2020年安徽省淮南市高考数学一模试卷(文科)
安徽省2020年高考文科数学模拟试题及答案(一)
参考答案
一、选择题
1.A 2.A3.B 4.A5.C 6.D 7.B 8.B 9.D 10.C 11.B 12.A
二、填空题
13. 14. 15. 16.
三、解答题
17.解:(1)由已知及余弦定理得2c× =2a+b,
整理得a2+b2-c2=-ab,
A.命题“若 ,则 ”的否命题为“若 ,则 ”
B.命题“存在 ,使得 ”的否定是:“任意 ,都有 ”
C.若命题“非 ”与命题“ 或 ”都是真命题,那么命题 一定是真命题
D.命题“若 ,则 ”的逆命题是真命题
6.三个数 的大小顺序是
A. B.
C. D.
7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为
所以△ABC为等腰三角形,且BC=AC= .
所以△ABC的面积
S= BC·AC·sin = × × × = .
18.(1)估计本市一个18岁以上青年人每月骑车的平均次数为
.
(Ⅱ)根据题意,得出如下 列联表
骑行爱好者
非骑行爱好者
总计
青年人
700
100
800
非青年人
800
200
1000
总计
1500
300
在四边形 中, ,及(1) 为 中点, ,得 为等腰三角形,
故 ,
则
20.(1)由题设 , ,
所以 .又 ,
所以 . 的方程为 .
(2)由题设 不平行于 轴,设 : ,联立 ,
得 . , .
因为 ,所以四边形 为平行四边形,
四边形 面积
2020年全国统一高考数学试卷文科(新课标Ⅰ)(附答案及详细解析)
2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)若z=1+2i+i3,则|z|=()A.0B.1C.D.23.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.(5分)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.B.C.D.5.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.(5分)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.(5分)设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(5分)设a log34=2,则4﹣a=()A.B.C.D.9.(5分)执行如图的程序框图,则输出的n=()A.17B.19C.21D.2310.(5分)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.3211.(5分)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.212.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二、填空题:本题共4小题,每小题5分,共20分。
2021届安徽省淮南市高三第一次模拟考试数学文科试题(解析版)参照模板
淮南市2020届高三第一次模拟考试数学试题(文科)一、选择题1.若集合{}21A x x =-≤,B x y ⎧⎫==⎨⎩,则A B = ( ) A. []1,2- B. (]2,3 C. [)1,2D. [)1,3【答案】C 【解析】 【分析】先求出集合,A B ,然后再求交集.【详解】由{}21A x x =-≤得,[1,3]A = ,(),2B x y ⎧⎫===-∞⎨⎩则[1,2)A B ⋂= 故选:C【点睛】本题考查集合求交集,属于基础题. 2.已知R a ∈,i 为虚数单位,若复数1a iz i+=+是纯虚数,则a 的值为( ) A. 1- B. 0C. 1D. 2【答案】A 【解析】 【分析】利用复数的运算法则、纯虚数的定义即可得出.【详解】()()()()()()111=1112a i i a a ia i z i i i +-++-+==++-为纯虚数. 则110,022a a +-=≠ 所以1a =- 故选:A【点睛】本题考查了复数的运算法则、纯虚数的定义,属于基础题. 3.已知a ,b 都是实数,那么“lg lg a b >”是“a b >”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】利用对数函数的单调性、不等式的性质即可判断出结论.【详解】,a b 都是实数,由“lg lg a b >”有a b >成立,反之不成立,例如2,0a b ==. 所以“lg lg a b >”是“a b >”的充分不必要条件. 故选:B【点睛】本题考查了对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数是( ) A. 0 B. 1C. 2D. 3【答案】B 【解析】 【分析】求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数,数形结合可得结论. 【详解】函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数, 即方程132xx ⎛⎫=- ⎪⎝⎭的根的个数, 所以只需求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数 在同一坐标系中分别作出函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭的图像.如图所示,函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点有1个. 故选:B【点睛】本题主要考查函数的图象的交点问题,函数的零点个数的判断,体现了数形结合、转化的数学思想,属于中档题.5.由下表可计算出变量,x y 的线性回归方程为( )x5 4 3 2 1 y21.5110.5A. ˆ0.350.15yx =+ B. ˆ0.350.25yx =-+ C. ˆ0.350.15yx =-+ D. ˆ0.350.25yx =+ 【答案】A 【解析】试题分析:由题意,543212 1.5110.53, 1.255x y ++++++++====∴样本中心点为(3,1.2)代入选择支,检验可知A 满足.故答案选A . 考点:线性回归方程.6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.己知ABC ∆的顶点()4,0A ,()0,2B ,且AC BC =,则ABC ∆的欧拉线方程为( ) A. 230x y -+= B. 230x y +-=C. 230x y --=D. 230x y --=【答案】D 【解析】 【分析】由于AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上,求出线段AB 的垂直平分线,即可得出ABC ∆的欧拉线的方程.【详解】因为AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上()4,0A ,()0,2B ,则,A B 的中点为(2,1)201042AB k -==--, 所以AB 的垂直平分线的方程为:12(2)y x -=-,即23y x =-. 故选:D【点睛】本题考查等腰三角形的性质、三角形的外心重心垂心性质,考查了对新知识的理解应用,属于中档题. 7.函数()21ln 12f x x x =--的大致图象为( ) A.B.C. D.【答案】C 【解析】 【分析】由()()f x f x -=得到()f x 为偶函数,所以当0x >时,()21ln 12f x x x =--,求导讨论其单调性,分析其极值就可以得到答案.【详解】因为()()()21ln 12f x x x f x -=----=, 所以()f x 为偶函数, 则当0x >时,()21ln 12f x x x =--.此时211()x f x x x x='-=-,当1x >时,()0f x '> 当01x <<时,()0f x '<. 所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增. 在0x >上,当1x =时函数()f x 有最小值11(1)1122f =-=->-.. 由()f x 为偶函数,根据选项的图像C 符合. 故选:C【点睛】本题考查根据函数表达式选择其图像的问题,这类问题主要是分析其定义域、值域、奇偶性、对称性、单调性和一些特殊点即可,属于中档题.8.在ABC ∆中,4AB =,6AC =,点O 为ABC ∆的外心,则AO BC ⋅的值为( ) A. 26 B. 13C.523D. 10【答案】D 【解析】 【分析】利用向量数量积的几何意义和三角形外心的性质即可得出.【详解】()AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅如图,设,AB AC 的中点分别为,E F ,则,OE AB OF AC ⊥⊥,||||cos ||||428AO AB AB AO OAB AB AE ⋅=⋅∠=⋅=⨯= ||||cos ||||6318AO AC AC AO OAC AC AF ⋅=⋅∠=⋅=⨯=所以18810AO BC ⋅=-= 故选:D【点睛】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题. 9.已知数列{}n a 满足11a =,且1x =是函数()32113n n a f x x a x +=-+()n N +∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦( )A. 2019B. 2018C. 1009D. 1008【答案】D 【解析】 【分析】求得()f x 的导数,可得1(1)20n n f a a +'=-=,数列{}n a 为等比数列,可得数列{}n a 的通项公式,利用对数的运算性质可得n b ,再由数列的求和方法:裂项相消求和,即可得到所求值.【详解】由21()2n n f x a x a x +'=-,1x =是函数()f x 的极值点,所以1(1)20n n f a a +'=-=,即12n n a a +=所以数列{}n a 是以11a =为首项,2为公比的等比数列, 则12n na .由1222log log 21n n n b a n ++===+120182018112018(1)(2)12n n b b n n n n +⎛⎫==- ⎪++++⎝⎭所以122320182019201820182018b b b b b b ++⋅⋅⋅+ 1223201820191111112018[]b b b b b b ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 1201911111009=20182018=1009220201010b b ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭即1223201820192018201820181009[1009]10081010b b b b b b ⎡⎤++⋅⋅⋅+=-=⎢⎥⎣⎦ 故选:D【点睛】本题考查导数的运用:求极值点,考查数列恒等式的运用,以及等比数列的通项公式和求和公式,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.10.如图,一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为5 cm ,如果不计容器的厚度,则球的表面积为( )A .2500cm 3πB.2625cm 9πC.2625cm 36πD.215625cm 162π【答案】B 【解析】 【分析】设正方体上底面所在平面截球得小圆M ,可得圆心M 为正方体上底面正方形的中心.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质建立关于R 的方程并解出R 即可求出球的表面积.【详解】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质,得222(3)4R R =-+,解得:25=6R . ∴球的表面积为2225625=4=4=369S R πππ⨯ . 故选:B .【点睛】此题主要考查了正方体的性质、垂径定理以及勾股定理等知识,将立体图转化为平面图形是解题关键.11.已知双曲线22214x y b -=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( )8 B. )41-8+ D. )22【答案】A 【解析】 【分析】利用双曲线的定义以及三角形结合正弦定理,转化求解三角形的周长即可. 【详解】双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF所以8)m =+,解得:123m -=, 所以1ABF ∆的周长为:11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.12.若函数()2ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( )A. 1,11e e e ⎛⎫--⎪-⎝⎭B. 11,1ee e ⎡⎤-⎢⎥-⎣⎦C. 11,1ee e ⎛⎫- ⎪-⎝⎭D. 1,11e e e ⎡⎤--⎢⎥-⎣⎦【答案】C 【解析】【详解】函数()2ln ln x f x ax x x x=+--有三个不同的零点,即方程ln ln x xa x x x =--有三个不同实数根.设ln ()(0)ln x xg x x x x x=->-, 则22221ln 1ln ln (1ln )(2ln )()(ln )(ln )x x x x x x g x x x x x x x ----'=-=-- 由1212ln ,2x y x x y x x-'=-=-=, 当1(0,)2x ∈时,0y '<,2ln y x x =-单调递减, 当1()2,x ∈+∞时,0y '>,2ln y x x =-单调递增, 所以112ln 2ln 1ln 2022y x x =-≥⨯-=+> 所以在(0,)x ∈+∞恒有2ln 0y x x =-> 令()0g x '=,得1x =或x e =.当01x <<时,()0g x '<,当1x e <<时,()0g x '>,当e x <时,()0g x '< 所以()g x 在(0,1)上单调递减,在(1,)e 上单调递增,在(,)e +∞上单调递减.(1)1g =,1()1e g e e e=-- 0x →时,ln x x→-∞,1ln ln 1x x x x x=→-- x →+∞时,ln 0x x→,11ln ln 1x x x x x=→--所以0x →时,()+g x →∞,x →+∞时()1g x →所以()g x的大致图像如下:方程lnlnx xax x x=--有三个不同实数根.结合函数图像有:11,1eae e⎛⎫∈-⎪-⎝⎭故选:C【点睛】本题考查函数的零点、导数的综合应用,考查转化与化归能力,运算求解能力、数形结合思想,属于难题.二.填空题13.若实数x,y满足0,20,20,x yx yx y-≤⎧⎪-≥⎨⎪+-≤⎩则2z x y=+的最大值为______.【答案】3【解析】【分析】作出不等式组满足的平面区域,再将目标函数平移经过可行域,可得最值.【详解】由0,20,20,x yx yx y-≤⎧⎪-≥⎨⎪+-≤⎩作出可行域,如下目标函数2z x y =+可化为2y x z =-+. z 表示直线2y x z =-+在y 轴上的截距.即求直线2y x z =-+在y 轴上的截距的最大值. 由可行域的图像,可知目标函数过点(1,1)B 时截距最大. 所以z 的最大值为:2113z =⨯+= 故答案为:3【点睛】本题考查简单的线性规划问题,注意简单线性规划中目标函数的几何意义,属于基础题. 14.已知4sin 65πα⎛⎫+= ⎪⎝⎭,5,36ππα⎛⎫∈ ⎪⎝⎭,则cos α的值为______. 433- 【解析】 【分析】根据角的范围,先求出cos 6πα⎛⎫+⎪⎝⎭的值,然后用角变换66ππαα⎛⎫=+- ⎪⎝⎭可求解. 【详解】由5,36ππα⎛⎫∈⎪⎝⎭,+,26ππαπ⎛⎫∈ ⎪⎝⎭ 所以2cos 1s 653in 6ππαα⎛⎫⎛⎫+=--+=-⎪ ⎪⎝⎭⎝⎭cos cos =cos cos +sin sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭341552=-+⨯=【点睛】本题考查同角三角函数的关系和利用角变换求解三角函数值,属于中档题. 15.已知函数()lnexf x e x =-,满足()2201810092019201920192e e e f f f a b ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a ,b 均为正实数),则ab 的最大值为______. 【答案】4 【解析】 【分析】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----,然后配对(用倒序相加法)可求和,从而求出,a b 的关系,可得出答案. 【详解】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----. 22018201920192019e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭20182201710091010[][[]201920192019201920192019e e e e e e f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10092=⨯()10092a b =+ 所以4a b +=,且a ,b 均为正实数.则242+⎛⎫≤= ⎪⎝⎭a b ab 当且仅当2a b == 时取等号. 故答案为:4.16.设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且4AF BF =,则弦长AB =______.【答案】258【分析】求出抛物线的焦点坐标,由直线方程的点斜式写出直线l 的方程,和抛物线方程联立后利用弦长公式得答案. 【详解】抛物线焦点坐标为1(,0)2F , 设点1122(,),(,)A x y A x y 设直线l 方程为12x my =+, 由抛物线的定义有111||22p AF x x =+=+,221||22p BF x x =+=+ 由4AF BF =,得1211422x x ⎛⎫+=+ ⎪⎝⎭,即1214(1)my my +=+. 所以有12(4)3(1)m y y -=,又由2122x my y x⎧=+⎪⎨⎪=⎩ 得:2210y my --=,所以122y y m +=,121(2)y y ⋅=-由(1),(2)联立解得:2916m =. 又1212||||||12AB AF BF x x my my =+=++=++212925()22222168m y y m =++=+=⨯+=故答案为:258【点睛】本题考查了抛物线的标准方程及其几何性质,考查了直线与抛物线的位置关系,是中档题.三.解答题17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,ccos sin C c A =. (Ⅰ)求角C 的大小;(Ⅱ)已知点P 在边BC 上,60PAC ∠=︒,3PB =,AB =ABC ∆的面积.【答案】(Ⅰ)60C =︒;(Ⅱ)S = 【解析】(Ⅰ)由正弦定理可得3sin cos sin sin A C C A =,可得答案.|(Ⅱ)由条件APC ∆为等边三角形,则120APB ∠=︒,由余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒,可得AP ,从而得到三角形的面积.【详解】(Ⅰ)∵3cos sin a C c A =,由正弦定理可得3sin cos sin sin A C C A =, 又A 是ABC ∆内角,∴sin 0A ≠,∴tan 3C = ∵0180C <<︒,∴60C =︒.(Ⅱ)根据题意,APC ∆为等边三角形,又120APB ∠=︒.在APB ∆中,由于余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒, 解得,2AP =,∴5BC =,2AC =. ∴ABC ∆的面积153sin 6022S CA CB =⋅︒=. 【点睛】本题考查正弦和余弦定理以及求三角形的面积,属于中档题.18.高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:经常使用偶尔使用或不用合计完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?