解得:m=2,∴点D的坐标为(2,﹣3);(3)抛物线表达式为:y=x2﹣6x+5,∵△APB是以AB为直角边的直角三角形,设点P(n,n2﹣6n+5),∵A(5,0),B(0,10),∴AP2=(n﹣5)2+(n2﹣6n+5)2,BP2=n2+(n2﹣6n+5﹣10)2,AB2=125,当点A为直角顶点时,BP2=AB2+AP2,解得:n=或5(舍),当点B为直角顶点时,AP2=AB2+BP2,解得:n=或,而抛物线对称轴为直线x=3,则3﹣=,﹣3=,3﹣=,综上:点P到抛物线对称轴的距离为:或或.7.解:(1)令y=0,得y=x﹣6=0,解得x=6,∴B(6,0),令x=0,得y=x﹣6=﹣6,∴D(0,﹣6),∵点C与点D关于x轴对称,∴C(0,6),把B、C点坐标代入y=﹣x2+bx+c中,得,解得,,∴抛物线的解析式为:y=﹣x2+5x+6;(2)设P(m,0),则M(m,﹣m2+5m+6),N(m,m﹣6),则MN=﹣m2+4m+12,∴△MDB的面积==﹣3m2+12m+36=﹣3(m﹣2)2+48,∵﹣3<0,∴当m=2时,△MDB的面积最大,此时,P点的坐标为(2,0);(3)由(2)知,M(2,12),N(2,﹣4),当∠QMN=90°时,QM∥x轴,则Q(0,12);当∠MNQ=90°时,NQ∥x轴,则Q(0,﹣4);当∠MQN=90°时,设Q(0,n),则QM2+QN2=MN2,即4+(12﹣n)2+4+(n+4)2=(12+4)2,解得,n=4±2,∴Q(0,4+2)或(0,4﹣2).综上,存在以Q,M,N三点为顶点的三角形是直角三角形.其Q点坐标为(0,12)或(0,﹣4)或(0,4+2)或(0,4﹣2).8.解:(1)对于抛物线y=﹣ax2+2ax+3a,对称轴x=﹣=1,∴E(1,0),故答案为(1,0).(2)如图,连接EC.对于抛物线y=﹣ax2+2ax+3a,令x=0,得到y=3a,令y=0,﹣ax2+2ax+3a=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),C(0,3a),∵C,D关于对称轴对称,∴D(2,3a),CD=2,EC=DE,当∠HEF=90°时,∵ED=EC,∴∠ECD=∠EDC,∵∠DCF=90°,∴∠CFD+∠EDC=90°,∠ECF+∠ECD=90°,∴∠ECF=∠EFC,∴EC=EF=DE,∵EA∥DH,∴F A=AH,∴AE=DH,∵AE=2,∴DH=4,∵HE⊥DFEF=ED,∴FH=DH=4,在Rt△CFH中,则有42=22+(6a)2,解得a=或﹣(不符合题意舍弃),∴a=.当∠HFE=90°时,∵OA=OE,FO⊥AE,∴F A=FE,∴OF=OA=OE=1,∴3a=1,∴a=,综上所述,满足条件的a的值为或.(3)结论:EH∥GK.理由:由题意A(﹣1,0),F(0,﹣3a),D(2,3a),H(﹣2,3a),E(1,0),∴直线AF的解析式y=﹣3ax﹣3a,直线DF的解析式为y=3ax﹣3a,由,解得或,∴K(6,﹣21a),由,解得或,∴G(﹣3,﹣12a),∴直线HE的解析式为y=﹣ax+a,直线GK的解析式为y=﹣ax﹣15a,∵k相同,a≠﹣15a,∴HE∥GK.9.解:(1)令x=0时,y=3,∴函数的图象与y轴交点坐标为(0,3),故答案为:(0,3);(2)①令y=0,则ax2+(3a+1)x+3=0,∴(ax+1)(x+3)=0,∴x1=﹣,x2=﹣3,∵二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数.∴a=﹣1,∴二次函数的表达式为y=﹣x2﹣2x+3;②图象如图所示:(3)设点P(m,﹣m2﹣2m+3),当点P为直角顶点时,如图,过点P作PF⊥y轴于F,过点A作AE⊥PF,交FP的延长线于E,∵∠APC=90°,∴∠APE+∠CPF=90°,∵∠APE+∠EAP=90°,∴∠CPF=∠EAP,又∵∠AEP=∠CFP=90°,∴△APE∽△PCF,∴,∴=∴∴﹣(m﹣1)(m+2)=1,∴m1=,m2=,经检验,m1=,m2=是原方程的根;∴点P坐标为(,)或(,);若点A为直角顶点时,如图,过点P作PH⊥x轴于P,∵点A(﹣3,0),点C(0,3),∴OA=OC,又∵∠AOC=90°,∴∠CAO=∠ACO=45°,∵∠CAP=90°,∴∠P AH=45°,∵PH⊥x轴,∴∠P AH=∠APH=45°,∴AH=PH,∴m+3=m2+2m﹣3∴m1=﹣3(舍去),m2=2,∴点P坐标为(2,﹣5);若点C为直角顶点,过点P作PE⊥y轴于E,∵∠ACP=90°,∠ACO=45°,∴∠PCE=45°,∵PE⊥y轴,∴∠PCE=∠CPE=45°,∴PE=CE,∴﹣m=﹣m2﹣2m+3﹣3,∴m1=0(舍去),m2=﹣1,∴点P坐标为(﹣1,4);综上所述:点P坐标为(,)或(,)或(2,﹣5)或(﹣1,4).10.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.11.解:(1)∵直线y=﹣x+2经过B,C两点.∴点C(0,2),∵二次函数y=ax2+bx+c(a≠0)的图象经过A(1,0),B(4,0),点C(0,2),∴,解得:,∴抛物线解析式为y=x2﹣x+2,故答案为:y=x2﹣x+2;(2)∵直线BC解析式为:y=﹣x+2,∴设平移后的解析式为:y=﹣x+2+m,∵平移后直线BC与抛物线有唯一公共点Q∴x2﹣x+2=﹣x+2+m,∴△=4﹣4××(﹣m)=0,∴m=﹣2,∴设平移后的解析式为:y=﹣x,联立方程组得:,∴,∴点Q(2,﹣1);(3)设点M的坐标为(m,m2﹣m+2),∵以E,M,N三点为顶点的直角三角形(其中M为直角顶点)与△BOC相似,∴当△MEN∽△OBC时,∴∠MEN=∠OBC,过点M作MH⊥x轴于H,∴∠EHM=90°=∠BOC,∴△EHM∽△BOC,∴,∴MH=|m2﹣m+2|,EH=|m﹣2|,∵OB=4,OC=2.∴=2或,∴m=3±或m=2±或m=﹣4或m=﹣1或m=1或m=12,当m=3+时,m2﹣m+2=,∴M(3+,),当m=3﹣时,m2﹣m+2=,∴M(3﹣,),当m=2+时,m2﹣m+2=﹣,∴M(2+,﹣),当m=2﹣时,m2﹣m+2=,∴M(2﹣,),当m=﹣4时,m2﹣m+2=20,∴M(﹣4,20),当m=﹣1时,m2﹣m+2=5,∴M(﹣1,5),当m=1时,m2﹣m+2=0,∴M(1,0),当m=12时,m2﹣m+2=44,∴M(12,44),即满足条件的点M共有8个,其点的坐标为(3+,)或(3﹣,)或(2+,﹣)或(2﹣,)或(﹣4,20)或(﹣1,5)或(1,0)或(12,44).12.解:(1)∵抛物线y=ax2+bx+c经过点B(﹣1,0)、E(3,0),∴抛物线的对称轴为x=1,∵点C与点A关于抛物线的对称轴对称,点A(0,﹣3),∴C(2,﹣3),抛物线表达式为y=a(x﹣3)(x+1)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,∴抛物线的表达式为y=x2﹣2x﹣3;(2)如图,过点P作y轴的平行线交AE于点H,由点A,E的坐标得直线AE的表达式为y=x﹣3,设点P(t,t2﹣2t﹣3),则点H(t,t﹣3),∴△P AE的面积S=PH×OE=(t﹣3﹣t2+2t+3)=(﹣t2+3t)=﹣,∴当t=时,S有最大值;(3)∵直线AE表达式中的k值为1,∴∠AEO=45°,①当∠PEA=90°时,∵PE⊥AE,∴直线PE与x轴的夹角为45°,∴设直线PE的表达式为y=﹣x+b,将点E的坐标代入并解得b=3,∴直线PE的表达式为y=﹣x+3,联立得,解得x=﹣2或3(不合题意,舍去)故点P的坐标为(﹣2,5),②当∠P AE=90°时,同理可得,点P(1,﹣4),综上,点P的坐标为(﹣2,5)或(1,﹣4).13.解:(1)由题意,,解得,∴抛物线的解析式为:y=﹣x2+2x+3.(2)如图1中,连接BC,由题意,点P在第四象限,所以∠CBP=90°,过点B作BP⊥BC交抛物线于P,连接PC.