模式识别课件
模式识别1课件
不变性
• 尽量选择相关性小的特征 • 尽可能不受噪声的干扰
Applied Pattern Recognition CSE616
38
模式识别的基本方法
• 模糊模式识别
• 基于模糊数学和统计分析的识别方法,在不能明确描述模式
特征和结构的复杂模式识别问题中得到了成功应用
模糊模式类
清晰模式类
很像三角 形的图形
远大于2 的整数
三角形
大于2的 整数
• 根据隶属度和模糊文法进行分类
Applied Pattern Recognition CSE616
• 需要考虑的问题: • 特征越多分类性能越好吗? • 什么样的特征才是好的特征? • 特征的相关性与冗余?
Applied Pattern Recognition CSE616
17
如何获取判别边界:判别模型? 什么样的判别边界才是最优的:模型优化?
Applied Pattern Recognition CSE616
用能力和领域,促进人工智能的应用与发展
• 促进人们对人脑识别过程的理解和认识
Applied Pattern Recognition CSE616
31
模式识别存在的问题
• 模式识别是一门快速发展的新兴学科,涉及到多学科、
多领域的复杂问题
• 和生物认知系统相比,现有人工模式识别系统的适应
和识别能力还远远不能令人满意
• 原理:
样本 观测值 特征 概率统计 决策准则
分类
Applied Pattern Recognition CSE616
《模式识别》PPT课件
有两个极端的特征选择算法,一个是单独选择法,另一个是穷举选择法。
1. 单独选择法 就是把n个特征每个特征单独使用时的可分性准则函数值都算出来,按准则
函数值从大到小排序,如 J(x1)>J(x2)>…>J(xm)>…J(xn)
然后,取使J较大的前m个特征作为选择结果。 问题:这样得到的m个特征是否就是一个最优的特征组呢?
1 Pe 1 c
另一个极端情况是,如果能有一组特征使得
此时x划归 P类(,其i /错x误)概率1为, 0。且P( j / x) 0 , j i
可见后验概率越集中,错误概率就越小。后验概率分布越平缓(接近均匀分布)
,则分类错误概率就越i 大。
为了衡量后验概率分布的集中程度,需要规定一个定量准则,我们可以借助于 信息论中关于熵的概念。
,
的函数。可定义如下形式的广义熵:
P(1 / x) P(2 / x)
P(c / x)
,
,…
式中,
是一个实的正参数,
。
J
a C
[
P
(1
/
x),
P ( 2
/
x),,
P ( c
/
x)]
c
(21a 1)1[ P a (i / x) 1] i 1
a
a1
不同的 spital法则有
a
a值可以得到不同的熵分离度量,例如当
8.1.1 基于距离的可分性准则 各类样本之间的距离越大,则类别可分
性越大。因此,可以用各类样本之间的距离的平 均值作为可分性准则
Jd
1 2
c
Pi
i 1
c
《模式识别课件》课件
医学诊断
要点一
总结词
医学诊断是利用医学知识和技术对疾病进行诊断的过程, 模式识别技术在医学诊断中发挥着重要作用。
要点二
详细描述
模式识别技术可以辅助医生进行影像学分析、病理学分析 等,提高诊断准确性和效率,为患者提供更好的医疗服务 和治疗效果。
05
模式识别的挑战与未来发 展
数据不平衡问题
《模式识别课件》 ppt课件
xx年xx月xx日
• 模式识别概述 • 模式识别的基本原理 • 常见模式识别方法 • 模式识别的应用实例 • 模式识别的挑战与未来发展
目录
01
模式识别概述
定义与分类
定义
模式识别是对各种信息进行分类和辨 识的科学,通过模式识别技术,计算 机可以识别、分类和解释图像、声音 、文本等数据。
深度学习在模式识别中的应用
总结词
深度学习在模式识别中具有广泛的应用,能够自动提取特征并实现高效分类。
详细描述
深度学习通过构建多层神经网络来学习数据的内在特征。在模式识别中,卷积神经网络和循环神经网络等方法已 被广泛应用于图像识别、语音识别和自然语言处理等领域。
THANKS
感谢观看
人脸识别
总结词
人脸识别是一种基于人脸特征的生物识 别技术,通过采集和比对人脸图像信息 进行身份验证和识别。
VS
详细描述
