上海市2020届高三数学试题分类汇编:数列(含解析)

合集下载

2020年上海秋季高考数学逐题解析版(校对2

2020年上海秋季高考数学逐题解析版(校对2

2020年全国统一高考数学试卷(上海秋季卷)一、填空题:本题共15小题,1-6题4分,7-12题5分,共54分。

1.已知集合,,求 .={124}A ,,={234}B ,,=A B 【答案】:{24},【解析】: 与取交集,共有元素为和.A B 242.计算: .1lim31n n n →∞+=-【答案】:13【解析】: .11111lim lim lim 1131333()33n n n n n n n n n →∞→∞→∞+++===---3.已知复数(为虚数单位),则 .12i z=-i z =【解析】:z ==4.已知行列式,则行列式 .126300a cd b =a cd b=【答案】:2【解析】:因为 .126300a cd b =所以.11300622a c c ad b b d⋅-⋅+=故.2a cd b=5.已知,则 .()3f x x =()1fx -=【答案】:13x()x ∈R 【解析】: 考察反函数知识点,由 可得,注意.3x y =13y x =x ∈R 6.已知、、1、2的中位数为,平均数为,则 .a b 34ab =【答案】:36【解析】:由平均数为,可得,由中位数为,可知和中有一个是413a b +=3a b 4,另一个是.97.已知,则的最大值为 .20230x y y x y +⎧⎪⎨⎪+-⎩≥≥≤2z y x =-【答案】:1-【解析】:画出可行域,带入点.()11,8.为不等于零的等差数列,且,求.{}n a 1109a a a +=12910+a a a a ++= 【答案】:278【解析】:在等差数列中由,得,所以:1109a a a +=1a d =-.1291101+93627+98a a a a d a a d +++==9.从个人中选个人值班,第一天641个人,第二天1个人,第三天2个人,共有多少种排法 .【答案】:180【解析】:.112654C C C 180=10.已知椭圆:,第二象限有一点,点与右焦点22143y x +=P P F所在直线与椭圆交于一点,,且点与点关于轴对称,求Q 1PF FQ ⊥Q 1Q x PQ 的直线方程 .【答案】:1y x=-【解析】:,且点与点关于轴对称,知斜率为,所以1PF FQ ⊥Q 1Q x PF 1-PF方程为.1y x =-11.设,若存在定义域的函数既满足“对于任意,的值为或a ∈R R ()f x 0x ∈R 0()f x 20x 0x ”又满足“关于的方程无实数解”,则的取值范围为 x ()f x a =a 【答案】:且0a ≠1a ≠【解析】:题目转换为是否存在实数,使得存在函数满足“对于任意,a ()f x 0x ∈R 0()f x 的值为或”又满足“关于的方程无实数解”构造函数:20x 0x x ()f x a =,则方程,只有0,1两个实数解.2,(),x x af x x x a ≠⎧=⎨=⎩()f x a =12.设,已知平面向量两两不相同,,且对于任意的k ∈*N 1212,,,, k a a b b b 12||1a a -=,及,,求的最大值 1,2i =1,2,,j k = }{1,2i j a b -∈k 【答案】:6【解析】:设,这,因为,所以对于任意的1122,OA a OA a == 12||1A A =}{1,2i j a b -∈有,做,则我们有1,2,,j k = }{11,2j a b -∈ }{21,2j a b -∈ j j OB b = 1j A B 等于1或者2,且等于1或者2,所以点在以,2j A B ,(1,2,,)j B j k = i A ()1,2i =为圆心半径为1或者2的圆上,如图所示,总共有6个点满足条件.二、选择题:本题共4小题,每小题5分,共20分。

2020年上海高考数学试卷(参考答案)

2020年上海高考数学试卷(参考答案)

2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合,,求_______2. ________3. 已知复数z 满足(为虚数单位),则_______4. 已知行列式,则行列式_______5.已知,则_______6.已知a 、b 、1、2的中位数为3,平均数为4,则ab=________7.已知,则的最大值为___________8.已知是公差不为零的等差数列,且,则___________9.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有____种排法。