对于抛物线y=﹣x2+2x+3,令y=0,可得x2﹣2x﹣3=0,解得x=﹣1或3,∴B(﹣1,0),∵C(0,3),∴直线BC的解析式为y=3x+3,∵PB⊥BC,∴直线PB的解析式为y=﹣x﹣,由,解得或,∴P(,).(3)如图2中,当∠CPB=∠PQB时,∵∠CPB+∠PCB=90°,∴∠PQB+∠PCB=90°,∴∠CPQ=90°,∴PQ⊥PC,∵C(0,3),P(,﹣),∴直线PC的解析式为y=﹣x+3,∴直线PQ的解析式为y=x﹣,由,解得,∴Q(﹣,﹣),根据对称性可知,点Q关于点B的对称点Q′也满足条件,可得Q′(,),综上所述,满足条件的点Q的坐标为(,)或(,).14.解:(1)∵抛物线L1:y=ax2﹣2x的对称轴为直线x=﹣2,∴﹣=﹣2,∴a=﹣.(2)∵抛物线L1:y=﹣x2﹣2x=﹣(x+2)2+2,∴抛物线L1的顶点A(﹣2,2),∵将抛物线L1沿y轴对称,得到抛物线L2,顶点为B,∴B(2,2),∴抛物线L2的解析式为y=﹣(x﹣2)2+2,即y=﹣x2+2x.(3)如图,观察图象可知,以A或B为直角顶点时,可得P(﹣2,﹣6)或(2,﹣6)当AB为斜边时,∵A(﹣2,2),B(2,2),∴OA=OB=2,AB=4,∴AB2=OA2+OB2,∴∠AOB=90°,∴当点P与O重合时,△APB是直角三角形,综上所述,满足条件的点P的坐标为(﹣2,﹣6)或(2,﹣6)或(0,0).15.解:(1)直线l:y=x﹣3,当x=0时,y=﹣3,∴顶点(0,﹣3),∴抛物线的解析式为:y=x2﹣3,即k=﹣3;(2)由题意得:x2﹣3=x﹣3,解得:x1=0,x2=1,∴C(1,﹣2),当点B与点C重合时,如图1,顶点P(1,﹣2),∴平移后抛物线的解析式为:y=(x﹣1)2﹣2=x2﹣2x﹣1;(3)∵抛物线顶点P始终保持在直线l上,∴设P(m,m﹣3),则平移后的抛物线的解析式为:y=(x﹣m)2+m﹣3,∴,解得:,∴B(,),∵抛物线x2﹣3沿直线l向右上方平移,∴当△ABP为直角三角形时,∠P AB不可能为直角,所以分两种情况:①当∠APB=90°时,如图2,AP2+BP2=AB2,∴+=,∴m(m﹣1)(m﹣3)=0,∴m1=0(舍),m2=1(舍),m3=3,∴P(3,0);②当∠ABP=90°时,如图3,过B作EF⊥y轴于F,过P作PE⊥EF于E,∴∠ABF+∠EBP=∠EBP+∠EPB=90°,∴∠ABF=∠EPB,∴tan∠ABF=tan∠EPB,即,∴=,解得:m1=﹣(舍),m2=,∴P(,﹣3),综上,P点的坐标是(3,0)或(,﹣3).16.解:(1)∵点A(﹣1,0),C(4,0),∴AC=5,OC=4,∵AC=BC=5,∴B(4,5),把A(﹣1,0)和B(4,5)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=x2﹣2x﹣3;(2)如图1,∵直线AB经过点A(﹣1,0),B(4,5),设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3),∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),∴S△ABF===.(3)存在,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴设P(1,m),分三种情况:①以点B为直角顶点时,由勾股定理得:PB2+AB2=P A2,∴(4﹣1)2+(m﹣5)2+(4+1)2+52=(1+1)2+m2,解得:m=8,∴P(1,8);②以点A为直角顶点时,由勾股定理得:P A2+AB2=PB2,∴(1+1)2+m2+(4+1)2+52=(4﹣1)2+(m﹣5)2,解得:m=﹣2,∴P(1,﹣2);③以点P为直角顶点时,由勾股定理得:PB2+P A2=BA2,∴(1+1)2+m2+(4﹣1)2+(m﹣5)2=(4+1)2+52,解得:m=6或﹣1,∴P(1,6)或(1,﹣1);综上,点P的坐标为(1,8)或(1,﹣2)或(1,6)或(1,﹣1).17.解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴,∴,∴抛物线的解析式为y=﹣x2+2x+3;(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∵y=﹣x2+2x+3与x轴交于另一点B,∴令y=0,﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0),B(3,0),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)如图,∵P、D、C构成以PC为底边的等腰三角形,∴点D在PC的垂直平分线上,∴点C与点P关于对称轴直线x=1对称,∴点P的坐标为(2,3),∵S四边形PBCD=S△DCP+S△CBP,∴S四边形PBCD=×2×(4﹣3)+×2×3=4.18.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠P AD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.19.解:(1)∵抛物线C的顶点坐标为(2,8),∴可以假设抛物线C的解析式为y=a(x﹣2)2+8,把(0,6)代入y=a(x﹣2)2+8,得a=﹣,∴抛物线C的解析式为y=﹣(x﹣2)2+8,即y=﹣x2+2x+6,令y=0,则有﹣x2+2x+6=0,解得x=﹣2或6,∴A(﹣2,0),B(6,0).(2)设直线BD的解析式为y=kx+b,则,解得,∴直线BD的解析式为y=﹣x+6,设P(t,﹣t+6),则0<t<6,Q(t,﹣t2+2t+6),∵E,Q关于x=2的长,∴E(﹣t+4,﹣t2+2t+6),∴QP=﹣t2+2t+6﹣(﹣t+6)=﹣t2+3t,QE=|2t﹣4|,∵QP⊥x轴,QE∥x轴,∴∠PQE=90°,∴当QE=PQ时,△PQE是等腰直角三角形,即﹣t2+3t=|2t﹣4|,①当﹣t2+3t=2t﹣4时,解得t=4或﹣2(舍弃),此时P(4,2).②当﹣t2+3t=﹣2t+4时,解得t=5﹣或5+(舍弃),此时P(5﹣,1+).∴满足条件的抛物线C′的解析式为y=﹣(x﹣4)2+2或y=﹣(x﹣5+)2+1+.20.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;(2)当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3,如图1,过D作DG垂直抛物线对称轴于点G,设D(x,﹣x2+2x+3),∵DF∥AC,∴∠DFG=∠ACO,而抛物线对称轴为x=1,∴DG=x﹣1,DF=(x﹣1),∴DE+DF=﹣x2+2x+3+(x﹣1)=﹣x2+(2+)x+3﹣=﹣(x﹣)2+,∵﹣1<0,∴当x=,DE+DF有最大值为;(3)①存在;如图2,过点C作AC的垂线交抛物线于点P1,∵直线AC的解析式为y=3x+3,则直线AC倾斜角的正切值为3,则直线P1C倾斜角的正切值为,∴直线P1C的解析式可设为y=﹣x+m,把C(0,3)代入得m=3,∴直线P1C的解析式为y=﹣x+3,解方程组,解得,则此时P1点坐标为(,);过点A作AC的垂线交抛物线于P2,同理可设直线AP2的解析式可设为y=﹣x+n,把A(﹣1,0)代入上式并解得n=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得,则此时P2点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣);②答:﹣<t<1或2<t<.如图3,抛物线y=﹣x2+2x+3对称轴为直线x=1,过点C作CQ1⊥AC交对称轴于Q1,过点A作AQ2⊥AC交对称轴于Q2,∵A(﹣1,0),C(0,3),∴直线AC解析式为y=3x+3,∵CQ1⊥AC,∴直线CQ1解析式为y=﹣x+3,令x=1,得y=﹣×1+3=,∴Q1(1,);∵AQ2⊥AC,∴直线AQ2解析式为y═﹣x﹣,令x=1,得y=﹣×1﹣=﹣,∵∠AQC=90°时,AQ2+CQ2=AC2,∴(﹣1﹣1)2+t2+(1﹣0)2+(t﹣3)2=()2,解得:t1=1,t2=2,∴当1≤t≤2时,∠AQC≥90°,∵△ACQ为锐角三角形,点Q(1,t)必须在线段Q1Q2上(不含端点Q1、Q2),∴﹣<t<1或2<t<。