人脸识别技术广泛应用于安全、门禁、考 勤、移动支付等领域,通过摄像头捕捉人 脸图像,并与数据库中存储的图像信息进 行比对,实现快速的身份验证和识别。
手写数字识别
总结词
手写数字识别是一种利用计算机技术自动识 别手写数字的技术,通过对手写数字图像进 行预处理、特征提取和分类实现识别。
模式识别课件第一章 绪论
Machine Perception
模式识别的发展史
1929年 G. Tauschek发明阅读机,能够阅读0-9 的数字。
30年代 Fisher提出统计分类理论,奠定了统计 模式识别的基础。
60~70年代,统计模式识别发展很快,但由于 被识别的模式愈来愈复杂,特征也愈多,出现 “维数灾难”。
2020/4/16
References
[1] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, 2nd Edition, John Wiley & Sons, Inc. 2019
(《模式分类》, 李宏东 姚天翔等 译,北京:机械工 业出版社,2003 年9月
➢ Machine Perception ➢ An Example ➢ Pattern Recognition Systems ➢ The Design Cycle ➢ Learning and Adaptation ➢ Methods of Pattern Recognition ➢ Conclusion
2020/4/16
Machine Percepti源自nBuild a machine that can recognize patterns:
• Speech recognition • Fingerprint identification • OCR (Optical Character Recognition) • DNA sequence identification
式识别理论得到了较广泛的应用。 80年代 Hopfield提出神经元网络模型理论。近
些年人工神经元网络在模式识别和人工智能上 得到较广泛的应用。 90年代小样本学习理论,支持向量机也受到了 很大的重视。
模式识别ppt课件
( x)
2.5,1.1为中心的正态曲线,而
之和。
由图看出:每个样本对估计的贡献与样本间
的距离有关,样本越多, PN(x)越准确。
例2:设待估计的p(x)是均值为0,方差为1的正
态密度函数。
若随机抽取X样本中的1个、 16个、 256个作
为学习样本xi,试用窗口法估计pN(x)。
| x xi |
(
)0
(保证 pˆ N ( x) 非负)
hN
( | x x i | )d ( | x x i | ) 0
(使 pˆ N ( x)dx 1)
hN
hN
④ 窗函数的选择
例:矩形窗、正态窗、指数窗、三角窗等等(只要
满足上述两条件,都可作为窗函数使用)
超立方体体积:VN h
d
N
其中
h1
hN
N
d=1,窗口为一线段 ; d=2,窗口为一平面
d=3,窗口为一立方体 ;d>3,窗口为一超立方体
窗口的选择:有多种选择
Φ(u)
方窗函数
Φ(u)
正态窗函数
Φ(u)
指数窗函数
hN
正态窗函数
1
1
,
|
u
|
(u )
2
0.其他
(u )
满足上述条件的区域序列(VN)有两种选择方法,
形成两种非参数估计方法:
1)Parzen窗法;
2)KN近邻估计
两者如何选择VN ?
1)Parzen窗法:
1
使体积VN以N的某个函数减小,例 VN
模式识别的概念过程与应用PPT课件
红苹果
橙子 2.00
1.50
x1
0.60
0.80
1.00
1.20
1.40
模式识别 – 绪论
特征的分布
x2 3.00 2.50
红苹果
绿苹果
橙子 2.00
1.50
x1
0.60
0.80
1.00
1.20
1.40
模式识别 – 绪论
五、模式识别系统
待识模式 数据采集及预 处理
训练模式
数据采集及预 处理
特征提取与选 择
安全领域:生理特征鉴别(Biometrics),网 上电子商务的身份确认,对公安对象的刑侦和 鉴别;
模式识别 – 绪论
二、模式识别的应用
军事领域:巡航导弹的景物识别,战斗单元的 敌我识别;
办公自动化:文字识别技术和声音识别技术; 数据挖掘:数据分析; 网络应用:文本分类。
ቤተ መጻሕፍቲ ባይዱ
模式识别 – 绪论
《模式分类》,机械工业出版社,Richard O.