附:()()()()()22n ad bc K a b c d a c b d -=++++【答案】(Ⅰ)0.030a =;(Ⅱ)37P =;(Ⅲ)表见解析,没有85%的把握认为淮南市使用永安共享单车的情况与性别有关. 【解析】 【分析】(Ⅰ)根据频率分布直方图中的面积之和为1,求参数a .(Ⅱ)由题意前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,利用列举的方法可求得概率.(Ⅲ)先计算填好2×2列联表,然后代入公式计算2K ,与给出的表格比较得出答案. 【详解】(Ⅰ)由题意()100.010.01520.0250.0051a ⨯+⨯+++=解得0.030a =.(Ⅱ)由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,分别记为1A ,2A ,1B ,2B ,3B ,1C ,2C ,3C ,从中抽取2辆的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()11,A C ,()12,A C ,()13,A C ; ()21,A B ,()22,A B ,()23,A B ,()21,A C ,()22,A C ,()23,A C ; ()12,B B ,()13,B B ,()11,B C ,()12,B C ,()13,B C ;()23,B B ,()21,B C ,()22,B C ,()23,B C ;()31,B C ,()32,B C ,()33,B C ;()12,C C ,()13,C C ,()23,C C ;共28个,恰有1辆的使用时间不低于50分钟的结果有12个, ∴所求的概率为123287P ==. (Ⅲ)2×2列联表如下:由上表及公式可知()2220050406050 2.0210010011090K ⨯⨯-⨯=≈⨯⨯⨯,因为2.02<2.072所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.【点睛】本题考查根据频率分布直方图求参数,考查概率可独立性检验,属于中档题.19.如图在梯形ABCD 中,AD BC ∥,AD DC ⊥,E 为AD 的中点224AD BC CD ===,以BE 为折痕把ABE ∆折起,使点A 到达点P 的位置,且PB BC ⊥.(Ⅰ)求证:PE ⊥平面BCDE ;(Ⅱ)设F ,G 分别为PD ,PB 的中点,求三棱锥G BCF -的体积. 【答案】(Ⅰ)证明见解析;(Ⅱ)13G BCF V -= 【解析】 【分析】(Ⅰ)根据原图中的垂直关系,得到翻折后BE PE ⊥,PE BC ⊥,从而可证明. (Ⅱ)由F ,G 分别为PD ,PB 的中点111244G BCF G BGF C PBF C PBD P BCD V V V V V -----====,从而可求解体积.【详解】(Ⅰ)由题意可知BCDE 为正方形,∴BC BE ⊥,且BE AE ⊥,即BE PE ⊥ 又PE BC ⊥,且PB BE B =,∴BC ⊥平面PBE ,∵PE PB ⊂,E ,BC PE ⊥又BCBE B =,∴PE ⊥平面BCDE .(Ⅱ)∵G 为PB 的中点,∴PGF BGF S S ∆∆=,∴12C PGF C BGF C PBF V V V ---== 又F 为PD 的中点,∴PBF BDF S S ∆∆=,∴12C PBF C BDF C PBD V V V ---== ∴111244G BCF G BGF C PBF C PBD P BCD V V V V V -----==== 又1142P BCDP BCDE V V --=,∴11112228833G BCF P BCDE V V --==⨯⨯⨯⨯=. 【点睛】本题考查翻折问题,考查线面垂直的证明和求体积,属于中档题.20.已知椭圆2222:1x y C a b+=()0a b >>的离心率为13,1F ,2F 分别是椭圆的左右焦点,过点F 的直线交椭圆于M ,N 两点,且2MNF ∆的周长为12. (Ⅰ)求椭圆C 的方程(Ⅱ)过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆是以AB 为底边的等腰三角形若存在,求点D 横坐标的取值范围,若不存在,请说明理由.【答案】(1)22198x y ;(2)存在,0m ≤<或0m <≤【解析】 【分析】(Ⅰ)由椭圆的离心率为13和2MNF ∆的周长为12可得13412c a a ⎧=⎪⎨⎪=⎩,可求椭圆方程.(Ⅱ)AB 的中点为()00,E x y ,由条件有DE AB ⊥,即1DE AB k k =-⋅,设(),0D m ,用直线AB 的斜率把m 表示出来,可求解其范围. 【详解】(1)由题意可得13412c a a ⎧=⎪⎨⎪=⎩,所以3a =,1c =,所以椭圆C 的方程为22198x y .(2)直线l 的解析式为2y kx =+,设()11,A x y ,()22,B x y ,AB 的中点为()00,E x y .假设存在点(),0D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得()228936360k x kx ++-=,故1223698kx x k +=-+,所以021898k x k -=+,00216298y kx k =+=+ 因为DE AB ⊥,所以1DE k k =-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++当0k >时,89k k +≥=012m -≤<; 当k 0<时,89k k +≤-012m <≤ 综上:m取值范围是012m -≤<或012m <≤. 【点睛】本题考查由椭圆的几何性质求方程,满足条件的动点的坐标的范围的探索,属于难题.21.设函数()ln xa e f xb x e=-,且()11f =(其中e 是自然对数底数).(Ⅰ)若1b =,求()f x 的单调区间; (Ⅱ)若0b e ≤≤,求证:()0f x >. 【答案】(Ⅰ)增区间为1,,减区间为0,1;(Ⅱ)见解析【解析】 【分析】(Ⅰ)当1b =时()11x xe f x x--'=,令()11x t x xe -=-,对()t x 求导分析出其单调性,从而分析出函数值的符号,得到()f x 的单调区间.(Ⅱ)对()f x 求导讨论其单调性,分析其最小值,证明其最小值大于0即可. 【详解】(Ⅰ)由()11f =可得,1a =,又1b =,∴()1ln x f x e x -=-,()11x xe f x x--'=,0x >,令()11x t x xe-=-,()()11x t x x e -'=+,当0x >时,()0t x '>,()t x 在0,单调增函数,又()10t =.∴当()0,1x ∈时,()0t x <,()‘0f x <,当()1,x ∈+∞时,()0t x >;()‘0f x >,∴()f x 的单调增区间为1,,减区间为0,1(Ⅱ)当0b =时,()0f x >,符合题意. 方法(一)当0b e <≤时,()11x x b xe bf x e x x---'=-=令()1x h x xeb -=-,又()00h b =-<,()220h e b =->∴()h x 在()0,2∃唯一的零点,设为0x ,有010x x eb -=且()00,x x ∈,()00f x '<,()f x 单调递减;()0,x x ∈+∞,()00f x '>,()f x 单调递增 ∴()()0100min ln x f x f x eb x -==-∵010x x eb -=,∴01x be x -=,两边取对数, 001ln ln x b x -=-∴()()000ln 1bf x b b x x =-+-00ln 2ln ln b bx b b b b b b b b b b x ⎛⎫=+--≥--=- ⎪⎝⎭(当且仅当01x =时到等号) 设()ln m b b b b =-,∴()ln m b b =-,当()0,1b ∈时,()0m b '>,当(]1,b e ∈时,()0m b '<; 又()0m e =,且,0b >,趋向0时,()0m e >; ∴当0b e <≤,()0m b ≥,当且仅当b e =时取等号由(1)可知,当1b =时,01x =,故当b e =时,01x ≠,()()00f x m b >≥,∴()00f x > 综上,当0b e ≤≤时,()0f x > 方法(二)当0b e <≤时,(i )当01x <≤时ln 0x ≤,ln 0b x ≤,()1ln 0x f x e b x -=->显然成立;(ii )当1x ≥时,构造函数()ln 1F x x x =-+()110F x x'=-≤,()F x 在[)1,+∞为减函数,∴()()10F x F ≤=,∴0ln 1x x <≤- ∴()()0ln 11b x b x e x <≤-≤-,∴()0ln 1b x e x <<- ∴()()11ln 1x x f x eb x e e x --=->--又由ln 1x x ≤-,可得21x e x -≥-,进而()()110x f x e e x -=--≥综上:当0b e ≤≤时,()0f x >【点睛】本题考查求函数单调区间和证明函数不等式,考查了导数的应用,应用了放缩与指对互化的技巧,属于难题.四.选考题22.在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.【答案】(1)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)12. 【解析】试题分析:(1)将cos ,sin x y ρθρθ==代入12,C C 的直角坐标方程,化简得cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=得12ρρ==,所以MN =12. 试题解析:(1)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=得240ρ-+=得12ρρ==所以MN =因为2C 的半径为1,则2C MN ∆的面积为111sin 4522⨯= 考点:坐标系与参数方程.【此处有视频,请去附件查看】23.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.【答案】(1) {x |x ≥4或x ≤1};(2) [-3,0].【解析】 试题分析:(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x 在[1,2]上恒成立,由此求得求a 的取值范围试题解析:(1)当a =-3时,f(x)=25,2{1,2325,3x x x x x -+≤<<-≥当x≤2时,由f(x)≥3得-2x +5≥3,解得x≤1;当2<x <3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.6分(2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|. 当x∈[1,2]时,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a|-2-a≤x≤2-a,由条件得-2-a≤1且2-a≥2,解得-3≤a≤0,故满足条件的实数a的取值范围为[-3,0].考点:绝对值不等式的解法;带绝对值的函数【此处有视频,请去附件查看】百度文库精品文档1、想想自己一路走来的心路历程,真的很颓废一事无成。
2020学年高考模拟试卷安徽省淮北市高考一模数学文科试卷(解析版)
2020学年高考一模数学文科试卷一、选择题1.已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∩B=()A.{1} B.{0,1} C.{0,1,2,3} D.{﹣1,0,1,2,3}2.在复平面内,复数(i为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.在区间[0,4]上随机地取一个数x,则事件“0≤log2(x﹣1)≤1”发生的概率为()A.B.C.D.4.已知平面α,直线m,n,若n⊂α,则“m⊥n”是“m⊥α”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件5.函数的部分图象是()A.B.C.D.6.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数量N除以正整数m后的余数为n,则记为N≡n(bmodm),例如11≡2(bmod3),现将该问题以程序框图的算法给出,我行该程序框图,则输出的结果等于()A.35 B.36 C.37 D.387.已知双曲线C的中心在坐标原点且焦点在坐标轴上,C的一个焦点与抛物线的焦点F重合,且点F到双曲线C的渐近线的距离等于2,则双曲线C的方程为()A.B.C.D.8.已知定义在R上的偶函数f(x)满足,当x∈[0,+∞)时,,,b=f(20.3),c=f(0.42),则下列不等式成立的是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a9.已知函数,当|f(x1)﹣f(x2)|=4时,|x1﹣x2|最小值为,把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)的图象,关于函数g(x),下列说法正确的是()A.在上是增函数B.其图象关于直线对称C.在区间上的值域为[﹣2,﹣1]D.函数g(x)是奇函数10.设等差数列{a n}的公差不为0,其前n项和为S n,若(a3﹣2)3+sin(a3﹣2)=2020,(a2018﹣2)3+sin(a2018﹣2)=﹣2020,则S2020=()A.0 B.﹣2020 C.2020 D.404011.已知正方形ABCD的边长为2,动点P满足,且,则2x+y的最大值为()A.B.C.D.12.在三棱锥A﹣BCD中,平面ABC⊥平面ADC,AD⊥AC,AD=AC,,若此三棱锥的外接球表面积为28π,则三棱锥A﹣BCD体积的最大值为()A.7 B.12 C.6 D.二、填空题(本题共4小题,每小题5分,共20分)13.已知非零向量、满足,,且,则与的夹角为.14.已知,2sin(2α)=cos(2α)+1,则=.15.已知椭圆的左右焦点分别是F1,F2,以F2为圆心的圆过坐标原点,过点F1作直线l与圆F2相切,直线l与椭圆相交于点P、Q且PF2⊥x轴,则椭圆的离心率为.16.已知函数f(x)为奇函数,g(x)为偶函数,对于任意x∈R均有f(x)+2g(x)=mx﹣4,若f(x)﹣3﹣lnx≥0对任意x∈(0,+∞)都成立,则实数m的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC的内角A,B,C所对的边分别为a,b,c,且10b2cos B=6ab cos C+3(b2+c2﹣a2).(Ⅰ)求cos B;(Ⅱ)设,,求△ABC的周长.18.已知数列{a n}的前n项和S n=n2+n,等比数列{b n}的公比q>1,且b3+b4+b5=28,b4+2是b3,b5的等差中项.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和T n.19.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M,N 分别是AB,A1C的中点.(Ⅰ)求证:MN∥平面BCC1B1;(Ⅱ)求点M到平面B1NC的距离.20.纪念币是一个国家为纪念国际或本国的政治、历史,文化等方面的重大事件、杰出人物、名胜古迹、珍稀动植物、体育赛事等而发行的法定货币.我国在1984年首次发行纪念币,目前已发行了115套纪念币,这些纪念币深受邮币爱好者的喜爱与收藏.2019年发行的第115套纪念币“双遗产之泰山币”是目前为止发行的第一套异形币,因为这套纪念币的多种特质,更加受到爱好者追捧.某机构为调查我国公民对纪念币的喜爱态度,随机选了某城市某小区的50位居民调查,调查结果统计如下:(Ⅰ)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过1%的前提下认为不同年龄与纪念币的喜爱无关?(Ⅱ)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.附:,n=a+b+c+d.21.设A,B为抛物线C:x2=2py(p>0)上不同两点,抛物线C的焦点到其准线的距离为4,A与B的横坐标之和为8.(Ⅰ)求直线AB的斜率;(Ⅱ)若设M为抛物线C上一点,C在点M处的切线与直线AB平行,过M点作直线l与曲线C相交于点M,Q,与y轴交于点P,且满足,求△OPQ的面积.22.已知函数,f'(x)是f(x)的导函数,g(x)=f'(x)+1.(Ⅰ)当m=2时,判断函数g(x)在(0,π)上是否存在零点,并说明理由;(Ⅱ)若f(x)在(0,π)上存在最小值,求m的取值范围.参考答案一、选择题(本大题共12小题,每小题5分,在每小题所给的四个选项中只有一项符合题意)1.已知集合A={1,2,3},B={x|(x+1)(x﹣2)<0,x∈Z},则A∩B=()A.{1} B.{0,1} C.{0,1,2,3} D.{﹣1,0,1,2,3}解:∵A={1,2,3},B={x|﹣1<x<2,x∈Z}={0,1},∴A∩B={1}.故选:A.2.在复平面内,复数(i为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:==,其对应的点()在第四象限故选:D.3.在区间[0,4]上随机地取一个数x,则事件“0≤log2(x﹣1)≤1”发生的概率为()A.B.C.D.解:在区间[0,4]的长度为4;0≤log2(x﹣1)≤1,解之得[2,3],长度为1;故在区间[0,4]上随机地取一个数x,则事件“0≤log2(x﹣1)≤1”发生的概率为.故选:B.4.已知平面α,直线m,n,若n⊂α,则“m⊥n”是“m⊥α”的()A.充分不必要条件B.充分必要条件C.必要不充分条件D.既不充分也不必要条件解:由n⊂α,m⊥n,不一定得到m⊥α;反之,由n⊂α,m⊥α,可得m⊥n.∴若n⊂α,则“m⊥n”是“m⊥α”的必要不充分条件.故选:C.5.函数的部分图象是()A.B.C.D.解:f(﹣x)==﹣f(x),则函数f(x)是奇函数,图象关于原点对称,排除A.当x=π时,f(π)==<0,排除C,且﹣<f(π)<0,排除D,故选:B.6.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数量N除以正整数m后的余数为n,则记为N≡n(bmodm),例如11≡2(bmod3),现将该问题以程序框图的算法给出,我行该程序框图,则输出的结果等于()A.35 B.36 C.37 D.38解:该程序框图的作用是求被3除后的余数为2,被5除后的余数为3的数;在所给的选项中,满足被3除后的余数为2,被5除后的余数为3的数是38.故选:D.7.已知双曲线C的中心在坐标原点且焦点在坐标轴上,C的一个焦点与抛物线的焦点F重合,且点F到双曲线C的渐近线的距离等于2,则双曲线C的方程为()A.B.C.D.解:抛物线即x2=16y的焦点F(0,4),可设双曲线的方程为﹣=1(a,b>0),可得c=4,即a2+b2=16,由点F(0,c)到双曲线C的渐近线by±ax=0的距离等于2,可得d==b=2,解得a=2,则双曲线的方程为﹣=1,故选:A.8.已知定义在R上的偶函数f(x)满足,当x∈[0,+∞)时,,,b=f(20.3),c=f(0.42),则下列不等式成立的是()A.a<b<c B.c<b<a C.c<a<b D.b<c<a解:∵∀x1,x2≥0,且x1≠x2,,∴f(x)在[0,+∞)上单调递增,根据偶函数的对称性可知,f(x)在(﹣∞,0)上单调递减,距离对称轴越远,函数值越大,∵=f(﹣2)=f(2),b=f(20.3),c=f(0.42)=f(0.16),∵1<20.3<2,∴a>b>c.故选:B.9.已知函数,当|f(x1)﹣f(x2)|=4时,|x1﹣x2|最小值为,把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)的图象,关于函数g(x),下列说法正确的是()A.在上是增函数B.其图象关于直线对称C.在区间上的值域为[﹣2,﹣1]D.函数g(x)是奇函数解:已知函数=2sin(ωx+),当|f(x1)﹣f(x2)|=4时,|x1﹣x2|最小值为=•,∴ω=4,f(x)=2sin (4x+).把函数f(x)的图象沿x轴向右平移个单位,得到函数g(x)=2sin(4x﹣+)=﹣2cos4x的图象.在上,4x∈[π,2π],g(x)是减函数,故排除A;当x=时,g(x)=1,不是最值,故g(x)的图象不关于直线对称;故排除B;在区间上,4x∈[﹣,],cos4x∈[,1]g(x)∈[﹣2,﹣1],故C正确;由于g(x)=﹣2cos4x为偶函数,故排除D,故选:C.10.