中考数学压轴题专题-二次函数与三角函数综合问题
专题17二次函数与三角函数综合问题【例1】(2021•盘锦)如图,抛物线y=﹣x2+2x+6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线y=x﹣2与y轴交于点D,与x轴交于点E,与直线BC交于点F.(1)点F的坐标为;(2)如图1,点P为第一象限抛物线上的一点,PF的延长线交OB于点Q,PM⊥BC于点M,QN⊥BC于点N,若=,求点P的坐标;(3)如图2,点S为第一象限抛物线上的一点,且点S在射线DE上方,动点G从点E出发,沿射线DE方向以每秒4个单位长度的速度运动,当SE=SG,且tan∠SEG=时,求点G的运动时间t.【例2】(2021•十堰)已知抛物线y=ax2+bx﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.(1)求抛物线的解析式;(2)如图1,当tan∠ACM=2时,求M点的横坐标;(3)如图2,过点P作x轴的平行线l,过M作MD⊥l于D,若MD=MN,求N点的坐标.【例3】(2021•荆州)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;(2)直接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA 的面积为,当t=时,求抛物线的解析式.【例4】(2021•日照)已知:抛物线y=ax2+bx+c经过A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式;(2)如图1,点P为直线BC上方抛物线上任意一点,连PC、PB、PO,PO交直线BC于点E,设=k,求当k取最大值时点P的坐标,并求此时k的值.(3)如图2,点Q为抛物线对称轴与x轴的交点,点C关于x轴的对称点为点D.①求△BDQ的周长及tan∠BDQ的值;②点M是y轴负半轴上的点,且满足tan∠BMQ=(t为大于0的常数),求点M的坐标.1.(2021•镇江二模)已知抛物线y=ax2+bx+10交x轴于点A(﹣10,0)和点B(2,0),其对称轴为直线l,点C在l上,坐标为(m,﹣3),射线AB沿着直线AC翻折,交l于点F,如图(1)所示.(1)a=,b=;(2)如图(2),点P在x轴上方的抛物线上,点E在直线l上,EP=EB且∠BPE=∠BAF,求证:AB •BE=PB•AF.(3)在(2)的条件下,直接写出tan∠BAF的值=;直接写出点P的坐标(,).2.(2021•慈溪市校级四模)如图,边长为4的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PM⊥OA于点M,点Q的坐标为(0,3),连接PQ.(1)求出抛物线的解析式;(2)当点P与点A或点C重合时,PQ+PM=,小聪猜想:对于A,C间的任意一点P,PQ与PM之和是一个固定值,你认为正确吗,判断并说明理由;(3)延长MP交BC于点N,当∠NPQ为锐角,cos∠NPQ=时,求点P的坐标.3.(2021•道里区二模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx﹣2交y轴于点A,该抛物线的顶点为B(2,﹣4).(1)如图(1),求a,b的值;(2)如图(2),过点B作x轴的垂线,点C为垂足,横坐标为t的点P在抛物线上,点P在第四象限且位于BC右侧,连接PA,PC,△ACP的面积为S,求S与t之间的函数关系式,不要求写出自变量t 的取值范围;(3)如图(3),在(2)的条件下,连接PB,点D与点A关于原点对称,过点D作x轴的平行线与抛物线在第二象限交于点E,点F在第三象限,点G在CB的延长线上,若EF=PC,∠DEF+∠BCP=150°,∠DEG﹣∠PFG=30°,tan∠EGF=,求点P的坐标.4.(2021•金坛区模拟)如图,在平面直角坐标系xOy中,已知二次函数y=﹣(x﹣2)2的图象与y轴交于点B,抛物线的对称轴是直线l,顶点是A,过点B作CD⊥BA交x轴于点C,交抛物线于点D,连接AD.将线段AB沿线段AD平移得到EF(点E与点A对应、点F与点B对应),连接BF.(1)填空:线段OA=;(2)若点F恰好落在直线L上,求AF的长;(3)连接DF并延长交抛物线于点Q,若tan∠ADF=,求点Q的坐标.5.(2021•仙桃校级模拟)如图,已知抛物线C1:y=ax2+bx+c的顶点坐标为(0,﹣2),且经过点A(﹣2,2),动直线l的解析式为:y=﹣4x+e.(1)求抛物线C1的解析式;(2)将抛物线C1向上平移两个单位得到新抛物线C2,过点A的直线交抛物线C2于M、N两点(M位于点N的左边),动直线经过点M,与抛物线C2的另一个交点为点P,求证:直线PN恒过一个定点;(3)图3中,在(1)的条件下,x轴正半轴上有一点B(1,0),M为抛物线C1上在第一象限内的点,若∠MAB为锐角,且tan∠MAB>2,直接写出点M的横坐标x的取值范围.6.(2021•台安县模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,交抛物线于点M,过点C作CF⊥l于F.(1)求抛物线解析式.(2)如图2,当点F恰好在抛物线上时(与点M重合),①求线段EH的长;②连接DF,求tan∠FDE的值;③试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.7.(2021•江阴市模拟)已知二次函数y=ax2﹣2ax+c(a<0)的图象交x轴于点A、B两点(A在B左侧),与y轴交于点C,与其对称轴交于点D,直线BD交y轴于点E,BD=2DE.(1)求点A的坐标;(2)①连接AC,BC,若△ABC外接圆的圆心正好在x轴上,求二次函数表达式;②连接CD,若tan∠CDB=tan∠OBD,求此时二次函数表达式.8.(2021•烟台)如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B(4,0),与y轴正半轴交于点C,且OC=2OA,抛物线的顶点为D,对称轴交x轴于点E.直线y=mx+n经过B,C两点.(1)求抛物线及直线BC的函数表达式;(2)点F是抛物线对称轴上一点,当FA+FC的值最小时,求出点F的坐标及FA+FC的最小值;(3)连接AC,若点P是抛物线上对称轴右侧一点,点Q是直线BC上一点,试探究是否存在以点E 为直角顶点的Rt△PEQ,且满足tan∠EQP=tan∠OCA.若存在,求出点P的坐标;若不存在,请说明理由.9.(2020•海安市一模)已知平面直角坐标系xOy中,抛物线L:y=ax2﹣2ax+a(a>0)与y轴相交于A 点,过点A作x轴的平行线与抛物线L的另一交点为B点.直线y=kx﹣k(k>a)与抛物线L相交于C,D两点(点C在点D的左侧),与y轴交于E点,过点D作DH⊥AB,垂足为H,连接EH交x轴于G 点.(1)若a=1,k=2,求DH的长;(2)当a=13时,求cos∠AHE的值;(3)连接BC,求证:四边形BCGH是平行四边形.10.(2020•惠山区二模)已知:在平面直角坐标系xOy中,二次函数y=mx2+2mx﹣4(m≠0)的图象与x 轴交于点A、B(点A在点B的左侧),与y轴交于点C,△ABC的面积为12.(1)求这个二次函数的解析式;(2)点D的坐标为(﹣2,1),点P在二次函数的图象上,∠ADP为锐角,且tan∠ADP=2,求出点P的横坐标.11.(2020•肥城市四模)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6(a≠0)交x轴A(﹣4,0),B(2,0),在y轴上有一点E(0,﹣2),连接AE,D是第二象限内的抛物线上一动点.(1)求二次函数的解析式;(2)求△ADE面积的最大值并写出此时点D的坐标;(3)若tan∠AED=13,求此时点D的坐标.12.