Duda
《模式识别》(第二版),清华大学出版社,边
肇祺,张学工;
特征提取与选 择
识别结果 模式分类
分类 训练
分类器设计
模式识别 – 绪论
六、模式识别问题的描述
给定一个训练样本的特征矢量集合:
D x 1 ,x 2 , ,x n ,x i R d
分别属于c个类别:
1,2, ,c
设计出一个分类器,能够对未知类别样本x进行分类
ygx ,R d 1 , ,c
模式识别 – 绪论
模式识别 – 绪论
第一章 绪论
模式识别 – 绪论
一、模式识别的概念
什么是模式识别? 模式识别研究的内容?
模式识别培训教程PPT课件( 94页)
启动效应(priming effects)
指先前呈现的刺激项目对随后该刺激项目或与 其相关的刺激项目进行某种加工所产生的易化 现象,表现为启动刺激(prime)对目标刺激 (target)在反应时上的促进作用。
启动效应的分类
启动效应按照启动词和目标词间字形、语音、 语义间的相似程度分为重复启动和相似启动。
依据对语义加工的依赖程度和是否具有知 觉特异性效应(perceptual-specific effects),分为物体(知觉)启动和语义(概 念)启动。
语义启动 (semantic priming)
指先前的语义加工使得随后的语义性任务 操作的反应时间缩短、准确率提高。
例如,在词汇判断任务中,将“医院” 作为启动刺激时,它会促进被试对目标刺 激“医生”的判断反应。又如:当前面呈现 的词是“面包”时,比是“护士”时对目 标词“黄油”的反应要快。
由有关知觉对象的一般知识开始的加工, 由此可以形成期望或对知觉对象形成假 设,这种期望或假设制约着加工的所有 阶段或水平。又称之为概念驱动加工 (Concept-Driven Processing)
•Tulving, Mandler & Baumal的实验
自变量
上下文情况:无上下文、4字上下文、8字上下文 (考察自上而下加工)
二、知觉理论
(一) 直接知觉理论( Direct perception )
以Gibson为代表,认为环境可提供的信息足以产生 知觉,知觉并不需要内部过程和表征的参与。
刺激眼睛的光线模式是一个结构性的光 学分布;
这种分布能提供空间中目标分布特征 的明确或恒定信息;
知觉在很少或没有信息加工参与的 情况下,可以通过共振直接从光学 分布中提取各种丰富信息。
模式识别课件
模式识别课件预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制模式识别参考材料:[1]边肇祺,张学工等编,模式识别(第二版)清华大学出版社 2000[2]R.O.Duda, P.E.Hart. Pattern Classification and Scene Analysis.NewYork: John wiley & sons. 1973[3]Nello Cristianini & Jogn Shawe –Jaylor. An Introduction to Support Vector Machines and other Kernel –based learning method. Cambridge University Press 2000学习目标:模式识别这个词是Pattern Recognition翻译来的,通俗一点讲究就是机器识别,计算机识别,或机器自动识别。
Pattern这个词翻译成模式,模式是要让机器自动识别的事物(辨别是否相同或是否相似)。
如一个具体数字,是印刷体还是手写体。
本课程学习目标为,使学生能应用模式识别方法处理计算机自动识别事物、机器学习、数据分析中有关的技术问题。
能掌握模式识别技术中最基本的概念,以及基本的处理问题方法。
课程要求:本课程主要是学习让计算机自动识别的基本概念,方法的课程,但它与相关学科的术语都有密切联系,如人工智能也是让计算机具有智能,因此这两门课程有许多相通、互助的方面。