设等差数列{a n}的公差不为0,其前n项和为S n,若(a3﹣2)3+sin(a3﹣2)=2020,(a2018﹣2)3+sin(a2018﹣2)=﹣2020,则S2020=()A.0 B.﹣2020 C.2020 D.4040解:等差数列{a n}的公差不为0,且(a3﹣2)3+sin(a3﹣2)=2020,(a2018﹣2)3+sin (a2018﹣2)=﹣2020,令f(x)=x3+sin x,则f(﹣x)=﹣f(x)即f(﹣x)+f(x)=0,∵(a3﹣2)3+sin(a3﹣2)=2020,(a2018﹣2)3+sin(a2018﹣2)=﹣2020,两式相加可得,(a3﹣2)3+sin(a3﹣2)+(a2018﹣2)3+sin(a2018﹣2)=0,∴(a3﹣2)+(a2018﹣2)=0,∴a3+a2018=4,则S2020==1010(a3+a2018)=4040.故选:D.11.已知正方形ABCD的边长为2,动点P满足,且,则2x+y的最大值为()A.B.C.D.解:如图建立平面直角坐标系,A(0,0),B(2,0),D(0,2),设P(m,n),因为,所以(m,n)=(2x,0)+(0,2y),即(m,n)=(2x,2y),m=2x,n=2y,因为又因为动点P满足,所以,,即(x﹣1)2+y2,设z=2x+y,当该直线与圆(x﹣1)2+y2=相切时会取得z最大值,,z=2±,所以z max=2+,即2x+y的最大值为2+,故选:B.12.在三棱锥A﹣BCD中,平面ABC⊥平面ADC,AD⊥AC,AD=AC,,若此三棱锥的外接球表面积为28π,则三棱锥A﹣BCD体积的最大值为()A.7 B.12 C.6 D.解:根据题意,设三棱锥A﹣BCD外接球的半径为R,三棱锥的外接球球心为O,△ABC的外心为O1,△ABC的外接圆半径为r,取DC的中点为O2,过O2作O2E⊥AC,则OO1⊥平面ABC,OO2⊥平面ADC,如图,连结OA,O1A,则O1A=r,设AD=AC=b,则OO1=O2E=b,由S=4πR2=28π,解得R=,在△ABC中,由正弦正理得2r=,∴2r=,解得b=,在Rt△OAO1中,7=r2+()2,解得r=2,b=2,∴AC=2,若三棱锥A﹣BCD的体积最大,则只需△ABC的面积最大,在△ABC中,AC2=AB2+BC2﹣2•AB•BC•cos∠ABC,∴12=AB2+BC2﹣AB•BC≥2AB•BC﹣AB•BC,解得AB•BC≤12,∴≤=3,∴三棱锥A﹣BCD的体积的最大值:==6.故选:C.二、填空题(本题共4小题,每小题5分,共20分)13.已知非零向量、满足,,且,则与的夹角为.解:,,且,所以(+)•=0,所以•=﹣=﹣1,所以cosθ===﹣;又θ∈[0,π],所以θ=;即与的夹角为.故答案为:.14.已知,2sin(2α)=cos(2α)+1,则= 3 .解:由半角公式,则==,由2sin(2α)=cos(2α)+1=2,化简得5cos22α+2cos2α﹣3=0,故或者cos2α=﹣1(舍弃),由2sin2α=cos2α+1=,sin2α=,所以=,故答案为:315.已知椭圆的左右焦点分别是F1,F2,以F2为圆心的圆过坐标原点,过点F1作直线l与圆F2相切,直线l与椭圆相交于点P、Q且PF2⊥x轴,则椭圆的离心率为.解:以F2为圆心的圆过坐标原点,可得圆F2的圆心为(c,0),半径为c,PF2⊥x轴,可设P(c,m),m>0,由+=1,解得m=|PF2|=,在直角三角形PF1F2中,|PF1|+|PF2|=2a,可得|PF1|=2a﹣=,由三角形的面积公式可得••2c=c•,化为2a2=3b2,则e====.故答案为:.16.已知函数f(x)为奇函数,g(x)为偶函数,对于任意x∈R均有f(x)+2g(x)=mx﹣4,若f(x)﹣3﹣lnx≥0对任意x∈(0,+∞)都成立,则实数m的取值范围是[e2,+∞).解:∵f(x)为奇函数,g(x)为偶函数,对于任意x∈R均有f(x)+2g(x)=mx﹣4,①∴f(﹣x)+2g(﹣x)=﹣mx﹣4,即﹣f(x)+2g(x)=﹣mx﹣4,②由①②得2f(x)=2mx,得f(x)=mx,若f(x)﹣3﹣lnx≥0对任意x∈(0,+∞)都成立即若mx﹣3﹣lnx≥0对任意x∈(0,+∞)都成立则mx≥3+lnx,m≥,设h(x)=,则h′(x)=,由h′(x)>0得﹣2﹣lnx>0,得lnx<﹣2,得0<x<,此时函数为增函数,由h′(x)<0得﹣2﹣lnx<0,得lnx>﹣2,得x>,此时函数为减函数,即当x=,时,函数h(x)取得极大值,同时也是最大值,最大值为h()===e2,即m≥e2,则实数m的取值范围是[e2,+∞),故答案为:[e2,+∞)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知△ABC的内角A,B,C所对的边分别为a,b,c,且10b2cos B=6ab cos C+3(b2+c2﹣a2).(Ⅰ)求cos B;(Ⅱ)设,,求△ABC的周长.解:(Ⅰ)∵10b2cos B=6ab cos C+3(b2+c2﹣a2)=,∴.(Ⅱ)∵,∴ac cos B=3,∴ac=5,∵b2=a2+c2﹣2ac cos B,,∴,∴a+c=6,∴△ABC的周长.18.已知数列{a n}的前n项和S n=n2+n,等比数列{b n}的公比q>1,且b3+b4+b5=28,b4+2是b3,b5的等差中项.(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求数列{b n}的前n项和T n.解:(Ⅰ)∵,∴n≥2时,a n=S n﹣S n﹣1=2n,又n=1时,a1=S1=2满足上式,∴a n=2n;∵b4+2是b3,b5的等差中项,可得b3+b5=2(b4+2),又等比数列{b n}的公比q>1,且b3+b4+b5=28,∴b4=8,b3+b5=20,又∵=64,q>1,解得b3=4,b5=16,∴q=2,;(Ⅱ)∵=,∴=.19.如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M,N 分别是AB,A1C的中点.(Ⅰ)求证:MN∥平面BCC1B1;(Ⅱ)求点M到平面B1NC的距离.解:(Ⅰ)连接AC1,BC1交B1C于点O,∵AA1⊥平面ABC且AC=CC1=2,∴四边形ACC1A1为正方形,∴AC1过点N,且点N为AC1中点,又∵M为AB的中点,∴MN∥BC1,且,又∵MN不在平面BCC1B1内,BC1在平面BCC1B1内,∴MN∥面BCC1B1.(Ⅱ)由(1)可得四边形MBON为平行四边形,∴可证BM∥平面B1NC,∴点M到平面B1NC的距离等于点B到平面B1NC的距离,设为d,∵,N为A1C中点,∴,由,得,又∵,∴.20.纪念币是一个国家为纪念国际或本国的政治、历史,文化等方面的重大事件、杰出人物、名胜古迹、珍稀动植物、体育赛事等而发行的法定货币.我国在1984年首次发行纪念币,目前已发行了115套纪念币,这些纪念币深受邮币爱好者的喜爱与收藏.2019年发行的第115套纪念币“双遗产之泰山币”是目前为止发行的第一套异形币,因为这套纪念币的多种特质,更加受到爱好者追捧.某机构为调查我国公民对纪念币的喜爱态度,随机选了某城市某小区的50位居民调查,调查结果统计如下:(Ⅰ)根据已有数据,把表格数据填写完整,判断能否在犯错误的概率不超过1%的前提下认为不同年龄与纪念币的喜爱无关?(Ⅱ)已知在被调查的年龄不大于40岁的喜爱者中有5名男性,其中3位是学生,现从这5名男性中随机抽取2人,求至多有1位学生的概率.附:,n=a+b+c+d.解:(1)根据题意,设表中数据为则有e+22=50,则e=28;24+d=50,则d=26,a+20=e=28,则a=8,a+b=24,则b=16,b+c=22,则c=6;故列联表为:则有≈9.623>6.635.故能在犯错误的概率不超过1%的条件下认为不同年龄与纪念币的喜爱无关.(2)根据题意,记不大于40岁的5位喜爱者中的3位学生记为a,b,c,非学生记为A,B,则从5人中任取2人,共有(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)10种结果.其中至多有1位学生的有7种,∴至多有1位学生的概率.21.设A,B为抛物线C:x2=2py(p>0)上不同两点,抛物线C的焦点到其准线的距离为4,A与B的横坐标之和为8.(Ⅰ)求直线AB的斜率;(Ⅱ)若设M为抛物线C上一点,C在点M处的切线与直线AB平行,过M点作直线l与曲线C相交于点M,Q,与y轴交于点P,且满足,求△OPQ的面积.解:(Ⅰ)由条件可知:p=4,∴x2=8y.设点A(x1,y1),B(x2,y2),∴,∴.(Ⅱ)设M(x0,y0),,∴,∴x0=4,∴y0=2.设点P(0,y3),Q(x4,y4),直线l为:y=k(x﹣4)+2,∴,∴x2﹣8kx+32k﹣16=0,∴x0+x4=8k,x0x4=32k﹣16.∵,∴﹣x0=2x4,∴x4=﹣2,,∴,∴.22.已知函数,f'(x)是f(x)的导函数,g(x)=f'(x)+1.(Ⅰ)当m=2时,判断函数g(x)在(0,π)上是否存在零点,并说明理由;(Ⅱ)若f(x)在(0,π)上存在最小值,求m的取值范围.解:(Ⅰ)m=2时,g(x)=x﹣2sin x+1.令g'(x)=0,即,x∈(0,π),得,当x变化时,g'(x),g(x)变化如下:∴函数g(x)的单调递减区间为,单调递增区间为.∴g(x)的极小值为.∴函数g(x)在(0,π)上不存在零点.(Ⅱ)因为,所以f'(x)=x﹣m sin x,令h(x)=f'(x)=x﹣m sin x,则h'(x)=1﹣m cos x.①当m<1时,1﹣m cos x>0,即h'(x)>0,∴h(x)=f'(x)=x﹣m sin x在(0,π)单调递增,∴x∈(0,π)时,h(x)>h(0)=0,∴f(x)在(0,π)单调递增,∴f(x)在(0,π)不存在最小值,②当m>1时,,所以h'(x)=1﹣m cos x=0,即在(0,π)内有唯一解x0,当x∈(0,x0)时,h'(x)<0,当x∈(x0,π)时,h'(x)>0,所以h(x)在(0,x0)上单调递减,在(x0,π)上单调递增.所以h(x0)<h(0)=0,又因为h(π)=π>0,所以h(x)=x﹣m sin x在(x0,π)⊆(0,π)内有唯一零点x1,当x∈(0,x1)时,h(x)<0即g'(x)<0,当x∈(x1,π)时,h(x)>0即g'(x)>0,所以g(x)在(0,x1)上单调递减,在(x1,π)上单调递增.所以函数g(x)在x=x1处取得最小值,即m>1时,函数g(x)在(0,π)上存在最小值.。
2020年安徽省高考数学(文科)模拟试卷(8)
三棱锥 P﹣ ABC 的外接球表面积为
.
16.( 5 分)设
F 1,F 2 分别是双曲线
??:
??2 ??2
-
??2 ??2
=
1(??> 0,??>0) 的左、右焦点,
A 是双曲
3 √3
线的左顶点, 点 P 在过点 A 且斜率为
的直线上, 若△ PF1F 2 为等腰三角形, 且∠ F1F2P
7
= 120°,则双曲线 C 的离心率为
19.( 12 分)如图所示,在三棱锥 P﹣ABC 中,△ PAB,△ ABC 均是等边三角形, PA⊥ AC.
( 1)证明: AB⊥ PC;
( 2)若 PC= 2,求三棱锥 P﹣ ABC 的体积.
20.( 12 分)设函数 f( x)= x+axlnx ( a∈R ).
(Ⅰ)讨论函数 f( x)的单调性;
m 的取值范围.
第 5页(共 20页)
2020 年安徽省高考数学(文科)模拟试卷( 8)
参考答案与试题解析
一.选择题(共 12 小题,满分 60 分,每小题 5 分)
1.( 5 分)已知全集 U= R, A={ x|x﹣ 4>0} , B= { x|x<2} ,则 A∪( ?UB)=(
)
A .[2, +∞)
(Ⅱ)若函数 f( x)的极大值点为 x= 1,证明: f( x)≤ e﹣x+x2.
21.( 12 分)动点 P 在抛物线
x2= 2y 上,过点 P 作 PQ 垂直于
x 轴,垂足为
→
Q,设 ????=
1 2
→
???.?
(Ⅰ)求点 M 的轨迹 E 的方程;
(Ⅱ)设点 S(﹣ 4, 4),过 N( 4, 5)的直线 l 交轨迹 E 于 A, B 两点,设直线 SA, SB
【附加15套高考模拟试卷】安徽省淮南市2020届高三第一次模拟考试数学【文】试卷含答案
安徽省淮南市2020届高三第一次模拟考试数学【文】试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()2(1)cos 1xf x x e=-+(其中e 为自然对数的底数)图象的大致形状是( ) A . B . C .D .2.设)(x f 是定义在R 上的奇函数,且0)2(=f ,当0>x 时,有2()()xf x f x x'-<恒成立,则不等式2()0x f x >的解集是( ) A .(2,0)-∪(2,)+∞ B .(,2)-∞-∪(0,2) C .(,2)-∞-∪(2,)+∞ D .(2,0)-∪(0,2)3.下列函数中,在其定义域内既是偶函数又在(,0)-∞上单调递增的函数是 ( )A .2()f x x = B .||()2x f x =C .21()log f x x=D .()sin f x x =4.一空间几何体的三视图如下图所示,则该几何体的体积为( )A .1B .3C .6D .25.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线离心率为( )A.355 B .32 C .3 D .226.已知()()511ax x -+的展开式中2x 的系数为5,则a = A .1B .2C .1-D .2-7.如图所示,等边的边长为2,位边上的一点,且,也是等边三角形,若,则的值是( )A .B .C .D .8.箱子里有16张扑克牌:红桃A 、Q 、4,黑桃J 、8、7、4、3、2,草花K 、Q 、6、5、4,方块A 、5,老师从这16张牌中挑出一张牌来,并把这张牌的点数告诉了学生甲,把这张牌的花色告诉了学生乙,这时,老师问学生甲和学生乙:你们能从已知的点数或花色中推知这张牌是什么牌吗?于是,老师听到了如下的对话:学生甲:我不知道这张牌;学生乙:我知道你不知道这张牌;学生甲:现在我知道这张牌了;学生乙:我也知道了.则这张牌是( ) A .草花5 B .红桃QC .红桃4D .方块59.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点(0,3)B ,且在5(,)1212ππ上单调,把()f x 的图象向右平移π个单位之后与原来的图象重合,当1224,(,)33x x ππ∈且12x x ≠时,()()12f x f x =,则()12f x x +=( )A .3-B .3C .1-D .111.运行如图所示框图的相应程序,若输入的值分别为和则输出的值是( )A .B .C .D .12.执行如图所示的程序框图,如果输入n=3,中输入的S=()A.67B.37C.89D.49二、填空题:本题共4小题,每小题5分,共20分。
安徽省淮南市寿县第二中学2020届高三一模考试数学(文)试卷
绝密★启用前数学试题(文)注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上第I 卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一 项是符合题目的要求的。
1.已知集合U ={1,2,3,4,5,6,7},集合A ={1,2,3,4},B ={3,4,5,6}则A ∩C U B =A 、{1,2,3,4}B 、{1,2,7}C 、{1,2}D 、{1,2,3}2.下列各式的运算结果虚部为1的是 A 、(1)i i - B 、21i+ C 、2+2i D 、2(1)i i +-3、从甲、 乙、 丙、 丁 4 名同学中, 任意安排 2 名同学早上到校门口值日, 另外 2 名同学下午到校门口值日, 则甲和丁不在一起值日的概率为 A 、13 B 、12 C 、23 D 、564.若实数x ,y 满足的最大值是A 、9B 、12 C.3 D 、65.近年来,随着“一带一路”倡议的推进,中国与沿线国家旅游合作越来越密切,中国 到“一带一路”沿线国家的游客人也越来越多,如图是2013-2018年中国到“一带一路” 沿线国家的游客人次情况,则下列说法正确的是①2013-2018年中国到“一带一路”沿线国家的游客人次逐年增加②2013-2018年这6年中,2014年中国到“一带一路”沿线国家的游客人次增幅最小③2016-2018年这3年中,中国到“一带一路”沿线国家的游客人次每年的增幅基本持平A 、①②③B 、②③C 、①②D 、③6.已知椭圆C :22221(0)x y a b a b+=>>的长轴长是短轴长的 2 倍, 焦距等于 23, 则椭圆 C 的方程为7.已知函数的图象与直线y =a (0<a <A )的三个相邻交点的横坐标分别为2、4、8,则f (x )的单调递减区间为8、已知数列{}的前n 项和为Sn ,若9.已知四边形ABCD 为平行四边形,||2AB =u u u r ||3AD =u u u rM 为CD 中点,2BN NC =u u u r u u u r , 则AN MN u u u r u u u u r g =A 、13 B 、23 C 、1 D 、4310、已知函数 f (x ) 是定义在 R 上的奇函数,当 x ∈(-∞,0] 时, f (x ) = x 2 + 2ax ,若曲线 y = f (x )在点(1, f (1)) 处的切线过点 (2,0) , 则 a = A .-34 B . 1 C . 2 D . 3411.“今有城,下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。
安徽省淮南市2020届高三第一次模拟考试文科数学试题
淮南市2017届高三第一次模拟考试数学文科试卷 第 I 卷一、选择题(共12题,每题5分,共60分) 1.已知集合A={x|x 2≤1),B={x|x<a ),若A B=B ,则实数a 的取值范围是 A. (1,+∞) B. [1,+∞) C .(一∞,-1] D .(一∞,1) 2.若复数z 满足i ·z=12(1+i),则z 的虚部是 A .12i B .一12i C .一12 D .123.从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是 A .15 B .25 C .35 D .454.一个几何体的三视图如右图所示,其中正视图和侧视图都是腰长为2的等腰直角三角形,俯视图是圆心角为2π的扇形,则该几何体的侧面积为 A .2 B .4+ πC .4+2πD .4+ π+2π5.已知函数f(x)=sin(x ω+ϕ)(ω>0,0<ϕ<π),直线x=6π是它的一条 对称轴,且(23π,0)是离该轴最近的一个对称中心,则ϕ= A .4π B .3π C .2πD .34π6.下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框 图,若输入的a,b 分别为8,12,则输出的a= A .2 B .0 C. 4 D .167.函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶 函数,则下列结论成立的是A. f(1)<f(52)<f(72) B. f(52)<f(1)<f(72) C .f(72)<f(52)<f(1) D .f(72)<f(1)<f(52)8.已知三棱锥A-BCD 的四个顶点A ,B ,C ,D 都在球O 的表面 上,AC ⊥平面BCD ,BC ⊥CD ,且AC=3,BC=2,CD=5, 则球O 的表面积为A .12πB .7πC .9πD .8π9.设e 是自然对数的底,a>0且a ≠1,b>0且b ≠1,则“log a 2>log b e ”是“0<a<b<l ”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件10.已知函数f(x)是定义在R 上的单调函数,且对任意的x ,y R 都有f(x+y )=f(x )+f(y),若动点P(x ,y)满足等式f(x 2+2x+2)+f(y 2+8y+3)=0,则x+y 的最大值为 A. 26 -5 B. -5 C. 26+5 D. 5 11.已知点F 1、F 2是双曲线C :=1(a>0,b>0)的左、右焦点,O 为坐标原点,点P在双曲线C 的右支上,且满足 |F 1F 2|=2|OP|,|PF 1|≥3|PF 2|,则双曲线C 的离心率的取值范围为A .(1,+∞)B .[102,+∞) C .(1, 102] D .(1, 52] 12.如果定义在R 上的函数f(x)满足:对于任意x 1≠x 2,都有x 1f(x 1)+x 2f(x 2)≥x 1f(x 2)+x 2f(x 1),则称f(x)为“H 函数”.给出下列函数: ①y=-x 3+x+l ;②y=3x-2(sinx-cosx);③y=l-ex ;④f(x)= ,其中“H 函数”的个数有:A .3个B .2个C .1个D .0个第 Ⅱ 卷二、填空题(共4小题,每小题5分,共20分)13.已知两个单位向量a ,b 的夹角为60°,则|a +2b |=____.14.实数x ,y 满足,则yx的取值范围是 . 15.已知数列{a n }满足递推关系式a n+1=2a n +2n -1(n ∈N*),且{2n na λ+}为等差数列,则λ的值为____. 16.已知函数f(x)=, 其中m>0.若存在实数b ,使得关于x 的方程f(x)=b有三个不同的根,则m 的取值范围是 . 三、解答题 17.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 33c)cosA . (1)求角A 的大小; (2)求cos(52π-B)一2sin 22C的取值范围. 18.(本小题满分12分)为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.( I)求a,b的值及随机抽取一考生恰为优秀生的概率;(Ⅱ)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;(Ⅲ)在第(Ⅱ)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在[90,100]的概率.19.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA,,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若BE=3EC,求证:DE∥平面A1MC1;(2)若AA1=l,求三棱锥A-MA1C1的体积.20.(本小题满分12分)已知椭圆E :=1(a>b>o)的左、右焦点分别为F1(一2,F2(2,0),直线x+2y=0与椭圆E的一个交点为(一2,1),点A是椭圆E上的任意一点,延长AF1交椭圆E于点B,连接BF2,AF2.(1)求椭圆E的方程;.(2)求△ABF2的内切圆的最大周长.21.(本小题满分12分)已知函数f(x)=xlnx-a(x-l)2_x+l(a∈R).(1)当a=0时,求f(x)的极值;(2)若f(x)<0对x∈(1,+∞)恒成立,求a的取值范围.请考生在22,23两题中任选一题作答。