(2020•历下区校级模拟)如图所示,在平面直角坐标系中,二次函数y=ax2+bx+6交x轴于A(﹣4,0)、B(2,0),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)点D是第二象限内的抛物线上一动点.若tan∠AED=13,求此时点D坐标;(3)连接AC,点P是线段CA上的动点,连接OP,把线段PO绕着点P顺时针旋转90°至PQ,点Q是点O的对应点.当动点P从点C运动到点A时,判断动点Q的轨迹并求动点Q所经过的路径长.14.(2019•丹东)如图,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=−12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t (0≤t≤5),请直接写出S与t的函数关系式.15.(2020•成都校级模拟)如图,抛物线y=﹣x2+bx+c与直线y=x+4交于C、D两点,其中点C在y轴上,点D的坐标为(6,7).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F,作PM⊥CD于点M.(1)求抛物线的解析式及sin∠PFM的值.(2)设点P的横坐标为m:①若P在CD上方,用含m的代数式表示线段PM的长,并求出线段PM长的最大值;②当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.16.(2020•武汉模拟)如图,抛物线y═−13x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B的坐标为(3,0),点C的坐标为(0,5).有一宽度为1,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.(1)求抛物线的解析式及点A的坐标;(2)当点M和N都在线段AC上时,连接MF,如果sin∠AMF=Q的坐标;(3)在矩形的平移过程中,是否存在以点P,Q,M,N为顶点的四边形是平行四边形,若存在,求出点M的坐标;若不存在,请说明理由.17.(2020•河东区模拟)如图,已知抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式;(2)设∠DBC=α,∠CBE=β,求sin(α﹣β)的值;(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由.18.(2019•新都区校级模拟)如图1,在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别相交于点A和点B,抛物线y=ax2+bx+c经过A,B两点,且其对称轴是直线x=2.(1)求抛物线的函数表达式;(2)设P是抛物线上一动点,若在此抛物线上,有且仅有三个点P,使△ABP的面积等于定值S,请求出该定值S和这三个P点的坐标;(3)如图2,动点C,D分别在x轴上方、下方的抛物线上运动,且满足∠CAO=∠DAO,连接CD交x轴于点E,当点C,D运动时,∠CEO的度数发生变化吗?若不变,求出sin∠CEO的值;若变化,请求出∠CEO的变化范围.。
二次函数与直角三角形有关的问题
二次函数的综合——与直角三角形有关的问题一.知识回顾(一)证明直角三角形(或直角)的定理:1.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2, 那么这个三角形是直角三角形;两腰的夹角叫做顶角,腰和底边 的夹角叫做底角.2.半圆(或直径)所对的圆周角是直角. (二)与直角三角形(或直角)有关的线段关系:1. 勾股定理:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2 ;2. 辅助线构造“一线三垂直”相似三角形模型(如下图),对应边的比相等.二.例题解析例1.如图,在平面直角坐标系xOy 中,抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为D ,连接BC 、CD 、BD .证明:△BCD 是直角三角形. 解:x =0时,y =3;y =0时,x 1=-1,x 2=3; ∴C 为(0,3),点B 为(3,0).∵y =-x 2+2x +3=-(x -1)2+4,∴抛物线的顶点D 为(1,4),方法一:∵BC 2=(3-0)2+(0-3)2=18,CD 2=(1-0)2+(4-3)2=2,BD 2=(3-1)2+(0-4)2=20, ∴BC 2+CD 2=BD 2,即∠DCB =90°,△BCD 是直角三角形.方法二:过点D 做DE ⊥y 轴于点E , 则DE =CE =1,OB =OC =3,∴∠DCE =∠BCO =45°,即∠BCD =90°,△BCD 是直角三角形.方法三:过点D 做DE ⊥y 轴于点E ,则DE =CE =1,OB =OC =3,∴CE DEBO CO =,又∵∠CED =∠BOC =90°,∴△CED ∽△BOC ,∠ECD =∠OBC , 而∠OBC+∠OCB =90°,∴∠BCD =180°-(∠ECD+∠OCB )=90°, △BCD 是直角三角形.已知三个顶点判断直角三角的方法:(1) 用勾股定理逆定理证明;(2)构造“一线三垂直”相似证明;(3)根据坐标判断某些特殊角,求出直角.交于点C ,点E 是抛物线对称轴上一点,若△ACE 是直角三角形,求出点E 的坐标. 解:x =0时,y =3,y =0时,x 1=-1,x 2=3; ∴C 为(0,3),点A 为(-1,0). ∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的的对称轴为直线x =1. 设点E 的坐标为(1,a ), 方法一:AC 2=[0-(-1)]2+(3-0)2=10, EA 2=[1-(-1)]2+(a -0)2=a 2+4, CE 2=(1-0)2+(a -3)2=a 2-6a +10, 若∠CAE =90°,则CE 2=AC 2+EA 2, 即a 2-6a +10=10+a 2+4,解得:a =-32,点E 为(1,-32); 若∠ACE =90°,则AE 2=AC 2+CE 2,即a 2+4=10+a 2-6a +10,解得:a =38,点E 为(1,38);若∠CEA =90°,则AC 2=CE 2+EA 2,即10=a 2-6a +10+a 2+4,解得:a 1=1,a 2=2,点E 为(1,1)或(1,2);综上所述,点E 为(1,-32),(1,38),(1,1)或(1,2).方法二:若∠CAE =90°,过点A 作直线l //y 轴,分别过点C 、点E 作CM ⊥l 于点M ,EN ⊥l 于点N , 可证△AMC ∽△ENA , ∴MA NECM NA =,即3)1(11−−=−a , 解得:a =-32,∴点E 为(1,-32);若∠ACE =90°,过点C 作直线l //x 轴,分别过点A 、点E 作AM ⊥l 于点M ,EN ⊥l 于点N , 可证△AMC ∽△CNE ,∴AMCNMC NE =,即3113=−a ,解得:a =38,∴点E 为(1,38); 若∠AEC =90°,过点E 作直线l //y 轴,分别过点A 、点C 作AM ⊥l 于点M ,CN ⊥l 于点N ,可证△AME ∽△ENC ,∴EN AM NC ME =,即aa −=321, 解得:a 1=1,a 2=2,点E 为(1,1)或(1,2); 综上所述,点E 为(1,-32),(1,38),(1,1)或(1,2). 直角三角形已知两个顶点,求第三个顶点坐标的方法:(1)按直角顶点分类(“一圆两垂直”);(2)用勾股定理或构造“一线三垂直”相似列方程计算.交于点C ,连接BC ,点M ,N 分别是线段AB ,BC 上的动点,且AM =BN ,连接MN .当△BMN 是直角三角形时,求点M 的坐标. 方法一:解:x =0时,y =3;y =0时,x 1=-1,x 2=3; ∴A 为(-1,0),B 为(3,0),C 为(0,3). 设点M 坐标为(m ,0),∴BN =AM =m -(-1)=m +1,BM =3-m , ∵OB =OC =3,∠BOC =90°, ∴∠CBO =∠BCO =45°. 