模式识别技术中十分重要的概念是让机器通过学习确定参数改进性能,因此是机器学习这个学术名词中的重要与基础内容。
模式识别主要是对视频、图像、声音等多媒体信息进行分类识别,因此具有这方面的背景也是比较有利的。
第一章绪论§课前索引重点:1、模式识别的含义,模式的概念2、模式的描述方法3、模式识别系统的组成4、模式识别利用训练样本设计分类器的原理,两种最基本的分类方法的原理课前思考1、什么是模式识别,是不是就是机器自动识别、或机器自动分类?常说的语音识别、汉字识别、手写体识别是不是属于这门学科的内容2、模式识别这门课有用吗?哪里可以应用?3、机器自动识别的最基本原理是什么?知识点模式识别的含义——机器自动识别与分类§1.1 模式识别和模式的概念学科作用模式识别是六十年代初迅速发展的一门学科。
模式识别介绍课件
第1章 绪论
第4章 线性判别函数(重点掌握)
4.1 线性判别函数和决策面 4.2 感知准则函数 4.3 最小平方误差准则函数(MSE ) 4.4 Fisher线性判别函数 4.5 多类情况下的线性判别函数和固定增量算法 4.6 分段线性判别函数
返回本章首页
第1章 绪论
第6章 近邻法(了解) 非监督学习方法的部分内容合并到此章介绍。 第7章 特征的抽取和选择(掌握) 基于K —L展开式的特征提取合并到此章介绍。 其它内容不作要求 课程小结:讲授模式识别的应用实例及复习前面 各知识点。 考核 考试成绩(80%)+平时成绩(20%)
第1章 绪论
第1章 绪论
1.1 模式和模式识别的基本概念 1.2 模式识别系统 1.3 模式识别的发展及应用 1.4 本课程授课按排及考核标准
第1章 绪论
1.1 模式和模式识别
1.1.1 模式 1.1.2 模式识别
返回本章首页
第1章 绪论
1.1.1 模式
“模式”这个概念的内涵是很丰富的,我们把凡是 人类能用其感官直接或间接接受的外界信息都称为 模式,比如,文字、图片、景物是模式,声音,语音是 模式,心电图、脑电图、地震波等也是模式。广义 地说,存在于时间和空间中可观察的事物,如果我们 可以区别它们是否相同或是相似,都可以称为模式, 但模式所指的不是事物本身,而是我们从事物获得 的信息, Байду номын сангаас此, 模式往往表现为具有时间和空间分布 的信息。
返回本节
第1章 绪论
第1章 绪论
1.3.4 其它方面的应用
模式识别进行遥感图片的分类,可以完成大量的 信息处理工作;在军事上,可见光、雷达、红外 图像的分析与识别,可以检出和鉴别目标的出现, 判断目标的类别并对运动中的目标进行监视和跟 踪。采用地形匹配的方法校正飞行轨道以提高导 弹的命中精度,也是模式识别的重要应用课题。 此外,模式识别在鉴别人脸和和指纹,地质勘测、 高能物理,机器人技术等方面也有很多用处。
模式识别基础教程PPT课件
8
典型应用
语音识别(例如:IBM ViaVoice系统) 表情分析、年龄、种族、性别分类 OCR: 车牌照、集装箱号码… 手写体识别:汉王 手势识别:基于视觉的,基于数据手套 人脸识别、指纹识别、虹膜识别… 军事目标识别 生物信息、医学图像 遥感、气象
9
模式识别方法
模板匹配 结构模式识别 句法模式识别 统计模式识别 模糊模式识别
机特征向量,用概率统计理论对其进行建模, 用统计决策理论划分特征空间来进行分类。
12
统计模式识别的一般过程
测试模式 预处理
分类
训练 预处理
训练模式
特征提 取/选择
分类
特征提 取/选择
学习分类规则 错误率检测
13
模糊模式识别
1965年Zadeh提出模糊集理论
是对传统集合理论的一种推广
传统:属于或者不属于 模糊:以一定的程度属于
这种技术具有实时性的特点,而且有可能扩展到多个姿 态的人脸检测。
18
人脸的特征表示方法
矩形特征(Harr-like特征)
矩形特征的值是所有白色矩形中点的亮度值的和减 去所有灰色矩形中点的亮度值的和,所得到的差
有4种类型的矩形特征
19
输入图像
积分图像