2020年安徽高三一模数学试卷(文科)
2020年安徽高三一模数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分)A.B.C.D.1.已知集合,,则( ).A.B.C.D.2.已知复数(为虚数单位),则( ).A.厘米B.厘米C.厘米D.厘米3.某装饰公司制作一种扇形板状装饰品,其圆心角为,并在扇形弧上正面等距安装个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为厘米,则连接导线最小大致需要的长度为( ).4.函数在上的图象大致为( ).A.xyOB.xyOC.xyOD.xyO5.在年春节前夕,为了春节食品市场安全,确保人们过一个健康安全的春节,某市质检部门对辖区内的某大型超市中的一品牌袋装食品进行抽检,将超市中该袋装食品编号为,,,,,从中用系统抽样(等距抽样)的方法抽取袋进行检测,如果编号为的食品被抽到,则下列个编号的食品中被抽到的是( ).A.号B.号C.号D.号6.已知,则( ).A.B.C.D.7.已知,,,则,,的大小关系为( ).A.B.C.D.8.执行下面的程序框图,则输出的值为( ).开始,否是输出结束?A.B. C.D.9.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于的偶数都可以写成两个质数(素数)之和.也就是我们所谓的“”问题.它是年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将拆成两个正整数的和.则拆成的和式中,加数全部为质数的概率为( ).A.B.C.D.10.在中,角,,的对边分别为,,.若,,,则的面积为( ).A.B.C.D.11.已知椭圆的焦距为,为右焦点,直线与椭圆相交于,两点, 是等腰直角三角形,点的坐标为,若记椭圆上任一点到点的距离的最大值为,则的值为( ).A.B.C.D.12.已知.给出下列判断:①若,,且,则;②存在,使得的图象右移个单位长度后得到的图象关于轴对称;③若在上恰有个零点,则的取值范围为;④若在上单调递增,则的取值范围为.其中,判断正确的个数为( ).A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数,则曲线在点处的切线方程为 .14.已知双曲线的离心率为,则双曲线的右顶点到双曲线的渐近线的距离为 .15.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为 .16.已知在三棱锥中,,,,四点均在以为球心的球面上,若,,,则球的表面积为 .三、解答题(本大题共5小题,每小题12分,共60分)(1)(2)17.已知数列是递增的等比数列,是其前项和,,.求数列的通项公式.记,求数列的前项和.(1)(2)18.移动支付是指移动客户端利用手机等电子产品来进行电子货币支付,移动支付将互联网、终端设备、金融机构有效地联合起来,形成了一个新型的支付体系,使电子货币开始普及.某机构为了研究不同年龄人群使用移动支付的情况,随机抽取了名市民,得到如下表格:年龄(岁)使用移动支付不使用移动支付画出样本中使用移动支付的频率分布直方图,并估计使用移动支付的平均年龄.完成下面的列联表,能否在犯错误的概率不超过的前提下认为使用移动支付与年龄有关系?年龄小于岁年龄不小于岁合计使用移动支付不使用移动支付合计附:,.(1)(2)19.如图,在四棱锥中,底面为等腰梯形,,,,为等腰直角三角形,,平面底面,为的中点.求证:平面.求三棱锥的体积.(1)(2)20.已知函数.当时,讨论的单调区间.若对,成立,求实数的取值范围.(1)(2)21.已知抛物线,若圆与抛物线相交于,两点,且.求抛物线的方程.过点的直线与抛物线相切,斜率为的直线与抛物线相交于,两点,直线,交于点,求证:.四、选做题(本大题共2小题,选做1题,共10分)(1)(2)22.在直角坐标系中,直线的参数方程为(为参数),直线的参数方程为(为参数).若直线,的交点为,当变化时,点的轨迹是曲线.求曲线的普通方程.以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点.求点的极径.23.已知函数.【答案】解析:,,则.故选.解析:由,则.故选.解析:因为弧长比较短的情况下分成等分,每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,所以导线长度为(厘米).故选.解析:由,可知函数为奇函数,所以函数图象关于原点对称,当时,.故选.解析:由系统抽样的特点知,从编号为,,,的食品中抽取袋,需要将它们分成组,每组个,因为抽到的编号为,则所有被抽到的食品编号满足,所以所给四个编号符合条(1)(2)求不等式的解集.若不等式在上恒成立,求实数的取值范围.D1.A2.B3.C4.D5.件的是号.故选.解析:由,.故选.解析:因,所以,因为,所以,,即,故有.故选.解析:,故选.解析:由古典概型的基本事件的等可能性可得拆成两个正整数的和含有的基本事件有:,,,,,而加数全为质数的有,所以所求概率为.故选.解析:因为,由正弦定理得,所以,所以.C 6.A 7.D 8.A 9.B 10.因为,所以,所以,所以,因为,,,所以,所以,所以.故选:.解析:由题意可得,所以点的坐标为,代入椭圆方程有,又,所以,解得或(舍去),所以,所以椭圆的方程可化为,设点的坐标为,则,所以,所以,.故选.解析:因为,所以周期.对于①,由条件知,周期为,所以,故①错误;对于②,函数图象右移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,,所以②错误;对于③,由条件得,解得,故③正确;对于④,由条件得,解得,又,所以,故④正确.C 11.B 12.故选.13.解析:的导函数为,∴,∵,∴在处的切线方程为,即.14.解析:设双曲线的焦距为,因,,所以,,故双曲线的右顶点的坐标为,一条渐近线的方程为,则右顶点到渐近线的距离为.故答案为:.15.解析:∵点在的平分线上,∴存在,使,又∵,∴,∴.16.解析:设球О的半径为,过作平面,垂足为,连接,,,由易得,即为的外心,(1)(2)所以球心在射线上,在中,,,设外接圆的半径为,由正弦定理得,所以,所以,连接,则,即,解得,所以.解析:由题意,设等比数列的公比为,∵,,∴,,∴,,∴,解得或,∵数列是递增的等比数列,∴,∴,∴.,∴,两式相减得:∴.(1).(2).17.(1)(2)解析:样本中使用移动支付的人数为人,所以每段的频率分别为:,,,,,0.025.所以其频率分布直方图为年龄(岁)频率组距所以使用移动支付的平均年龄为,所以估计使用移动支付的平均年龄为岁.完成列联表如下:年龄小于岁年龄不小于岁合计使用移动支付不使用移动支付合计由,故在犯错误概率不超过的前提下认为使用移动支付与年龄有关系.(1)画图见解析,岁.(2) 年龄小于岁年龄不小于岁合计使用移动支付不使用移动支付合计在犯错误概率不超过的前提下认为使用移动支付与年龄有关系.18.(1)证明见解析.19.(1)(2)解析:如图所示,取中点,连接和,∵点为的中点,∴为的中位线,∴且,∵,∴,∵,∴,∴四边形为平行四边形,∴,∵平面,平面,∴平面.方法一:如图所示,取中点,连接,和,∵为等腰直角三角形,∴,且,(2).∴平面,∵平面,∴,∴为直角三角形,∵,,∴,∵四边形为等腰梯形,∴,在中,由余弦定理知,∵,∴,∴的面积为,设点到平面的距离为,则三棱锥的体积为,∵的面积,∴三棱锥的体积为,∵,∴,∴,即点到平面的距离为,∵平面,∴点到平面的距离为.则三棱锥的体积为.方法二:由知,平面,∴点到平面的距离等于到平面的距离,∴.如图取的中点,连接,∵,∴,(1)(2)平面,∴平面,∵为等腰三角形,,,∴.∵四边形为等腰梯形,且,,,∴梯形的高为,则.∴三棱锥的体积为.解析:的定义域为,则,的两根为,.①当,即时,当时,,当时,,所以在区间上单调递减,在区间,上单调递增;②当,即时,对,,所以在上单调递增;③当,即时,当时,,当时,,所有在区间上单调递减,在区间,上单调递增.综上所述,当时,在区间和上单调递增,在区间上单调递减;当时,在区间上单调递增;当时,在区间,上单调递增,在区间上单调递减.方法一:因为对恒成立,所以,即恒成立,所以.(1)当时,在区间和上单调递增,在区间上单调递减;当时,在区间上单调递增;当时,在区间,上单调递增,在区间上单调递减.(2).20.(1)令,则问题转化为,,令,则,所以在上单调递增,又,所以在上,在上,所以在上,在上,所以在上单调递减,在上单调递增,所以,所以,即实数的取值范围为.方法二:因为对恒成立,所以,即恒成立.令,,由二次函数性质可知,存在,使得,即,且当时,,当时,,∴在上单调递增,在上单调递减,∴,由题意可知,设,则,即单调递增,又,∴的解集为,即,∴.解析:如图所示,(1)抛物线方程为.(2)证明见解析.21.(2)设,由题意可知,∴,∵点在圆上,∴,解得,∵点也在抛物线上,∴,解得,∴抛物线方程为.对抛物线方程求导,点在抛物线上,故,,设直线的方程为,联立, 得,设,,;,,,联立,得,,,,(1)(2)(1)(2),代入韦达定理得:,∴.解析:直线的普通方程为,直线的普通方程为,联立直线,方程消去参数,得曲线的普通方程为,整理得.设点的直角坐标系坐标为,由,可得,,代入曲线的方程可得,解得,(舍),所以点的极径为.解析:①当时,不等式可化为,得,无解;②当时,不等式可化为,得,故;③当时,不等式可化为,得,故.综上,不等式的解集为.由题意知在上恒成立,所以,(1).(2)点的极径为.22.(1).(2).23.令,则当时,,又当时,取得最小值,且,又,所以当时,与同时取得最小值,所以,所以.即实数的取值范围为.。
2020届安徽省淮南市高三第一次模拟考试数学(文)试题(解析版)
2020届安徽省淮南市高三第一次模拟考试数学(文)试题一、单选题1.若集合{}21A x x =-≤,B x y ⎧⎫==⎨⎩,则A B =I ( )A .[]1,2-B .(]2,3C .[)1,2D .[)1,3【答案】C【解析】先求出集合,A B ,然后再求交集. 【详解】由{}21A x x =-≤得,[1,3]A = ,(),2B x y ⎧⎫===-∞⎨⎩则[1,2)A B ⋂= 故选:C 【点睛】本题考查集合求交集,属于基础题. 2.已知R a ∈,i 为虚数单位,若复数1a iz i+=+是纯虚数,则a 的值为( ) A .1- B .0C .1D .2【答案】A【解析】利用复数的运算法则、纯虚数的定义即可得出. 【详解】()()()()()()111=1112a i i a a ia i z i i i +-++-+==++-为纯虚数. 则110,022a a +-=≠ 所以1a =- 故选:A 【点睛】本题考查了复数的运算法则、纯虚数的定义,属于基础题. 3.已知a ,b 都是实数,那么“lg lg a b >”是“a b >”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】B【解析】利用对数函数的单调性、不等式的性质即可判断出结论. 【详解】,a b 都是实数,由“lg lg a b >”有a b >成立,反之不成立,例如2,0a b ==.所以“lg lg a b >”是“a b >”的充分不必要条件. 故选:B 【点睛】本题考查了对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.4.函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数是( ) A .0 B .1C .2D .3【答案】B【解析】求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数,数形结合可得结论. 【详解】函数()132xf x x ⎛⎫=-+ ⎪⎝⎭零点的个数, 即方程132xx ⎛⎫=- ⎪⎝⎭的根的个数, 所以只需求函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点的个数 在同一坐标系中分别作出函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭的图像.如图所示,函数3y x =-和函数12xy ⎛⎫= ⎪⎝⎭交点有1个. 故选:B 【点睛】本题主要考查函数的图象的交点问题,函数的零点个数的判断,体现了数形结合、转化的数学思想,属于中档题.5.由下表可计算出变量,x y 的线性回归方程为( )x54 3 2 1 y21.5110.5A .ˆ0.350.15y x =+B .ˆ0.350.25yx =-+ C .ˆ0.350.15yx =-+ D .ˆ0.350.25yx =+ 【答案】A【解析】试题分析:由题意,543212 1.5110.53, 1.255x y ++++++++====∴样本中心点为(3,1.2)代入选择支,检验可知A 满足.故答案选A . 【考点】线性回归方程.6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.己知ABC ∆的顶点()4,0A ,()0,2B ,且AC BC =,则ABC ∆的欧拉线方程为( )A .230x y -+=B .230x y +-=C .230x y --=D .230x y --=【答案】D【解析】由于AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上,求出线段AB 的垂直平分线,即可得出ABC ∆的欧拉线的方程. 【详解】因为AC BC =,可得:ABC ∆的外心、重心、垂心都位于线段AB 的垂直平分线上()4,0A ,()0,2B ,则,A B 的中点为(2,1) 201042AB k -==--, 所以AB 的垂直平分线的方程为:12(2)y x -=-,即23y x =-. 故选:D 【点睛】本题考查等腰三角形的性质、三角形的外心重心垂心性质,考查了对新知识的理解应用,属于中档题. 7.函数()21ln 12f x x x =--的大致图象为( ) A .B .C .D .【答案】C【解析】由()()f x f x -=得到()f x 为偶函数,所以当0x >时,()21ln 12f x x x =--,求导讨论其单调性,分析其极值就可以得到答案. 【详解】 因为()()()21ln 12f x x x f x -=----=, 所以()f x 为偶函数, 则当0x >时,()21ln 12f x x x =--. 此时211()x f x x x x='-=-,当1x >时,()0f x '> 当01x <<时,()0f x '<.所以()f x 在(0,1)上单调递减,在(1,)+∞上单调递增. 在0x >上,当1x =时函数()f x 有最小值11(1)1122f =-=->-.. 由()f x 为偶函数,根据选项的图像C 符合. 故选:C 【点睛】本题考查根据函数表达式选择其图像的问题,这类问题主要是分析其定义域、值域、奇偶性、对称性、单调性和一些特殊点即可,属于中档题.8.在ABC ∆中,4AB =,6AC =,点O 为ABC ∆的外心,则AO BC ⋅u u u r u u u r的值为( )A .26B .13C .523D .10【答案】D【解析】利用向量数量积的几何意义和三角形外心的性质即可得出. 【详解】()AO BC AO AC AB AO AC AO AB ⋅=⋅-=⋅-⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r如图,设,AB AC 的中点分别为,E F ,则,OE AB OF AC ⊥⊥,||||cos ||||428AO AB AB AO OAB AB AE ⋅=⋅∠=⋅=⨯=u u u r u u u r u u u r u u u r u u u r u u u r||||cos ||||6318AO AC AC AO OAC AC AF ⋅=⋅∠=⋅=⨯=u u u r u u u r u u u r u u u r u u u r u u u r所以18810AO BC ⋅=-=u u u r u u u r故选:D 【点睛】本题考查了向量数量积的几何意义和三角形外心的性质、向量的三角形法则,属于中档题.9.已知数列{}n a 满足11a =,且1x =是函数()32113n n a f x x a x +=-+()n N +∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019201820182018b b b b b b ⎡⎤++⋅⋅⋅+=⎢⎥⎣⎦( ) A .2019 B .2018 C .1009 D .1008【答案】D【解析】求得()f x 的导数,可得1(1)20n n f a a +'=-=,数列{}n a 为等比数列,可得数列{}n a 的通项公式,利用对数的运算性质可得n b ,再由数列的求和方法:裂项相消求和,即可得到所求值. 【详解】由21()2n n f x a x a x +'=-,1x =是函数()f x 的极值点,所以1(1)20n n f a a +'=-=,即12n n a a +=所以数列{}n a 是以11a =为首项,2为公比的等比数列,则12n n a -=.由1222log log 21n n n b a n ++===+120182018112018(1)(2)12n n b b n n n n +⎛⎫==- ⎪++++⎝⎭所以122320182019201820182018b b b b b b ++⋅⋅⋅+ 1223201820191111112018[]b b b b b b ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L1201911111009=20182018=1009220201010b b ⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭即1223201820192018201820181009[1009]10081010b b b b b b ⎡⎤++⋅⋅⋅+=-=⎢⎥⎣⎦ 故选:D 【点睛】本题考查导数的运用:求极值点,考查数列恒等式的运用,以及等比数列的通项公式和求和公式,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题. 10.