若∠MNB =90°, △BMN ∽△BCO ,则BN BM 2=,即()123+=−m m ,解得524−=m , ∴点M 的坐标为(524−,0); 若∠NMB =90°,△BMN ∽△BOC ,则BM BN 2=, 即()m m −=+321,解得247−=m ,∴点M 的坐标为(247−,0);综上所述,点M 坐标为(524−,0)或(247−,0).方法二:解:x =0时,y =3;y =0时,x 1=-1,x 2=3; ∴A 为(-1,0),B 为(3,0),C 为(0,3). ∴直线BC 的解析式为y =-x +3, ∵OB =OC =3,∠BOC =90°, ∴∠CBO =∠BCO =45°. 设点A M =BN=m ,过点N 作NG ⊥x 轴于点G , 在Rt △BNG 中,m BN BG NG 2222===, ∴点M 为(m -1,0),N 为(m 223−,m 22), ∴BM 2=(3-m +1)2=m 2-8m +16, BN 2=2222m =m 2, MN 2=22222231+ +−−m m m=162482222+−−+m m m m , 若∠MNB =90°,则MN 2+BN 2=MB 2,G即162482222+−−+m m m m +m 2=m 2-8m+16, 解得m 1=0(舍去),m 2=424−, ∴点M 的坐标为(524−,0); 若∠NMB =90°, 则MN 2+BM 2=NB 2,即162482222+−−+m m m m +m 2-8m+16=m 2, 解得m 1=4(舍去),m 2=248−, ∴点M 的坐标为(247−,0);综上所述,点M 坐标为(524−,0)或(247−,0).直角三角形已知一个顶点,另两个点伴随运动,求动点坐标的方法: (1)按直角顶点分类;(2)用勾股定理或相似列方程计算.三.方法总结:四.变式训练:1.如图,已知抛物线经过原点O ,顶点为A (1,1),且与直线y =x ﹣2交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求证:△ABC 是直角三角形.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)分别过A 、C 两点作x 轴的垂线,交x 轴于点D 、E 两点,结合A 、B 、C 三点的坐标可求得∠ABO =∠CBO =45°,可证得结论;解:(1)∵顶点坐标为(1,1), ∴设抛物线解析式为y =a (x ﹣1)2+1, 又抛物线过原点,∴0=a (0﹣1)2+1,解得a =﹣1, ∴抛物线解析式为y =﹣(x ﹣1)2+1, 即y =﹣x 2+2x ,联立抛物线和直线解析式可得,解得或,∴B (2,0),C (﹣1,﹣3);(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形.2.如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由.【分析】(1)由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c,求得y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,E(6,﹣1);②若A为直角顶点,AE⊥AB,E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)不符合题意;解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,,,(m﹣2)2(m﹣6)(m+2)=﹣16(m+2)(m﹣2),(m+2)(m﹣2)[(m﹣2)(m﹣6)+16]=0,∴m+2=0或m﹣2=0,或(m﹣2)(m﹣6)+16=0(无解)解得m=2或﹣2(不符合题意舍去),∴点E的坐标E(6,﹣1)或E(10,﹣13).3.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标.【分析】(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=∠OCB,根据相似三角形的判定方法,当=时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即=;当=时,△CMN∽△CBO,于是有∠CNM=∠COB=90°,即=,然后分别求出m的值即可得到M点的坐标;解:(1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,∴抛物线解析式为y=﹣x2+x+4;∵AC=BC,CO⊥AB,∴OB=OA=3,∴B(3,0),∵BD⊥x轴交抛物线于点D,∴D点的横坐标为3,当x=3时,y=﹣×9+×3+4=5,∴D点坐标为(3,5);(2)在Rt△OBC中,BC===5,设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠MCN=∠OCB,∴当=时,△CMN∽△COB,则∠CMN=∠COB=90°,即=,解得m =,此时M点坐标为(0,);当=时,△CMN∽△CBO,则∠CNM=∠COB=90°,即=,解得m=,此时M点坐标为(0,);综上所述,M点的坐标为(0,)或(0,).4.如图1,在平面直角坐标系中,直线l1:y=x+1与直线l2:x=﹣2相交于点D,点A是直线l2上的动点,过点A作AB⊥l1于点B,点C的坐标为(0,3),连接AC,BC.设点A 的纵坐标为t,△ABC的面积为s.(1)当t=2时,请直接写出点B的坐标;(2)在l2上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.【分析】(1)先根据t=2可得点A(﹣2,2),因为B在直线l1上,所以设B(x,x+1),利用y=0代入y=x+1可得G点的坐标,在Rt△ABG中,利用勾股定理列方程可得点B 的坐标;(2)先把(7,4)代入s=中计算得b的值,计算在﹣1<t<5范围内图象上一个点的坐标值:当t=2时,根据(1)中的数据可计算此时s=,可得坐标(2,),代入s=a(t+1)(t﹣5)中可得a的值;解:(1)如图1,连接AG,当t=2时,A(﹣2,2),设B(x,x+1),在y=x+1中,当x=0时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2)2+(x+1﹣2)2+x2+(x+1﹣1)2=(﹣2)2+(2﹣1)2,解得:x1=0(舍),x2=﹣,∴B(﹣,);(2)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(﹣2,1),∵D(﹣2,﹣1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1﹣1)2+(x+2)2+(x+1+1)2=22,解得:x1=﹣1,x2=﹣2(舍),∴B(﹣1,0),即B在x轴上,∴AB==,AC==2,∴S△ABC===2;②当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(﹣2,t),D(﹣2,﹣1),∴(x+2)2+(x+1﹣t)2=(x+2)2+(x+1+1)2,(x+1﹣t)2=(x+2)2,x+1﹣t=x+2或x+1﹣t=﹣x﹣2,解得:t=﹣1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(﹣2)2+(t﹣3)2+x2+(x+1﹣3)2=(x+2)2+(x+1﹣t)2,把t=2x+3代入得:x2﹣3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(﹣2,9),B(3,4),∴AC==2,BC==,∴S△ABC===10;当x=0时,如图6,此时,A(﹣2,3),AC=2,BC=2,∴S△ABC===2.。
人教版中考数学一轮复习--二次函数与三角形的综合应用(精品课件)
若不存在,请说明理由.