基于积分图像的 Haar-like特征计
7
模式分类 vs. 模式聚类
Classification Clustering
Category “A”
Categ
(Supervised Classification)
Clustering
(Unsupervised Classification)
“Good” features
“Bad” features
模式识别第1章课件
1.4.3模式识别软件
目前来说,有很多软件可以指导设计模式识别系统,建立一 个模式识别系统要用到的相关软件有MATLAB、opencv 、 vc6.0等等
图1-6 MATLAB仿真示意图
第一章 绪论
1.1 模式识别的基本概念 1.2 特征描述 1.3 模式识别方法 1.4 模式识别工程设计
1.1 模式识别的基本概念
模式—通过信息的采集,形成的对一个对象的描述
模式类—模式所属的类别或同一类中的模式的总体
模式识别—利用计算机(或人为少量的干预)自动 地将待识别的事物分配到各个模式类中的技术
(1) 可靠性; (2) 样本数目足够多; (3) 样本数M与模式空间维数N的关系要满足M/N>3,最好M/N>10; 在选择训练集的实验中一般选择一些具有相同特征且特征明显的数据 样本作为训练集,这类样本能让分类器更快更有效的获得此类样本的特 性;
测试集:样本是未知的(没有标定的),需要用分类器进行 识别的,一般选择在设计分类系统没有使用过的独立的样本 即可。
聚类法:用某种相似性度量的方法将数据组分成所需要的各 组数据。主要有分层聚类法和迭代聚类法。
神经网络法:利用给定的样本,在学习过程中不断修正内部 连接权重和阈值,使实际输出与期望输出在一定误差范围内 相等。 BP(误差反传播算法)网络模型是模式识别应用最广 泛的网络之一 人工智能法: 应用专家系统、智能推理技术、不确定性推理 等智能算法,所获取样本进行识别。主要解决高复杂度,无 法建立准确的模型或者信息不准确、不确切等问题。
1.1 模式识别的基本概念
模式识别系统的组成
数据采集
预处理
特征提取 和选择
分类器设 计
分类决策
图1-1 模式识别系统的基本构成
模式识别讲义精品PPT课件
最大最小距离法
该算法以欧氏距离为基础,首 先辨识最远的聚类中心,然后确 定其他的聚类中心,直到无新的 聚类中心产生。最后将样本按最 小距离原则归入最近的类。
几个算法的简单对比:
k均值和最大最小距离是聚类型算法 而K近邻和感知器属于分类,聚类和 分类
K-means算法缺点主要是: 1. 对异常值敏感 2. 需要提前确定k值
11
11
11 11
11
00
模式识别
-------几种聚类和分类算法的比较
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
K均值算法
k均值算法是什么?
k均值算法也称为C-均值算法,是根据函数准则进行分类 的聚类算法,基于使聚类准则最小化。
依据课本的介绍,它是聚类集中每一个样本点到该聚类 中心的距离平方和。
MATLAB
运行结果
感知器算法
What:
感知器算法通过赏罚原则依据每次对训练集的训练不断修正 判别函数的权向量,当分类器发生错误分类的时候对分类器 进行“罚”,即对权向量进行修改,当感知器正确分类的时 候对分类器进行“赏”,对全向量不进行修改。这样经过迭 代计算后,通过训练集的训练得到最优的判别函数的权向量。
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
代码实现 C语言:
参考数据:
1 11 01 11
110101110101
01
01
10
01
11
01
10
01
模式识别Pattern Recognition课件-新版.ppt
许建华 xujianhua@
南京师范大学计算机科学系
2007年3月- 6月
精品
第1章 绪论
1.1 模式识别与模式的概念 1.2 模式识别系统 1.3 关于模式识别的若干基本问题