如图,一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为5 cm ,如果不计容器的厚度,则球的表面积为( )A .2500cm 3πB .2625cm 9πC .2625cm 36πD .215625cm 162π【答案】B【解析】设正方体上底面所在平面截球得小圆M ,可得圆心M 为正方体上底面正方形的中心.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质建立关于R 的方程并解出R 即可求出球的表面积. 【详解】设正方体上底面所在平面截球得小圆M , 则圆心M 为正方体上底面正方形的中心.如图.设球的半径为R ,根据题意得球心到上底面的距离等于(3)R cm -,而圆M 的半径为4,由球的截面圆性质,得222(3)4R R =-+,解得:25=6R . ∴球的表面积为2225625=4=4=369S R πππ⨯ . 故选:B . 【点睛】此题主要考查了正方体的性质、垂径定理以及勾股定理等知识,将立体图转化为平面图形是解题关键.11.已知双曲线22214x y b -=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( )A .83+ B .)41C .83+ D .)22【答案】A【解析】利用双曲线的定义以及三角形结合正弦定理,转化求解三角形的周长即可. 【详解】双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF V 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =所以1ABF ∆的周长为:11||||||AF BF AB ++=2(4)81628m ++=+=+故选:A 【点睛】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.12.若函数()2ln ln x f x ax x x x=+--有三个不同的零点,则实数a 的取值范围是( ) A .1,11e e e ⎛⎫--⎪-⎝⎭ B .11,1e e e ⎡⎤-⎢⎥-⎣⎦C .11,1ee e ⎛⎫- ⎪-⎝⎭D .1,11e e e ⎡⎤--⎢⎥-⎣⎦【答案】C 【解析】【详解】函数()2ln ln x f x ax x x x=+--有三个不同的零点,即方程ln ln x xa x x x =--有三个不同实数根.设ln ()(0)ln x xg x x x x x=->-,则22221ln 1ln ln (1ln )(2ln )()(ln)(ln )x x x x x x g x x x x x x x ----'=-=-- 由1212ln ,2x y x x y x x-'=-=-=, 当1(0,)2x ∈时,0y '<,2ln y x x =-单调递减, 当1()2,x ∈+∞时,0y '>,2ln y x x =-单调递增, 所以112ln 2ln 1ln 2022y x x =-≥⨯-=+> 所以在(0,)x ∈+∞恒有2ln 0y x x =-> 令()0g x '=,得1x =或x e =.当01x <<时,()0g x '<,当1x e <<时,()0g x '>,当e x <时,()0g x '< 所以()g x 在(0,1)上单调递减,在(1,)e 上单调递增,在(,)e +∞上单调递减.(1)1g =,1()1e g e e e=-- 0x →时,ln x x→-∞,1ln ln 1x x x x x=→-- x →+∞时,ln 0x x→,11ln ln 1x xx x x=→-- 所以0x →时,()+g x →∞,x →+∞时()1g x → 所以()g x 的大致图像如下:方程ln ln x xa x x x=--有三个不同实数根.结合函数图像有:11,1ea e e ⎛⎫∈- ⎪-⎝⎭故选:C 【点睛】本题考查函数的零点、导数的综合应用,考查转化与化归能力,运算求解能力、数形结合思想,属于难题.二、填空题13.若实数x ,y 满足0,20,20,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则2z x y =+的最大值为______.【答案】3【解析】作出不等式组满足的平面区域,再将目标函数平移经过可行域,可得最值. 【详解】由0,20,20,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩作出可行域,如下目标函数2z x y =+可化为2y x z =-+. z 表示直线2y x z =-+在y 轴上的截距.即求直线2y x z =-+在y 轴上的截距的最大值. 由可行域的图像,可知目标函数过点(1,1)B 时截距最大. 所以z 的最大值为:2113z =⨯+= 故答案为:3 【点睛】本题考查简单的线性规划问题,注意简单线性规划中目标函数的几何意义,属于基础题. 14.已知4sin 65πα⎛⎫+= ⎪⎝⎭,5,36ππα⎛⎫∈ ⎪⎝⎭,则cos α的值为______. 433-【解析】根据角的范围,先求出cos 6πα⎛⎫+ ⎪⎝⎭的值,然后用角变换66ππαα⎛⎫=+- ⎪⎝⎭可求解. 【详解】由5,36ππα⎛⎫∈ ⎪⎝⎭,+,26ππαπ⎛⎫∈ ⎪⎝⎭所以cos 653πα⎛⎫+==-⎪⎝⎭cos cos =cos cos +sin sin 666666ππππππαααα⎛⎫⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭3414525210-=-⨯+⨯=【点睛】本题考查同角三角函数的关系和利用角变换求解三角函数值,属于中档题. 15.已知函数()lnexf x e x=-,满足()2201810092019201920192e e e f f f a b ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(a ,b 均为正实数),则ab 的最大值为______. 【答案】4【解析】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----,然后配对(用倒序相加法)可求和,从而求出,a b 的关系,可得出答案. 【详解】由()()()()lnln ln[]2()ex e e x ex e e x f x f e x e x e e x e x x--+-=+=⋅=----. 22018201920192019e e e f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 20182201710091010[][[]201920192019201920192019e e e e e e f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10092=⨯()10092a b =+ 所以4a b +=,且a ,b 均为正实数.则242+⎛⎫≤= ⎪⎝⎭a b ab 当且仅当2a b == 时取等号. 故答案为:4.16.设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且4AF BF =,则弦长AB =______.【答案】258【解析】求出抛物线的焦点坐标,由直线方程的点斜式写出直线l 的方程,和抛物线方程联立后利用弦长公式得答案. 【详解】抛物线焦点坐标为1(,0)2F , 设点1122(,),(,)A x y A x y 设直线l 方程为12x my =+, 由抛物线的定义有111||22p AF x x =+=+,221||22p BF x x =+=+ 由4AF BF =,得1211422x x ⎛⎫+=+ ⎪⎝⎭,即1214(1)my my +=+. 所以有12(4)3(1)m y y -=L L ,又由2122x my y x⎧=+⎪⎨⎪=⎩ 得:2210y my --=,所以122y y m +=,121(2)y y ⋅=-L L 由(1),(2)联立解得:2916m =. 又1212||||||12AB AF BF x x my my =+=++=++212925()22222168m y y m =++=+=⨯+= 故答案为:258【点睛】本题考查了抛物线的标准方程及其几何性质,考查了直线与抛物线的位置关系,是中档题.三、解答题17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c cos sin C c A =. (Ⅰ)求角C 的大小;(Ⅱ)已知点P 在边BC 上,60PAC ∠=︒,3PB =,AB =ABC ∆的面积.【答案】(Ⅰ)60C =︒;(Ⅱ)2S =【解析】(Ⅰcos sin sin A C C A =,可得答案.| (Ⅱ)由条件APC ∆为等边三角形,则120APB ∠=︒,由余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒,可得AP ,从而得到三角形的面积.【详解】(Ⅰ)cos sin C c A =cos sin sin A C C A =,又A 是ABC ∆内角,∴sin 0A ≠,∴tan C =∵0180C <<︒,∴60C =︒.(Ⅱ)根据题意,APC ∆为等边三角形,又120APB ∠=︒.在APB ∆中,由于余弦定理得,2222cos120AB AP BP PA PB =+-⋅︒, 解得,2AP =,∴5BC =,2AC =.∴ABC ∆的面积1sin 602S CA CB =⋅︒=【点睛】本题考查正弦和余弦定理以及求三角形的面积,属于中档题.18.高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.(Ⅰ)求图中a 的值;(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率; (Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表: 经常使用 偶尔使用或不用 合计 男性 50 100 女性 40 合计200完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?附:()()()()()22n ad bc K a b c d a c b d -=++++ ()20P K k ≥ 0.15 0.10 0.05 0.025 0.0100k2.072 2.7063.841 5.024 6.635【答案】(Ⅰ)0.030a =;(Ⅱ)37P =;(Ⅲ)表见解析,没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.【解析】(Ⅰ)根据频率分布直方图中的面积之和为1,求参数a .(Ⅱ)由题意前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,利用列举的方法可求得概率.(Ⅲ)先计算填好2×2列联表,然后代入公式计算2K ,与给出的表格比较得出答案. 【详解】(Ⅰ)由题意()100.010.01520.0250.0051a ⨯+⨯+++=解得0.030a =. (Ⅱ)由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,分别记为1A ,2A ,1B ,2B ,3B ,1C ,2C ,3C ,从中抽取2辆的结果有:()12,A A ,()11,A B ,()12,A B ,()13,A B ,()11,A C ,()12,A C ,()13,A C ; ()21,A B ,()22,A B ,()23,A B ,()21,A C ,()22,A C ,()23,A C ; ()12,B B ,()13,B B ,()11,B C ,()12,B C ,()13,B C ;()23,B B ,()21,B C ,()22,B C ,()23,B C ;()31,B C ,()32,B C ,()33,B C ;()12,C C ,()13,C C ,()23,C C ;共28个,恰有1辆的使用时间不低于50分钟的结果有12个, ∴所求的概率为123287P ==. (Ⅲ)2×2列联表如下:由上表及公式可知()2220050406050 2.0210010011090K ⨯⨯-⨯=≈⨯⨯⨯,因为2.02<2.072所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关.【点睛】本题考查根据频率分布直方图求参数,考查概率可独立性检验,属于中档题. 19.如图在梯形ABCD 中,AD BC ∥,AD DC ⊥,E 为AD 的中点224AD BC CD ===,以BE 为折痕把ABE ∆折起,使点A 到达点P 的位置,且PB BC ⊥.(Ⅰ)求证:PE ⊥平面BCDE ;(Ⅱ)设F ,G 分别为PD ,PB 的中点,求三棱锥G BCF -的体积. 【答案】(Ⅰ)证明见解析;(Ⅱ)13G BCF V -=【解析】(Ⅰ)根据原图中的垂直关系,得到翻折后BE PE ⊥,PE BC ⊥,从而可证明.(Ⅱ)由F ,G 分别为PD ,PB 的中点111244G BCF G BGF C PBF C PBD P BCD V V V V V -----====,从而可求解体积.【详解】(Ⅰ)由题意可知BCDE 为正方形,∴BC BE ⊥,且BE AE ⊥,即BE PE ⊥ 又PE BC ⊥,且PB BE B =I ,∴BC ⊥平面PBE ,∵PE PB ⊂,E ,BC PE ⊥ 又BC BE B =I ,∴PE ⊥平面BCDE .(Ⅱ)∵G 为PB 的中点,∴PGF BGF S S ∆∆=,∴12C PGF C BGF C PBF V V V ---== 又F 为PD 的中点,∴PBF BDF S S ∆∆=,∴12C PBF C BDF C PBD V V V ---== ∴111244G BCF G BGF C PBF C PBD P BCD V V V V V -----==== 又1142P BCD P BCDE V V --=,∴11112228833G BCF P BCDE V V --==⨯⨯⨯⨯=. 【点睛】本题考查翻折问题,考查线面垂直的证明和求体积,属于中档题.20.已知椭圆2222:1x y C a b+=()0a b >>的离心率为13,1F ,2F 分别是椭圆的左右焦点,过点F 的直线交椭圆于M ,N 两点,且2MNF ∆的周长为12.(Ⅰ)求椭圆C 的方程(Ⅱ)过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆是以AB 为底边的等腰三角形若存在,求点D 横坐标的取值范围,若不存在,请说明理由.【答案】(1)22198x y +=;(2)存在,012m -≤<或012m <≤【解析】(Ⅰ)由椭圆的离心率为13和2MNF ∆的周长为12可得13412c a a ⎧=⎪⎨⎪=⎩,可求椭圆方程.(Ⅱ)AB 的中点为()00,E x y ,由条件有DE AB ⊥,即1DE AB k k =-⋅,设(),0D m ,用直线AB 的斜率把m 表示出来,可求解其范围. 【详解】(1)由题意可得13412c a a ⎧=⎪⎨⎪=⎩,所以3a =,1c =,所以椭圆C 的方程为22198x y +=.(2)直线l 的解析式为2y kx =+,设()11,A x y ,()22,B x y ,AB 的中点为()00,E x y .假设存在点(),0D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得()228936360k x kx ++-=, 故1223698kx x k +=-+,所以021898k x k -=+,00216298y kx k =+=+ 因为DE AB ⊥,所以1DE k k =-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++当0k >时,89k k +≥=012m -≤<; 当k 0<时,89k k +≤-012m <≤ 综上:m取值范围是0m ≤<或0m <≤【点睛】本题考查由椭圆的几何性质求方程,满足条件的动点的坐标的范围的探索,属于难题.21.设函数()ln xa e f xb x e=-,且()11f =(其中e 是自然对数的底数).(Ⅰ)若1b =,求()f x 的单调区间; (Ⅱ)若0b e ≤≤,求证:()0f x >. 【答案】(Ⅰ)增区间为()1,+?,减区间为()0,1;(Ⅱ)见解析 【解析】(Ⅰ)当1b =时()11x xe f x x--'=,令()11x t x xe -=-,对()t x 求导分析出其单调性,从而分析出函数值的符号,得到()f x 的单调区间.(Ⅱ)对()f x 求导讨论其单调性,分析其最小值,证明其最小值大于0即可. 【详解】(Ⅰ)由()11f =可得,1a =,又1b =,∴()1ln x f x ex -=-,()11x xe f x x--'=,0x >,令()11x t x xe-=-,()()11x t x x e -'=+,当0x >时,()0t x '>,()t x 在()0,+?单调增函数,又()10t =.∴当()0,1x ∈时,()0t x <,()‘0f x <,当()1,x ∈+∞时,()0t x >;()‘0f x >,∴()f x 的单调增区间为()1,+?,减区间为()0,1(Ⅱ)当0b =时,()0f x >,符合题意. 方法(一)当0b e <≤时,()11x x b xe bf x e x x---'=-=令()1x h x xeb -=-,又()00h b =-<,()220h e b =->∴()h x 在()0,2∃唯一的零点,设为0x ,有010x x eb -=且()00,x x ∈,()00f x '<,()f x 单调递减;()0,x x ∈+∞,()00f x '>,()f x 单调递增∴()()0100min ln x f x f x eb x -==-∵010x x eb -=,∴01x be x -=,两边取对数,001ln ln x b x -=-∴()()000ln 1bf x b b x x =-+- 00ln 2ln ln b bx b b b b b b b b b b x ⎛⎫=+--≥--=- ⎪⎝⎭(当且仅当01x =时到等号) 设()ln m b b b b =-,∴()ln m b b =-,当()0,1b ∈时,()0m b '>,当(]1,b e ∈时,()0m b '<; 又()0m e =,且,0b >,趋向0时,()0m e >; ∴当0b e <≤,()0m b ≥,当且仅当b e =时取等号由(1)可知,当1b =时,01x =,故当b e =时,01x ≠,()()00f x m b >≥,∴()00f x > 综上,当0b e ≤≤时,()0f x > 方法(二)当0b e <≤时,(i )当01x <≤时ln 0x ≤,ln 0b x ≤,()1ln 0x f x e b x -=->显然成立;(ii )当1x ≥时,构造函数()ln 1F x x x =-+()110F x x'=-≤,()F x 在[)1,+∞为减函数,∴()()10F x F ≤=,∴0ln 1x x <≤- ∴()()0ln 11b x b x e x <≤-≤-,∴()0ln 1b x e x <<- ∴()()11ln 1x x f x eb x e e x --=->--又由ln 1x x ≤-,可得21x e x -≥-,进而()()110x f x e e x -=--≥综上:当0b e ≤≤时,()0f x > 【点睛】本题考查求函数单调区间和证明函数不等式,考查了导数的应用,应用了放缩与指对互化的技巧,属于难题.22.在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C MN∆的面积.【答案】(1)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)12. 【解析】试题分析:(1)将cos ,sin x y ρθρθ==代入12,C C 的直角坐标方程,化简得cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=;(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=得1222,2ρρ==, 所以2MN =,进而求得面积为12.试题解析:(1)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=(2)将4πθ=代入22cos 4sin 40ρρθρθ--+=得23240ρρ-+=得1222,2ρρ==, 所以2MN =因为2C 的半径为1,则2C MN ∆的面积为1121sin 4522⨯⨯⨯=o 【考点】坐标系与参数方程.23. 已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 【答案】(1) {x |x ≥4或x ≤1};(2) [-3,0].【解析】试题分析:(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x 在[1,2]上恒成立,由此求得求a 的取值范围试题解析:(1)当a =-3时,f (x )=25,2{1,2325,3x x x x x -+≤<<-≥当x≤2时,由f (x )≥3得-2x +5≥3,解得x≤1; 当2<x <3时,f (x )≥3无解;当x≥3时,由f (x )≥3得2x -5≥3,解得x≥4.所以f (x )≥3的解集为{x|x≤1或x≥4}. 6分 (2)f (x )≤|x -4||x -4|-|x -2|≥|x +a|.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a|(4-x )-(2-x )≥|x +a|-2-a≤x≤2-a,由条件得-2-a≤1且2-a≥2,解得-3≤a≤0,故满足条件的实数a的取值范围为[-3,0].【考点】绝对值不等式的解法;带绝对值的函数第 21 页共 21 页。