(图1)
解:存在.∵PD∥OB,
∴∠DPC=∠BOC,∠PDC=∠OBC,
∴△DPC∽△BOC,∴CCOP=CCDB=OPDB.
∵SS12=CCDB,SS23=CCOP,∴SS12+SS23=2CCOP.
(答图3)
如答图 3,过点 P 作 PH⊥x 轴,垂足为 H,PH 交 AB 于点
①若-1≤a≤- 1 ,求线段MN长度的取值范围; 2
解:由(2)知ax2+(a-2)x-2a+2=0, ∵a≠0,∴x2+1-2ax-2+2a=0, ∴(x-1)x-2a-2=0,解得 x=1 或 x=2a-2,
将 x=2a-2 代入 y=2x-2,得 y=4a-6, ∴N 点的坐标为2a-2,4a-6. ∴MN2=2a-2-12+(4a-6)2=2a02 -6a0+45=20(1a-32)2. ∵-1≤a≤-12,∴-2≤1a≤-1, ∴易知 MN2 随1a的增大而减小,
ax+b有一个公共点M(1,0),且a<b. (3)直线与抛物线的另一个交点记为N.
②求△QMN面积的最小值.
解:如答图
1,作抛物线的对称轴
x=-12交直线
(答图1) y=2x-2 于 E
点,将 x=-12代入 y=2x-2,得 y=-3,∴E-12,-3.
设△QMN 的面积为 S,
∵M(1,0),N2a-2,4a-6,a<0, ∴S=S△QEN+S△QEM=12|(2a-2)-1|·|-94a-(-3)|=247-3a-278a, ∴易得 27a2+(8S-54)a+24=0, ∴Δ=(8S-54)2-4×27×24≥0,即(8S-54)2≥(36 2)2. ∵a<0,∴S=247-3a-278a>247,
14中考复习课件(二次函数与直角三角形)
(2)当 MQ=DC=8 时,四边形 CQMD 是平行四边形.
1 解方程 m2 m 8 8 ,得 m=4,或 m=0(舍去) . 4
此时点 P 是 OB 的中点,N 是 BC 的中点, N(4,-2),Q(4,-6). 所以 MN=NQ=4.所以 BC 与 MQ 互相平分. 所以四边形 CQBM 是平行四边形. (3)存在两个符合题意的点 Q, 分别是(-2,0),(6,-4).
1 2 3 抛物线:y x x 4 4 2
打开动感体验——
因动点产生的直角三角形问题
例1
2013年山西省中考第26题
1 3 1 解: (1)由 y x2 x 4 ( x 2)( x 8) , 4 2 4
得 A(-2,0),B(8,0),C(0,-4).
1 (2)直线 DB 的解析式为 y x 4 . 2
解得 x=6.此时 Q(6,-4). ②如图 4,当∠BDQ=90° 时,
图3
QG DH 2. GD HB
1 4 ( x 2)( x 8) 4 所以 2. x
解得 x=-2.此时 Q(-2,0).
图4
因动点产生的直角三角形问题
例2
2012年杭州市中考第24题 在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的 图象交于点A(1,k)和点B(-1,-k). (1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随x增大而增大,求k应满 足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的 直角三角形时,求k的值.
商洛双语中考复习
第三章 函数
平面直角坐标系与函数 (已复习)
2021届中考数学专题复习训练——二次函数 专题9二次函数综合之等腰直角三角形和等边三角形的判定
等边三角形的判定【经典例题1】如图所示,已知抛物线的顶点为坐标原点O ,矩形ABCD 的顶点A ,D 在抛物线上,且AD 平行x 轴,交y 轴于点F ,AB 的中点E 在x 轴上,B 点的坐标为(2,1),点P (a ,b )在抛物线上运动.(点P 异于点O )(1)求此抛物线的解析式.(2)过点P 作CB 所在直线的垂线,垂足为点R ,①求证:PF=PR ;②是否存在点P ,使得△PFR 为等边三角形?若存在,求出点P 的坐标;若不存在,请说明理由;③延长PF 交抛物线于另一点Q ,过Q 作BC 所在直线的垂线,垂足为S ,试判断 △RSF 的形状.【解析】(1)∵抛物线的顶点为坐标原点,∴A 、D 关于抛物线的对称轴对称;∵E 是AB 的中点,∴O 是矩形ABCD 对角线的交点,又B(2,1)∴A(2,−1)、D(−2,−1);由于抛物线的顶点为(0,0),可设其解析式为:y=ax 2,则有:4a =−1,a =−41 ∴抛物线的解析式为:y=−41x 2.(2)①证明:由抛物线的解析式知:P(a ,−41a 2),而R(a ,1)、F(0,−1), 则:PF=222)141()0(+-+-a a ,PR=1−(−41a 2)=41a 2+1. ∴PF=PR.②由①得:RF=42+a ;若△PFR 为等边三角形,则RF=PF=PR ,得:42+a =41a 2+1,即:161a 4−21a 2−3=0,得: a 2=−4(舍去),a 2=12;∴a =±23,−41a 2=−3; ∴存在符合条件的P 点,坐标为(23,−3)、(−23,−3).③同①可证得:QF=QS ;在等腰△SQF 中,∠1=21(180°−∠SQF); 同理,在等腰△RPF 中,∠2=21(180°−∠RPF); ∵QS ⊥BC 、PR ⊥BC ,∴QS ∥PR ,∠SQP+∠RPF=180°∴∠1+∠2=21(360°−∠SQF−∠RPF)=90° ∴∠SFR=180°−∠1−∠2=90°,即△SFR 是直角三角形。
二次函数综合专题三:二次函数与直角三角形
二次函数综合专题三:二次函数与直角三角形常用知识点汇总:1.两点间的距离公式:()()22B A B A x x y y AB -+-=2. 中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫ ⎝⎛++22B A B A y y x x , 3. 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠(3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k4.函数的交点问题:二次函数(c bx ax y ++=2)与一次函数(h kx y +=) (1)解方程组⎩⎨⎧h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。
(2)解方程组⎩⎨⎧h kx y c bx ax y +=++= 2,即()02=-+-+h c x k b ax ,通过∆可判断两个图象的交点的个数有两个交点⇔ 0>∆ 仅有一个交点⇔ 0=∆ 没有交点⇔ 0<∆1如图,二次函数y =−x2+bx +c 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,OB =1,OC =3.(1)求抛物线的解析式;(2)如图,点P 为抛物线上的一点,且在直线AC 上方,当△ACP 的面积是827时,求点的坐标; (3)是否存在抛物线上的点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由..2.已知抛物线y =ax2+bx +c 与x 轴交于A (−1,0)和B (2,0),与y 轴交于点C (0,−2).(1)求这条抛物线的解析式和顶点M 的坐标.(2)求四边形ABMC 的面积.(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.变式:在对称轴上是否存在点P ,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由3.如图,抛物线y = -12x2+mx+n与x轴交于点A、B两点,与y轴交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2).(1)求抛物线的解析式;(2)判断△ACD的形状,并说明理由;(3)在抛物线对称轴上是否存在一点P,使得△PBC是以P为直角顶点的直角三角形,若存在,求点P的坐标;若不存在,说明理由.。
第2章二次函数直角三角形存在问题(教案)
此外,学生在解决实际问题时,对于二次函数性质的运用还不够熟练。这提示我在今后的教学中,需要加强对二次函数性质的讲解和练习,让学生在实际问题中更好地运用这一知识点。
第2章二次函数直角三角形存在问题(教案)
一、教学内容
第2章二次函数直角三角形存在问题
1.教材章节:本节课选自人教版八年级数学下册第2章“二次函数与直角三角形”。
2.教学内容:
(1)掌握二次函数与直角三角形的联系,理解二次函数在直角三角形中的应用。
(2)能够利用二次函数的性质解决直角三角形中存在的问题,如求斜边长、面积等。
2.教学难点
本节课的教学难点包括以下内容:
a.理解二次函数与直角三角形之间的联系,对于初学者来说,这部分内容较为抽象,难以理解。