精品
1.1 模式识别与模式的概念
1.1.1 基本概念 两个例子:
根据内容或者外观聚成相应的类
物以类聚,人以群分 精品
人的模式识别能力
人通过视觉、嗅觉、听觉、味觉、触觉接 收外界信息、再经过人脑根据已有知识 进行适当的处理后作出的判别事物或者 划分事物性质(类别)的能力
精品
模式识别 (Pattern Recognition)
用计算机来实现人的模式识别能力,即用计算机 实现人对各种事物或现象的分析、描述、判断、 识别
1k n k
k
精品
马哈拉诺比斯(Mahalanobis)距离
d(x, y) (x y)Σ1(x y)
其中协方差矩阵和均值为
Σ
l
1 1
l i 1
(xi
x)(xi
x)T
x
1 l
l i 1
xi
精品
1.3.4 数据的标准化
目的:消除各个分量之间数值范围大小对 算法的影响
幼儿认动物 图书归类
精品
幼儿认动物
老师教幼儿学(学习) 幼儿自己认(决策) 错分现象
精品
图书归类
归类 1 : 精美印刷的书 普通印刷的书
归类 2: 大开本的书 小开本的书 微型开本的书
归类 3:
数学类图书 物理学图书 化学类图书 计算机类图书 小说类图书 法律类图书
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式识别参考材料:[1]边肇祺,张学工等编,模式识别(第二版)清华大学出版社2000[2]R.O.Duda, P.E.Hart. Pattern Classification and Scene Analysis.NewYork: John wiley & sons. 1973[3]Nello Cristianini & Jogn Shawe –Jaylor. An Introduction to Support Vector Machines and other Kernel –based learning method. Cambridge University Press 2000学习目标:模式识别这个词是Pattern Recognition翻译来的,通俗一点讲究就是机器识别,计算机识别,或机器自动识别。
Pattern这个词翻译成模式,模式是要让机器自动识别的事物(辨别是否相同或是否相似)。
如一个具体数字,是印刷体还是手写体。
本课程学习目标为,使学生能应用模式识别方法处理计算机自动识别事物、机器学习、数据分析中有关的技术问题。
能掌握模式识别技术中最基本的概念,以及基本的处理问题方法。
课程要求:本课程主要是学习让计算机自动识别的基本概念,方法的课程,但它与相关学科的术语都有密切联系,如人工智能也是让计算机具有智能,因此这两门课程有许多相通、互助的方面。
模式识别技术中十分重要的概念是让机器通过学习确定参数改进性能,因此是机器学习这个学术名词中的重要与基础内容。
模式识别主要是对视频、图像、声音等多媒体信息进行分类识别,因此具有这方面的背景也是比较有利的。
第一章绪论§课前索引重点:1、模式识别的含义,模式的概念2、模式的描述方法3、模式识别系统的组成4、模式识别利用训练样本设计分类器的原理,两种最基本的分类方法的原理课前思考1、什么是模式识别,是不是就是机器自动识别、或机器自动分类?常说的语音识别、汉字识别、手写体识别是不是属于这门学科的内容2、模式识别这门课有用吗?哪里可以应用?3、机器自动识别的最基本原理是什么?知识点模式识别的含义——机器自动识别与分类§1.1 模式识别和模式的概念学科作用模式识别是六十年代初迅速发展的一门学科。
它所研究的理论和方法在很多科学和技术领域中得到了广泛的重视,推动了人工智能技术及图像处理、信号处理、计算机视觉、多媒体技术等多种学科的发展,扩大了计算机应用的领域。
了解与熟悉模式识别的一些基本概念与基本处理方法对研究与从事人工智能、图像处理、信息处理、计算机视觉、多媒体技术、信息安全等方面工作的人们乃至其它领域的人们都是很有益处的。