20xx年安徽省淮南市高考数学一模试卷(文科)
2019 年安徽省淮南市高考数学一模试卷(文科)一、选择题:此题共12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一个切合题目要求的.1.( 5 分)已知 P { x | 1 x 1} , Q { x | 2 x 1)},则P Q (2A. ( 1,1) B. ( 2,1) C. (1,1) D.( 2, 1) 2 22.( 5 分) |1 2i | ( )A . 3 B. 7 C. 5 D .33.( 5 分)函数 f ( x) x2 ( e x e x ) 的大概图象为 ( )A.B.C.D.4.( 5 分)某三棱锥的三视图如下图,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为()A. 50 B.50 2 C. 40 D.40 25.( 5 分)已知锐角ABC 的内角A,B, C 的对边分别为a, b ,c, 23cos 2 A cos2 A 0 , a 7 , c 6 ,则 b ()A.10 B. 9 C. 8 D .56 .( 5 分)在平行四边形ABCD 中,已知AB 4,AD 3, CP 3PD , AP BP 2,则 AB AD 的值是 ()A . 4 B. 6 C. 8 D .107.( 5 分)如图为我国数学家赵爽(约 3 世纪初)在为《周髀算经》作注时考证勾股定理的表示图,它是由 4个全等的直角三角形与中间的小正方形拼成的一个大正方形,现向大正方形内丢一粒黄豆,当每个直角三角形的两直角边之比都是2 :3 时,则该黄豆落入小正方形内的概率为()A .2B .1C .2 D .13313 138.( 5 分)某圆锥的侧面睁开图是面积为3 ,圆心角为2的扇形,则该圆锥的母线与底面所成的角的余弦3值为 ( )A .1B .1C .1D .123459.( 5 分)已知奇函数 f ( x) 知足 f ( x) f ( x 4) ,当 x (0,1) 时, f (x) 4 x ,则 f (log 4 184) ()A . 23B .23C .3D . 3323248 10.( 5 分)已知点 P 是双曲线x 2 y 21(a 0,b 0) 右支上一点, F 1 、 F 2 分别是双曲线的左、 右焦点, M 为a 22b△ PF 1F 2 的心里,若 S IPFSMPF1()2S MF F 成立,则双曲线的离心率为121 2A . 4B .5C . 2D .52311.( 5 分)如图是函数y sin( x)( 0,0 )在区间 [5] 上的图象,将该图象向右平移6 ,26| m | (m 0) 个单位后,所得图象对于直线x对称,则 m 的最大值为 ( )4A .B .C .4D .126312.( 5 分)在平面直角坐标系中,设点 p(x, y) ,定义 [OP ] | x | | y |,此中 O 为坐标原点,对于以下结论:( 1)切合 [ OP] 2 的点 p 的轨迹围成的图形面积为 8;( 2)设点 p 是直线: 3x 2 y 2 0 上随意一点,则 [OP]min 1;( 3)设点 p 是直线: ykx 1(k R) 上随意一点, 则使得 “ [OP]最小的点 P 有无数个” 的必需条件是 k 1 ;2 22 上随意一点,则 [ OP] max 2 .( 4)设点p是圆 x y此中正确的结论序号为( )A .( 1)( 2)( 3)B.( 1)(3)( 4)C.(2)( 3)(4) D .(1)( 2)(4)二、填空题:此题共 4 小题,每题5分,共 20分13.( 5 分)若直线 x my m 0 经过抛物线 x2 2 py ( p 0) 的焦点,则p .x y 2 0114.( 5 分)若x,y 知足拘束条件 y ,则z .2 0 x y 的最小值为x y 2 0 215.( 5 分)已知等差数列{ a n } ,若点 ( n, a n )( n N * ) 在经过点 (4,8) 的定直线 l 上,则数列 { a n } 的前7 项和S7 .16.( 5 分)已知函数 f (x) 1 3 23x ,若对于2tf (x) 15 0(t R) 有m个不一样的实数解,3 x x x 的方程[ f (x)]则 m 的全部可能的值组成的会合为.三 .解答题:共70 分.解答应写出文字说明、证明过程或演算步骤.第17~ 21 题为必考题,每个试题考生都一定作答,第22、 23 为选考题,考生依据要求作答.17.( 12 分)已知等差数列{ a n }的前 n 项和为S n,且S3 9,a1 3 7, a , a 成等比数列.( 1)求数列 { a n } 的通项公式;( 2)若 a n a1(当n⋯2时),数列 { b n } 知足 b n2a n,求数列 { a n b n } 的前n项和 T n.18.( 12 分)某市为加强市民的环境保护意识,面向全市征召义务宣传志愿者.现从切合条件的志愿者中随机抽取 100 名按年纪分组:第 1 组 [20 , 25) ,第 2 组 [25 , 30) ,第 3 组 [30 , 35) ,第 4 组 [35 , 40) ,第 5 组 [40 , 45] ,获得的频次散布直方图如下图.(Ⅰ)若从第3, 4, 5 组顶用分层抽样的方法抽取 6 名志愿者参广场的宣传活动,应从第3,4, 5 组各抽取多少名志愿者?(Ⅱ)在(1)的条件下,该市决定在第3,4 组的志愿者中随机抽取 2 名志愿者介绍宣传经验,求第 4 组至罕有一名志愿者被抽中的概率.19.( 12 分)如图,在四棱锥中 O ABCD 中,底面 ABCD 是边长为 4 的正方形,侧棱 OB底面 ABCD ,且侧棱 OB 的长是 4,点 E ,F ,G 分别是 AB ,OD ,BC 的中点.( 1)证明: OD平面 EFG ;( 2)求三棱锥 O EFG 的体积.2 220.( 12 分)设椭圆 C :xy 2 1(b 0) 的左、右焦点分别为 F 1 , F 2 ,上极点为 A ,过点 A 与 AF 2 垂直的直 4 b线交 x 轴负半轴于点 Q ,且 F 1QF 1F 2 0 .( 1)求椭圆 C 的方程;( 2)过椭圆 C 的右焦点 F 2 作斜率为 1 的直线 l 与椭圆 C 交于 M ,N 两点,试在 x 轴上求一点 P ,使得以 PM ,PN 为邻边的平行四边形是菱形.21.( 12 分)已知函数 f ( x) 2lnxx 2mx( m R) .( 1)若 f (x) 在其定义域内单一递加,务实数 m 的取值范围;( 2)若 5 m17 , 且f x 有两个极值点 x 1 , x 2 (x 1 x 2 ) ,求 f (x 1 )f (x 2 ) 的取值范围.2[选做题 ]22.( 10 分)已知直线 l 过点 P(1,0) ,且倾斜角为,以坐标原点为极点,x 轴的正半轴为极轴成立坐标系,圆 C 的极坐标方程为4cos .( 1)求圆 C 的直角坐标系方程及直线 l 的参数方程;( 2)若直线 l 与圆 C 交于 A , B 两点,求11的最大值和最小值.|PA| |PB|23.已知函数 f (x) | 2x 1| | x2 |.( 1)求不等式 f ( x) 3 的解集;( 2)若 f (x)1 1 (m, n 0)对随意x R恒成立,求m n的最小值.m n2019 年安徽省淮南市高考数学一模试卷(文科)参照答案与试题分析一、选择题:此题共12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一个切合题目要求的.【解答】解:P { x | 1 x 1} , Q { x | 2 x 1} ,2P Q { x | 2 x 1} ( 2,1) .应选: B.【解答】解: |1 2i |1 4 5 ,应选: C.【解答】解: f ( x) x2xex,( e )f ( x) ( x)2 (e x e x ) x2 (e x e x ) f ( x) ,f (x) 为奇函数,其图象对于原点对称,故清除B,D,y x2,是增函数 x (0, ) ,f ( x) 0y e x e x) ,y 0 ,f ( x) x2 (e x e x )在(0, ) ,是增函数 x (0,是增函数,清除 C .(或许)当x时, f ( x),故清除C,应选: A.【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,其外接球相当于以以俯视图为底面的三棱柱的外接球,由底面三边长为3,4, 5,故底面外接圆半径 r 5 ,2球心究竟面的距离 d 5 ,2故球半径 R52,22故外接球的表面积S 4 R50,应选: A.【解答】解:23cos2 A cos2 A 23cos 2 A 2cos 2 A 1 0 ,即 cos2 A 1, A为锐角,25cos A 1 ,5又 a 7 , c 6 ,依据余弦定理得: a 2 b2 c2 2bc cos A ,即49 b 2 36 12b ,5解得: b 5 或 b 13(舍去),5则 b 5 .应选: D.【解答】解:平行四边形ABCD 中,已知AB 4 , AD 3,CP 3PD ,又AP BP 2,(AD DP) (BC CP) 2 ,AD BC AD CP DP BC DP CP 2 ,即 9 3 11 32 ,AD AB AD AB4 4AD AB 8.应选: C.【解答】解:设小正方形的边长为 a ,由每个直角三角形的两直角边之比都是2: 3,则直角三角形的两边长分别为:2a ,3a ,则大正方形的边长为:(2a)2 (3a)2 13a ,设事件 A 为“向大正方形内丢一粒黄豆,黄豆落入小正方形内”,则P(A)S小正方形 a 2 1 ,S大正方形 ( 13a) 2 13应选: D.【解答】解:圆锥的侧面睁开图是面积为 3 ,圆心角为2的扇形,3则圆锥的母线 l 知足:1l 2 3 3故圆锥的母线长为 3,又由r 23 l 2可得圆锥的底面半径为1,故该圆锥的母线与底面所成的角的余弦值为1 .3应选: B.【解答】 解: 奇函数 f ( x) 知足 f ( x) f (x4) ,当 x (0,1) 时, f (x) 4 x ,f (log 4 184)f (log 4 184 4)(4log 41844 ) 18423 . 4432应选: A .【解答】 解:如图,设圆 M 与△ PF 1 F 2 的三边 F 1F 2 、 PF 1 、 PF 2 分别相切于点 E 、 F 、 G ,连结 ME 、 MF 、MG ,则 MEF 1F 2 , MF PF 1 , MG PF 2 ,它们分别是△ MF 1F 2 , MPF 1 , MPF 2 的高,SMPF 11|PF 1| |MF | r|PF 1 |,2 2SMPF 21 |PF 2||MG | r| PF 2 |22S MF 1F 21 | F 1F2 | r | F 1F 2 |,此中 r 1 2的内切圆的半径.2|ME |是△ PFF2SMPFS MPF112SMFF21 2rr|PF 2 |r | F 1F 2 ||PF 1|2 42两边约去 r得:|PF 1| |PF 2|1 | F 1F2 |2 2|PF | |PF | 1|FF 2 |12 2 1依据双曲线定义,得 |PF 1| |PF 2| 2a , | F 1 F 2 | 2c2a c离心率为 ec 2a应选: C .【解答】解:由函数 y sin( x ) , ( 0,| | ) 的图象可得2 5) ,T (2 6 6可得: 2 .再由五点法作图可得 2 ( ) 0 ,6可得:.3故函数的 f (x) 的分析式为 f (x) sin(2 x ) sin 2( x ) .3 6故把 f ( ) sin 2( x ) 的图象向右平移| m | (m 0) 个单位长度,可得 g ( x) sin 2( x | m | ) 的图象,x6 6因为:所得图象对于直线x4对称,可得: sin 2(| m | ) 1,4 6可得: 2( | m | ) k ,解得: | m | 1, k Z ,6 2 k4 6 2因为: m 0 ,可得:m 1, k Z ,k2 6可得:当 k 0 时,m的最大值为:.6应选: B.【解答】解:( 1)由 [ OP] 2 ,依据新定义得:| x | | y | 2 ,由方程表示的图形对于x ,y 轴对称和原点对称,且 x y 2(0剟x 2,0剟y 2) ,画出图象如下图:依据图形获得:四边形ABCD 为边长是 2 2 的正方形,面积等于8,故( 1)正确;( 2) P(x, y) 为直线:3x 2 y 2 0 上任一点,可得3x ,y 12可得 | x | | y | | x | |1 3x | ,2当 x, 0时,[OP] 1 (1 3 ) x 1;当 0 x 2 时, [OP] 1 (1 3 )x (1 ,2 ) ;2 3 2 3当 x 2时,可得 [ OP] 1 (1 3 ) x2,综上可得 [OP ] 的最小值为1,故( 2)正确;3 2 3( 3) | x | | y | | x y | | ( k 1)x 1| ,当 k 1 时, | x | | y | |1| 1 ,知足题意;而 | x | | y | | x y | | (k 1) x 1| ,当 k 1 时, | x | | y | | 1| 1 ,知足题意.“使 [OP] 最小的点P有无数个”的充要条件是“k1”,( 3)正确;( 4)2 22 上随意一点,则可设x 2 cos , y 2 sin ,[0,2 ) ,点 P 是圆x y[OP] | x| | y | 2(cos sin ) 2sin(4 ) ,[0 ,] , [OP]max 2 ,( 4)正确.2则正确的结论有:( 2)、( 3)、( 4).应选: C.二、填空题:此题共 4 小题,每题 5 分,共 20 分【解答】解:直线 x my m 0 过点 (0,1) ,即抛物线 x2 2 py( p 0) 的焦点F为 (0,1) ,p2 ;1 ,则 p2故答案为: 2.x y 2 0【解答】解:先依据 x ,y知足拘束条件y 2 0画出可行域:x y 2 0当直线 z 1y 过点 B (0, 2) 时,x2z 最小是 2 ,故答案为: 2 .【解答】解:等差数列 { a n } 中,点 ( n, a n )( n N * ) 在经过点 (4,8) 的定直线 l 上,a4 8 ,数列 { a n} 的前 7 项和 S7 7a7 ) 7a4 56 .(a12故答案为: 56.【解答】解:函数 f ( x) 的导数为22 x3 ,f ( x) x由 f ( x) 0 ,得 x 1 或 x 3 时, f ( x) 递加;由 f ( x) 0 ,得 3 x 1 时, f ( x) 递减.即有 f ( x) 在 x 1 处取得极小值 f ( 1 ) 1 1 3 5;在 x 3处获得极大值3 3f ( 3) 1 ( 3)3 ( 3)2 3(3) 9,3作出 f ( x) 的图象,如下图;对于 x 的方程f2( x) tf (x) 15 0 ,由鉴别式△t2 60 0 ,方程有两个不等实根,令 n f ( x) ,则 n2 nt 15 0 ,n1n2 15 0 ,则原方程有一正一负实根.5而915, 3即当 n1 9 ,则 n2 5,此时 y n1,和 f (x) 有两个交点,y n2与 f ( x) 有两个交点,此时共有 4 个交点,3当 n150 ,此时 y n1,和 f (x) 有 1 个交点, y n2与 f ( x) 有 3 个交点,此时共有 4 个交点,9 ,则n23当 5 n1 9 ,则 n2 5或 n2 9 ,此时 y n1和 f (x) 有 3 个交点, y n2与 f ( x) 有 1 个交点,此时共有 43 3个交点,当 n 15 ,则 n 2 9 ,此时 y n 1 和 f ( x) 有 2 个交点, y n 2与 f (x) 有 2 个交点,此时共有 4 个交点,3当 n 15 ,则 0 n 2 9 ,此时 yn 1 和 f ( x) 有 1 个交点, yn 2 与 f (x) 有 3 个交点,此时共有4 个交点,3综上方程 [ f ( x)]2R) 恒有 4 个不一样的实数解,即 m 4 , tf ( x) 15 0(t 即 m 的全部可能的值组成的会合为 {4} ,故答案为: {4} .三 .解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~ 21 题为必考题,每个试题考生都一定作答,第 22、 23 为选考题,考生依据要求作答.【解答】 解:( 1) S 3 9 , a 23 , a 1 d 3 ①a 1 , a 3 , a 7 成等比数列, a 32 a 1a 7 ,(a 1 2 d )2 a 1 (a 16d) ②由①② 得:d 0 d 1 ,a 13或2a 1d 0当时, a n 3 a 1 3当d1时, a n n 1 ;a 1 2( 2) a na 1 (当 n ⋯2 时), d0 ,a n n 1 ,b n 2 n 1 , a n b n ( n 1)2n 1 ,T n 2 2 2 3 23 4 2 4 (n 1)2n 1①2T n3 4 5 n 2②22 32 4 2 ( n 1)2① ②得 T n 4 22 23 24 2n 1 (n 1)2n 24 4(1 2n ) n 2n 2 n 2 1(n 1)22T n n 2n 2【解答】解:(Ⅰ)第 3 组的人数为0.3 100 30 ,第 4 组的人数为0.2 100 20 ,第 5 组的人数为 0.1 100 10 .因为第 3, 4, 5 组共有60 名志愿者,所以利用分层抽样的方法在60 名志愿者中抽取 6 名志愿者,每组抽取的人数分别为:第3组:306 3;第4组:206 2;第 5组:106 1 .60 60 60所以应从第3, 4, 5 组中分别抽取 3 人, 2 人, 1 人;(Ⅱ)记第3组的3名志愿者为A1, A2, A3,第 4 组的 2 名志愿者为B1, B2,.则从 5 名志愿者中抽取2名志愿者有:(A1, A2) ,(A1, A3) ,(A1, B1) ,(A1, B2) ,(A2, A3) ,(A2, B1), (A2, B2),(A3, B1) ,(A3, B2),(B1, B2)共有 10种.此中第 4 组的 2 名志愿者B1, B2起码有一名志愿者被抽中的有:(A1, B1), (A1, B2) ,(A2, B1) ,(A2, B2),(A3, B1) ,(A3, B2),(B1, B2),共有 7种所以第 4 组起码有一名志愿者被抽中的概率为7 .10【解答】( 1)证明:四边形ABCD是边长为4 的正方形, E 是 AB 的中点,DE 2 5 ,又侧棱 OB底面ABCD,AB面ABCD,OB AB ,又OB 4,EB2,OE 2 5,DE OE 2 5,ODE 是等腰三角形,F 是OD的中点,EF OD.