10.椭圆,过右焦点F 作直线交椭圆于P 、Q 两点,P 在第二象限已知都在椭圆上,且,,则直线的方程为______11.设,若存在定义域的函数既满足“对于任意,的值为或”又满足“关于的方程无实数解”,则的取值范围为______12、已知是平面内两两互不平等的向量,满足,{}1,2,4A ={}2,3,4B =A B =1lim31n n n →∞+=-12z i =-i z =126300a cd b =a c d b=()3f x x =()1f x -=20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩2z y x =-{}n a 1109a a a +=12910a a a a ++⋅⋅⋅=22143x y +=l ()(),,'','Q Q Q Q Q x y Q x y y'0Q Q y +='FQ PQ ⊥l a R ∈R ()f x 0x R ∈()0f x 20x 0x x ()f x a =α且(其中),则K 的最大值为________二、选择题(本题共有4小题,每题5分,共计20分) 13、下列不等式恒成立的是() A 、 B 、 C 、 D 、14、已知直线的解析式为,则下列各式是的参数方程的是()A 、B 、C 、D 、15、在棱长为10的正方体.中,为左侧面上一点,已知点到的距离为3,点到的距离为2,则过点且与平行的直线交正方体于、1,21,2,...i j k ==,,222a b ab +≤22-2a b ab +≥2a b ab +≥-2a b ab +≤l 3410x y -+=l 4334x ty t=+⎧⎨=-⎩4334x t y t =+⎧⎨=+⎩1413x ty t =-⎧⎨=+⎩1413x ty t =+⎧⎨=+⎩1111ABCD A B C D -P 11ADD A P 11A D P 1AA P 1A C P两点,则点所在的平面是( )A. B. C. D.16.、若存在,对任意的,均有恒成立,则称函数具有性质,已知:单调递减,且恒成立;单调递增,存在使得,则是具有性质的充分条件是()A 、只有B 、只有C 、D 、都不是三、解答题(本题共5小题,共计76分) 综合题分割17、已知边长为1的正方形ABCD ,沿BC 旋转一周得到圆柱体。

2020年上海各区高三二模分类汇编-9数列(教师版)

2020年上海各区高三二模分类汇编-9数列(教师版)

2020年二模汇编——数列一、填空题【闵行4】记n S 为等差数列{}n a 的前n 项和,若2,2121=+=a S S S n ,则=5a ________ 【答案】6【解析】61222233225111111213=⇒⎩⎨⎧==⇒⎩⎨⎧=++=+⇒⎩⎨⎧=+=a d a a d a a d a a S S S 【松江4】等差数列{}n a 的前n 项和为n S ,若15374,12a a a a +=+=,则7S = . 【答案】28【解析】两式相加得,153716a a a a +++=,利用下标公式,5317a a a a +=+,所以178a a +=,1777()282a a S +==. 【杨浦5】若{}n a 是无穷等比数列,首项113a =,公比13q =,则{}n a 各项的和S =【答案】21【解析】213113111=-=-=q a S 【宝山5】已知无穷数列()*2,3n na n N =∈-则数列{}n a 的各项和为 .【答案】12-【解析】由题意知数列{}n a 为首相为123a =-,公比为13q =-的无穷等比数列,1112n a s q ==--。