相关概念模式识别(Pattern Recognition)这个词对许多人来说很陌生,然而实际上人类却在日常生活的每个环节,从事着模式识别的活动。
可以说每个有正常思维的人,在他没有入睡时都在进行模式识别的活动。
坐公共汽车找汽车站,骑车判别可行进道路,对观察到的现象作出判断,对听到的声音作出反应,判断东西的好与坏以及水果的成熟与否等等都是人们判断是非,判别事物的过程。
但是对模式识别这个词就显得陌生而难以理解了。
确切地说,模式识别在这里是针对让计算机来判断事物而提出的,如检测病理切片中是否有癌细胞,文字识别,话语识别,图像中物体识别等等。
该学科研究的内容是使机器能做以前只能由人类才能做的事,具备人所具有的、对各种事物与现象进行分析、描述与判断的部分能力。
模式识别这个词是Pattern Recognition翻译来的,通俗一点讲究就是机器识别,计算机识别,或机器自动识别。
Pattern这个词翻译成模式,模式是要让机器自动识别的事物(辨别是否相同或是否相似)。
如一个具体数字,是印刷体还是手写体。
识别的结果就是给他分类,分到具体的数字类中。
对数字来说,其结果可表示成它的相应代码,如ASCII码。
对于一个智能交通系统来说,是要识别是否有汽车闯红灯,闯红灯的汽车车牌号码等。
要让机器能识别、分类,就需要研究识别的方法,这就是这门学科的任务。
人类在观察事物与作出判断时,常常把所见到的具体事物与脑子里对某个事物的“概念”联系起来,从而按这些概念对它们实行分类。
人们能将所见到的具体的、外表各异、各具特色的汽车与脑子中已形成的“抽象”的汽车概念联系起来,并能明确地分辨汽车与拖拉机、坦克车等之间的不同之处,实现正确的分类。
拿模式识别的术语来说,所见的具体事物是样本,而它们所属的事物是类别,代表这些事物的“概念”是模式。
也有另一种说法把所见到的事物称为模式,而将它们的归属类别称为模式类。
因此模式这个词,有时代表类别事物的称呼,而有时则强调具体事物,其具体含义依上下文关系而定,一般不会产生混淆。
学科任务与人辨别事物相比,机器识别事物的方法是很不同的,在目前也是很简单与低级的,因此机器识别事物的能力还很差。
这主要的原因是人们在学习与认识事物中会总结出规律,并把这些规律性的东西抽象成“概念”。
人之所以能“抽象出概念”,关键能分析事物中哪些是本质,哪些是表面现象,或由偶然因素引起的。
但机器目前的抽象能力是很差的。
要让机器准确地把握事物的本质,弄清分辨事物的关键,从而正确辨别事物,实质上是要人能够研究出好的方法,提出好的算法,从而构造出好的系统,使机器辨别事物的本领更强。
模式类与模式,或者模式与样本,在集合论中是子集与元素之间的关系。
当用一定的度量来衡量两个样本,而找不出它们之间的差别时,它们在这种度量条件下属于同一个等价类。
这就是说它们属于同一子集,是一个模式,或一个模式类。
而不同的模式类之间应该是可以区分的,它们之间应有明确的界线。
但是对实际样本来说,有时又往往不能对它们进行确切的划分,即在所使用的度量关系中,分属不同的类别的样本却表现出相同的属性,因而无法确凿无误地对它们进行区分。
例如在癌症初期,癌细胞与正常细胞的界线是含糊的,除非医术有了进一步发展,能找到更准确有效的分类方法。
让机器辨别事物的最基本方法是计算,原则上讲是对计算机要分析的事物与作为标准的称之为“模板”的相似程度进行计算。
譬如说脑子里有没有瘤,就要与标准的脑图像以及有瘤图像做比较,看跟哪个更相似。
要识别一个具体数字,就要将它与从0到9的样板做比较,看跟哪个模板最相似,或最接近。
因此首先要能从度量中看出不同事物之间的差异,才能分辨当前要识别的事物(称为测试样本)跟哪类事物更接近。
因此找到有效地度量不同类事物的差异的方法是最关键。
§1.2 模式的描述方法联想到人们认识事物,都是从不同事物所具有的不同属性为出发点的,因此用来决策事物类别的特点和属性就称之为物体所具有的特征。
在模式识别技术中,模式就是用它们所具有的特征描述的。