同理 DG DO 2 5 ,ODG 是等腰三角形,F 是 OD 的中点,FG OD ,EF FGF ,EF ,FG面EFG ,OD平面 EFG ;( 2)解: 侧棱 OB 底面 ABCD , BD面 ABCD , OB BD ,OB 4,BD4 2,OD4 3 ,由( 1)知: OD 平面 EFG , OF 是三棱锥中, O 到平面 EFG 的距离,F 是 OD 的中点, OF 23,DE OE 2 5 , EF OD ,EF 2 2 ,DGDO 2 5,FHOD ,FG2 2,四边形 ABCD 是边长为 4 的正方形, E 、 G 分别是 AB 、 BC 的中点,EG 2 2 , EFG 是等边三角形,SEFG2 3 ,三棱锥 OEFG 的体积 V O EFG1 SEFGOF 13234.3 23【解答】 解:( 1)设椭圆 C 的焦距为 2c(c 0) ,则点 F 1 的坐标为 ( c,0) ,点 F 2 的坐标为 (c,0) ,设点 Q 的坐标为 (x 0 , 0) ,且 x 00 ,F 1Q ( x 0 c,0) , F 1 F 2 (2c,0) ,F 1Q F 1F 2 0 ,则 x 0c2c 0 ,所以, x 0 3c ,则点 Q 的坐标为 ( 3c,0) ,直线 AF 2 与直线 AQ 垂直,且点 A(b,0) ,所以, AF 2 (c, b) , AQ ( 3c, b) ,由 AF 2AQ b 2 3c 2,得 b 23c 2 ,2c 22b 3 ,c 1.4 b 4c ,所以, 所以,椭圆 C 的方程为x 2y 2 1 ;43( 2)设点 M (x 1 , y 1 ) 、 N (x 2 , y 2 ) ,直线 l 的方程为 y x 1 ,y x 1 ,消去 y 并整理得 7x 2将直线 l 的方程与椭圆 C 的方程联立x 2 y 2 8 x 8 0 ,431由韦达定理得 xx 28, x x8,所以,x 1x 2 4 .17 1 2727所以,线段 MN 的中点为 E ( 4 , 3 ) .7 7设点 P 的坐标为 (t ,0) ,因为 PM , PN 为邻边的平行四边形是菱形,则PEMN .33直线 PE 的斜率为 k PE 7 1,解得 t1 .7t 4t 477所以,当点 P 的坐标为 (1,0) 时,以 PM , PN 为邻边的平行四边形是菱形.7【解答】 解:( 1)f ( x) 2lnx2mx 的定义域为 (0, ) ,且 f (x) 在其定义域内单一递加,xf ( x) 22x m 0 ,即 m,2(1x) 在区间 (0, ) 恒成立,x x1 x) 4 x 1 4 ,当且仅当 x 1 时取等号,2( xxm, 4 ,即实数 m 的范围 (, 4];( 2)由( 1)知 f ( x)2 2x m 2x 2mx 2 ,x x2mx 2 0 ,令 2 x5 m17时, f ( x) 有两个极值点,2此时 x 1x 2m 0 , x 1 x 21 ,20 x 1 1 x 2 ,m 2( 1 x 1 ) (5,17 ),解得 1x 1 ,x 1 2 4 12因为 x 21 ,于是 f ( x 1 ) 2mx 12f (x 2 ) ( x12lnx 1 ) ( x 2 mx 2 2lnx 2 )x 1(x 12x 22 ) m(x 1x 2 ) 2(lnx 1 lnx 2 ) 1 x 12 4lnx 1 ,x 12令 h(x) 1 x 24lnx ,x 2则 h ( x) 2( x 2 1)230 ,xh(x) 在区间 ( 1 , 1) 内单一递减,4 2h(1)16 1 8ln 2 255 4 16 16 即 15 4ln 2 f ( x 1 ) f ( x 2 ) 4故 f ( x 1 ) f (x 2 ) 的取值范围为 [选做题 ]8ln 2 , h(1) 4 1 4ln 2 15 4ln 2 , 2 442558ln2 ,16 (154ln2 ,2558ln 2) .416【解答】 解:( 1)由4cos,得24 cos ,即 x 2 y 2 4x ,所以圆 C 的直角坐标方程为(x 2) 2y 24 ,直线 l 过点 P (1,0) ,且倾斜角为,所以直线 l 的参数方程为x 1 t cos (t 为参数).yt sin( 2)将x 1 t cos 代入 ( x 2) 2y 2 4 ,y t sin得 t 2 2t cos3 0 ,△ (2 t cos )212 0 ,设 A , B 两点对应的参数分别为 t 1 , t 2 ,则11|AB|| t 1 t 2 | (t 1 t 2 )24t 1t 2 2 cos 23| t 1t 2 |33 ,|PA| |PB| |PA||PB|因为 cos[ 1 , 1],所以 1 1 的最大值为4,最小值为 23 . |PA | |PB | 333x 3( x, 1)2【解答】 解:( 1) f ( x)x1x, 2) ,1(23x 3(x2)x, 11 x,2 或 x 2f (x) 3 ,2或 23xx3x3 33 3 1 3解得 { x | x, 0 或 x 2} ,故 f ( x) 3 的解集为 { x | x, 0 或 x 2} .( 2)由函数的分析式得:f (x)min3 , 1 1 , 3 , m n , 3 ,2 m n 2mn 2即 m n 剟3mn? 3 (m n)2 ,当且仅当 m n 时等号成立,22mn m , n 0 ,解得 mn 8,当且仅当 mn 时等号成立,3故 m n 的最小值为 8. 3。
2020年安徽省淮南市大兴中学高三数学文摸底试卷含解析
2020年安徽省淮南市大兴中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若R,为虚数单位,且,则()A.,B.,C.,D.,参考答案:2. 已知,,,(且),在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是()A B CD参考答案:B略3. 若函数y=f(x)(x∈R)满足f(x+1)=f(x﹣1),且x∈[﹣1,1]时,f(x)=1﹣x2,函数g(x)=,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为()A.6 B.7 C.8 D.9参考答案:C【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】根据条件可得f(x)是周期函数,T=2,h(x)=f(x)﹣g(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g(x)图象,由图象可得结论.【解答】解:由题意f(1+x)=f(x﹣1)?f(x+2)=f(x),故f(x)是周期函数,T=2,令h(x)=f(x)﹣g(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g (x)图象,如图所示:故在区间[﹣5,5]内,函数y=f(x)和y=g(x)图象的交点有8个,则函数h(x)=f(x)﹣g(x)在区间[﹣5,5]内的零点的个数为8.故选C.【点评】本题考查函数零点的定义,体现了数形结合的数学思想,在同一坐标系中作y=f (x)和y=g(x)图象,是解题的关键.4. 设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(﹣2),f(π),f(﹣3)的大小关系是()A.f(﹣2)<f(π)<f(﹣3)B.f(π)<f(﹣2)<f(﹣3)C.f(﹣2)<f(﹣3)<f(π)D.f(﹣3)<f(﹣2)<f(π)参考答案:C【考点】奇偶性与单调性的综合.【分析】先利用偶函数的性质,将函数值转化到单调区间[0,+∞)上,然后利用函数的单调性比较大小关系.【解答】解:∵f(x)是定义域为R的偶函数,∴f(﹣3)=f(3),f(﹣2)=f(2).∵函数f(x)在[0,+∞)上是增函数,∴f(π)>f(3)>f(2),即f(π)>f(﹣3)>f(﹣2),故选C.【点评】本题考查了偶函数的性质,以及函数的单调性的应用,一般将函数值转化到同一单调区间上再比较大小.5. 函数为奇函数,且在上为减函数的值可以是A. B. C. D.参考答案:D6. 下列判断正确的是()A.函数是奇函数; B.函数是偶函数C.函数是非奇非偶函数 D.函数既是奇函数又是偶函数参考答案:C7. 某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A.B.6πC.D.参考答案:C【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图可知,几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高2.的圆锥的一半,分别计算两部分的体积,即可.【解答】解:由三视图可知,几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为V1=×22×π×1=2π,上部半圆锥的体积为V2=×π×22×2=.故几何体的体积为V=V1+V2==.故选C.【点评】本题考查三视图求几何体的表面积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键.8. 已知a,b是实数,则“a>2且b>2”是“a+b>4且ab>4”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】根据不等式的关系结合充分条件和必要条件的定义即可得到结论.【解答】解:若“a>2且b>2”则“a+b>4且ab>4”成立,即充分性成立,当a=1,b=5时,满足a+b>4且ab>4,但a>2且b>2不成立,即必要性不成立,故“a>2且b>2”是“a+b>4且ab>4”的充分不必要条件,故选:B9. 已知集合,则A∩B的元素有() A.1个B.2个C.3个D.4个参考答案:B10. 若,则()A.B.C.D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 在平面直接坐标系中,角的始边与轴的正半轴重合,终边在直线上,且,则.参考答案:12. 正项数列的前项和为,且,若,则__________.参考答案:13. (几何证明选讲)如图,以为直径的圆与的两边分别交于两点,,则.参考答案:略14. 已知曲线与直线交于点,若设曲线在点处的切线与轴交点的横坐标为,则的值为___________.参考答案:略15. 设双曲线的右顶点为,右焦点为.过点且与双曲线的一条渐近线平行的直线与另一条渐近线交于点,则的面积为.参考答案:双曲线的右顶点为,右焦点,双曲线的渐近线为,过点且与平行的直线为,则,即,由,解得,即,所以的面积为.16. 若实数x,y满足不等式组目标函数z=2x+y的最大值为.参考答案:16【考点】简单线性规划.【分析】画出约束条件表示的可行域,判断目标函数z=2x+y的位置,求出最大值.【解答】解:作出约束条件不等式组的可行域如图:目标函数z=2x+y在的交点A(5,6)处取最大值为z=2×5+6=16.故答案为:16.17. 在平面直角坐标系中,定义d(P,Q)=为两点之间的“折线距离”,则坐标原点O与直线上任意一点的“折线距离”的最小值是_________.参考答案:略三、解答题:本大题共5小题,共72分。
2022年安徽省淮南市高考数学一模试卷(文科)+答案解析(附后)
2022年安徽省淮南市高考数学一模试卷(文科)1. 已知集合,,若,则a 的取值范围为( )A.B.C. D.2. 设复数z 满足,则( )A. 0B. 1C. D. 23. 已知命题p :“且”是“”的充要条件;命题q :,曲线在点处的切线斜率为,则下列命题为真命题的是( )A. B.C.D.4. 在区间上随机取一个数x ,则的值介于0到之间的概率为( )A.B.C.D.5. 若实数x ,y 满足约束条件,若的最大值等于3,则实数a的值为( )A.B. 1C. 2D. 36. 已知函数,则下列说法正确的是( )A. 为奇函数B. 为奇函数C. 为偶函数D.为偶函数7. 在中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数无极值点,则角B 的最大值是( )A. B. C. D.8. .某三棱锥的三视图如图所示,该三棱锥的体积是( )A. B. 4 C. 2 D.9. 已知,,若,则的最小值为( )A. 6B. 9C. 16D. 1810. 已知是定义在R上的奇函数,若为偶函数且,则( )A. B. C. 3 D. 611. 若直线l:与曲线有公共点,则实数m的范围是( )A. B. C. D.12. 已知函数,有三个不同的零点,,,且,则的范围为( )A. B. C. D.13. 在等比数列中,,,则______.14. 已知函数,则的值是______.15. 已知双曲线的渐近线方程为,则E的焦距等于______.16. 已知函数满足:当时,,当时,,当时,且若函数的图像上关于原点对称的点至少有3对,有如下四个命题:①的值域为R;②为周期函数;③实数a的取值范围为;④在区间上单调递减.其中所有真命题的序号是______.17. 为进一步完善公共出行方式,倡导“绿色出行”和“低碳生活”,淮南市建立了公共自行车服务系统.为了了解市民使用公共自行车情况,现统计了甲、乙两人五个星期使用公共自行车的次数,统计如下:第一周第二周第三周第四周第五周甲的次数111291112乙的次数9691415分别求出甲乙两人这五个星期使用公共自行车次数的众数和极差;根据有关概率知识,解答下面问题:从甲、乙两人这五个星期使用公共自行车的次数中各随机抽取一个,设抽到甲的使用次数记为x,抽到乙的使用次数记为y,用A表示满足条件的事件,求事件A的概率.18. 如图,在三棱锥中,是边长为的正三角形,O,E分别是BD,BC的中点,,求证:平面BCD;求点E到平面ACD的距离.19. 已知数列满足,求的值,并证明数列是等差数列;求数列的通项公式并证明:20. 在平面直角坐标系xOy中,已知椭圆C:的离心率,椭圆的右焦点到直线的距离是求椭圆C的方程;设过椭圆的上顶点A的直线l与该椭圆交于另一点B,当弦AB的长度最大时,求直线l的方程.21. 已知函数判断函数的单调性;已知,若存在时使不等式成立,求的取值范围.22. 在直角坐标系xOy中,曲线C的参数方程为为参数,以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,已知直线l的极坐标方程为求曲线C的普通方程;若直线l与曲线C交于A,B两点,求以AB为直径的圆的极坐标方程.23. 已知函数的最小值为求m的值;若实数a,b满足,求的最小值.答案和解析1.【答案】D【解析】【分析】本题考查集合的运算,考查并集定义、不等式性质等基础知识,考查运算求解能力,属于基础题.利用并集定义、不等式性质直接求解.【解答】解:集合,,,的取值范围是故选:2.【答案】B【解析】【分析】由题意可得,求出结果.本题主要考查复数代数形式的运算,求复数的模的方法,属于基础题.【解答】解:复数z满足,,,故选3.【答案】D【解析】解:对于p,当且时,可得出,充分性成立,当时,不能得出且,必要性不成立,是充分不必要条件,p为假命题;对于q,,,由曲线在点处的切线的斜率为1,得,,即,曲线在点处的切线斜率为,q为真命题;所以为真命题,故选:根据充分必要条件的定义对p,q进行判断,再利用真值表判断真假即可.本题考查了充分必要条件的判断,复合命题的真假判断,属于基础题.4.【答案】A【解析】解:当时,,则,由几何概型中的线段型可得:在区间上随机取一个数x,则的值介于0到之间的概率为,故选:先求出的解集,再结合几何概型中的线段型求解即可.本题考查了几何概型中的线段型,属基础题.5.【答案】B【解析】解:由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为,即故选:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数,即可求解a值.本题考查简单的线性规划,考查数形结合思想,是基础题.6.【答案】C【解析】解:,,为偶函数,故A错误;,为偶函数,故C正确;,为非奇非偶函数,故B错误;,为非奇非偶函数,故D错误.故选:利用倍角公式降幂,再由辅助角公式化积,然后逐一分析四个选项得答案.本题考查二倍角的余弦的应用,考查型函数的图象与性质,是基础题.7.【答案】A【解析】解:由题意可知,,则无解或有两个相等的实数解,所以,因此,由余弦定理可得,因为,所以,所以B的最大值为,故选:求导,根据导数与函数极值的关系,求得,结合余弦定理即可求得B的最大值.本题考查导数的应用,导数与函数极值的关系,余弦定理的应用,考查转化思想,计算能力,属于中档题.8.【答案】B【解析】【分析】本题考查三视图的还原,由三视图可知:该三棱锥的侧面底面ABC,交线BC,,且,,,,据此即可计算出其体积.由三视图正确恢复原几何体是解题的关键.【解答】解:由三视图可知:该三棱锥的侧面底面ABC,交线BC,,且,,,,故选9.【答案】C【解析】解:由,,又,则,即,则,当且仅当,即,时取等号,故选:由平面向量共线的坐标运算求出x,y的关系,再结合均值不等式求最小值即可.本题考查了平面向量共线的坐标运算,重点考查了均值不等式,属基础题.10.【答案】A【解析】解:根据题意,为偶函数,函数的图象关于直线对称,则有,是定义在R上的奇函数,则,综合可得:,函数是周期为3的周期函数,是定义在R上的奇函数,则,则,,故;故选:根据题意,由为偶函数分析的对称性,进而可得是周期为3的周期函数,由此求出和的值,计算可得答案.本题考查函数奇偶性和周期性的性质以及应用,关键是分析函数的周期,属于基础题.11.【答案】C【解析】解:直线方程即,联立直线方程可得直线过定点,曲线C的方程即,表示圆心为,半径为2的上半圆,当时,直线l为y轴,与曲线C显然有公共点,当时,直线l的斜率为,易知当直线过点时斜率最小,如图所示,所以,解得,综上,实数m的范围是,故选:首先确定直线所过的定点,然后考查C的特征,据此即可确定直线斜率最小时点的坐标,然后利用斜率公式即可求得直线的斜率.本题主要考查直线与圆的位置关系,等价转化的数学思想等知识,属于基础题.12.【答案】D【解析】解:令,当时,的图象如图所示,由对称性可知,,所以,又,,由图象可知,所以所以故选:令,将函数的零点问题,转化为函数的图象与直线的交点横坐标问题进行研究根据正弦函数的图象的对称性质得到,进而得到,结合图象和正弦函数的最大值,得到m的取值范围,进而得到的取值范围.本题考查了函数的零点与方程的根的关系,用到了数形结合的思想,属于中档题.13.【答案】4【解析】解:设等比数列的公比为q,由,得,所以故答案为:设等比数列的公比为q,由可得,从而利用即可求解.本题考查等比数列的通项公式,考查学生基本的运算能力,属于基础题.14.【答案】0【解析】解:根据题意,函数,则,则,故答案为:根据题意,由函数的解析式计算可得答案.本题考查函数值的计算,涉及分段函数的解析式,属于基础题.15.【答案】【解析】解:因为双曲线,所以,渐近线方程为,所以,所以,所以焦距,故答案为:由双曲线E的方程,得,由渐近线方程,得b的值,再计算c,即可得出答案.本题考查双曲线的性质,解题中需要理清思路,属于基础题.16.【答案】①③【解析】解:根据题意,依次分析4个命题:对于①,当时,且,这部分函数的值域为R,则的值域为R,①正确;对于②,当时,,不具有周期性,不是周期函数,②错误;对于③,当时,,且当时,,作出函数在上的部分图象关于原点对称的图象,如图所示,若函数的图象上关于原点对称的点至少有3对,即函数的图象与所作的图象至少有三个交点,必有,解得,a的取值范围为,③正确;对于④,当时,,即,,则,,在区间上单调递增,④错误;其中正确的是①③;故答案为:①③.根据题意,依次分析题目4个命题的真假,即可得答案.本题考查命题真假的判断,涉及函数的奇偶性和对称性,属于中档题.17.【答案】解:甲的众数是11和12,极差是,乙的众数是9,极差是从甲乙二人的次数中各随机抽一个,设甲抽到的次数为x ,乙抽到的次数为y ,则所有的为:,,,,,,,,,,,,,,,,,,,,,,,,,共有25个其中满足条件的有:,,,,,,,,共有8个事件A 的概率为【解析】利用众数,极差的定义直接求解.从甲乙二人的次数中各随机抽一个,设甲抽到的次数为x ,乙抽到的次数为y ,利用列举法能求出事件A 的概率.本题考查众数、极差、概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.18.【答案】证明:连接OC ,OA ,,,,,,在中,由已知可得,,,而,,则,即,,平面BCD ,平面BCD ,平面BCD ;解:设点E 到平面ACD 的距离为h ,,,在中,,,,又,,点E到平面ACD的距离为【解析】连接OC,OA,由题意可得,,求解三角形证明,再由直线与平面垂直的判定可得平面BCD;设点E到平面ACD的距离为h,由,即可求得点E到平面ACD的距离.本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求点到平面的距离,是中档题.19.【答案】解:当时,,,当时,;相除得,整理为:,即,为等差数列,公差;证明:由得,整理得:,,又单调递增,所以【解析】根据数列通项与前n项积的关系结合等差数列的定义即可得出答案;求出数列的通项,即可求出数列的通项公式,再根据数列的单调性即可得证.本题考查数列的递推式,考查学生的运算能力,属于中档题.20.【答案】解:因为椭圆的右焦点到直线的距离是4,,,又因为离心率,所以,,椭圆方程为:;解法一:由知,设,则,,当时,有最大值,此时或,当时直线l的斜率,直线l的方程为;当时直线l的斜率,直线l的方程为直线l的方程为或解法二:由知,当直线l的斜率不存在时;当直线l的斜率存在时:设直线l的方程为:,联立,得,,,,令,,时即时最大为18,最大为,直线l的方程为或【解析】根据椭圆的右焦点到直线的距离是4,可求出c,再根据离心率求出a,即可求得椭圆方程;解法一:知,设,则有,即可求解;解法二:考虑斜率不存在和存在两种情况,设出直线方程,和椭圆方程联立,从而表示出弦长,进而求弦长最大时斜率的值,求得答案.本题考查了椭圆的有关性质及直线与椭圆相交时弦长问题,解法一利用了两点间的距离公式,解法二用了分类讨论思想,属于中档题.21.【答案】解:因为,所以,令,则,,所以函数在区间单减,又因为,所以当时,,所以函数在区间上单调递减.当时,所求不等式可化为,即,易知,由知,在单调递减,故只需在上能成立.两边同取自然对数,得,即在上能成立.令,则,当时,,函数单调递增,当时,,函数单调递减,,所以,又故的取值范围是【解析】求出导函数,令,利用导函数判断函数的单调性,推出结果即可.不等式可化为,即,只需在推出在上能成立.令,则,判断函数的单调性,求解函数的最大值,即可得到结果.本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.22.【答案】解:由为参数,得为参数,消去t得曲线C的普通方程为由,得,联立得,,所以AB中点坐标为,,故以AB为直径的圆的直角坐标方程为,即,将,,代入得【解析】直接利用转换关系,在参数方程,极坐标方程和直角坐标方程之间进行转换;利用方程组的解法求出结果.本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,方程组的解法,主要考查学生的运算能力和数学思维能力,属于基础题.23.【答案】解:,故,,由可知,所以,当且仅当,即,时等号成立,故的最小值为【解析】利用绝对值的几何意义,求解函数的值域,利用最小值求解m即可.利用的结果,通过配凑法,结合基本不等式求解表达式的最小值即可.本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力,是中档题.。