b.建立数学模型解决实际问题时,学生可能会感到困惑,不知道如何将实际问题转化为数学表达式。
c.在解决直角三角形问题时,学生可能会忘记二次函数的相关性质,导致解题困难。
例:在直角三角形ABC中,已知斜边AB=5,∠C=30°,求该直角三角形的面积。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数与直角三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
【初中数学】专题3:二次函数与等腰直角三角形
二次函数与等腰直角三角形null1 .如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC 于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF 成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S=S△AOE+S△POE,四边形AOPE=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2 .定义:函数的伴随函数是.如:函数的伴随函数是.(1)函数的图像经过点,,求它的伴随函数;(2)函数的图像与它的伴随函数图像交于A,B两点(点A在点B的左侧),与伴随函数的对称轴交于点P,它的伴随函数图像交轴于C,D两点(点C在点D的左侧),伴随函数的图像经过点(-l,0).设的面积为S.①函数与它的伴随函数图像交于点(________,________),(________,________)(用含b的代数式表示);②当伴随函数的对称轴在直线右侧时,求S与b之间的函数关系式;(3)函数图像与它的伴随函数图像交于A,B两点(点A在点B的左侧).与x轴交于点Q,点A关千它的伴随函数对称轴的对称点为点,当是等腰直角三角形时,直接写出c的值.【答案】(1);(2)①;;②当时,;当时,;当时,;(3)1,-1,【解析】【分析】(1)将点,代入,解得b、c的值,再代入伴随函数即可;(2)①图象交点即是解析式方程的公共解,联立两个解析式,转化成解一元二次方程,即可解出两个交点的横坐标,将代入伴随函数,可得c与b的关系式,从而解得交点坐标;②由①中c、b的关系式解得函数与其伴随函数,分别求出点C、D、P的坐标,分三种情况讨论:或,根据三角形面积公式解题;(3)分两种情况讨论:当b>0时与当b<0时,由抛物线的对称性解得坐标,进而再讨论当或时,由直线AQ的斜率解题即可.【详解】解:(1)把(3,0),(0,-3)代入中,得解得∴伴随函数是.(2)①解得或,伴随函数经过,,函数与它的伴随函数图象相交于点,故答案为:,;②由①知,伴随函数经过,,函数的伴随函数是令y=0,得函数当时,.当时,.当时,.(3)分两种情况讨论:当b>0时,,点A关于对称轴的对称点,①当时,,等腰直角三角形中;②当时,,,,;当b<0时,,点A关于对称轴的对称点,①当时,,等腰直角三角形中;②当时,,,,;综上所述,c=1,-1,.【点睛】本题考查二次函数综合,其中涉及二次函数与x轴的交点、二次函数的对称轴、二次函数与一次函数图象的交点、一次函数的解析式、二次函数的解析式、一元二次方程、等腰直角三角形、三角形面积、分类讨论法等知识,是重要考点,难度较难,掌握相关知识是解题关键.3 .如图,已知直线交轴于点,交轴于点,抛物线经过点,与直线交于、两点,点为抛物线上的动点,过点作轴,交直线于点,垂足为.(1)求抛物线的解析式;(2)当点位于抛物线对称轴右侧时,点为抛物线对称轴左侧一个动点,过点作轴,垂足为点.若四边形为正方形时求点的坐标;(3)若是以点为顶角顶点的等腰直角三角形时,请直接写出点的横坐标.【答案】(1)抛物线的解析式为;(2)四边形为正方形时点的坐标为和;(3)点的横坐标为2或-1或或.【解析】【分析】(1)先由二次函数解析式求出C点坐标,进而求出一次函数解析式,再求出B点坐标,最后把A、B坐标代入抛物线解析式解方程即可;(2)四边形为正方形时,,轴,且P、Q两点关于对称轴对称,设出P点坐标,表示出,解方程即可;(3)由是以点为顶角顶点的等腰直角三角形,可得∠QPF=∠PEB,即轴,可得P、Q两点关于对称轴对称,设,用分别表示Q、F坐标即可,最后根据PQ=PF列方程计算即可解题.【详解】(1)抛物线经过点,则点坐标为(0,3),代入可得,则直线的解析式为.直线经过点,则点坐标为(3,0)将点、代入抛物线解得,∴抛物线的解析式为.(2)抛物线的对称轴为.∵四边形为正方形,∴,轴.∴点与点关于直线对称.设点,则,.∴,解得:或(舍去)或或(舍去)当时,点,当时,点,∴四边形为正方形时点的坐标为和(3)点的横坐标为2或-1或或.∵是以点为顶角顶点的等腰直角三角形∴∠QPF=∠PEB=90°∴轴∴点与点关于直线对称.设点,则,∴.∵,∴,解得:或或或综上所述,点的横坐标为2或-1或或.【点睛】本题是二次函数综合题,熟记一次函数、正方形、等腰三角形的性质是解题的关键,难度一般,但是计算量比较大,需要注意.4 .将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.(1)直接写出抛物线,的解析式;(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.【答案】(1)抛物线的解析式为: y=x2-4x-2;抛物线的解析式为:y=x2-6;(2)点的坐标为(5,3)或(4,-2);(3)直线经过定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;(2)先判断出点A、B、O、D四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出是等腰直角三角形.设点A的坐标为(x,x2-4x-2),把DC和AC用含x的代数式表示出来,利用DC=AC列方程求解即可,注意有两种情况;(3)根据直线(,为常数)与抛物线交于,两点,联立两个解析式,得到关于x的一元二次方程,根据根与系数的关系求出点M的横坐标,进而求出纵坐标,同理求出点N的坐标,再用待定系数法求出直线MN的解析式,从而判断直线MN经过的定点即可.【详解】解:(1)∵抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线,∴抛物线的解析式为:y=(x-2)2-6,即y=x2-4x-2,抛物线的解析式为:y=(x-2+2)2-6,即y=x2-6.(2)如下图,过点A作AC⊥x轴于点C,连接AD,∵是等腰直角三角形,∴∠BOA =45°,又∵∠BDO=∠BAO=90°,∴点A、B、O、D四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,∴是等腰直角三角形,∴DC=AC.∵点在抛物线对称轴右侧上,点在对称轴上,∴抛物线的对称轴为x=2,设点A的坐标为(x,x2-4x-2),∴DC=x-2,AC= x2-4x-2,∴x-2= x2-4x-2,解得:x=5或x=0(舍去),∴点A的坐标为(5,3);同理,当点B、点A在x轴的下方时,x-2= -(x2-4x-2),x=4或x=-1(舍去),∴点的坐标为(4,-2),综上,点的坐标为(5,3)或(4,-2).(3)∵直线(,为常数)与抛物线交于,两点,∴,∴x2-kx-6=0,设点E的横坐标为x E,点F的横坐标为x F,∴x E+x F=k,∴中点M的横坐标x M==,中点M的纵坐标y M=kx=,∴点M的坐标为(,);同理可得:点N的坐标为(,),设直线MN的解析式为y=ax+b(a≠0),将M(,)、N(,)代入得:,解得:,∴直线MN的解析式为y= ·x+2(),不论k取何值时(),当x=0时,y=2,∴直线经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A、B、O、D四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.5 .如图,已知抛物线经过,,三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段于点E,若.①求直线的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【答案】(1);(2)①;②(2,4)或(,)【解析】【分析】(1)根据待定系数法求解即可;(2)①过点E作EG⊥x轴,垂足为G,设直线BD的表达式为:y=k(x-4),求出直线AC的表达式,和BD联立,求出点E坐标,证明△BDO∽△BEG,得到,根据比例关系求出k值即可;②根据题意分点R在y轴右侧时,点R在y轴左侧时两种情况,利用等腰直角三角形的性质求解即可.