对一种模式与它们的样本来说,将描述它们的所有特征用一特征集表示其中O表示模式或样本的名称,f i则是它们所具有的特征。
特征包括定性与定量两种描述。
模式的描述方法:对于具体事物的描述大体上可分为两种。
一种是对事物的属性进行度量,属于定量的表示方法。
另一种则是对事物所包含的成分进行分析,称为定性的描述或结构性描述。
定性可以是指特征的有与无,例如坦克与汽车都有驾驶装置,这不能作为区分它们的特征,但坦克有炮,汽车无炮,有没有炮是划分它们的一种有效特征。
然而一些不同类别的事物往往具有相同的特征种类,或者用同样的特征度量去检测,但它们在这些特征的取值上有差别,在这种情况下特征值的取值范围成为辨别事物的重要依据。
例如癌细胞与正常细胞都用同样的观察手段与测量手段去检测,而依据所得特征值分布范围将它们区分开来。
在这种情况下,模式的特征集表示,又可写成处于同一个特征空间的特征向量表示。
待识别的不同类模式都在同一特征空间中考察,不同类物体由于性质上的不同,它们在各特征取值范围上有所不同,因而在特征空间的不同区域中出现。
本书就是在特征空间与特征向量这种表示模式的方法前提下,讨论模式识别的基本理论与基本方法。
这种方法称为统计模式识别,是这门课的基本内容。
定量的描述就是用各种尺度对事物进行度量。
例如对水果进行分类,就需要对它的各种属性进行度量,水果的重量、大小、颜色、香味乃至味道等。
由于对事物的度量是多方面的,因此要用合适的数据结构将它们记录下来,以便在同一种度量之间进行比较。
常用的方法是将这些度量指排成序,譬如用水果的重量,近似球体直径。
这两个指标按规定的先后排起来,如一只苹果重0.3斤,直径10厘米,则可表示成(0.3,10)。
因此如看到一个数据为(0.35,12)则可解释成重量为0.35斤,直径12厘米。
这种表示方法就称为向量表示法,该向量有两个分量,每个分量有自己特定的含义。
为了形象起见,我们可以用一个二维向量为例来说明,如一个二维向量A 表示成(x,y),则(3,4)就是指x=3,y=4。
如果用图像来表示,则可如图:用式子表示,可写成:或A=(3,4)。
我们把前一种称为列向量,后一种称为行向量,在本课中主要用列向量表示,而将其相应的列向量表示叫做其“转置”,用符号T表示:如:则。
这时,可能会问,一个苹果的颜色用什么方式表示。
这牵涉到颜色的表示方法。
如果颜色只能用某些典型色来表示,如红、橙、蓝、绿、紫,那么,这种情况只能用代号表示,如令红为1号,橙为2号,等等。
这样一来,上面提到的苹果如加上颜色描述,则可用一个三维向量,(0.35,10,1)。
对这些数字的理解要根据它的定义与所用单位来确定。
对颜色的另一种表示方法,可以用常用的RGB 表示。
R,G,B分别表示三种基色成分,这本身就是一个三维向量,如与重量、尺度汇合在一起,就是一个五维的向量。
有一些事物用向量表示是不方便的,例如一幅景色图像中的房屋用向量描述就不一定方便,对房屋而言,它有屋顶、墙、门窗等组成,各种成分之间又有相互关系,则墙在屋顶之下,门与窗都在墙上等。
这种由组成成分与相互关系表示的表示方法,最好用结构性的表示,常用的有串、树、图等。
在本门课中,我们主要使用向量表示方法。
向量的每个元素称为特征,该向量也因此称为特征向量。
图像、像素的定义:这里还要提出,在本门课中的举例与习题中常用图像作为例子,因此要说一下图像的表示方法。
在计算机里分析的称为数字图像,它由排列整齐的二维网格组成,分为若干行与若干列,相当于一个二维数组,或称矩阵。
我们称每个元素为像素,例如处在第三行第四列的元素的灰度值为155,则可表示成I(3,4)=155。
在本门课中都是对向量进行分析的,因此在概念上要把图像也表示成向量,譬如将图像像素一列一列串起来。
实际上,只要记住向量的运算是建立在各个分量基础上的,例如:,则图像的运算也是按行列来进行,不要弄错行列。
此外,对于象语音信号这种随时间变化的信号,属于时域信号。