2020届淮南市一模文科数学答案
2020届淮南一模文科参考答案一.选择题题号123456789101112答案CABBADCDDBAC二.填空题13.314.43310-15.416.258三.解答题17.解:(I )cos sin ,C c A =由正弦定理可得cos sin sin ,A C C A =.......................................3分又A 是ABC ∆内角,sin 0,tan A C ∴≠∴=.......................................5分0180,60.C C ︒︒<<∴= .......................................6分(II)根据题意,120.APC APB ︒∆∠=为等边三角形,又...............................8分在APB ∆中,由于余弦定理得,2222cos120,AB AP BP PA PB =+-︒ 解得,2AP =,5, 2.BC AC ∴==...............................10分153sin 6022ABC CA CB ︒∴∆== 的面积S ...............................12分18.10(0.010.01520.0250.005)10.030 ............................2I a a ⨯+⨯+++==解()由题意解得分(II )由频率分布直方图可知,前三组的频率比为2:3:3,所以由分层抽样可知前三组抽取的单车辆数分别为2,3,3,...................................4分分别记为A1,A2,B1,B2,B3,C1,C2,C3,从中抽取2辆的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,C1),(A1,C2),(A1,C3);(A2,B1),(A2,B2),(A2,B3),(A2,C1),(A2,C2),(A2,C3);(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B1,C3);(B2,B3),(B2,C1),(B2,C2),(B2,C3);(B3,C1),(B3,C2),(B3,C3);(C1,C2),(C1,C3),(C2,C3);...............................................................7分共28个,恰有1辆的使用时间不低于50分钟的结果有12个,123P 287∴==所求的概率为....................................8分(II) 1 (82)PGF BGFC PGF C BGF C PBF PBF BDF G PB S S V V V F PD S S ∆∆---∆∆∴=∴==∴= 为的中点,分又为的中点,12111 (10244)C PBF C BDF C PBDG BCF G BGF C PBF C PBD P BCD V V V V V V V --------∴==∴====分121111222 (128833)P BCD P BCDEG BCF P BCDE V V V V ----=∴==⨯⨯⨯⨯=又分(III)2×2列联表如下:由上表及公式可知,2220050406050 2.02.10010011090K ⨯⨯-⨯=≈⨯⨯⨯().................10分因为2.02<2.072所以没有85%的把握认为淮南市使用永安共享单车的情况与性别有关..................12分19.I BCDE BC BE BE AE,BE PE.......................................2PE BC,PB BE B,BC PBEPE PB,E,BC PE...............................................................4BC BE B,PE ∴⊥⊥⊥⊥⋂=∴⊥⊂⊥⋂=∴ 解:()由题意可知为正方形,,且即分又且平面分又BCDE...........................................6⊥平面分20.【解析】(1)由题意可得13412c a a ⎧=⎪⎨⎪=⎩,…………………………2分所以3,1a c ==,…………………………4分所以椭圆C 的方程为22198x y +=…………………………5分经常使用偶尔使用或不用合计男性5050100女性6040100合计11090200(2)直线l 的解析式为2y kx =+,设1122(,),(,)A x y B x y ,AB 的中点为00(,)E x y .假设存在点(,0)D m ,使得ADB ∆为以AB 为底边的等腰三角形,则DE AB ⊥.由222,1,98y kx x y =+⎧⎪⎨+=⎪⎩得22(89)36360k x kx ++-=,故1223698k x x k +=-+,所以021898kx k -=+,00216298y kx k =+=+………………………………7分因为DE AB ⊥,所以1DE k k =-,即221601981898k k k m k -+=---+,所以2228989k m k k k --==++…………9分当0k >时,89k k +≥=2012m -≤<;当0k <时,89k k +≤-分所以2012m <≤…………………11分综上:m取值范围是001212m m -≤<<≤或……………………………12分11'21.(I)a 1,1()ln 1(),0...................................................................................2x x b f x e xxe f x x x--==∴=--=>解:由条件可得,分1'1'()1,()(1)0()0,()0(1)0.................4(0,1)()0,()0 (1,)()0;()0()(1,)(0,1).................................x x t x xe t x x e x t x t x t x t x f x x t x f x f x --=-=+>>+∞=∴∈<<∈+∞>>∴+∞‘‘令当时,在(,)单调增函数,又分当时,当时,的单调增区间为,减区间为..........6分1'111(II) 0()0, (),,b<0,20(0,2) x x x x b f x b xe b b e f x e x xx xe b e b x x x e b︒----︒︒=>-<≤=-=-->∴∃=当时,符合题意方法(一)当0时,令h()=又h(0)=-h(2)=h()在唯一的零点,设为,有.......................8分''111min (0,)()0,();(,)()0();()()ln 1ln ln ()(ln 1)x x x x x f x f x x x f x f x bf x f x e b x x e b e x bx b x f x b b x x ︒︒︒︒︒︒︒---︒︒︒︒︒︒︒︒︒∈<∈+∞>∴==-=∴=-=-∴=-+- 且,单调递减,,单调递增,...........9分''' ()ln 2ln ln (1()ln ,()ln 01()0;1,()0;()0,0,0()0;0()0b bx b b b b b b b b b b x x m b b b b m b bb m b b e m b m e b m e b e m b b e ︒︒︒=+--≥--=-==-∴=-∈>∈<=>>∴<≤≥=当且仅当时到等号)设当(,)时,当(]时,又且,趋向时,当时,,当且仅当时取等号.............11分11 1()()0,()00 ()0b x b e x f x m b f x b e f x ︒︒︒︒===≠>≥∴>≤≤>由(1)可知,当时,,故当时,综上,当时,.............12分方法(二)10) 01ln 0,ln 0,()ln 0.....................................8x b e i x x b x f x e b x -<≤<≤≤≤=->当时,(当时显然成立;分') 1()ln 11()10,()[1ii x F x x x F x F x x≥=-+=-≤+∞(当时,构造函数在,)为减函数1121()(1)00ln 10ln (1)(1)0ln (1)()ln (1...............................................................10ln 11()(100x x x x F x F x x b x b x e x b x e x f x e b x e e x x x e x f x e e x b ----∴≤=∴<≤-∴<≤-≤-∴<<-∴=->--≤-≥-=--≥≤≤,)分又由,可得,进而)综上:当()0.....................................................................12e f x >时,分22【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,……………1分∴1C 的极坐标方程为cos 2ρθ=-,……………2分2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……………5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ,……………7分|MN|=1ρ-2ρ,……………9分因为2C 的半径为1,则2C MN的面积o 11sin 452⨯=12.……………10分23.【解析】(Ⅰ)当3a =-时,()f x =25,21, 2325,3x x x x x -+≤⎧⎪<<⎨⎪-≥⎩,当x ≤2时,由()f x ≥3得253x -+≥,解得x ≤1;……………2分当2<x <3时,()1f x =≥3,无解;当x ≥3时,由()f x ≥3得25x -≥3,解得x ≥4,…………4分∴()f x ≥3的解集为{x |x ≤1或x ≥4};……………5分(Ⅱ)()f x ≤|4|x -⇔|4||2|||x x x a ---≥+,……………7分当x ∈[1,2]时,|||4||2|x a x x +≤---=42x x -+-=2,……………9分∴22a x a --≤≤-,有条件得21a --≤且22a -≥,即30a -≤≤,故满足条件的a 的取值范围为[-3,0]……………10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年安徽省淮南市高考数学一模试卷(文科)
一、选择题
1.(3分)若集合{||2|1}A x x =-…,|2B x y x ⎧
==⎨⎬-⎩⎭,则(A B =I )
A .[1-,2]
B .(2,3]
C .[1,2)
D .[1,3)
2.(3分)已知a R ∈,i 为虚数单位,若复数1a i
z i
+=-纯虚数,则(a = ) A .0
B .1
C .2
D .1±
3.(3分)已知a ,b 都是实数,那么“lga lgb >”是“a b >”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件
D .既不充分也不必要条件
4.(3分)函数1()3()2
x f x x =-+零点的个数是( )
A .0
B .1
C .2
D .3
5.(3分)根据如表的数据,用最小二乘法计算出变量x ,y 的线性回归方程为( )
x
1 2 3 4 5 y
0.5
1
1
1.5
2
A .ˆ0.350.15y
x =+ B .ˆ0.350.25y
x =-+
C .ˆ0.350.15y
x =-+ D .ˆ0.350.25y
x =+ 6.(3分)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC ∆的顶点(4,0)A ,(0,2)B ,且AC BC =,则ABC ∆的欧拉线方程为( ) A .230x y +-= B .230x y --=
C .230x y -+=
D .230x y --=
7.(3分)函数2
1()||12
f x x ln x =
--的大致图象为( ) A . B .
C .
D .
8.(3分)在ABC ∆中,4AB =,6AC =,点O 为ABC ∆的外心,则AO BC u u u r u u u r
g 的值为( )
A .26
B .13
C .
52
3
D .10
9.(3分)已知数列{}n a 满足11a =,且1x =是函数3
21()1()3
n n a f x x a x n N ++=
-+∈的极值点,设22log n n b a +=,记[]x 表示不超过x 的最大整数,则122320182019
201820182018
[](b b b b b b ++⋯+= )
A .2019
B .2018
C .1009
D .1008
10.(3分)如图,一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为5cm ,如果不计容器的厚度,则球的表面积为( )
A .25003cm π
B .26259cm π
C .
262536
cm π
D .
215625162
cm π
11.(3分)已知双曲线22
21(0)4x y b b -=>的左右焦点分别为1F 、2F ,过点2F 的直线交双曲
线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒,则1ABF ∆的周长为( ) A 163
8+ B .4(21) C 43
8+ D .2(32)
12.(3分)若函数2
()x f x ax lnx x lnx
=+--有三个不同的零点,则实数a 的取值范围是(
)
A .1(1,
)1e e e
-- B .[1,
1]1e e e -- C .1(1
e
e e --,1)- D .1[1e e e --,1]-
二.填空题
13.(3分)若实数x ,y 满足0,20,20,x y x y x y -⎧⎪
-⎨⎪+-⎩
„…
„则2z x y =+的最大值为 . 14.(3分)已知4sin()65πα+=,5(,)36
ππ
α∈,则cos α的值为
15.(3分)已知函数()ex f x ln
e x =-,满足220181009
()()()()(2019201920192
e e e
f f f a b a ++⋯+=+,b 均为正实数)
,则ab 的最大值为 . 16.(3分)设抛物线22y x =的焦点为F ,过点F 的直线l 与抛物线交于A ,B 两点,且
||4||AF BF =,则弦长||AB = .
三.解答题
17.在ABC ∆中,角A ,B ,C 的对边分别为a ,bc
cos sin C c A =. (Ⅰ)求角C 的大小;
(Ⅱ)已知点P 在边BC 上,60PAC ∠=︒,3PB =
,AB ABC ∆的面积. 18.高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图. (Ⅰ)求图中a 的值;
(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;
(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下22⨯列联表:
完成上述22⨯列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?
附:2
2
()()()()()
n ad bc K a b c d a c b d -=++++
20()P K k …
0.15 0.10 0.05 0.025 0.010 0k
2.072
2.706
3.841
5.024
6.635
19.(12分)如图在梯形ABCD 中,//AD BC ,AD DC ⊥,E 为AD 的中点224AD BC CD ===,以BE 为折痕把ABE ∆折起,使点A 到达点P 的位置,且PB BC ⊥. (Ⅰ)求证:PE ⊥平面BCDE ;
(Ⅱ)设F ,F 分别为PD ,PB 的中点,求三棱锥G BCF -的体积.
20.(12分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为13,1F ,2F 分别是椭圆的左右焦
点,过点F 的直线交椭圆于M ,N 两点,且2MNF ∆的周长为12. (Ⅰ)求椭圆C 的方程
(Ⅱ)过点(0,2)P 作斜率为(0)k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆是以AB 为底边的等腰三角形若存在,求点D 横坐标的取值范围,若不存在,请说明理由.
21.(12分)设函数()x
a e f x blnx e =-,且f (1)1=(其中e 是自然对数的底数).
(Ⅰ)若1b =,求()f x 的单调区间;
(Ⅱ)若0b e 剟
,求证:()0f x >. 四.选考题
22.在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点为极点,
x 轴的正半轴为极轴建立极坐标系.
(Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4
R π
θρ=∈,设2C 与3C 的交点为M ,N ,求△2C MN 的
面积.
23.已知函数()|||2|f x x a x =++-. (Ⅰ)当3a =-时,求不等式()3f x …的解集;
(Ⅱ)若()|4|f x x -„的解集包含[1,2],求a 的取值范围.
2020年安徽省淮南市高考数学一模试卷(文科)
参考答案与试题解析
一、选择题
1.(3分)若集合{||2|1}A x x =-„,|
B x y ⎧
==⎨⎩,则(A B =I )
A .[1-,2]
B .(2,3]
C .[1,2)
D .[1,3)
【解答】解:Q 集合{||2|1}{|13}A x x x x =-=剟?,
|{|2}
B x y x x ⎧
===<⎨⎩,
{|12}[1A B x x ∴=<=I „,2).
故选:C .
2.(3分)已知a R ∈,i 为虚数单位,若复数1a i
z i
+=-纯虚数,则(a = ) A .0
B .1
C .2
D .1±
【解答】解:()(1)1(1)1(1)(1)2
a i a i i a a i
z i i i +++-++=
==
--+Q 是纯虚数, ∴10
10a a -=⎧⎨
+≠⎩
,即1a =.
故选:B .
3.(3分)已知a ,b 都是实数,那么“lga lgb >”是“a b >”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件
D .既不充分也不必要条件
【解答】解:0lga lgb a b a b >⇒>>⇒>, 反之由“a b >”无法得出lga lgb >.
∴ “lga lgb >”是“a b >”的充分不必要条件.
故选:B .
4.(3分)函数1()3()2
x f x x =-+零点的个数是( )
A .0
B .1
C .2
D .3
【解答】解:由于函数1
()3()2
x f x x =-+是R 上的单调减函数,。