【详解】解:(1)∵抛物线经过点,,,代入,∴,解得:,∴抛物线表达式为:;(2)①过点E作EG⊥x轴,垂足为G,∵B(4,0),设直线BD的表达式为:y=k(x-4),设AC表达式为:y=mx+n,将A和C代入,得:,解得:,∴直线AC的表达式为:y=2x+4,联立:,解得:,∴E(,),∴G(,0),∴BG=,∵EG⊥x轴,∴△BDO∽△BEG,∴,∵,∴,∴,解得:k=,∴直线BD的表达式为:;②由题意:设P(s,),1<s<4,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴∠PQR=90°,PQ=RQ,当点R在y轴右侧时,如图,分别过点P,R作l的垂线,垂足为M和N,∵∠PQR=90°,∴∠PQM+∠RQN=90°,∵∠MPQ+∠PQM=90°,∴∠RQN=∠MPQ,又PQ=RQ,∠PMQ=∠RNQ=90°,∴△PMQ≌△QNR,∴MQ=NR,PM=QN,∵Q在抛物线对称轴l上,纵坐标为1,∴Q(1,1),∴QN=PM=1,MQ=RN,则点P的横坐标为2,代入抛物线得:y=4,∴P(2,4);当点R在y轴左侧时,如图,分别过点P,R作l的垂线,垂足为M和N,同理:△PMQ≌△QNR,∴NR=QM,NQ=PM,设R(t,),∴RN==QM,NQ=1-t=PM,∴P(,2-t),代入抛物线,解得:t=或(舍),∴点P的坐标为(,),综上:点P的坐标为(2,4)或(,).【点睛】本题是二次函数综合题,考查了待定系数法,等腰直角三角形的性质,全等三角形的判定和性质,一次函数,难度较大,解题时要理解题意,根据等腰直角三角形的性质构造全等三角形.6 .已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C (1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P 的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3 (2)(﹣,)(3)存在,P(﹣2,3)或P(,)【解析】【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得y E=y P,即点E、P关于对称轴对称,所以=﹣1,得x E=﹣2﹣x P=﹣2﹣t,故PE=|x E﹣x P|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学专题复习二次函数与直角三角形
例1. (二○一二年枣庄市本题满分10分)如图,在平面直角坐标系中,将一块等腰直角三角板ABC 斜靠在两坐标轴上放在第二象限,点C 的坐标为()10-,.B 点在抛物线211
222
y x x =
+-的图象上,过点B 作BD x ⊥轴,垂足为D ,且B 点横坐标为3-.
(1)求证:BDC COA △≌△; (2)求BC 所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P ,使ACP △是以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.
1.(2012赤峰)如图,抛物线2
5y x bx =--与x 轴交于A .B 两点(点A 在点B 的左侧),与y 轴交于点C ,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1.
(1)求抛物线的解析式; (2)求直线AF 的解析式;
(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.
A B D
C O
x
y (第25题图)
2.如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线
y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.
(1)求抛物线的解析式(关系式);
(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;
(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.3.(2012海南)如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON
(1)求该二次函数的关系式.
(2)若点A的坐标是(6,-3),求△ANO的面积.
(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:
①证明:∠ANM=∠ONM
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理
由
.
4.(2012湖南衡阳10分)(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD 的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.
5.(2012•广州)如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),
与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
6.(2012重庆)已知:如图,在平面直角坐标系中,已知Rt△ABC的两条直角边BA.BC分别在y轴上.X轴上,且点B与点O重合,点A(0,3)点C(6,0), E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和Rt△ABC在BC的同侧.
(1)当正方形的顶点F恰好落在边AC上时,求过B.C.F三点的函数解析式;
(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFG为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t,正方形B′EFG的边EF与AC交于点M,点D(2,3),连接B′D,B′M,DM,是否存在这样的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)在(2)问的平移过程中,设正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S
与t之间的函数关系式以及自变量t的取值范围.
D
A
O(B) C
D
A
O(B) C
7.(2012攀枝花)如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.
(1)求过A.C.D三点的抛物线的解析式;
(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;
(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.8.(2012山东青岛12分)如图,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:
(1)当t为何值时,PQ⊥AB?
(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为y cm2,求y与t之间的函数关
系式;
(3)在(2)的情况下,是否存在某一时刻t,使得PQ分四边形BCDE所成的两部分的面积之
比为S△PQE∶S五边形PQBCD=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.
9.(2012江苏镇江本题满分11分)
等边△ABC的边长为2,P是BC边上的任一点(与B、C不重合),连接AP,以AP为边向两侧作等边△APD和等边△APE,分别与边AB、AC交于点M、N(如图1).
(1)求证:AM=AN;
(2)设BP=x.
①若BM=3
8,求x的值;
②求四边形ADPE与△ABC重叠部分的面积S与x之间的函数关系式以及S的最小值;
③连接DE分别与边AB、AC交于点G、H(如图2).当x为何值时,∠BAD=15º?此时,
以DG、GH、HE这三条线段为边构成的三角形是什么特殊三角形,请说明理由.10.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x 轴的正半轴上,OA=2,OC=3。
过原点O作∠AOC的平分线交AB于点D,连接DC,过点D 作DE⊥DC,交OA于点E。
(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G。
如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
5
6
,那么EF=2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB 的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。
y
x
B
E
C
D
O
A。