【松江6】已知数列{}n a 的首项11a =,且满足()1012n na a n N *+=∈,数列{}n a 的前n项和为n S ,则lim nn S →∞= .【答案】2 【解析】Q1012n n a a +=,∴12n n a a +=,∴112n n a a +=,即数列{}n a 是以1为首项,公比为12的等比数列.∴1lim =21n n a S q →∞=-. 【嘉定7】设各项均为正数的等比数列{}n a 的前n 项和为{}n S ,11a =,236a a +=,则6S = 【答案】63【解析】()()6261126026312q q q q S -+=>⇒=⇒==-【浦东7】若二项式()421x+展开式的第4项的值为24,则()=++++∞→n n x x x x Λ32lim .【答案】15【解析】33441(2)6x T C x ===,()23116lim 1516nn x x x x →∞++++==-L 【长宁8】记等差数列{}n a 的前n 项和为n S .若371,14a S ==,则5a = . 【答案】3【解析】由题意可得,()()()71735557771143222S a a a a a a =+=+=+=⇒= 【金山8】数列{}n a 的通项公式1,1,2=1,3,2n nn na n N n *⎧=⎪⎪∈⎨⎪≥⎪⎩,前项和为n s ,则lim n n s →∞= 【答案】74【解析】3121178lim 1112412n n a S a a q →∞=++=++=--【崇明8】已知数列{}n a 是无穷等比数列,其前n 项和记为n S ,若233a a +=,3432a a +=, 则lim n n S →∞=【答案】8【解析】由题意得:114,lim 82n n a q S →∞==∴= 【奉贤8】已知等差数列{}n a 的各项不为零,且3a 、13a 、63a 成等比数列,则公比是 【答案】1或5【解析】213111131(12)(2)(62),,0,152a a d a d a d a d d q a +=++====或 【杨浦9】数列{}n a 满足11a =,且132n n a a n ++=+对任意*n ∈N 均成立,则2020a = 【答案】3031【解析】由题可知521=+a a 且11=a ,则42=a ;832=+a a ,则43=a ;1143=+a a ,则74=a ;1454=+a a ,则75=a ;以此类推13,10,10876===a a a ……则这个数列的偶数项是首项为4公差为3的等差数列2020a 是这个等差数列的第1010项,则30313)11010(42020=⨯-+=a【闵行9】已知直线x y l =:1,斜率为()10<<q q 的直线2l 与x 轴交于点A ,与y 轴交于点()a B ,00,过0B 做x 轴的平行线,交1l 于点1A ,过1A 做y 轴的平行线,交2l 于点1B ,再过1B 做x 轴的平行线,交1l 于点2A ,Λ,这样一次得线段,,,,,211110n n B A A B B A A B Λ记n x 为点n B 的横坐标,则=∞→n n x lim _________【答案】qa-1 【解析】设()(),,,,11++n n n n y x B y x B 由题可知,,11++=+=∴=n n n n n x a qx y x y 设A x x n x n x ==+∞→∞→1lim lim ,则qa A A a qA a qx x n x n x -==+=+=∞→+∞→1lim lim 1, 【金山11】我们把一系列向量()1,2,i a i n =u rL 按次序排成一排,称之为向量列,记作{}j a u u r ,已知向量{}i a u r 满足:()()()1111111,1,,,(2),2n n n n n n n a a x y x y x y n ----===-+≥u r u u r 设n θ表示向量1n a -u u u r 与n a u u r 的夹角,若2n n n b θπ=,对任意正整数n ,不等式()+122111+......log 12a n n na b b b +++>-恒成立,则实数a 的取值范围是 . 【答案】103⎛⎫ ⎪⎝⎭, 【解析】()()()2211111111111111,,+cos 2||||2n n n n n n n n n n n n n n x y x y x y x y a a a an θ------------⋅-+⋅===u u u r u u r u u u u r u u r∴2,b ,44n n n πθ==()2222+......1log 1212a n a n n n n n n=+≥⨯=>-++++ ()log 121log a a a a -<=当01a <<时,1201,0123a a a a->⎧<<⎨->⎩当1a >时,12>0,12a a a a-⎧⎨-<⎩不存在综上实数a 的取值范围是103⎛⎫ ⎪⎝⎭, 【浦东12】已知数列{}{},n n a b 满足111a b ==,对任何正整数n 均有1n n n a a b +=+1n n n b a b +=+,设113n n n n c a b ⎛⎫=+⎪⎝⎭,则数列{}n c 的前2020项之和为 . 【答案】202133-【解析】()112+2nn n n n n n a b a b a b +++=⇒+=,11122n n n n n n n a b a b a b -++=⇒+=,12333n n n n c +=⋅=-,2021202033S =-【金山12】设n N *∈,n a 为(2)(1)nnx x +-+的展开式的各项系数之和,16,2m t t R =-+∈,1222333n n n na a a b ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦K ([]x 表示不超过x 实数的最大整数),则22()()n n t b m -+-的最小值为【答案】95【解析】1,32n n n x a ==-,2133nnn na n n n ⎡⎤⎡⎤⎛⎫=-⋅=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎢⎥⎣⎦,()20112n n nb n -∴=+++-=K()()()222221622n n n n t b m n t t ⎡⎤-⎛⎫∴-+-=-+--+ ⎪⎢⎥⎝⎭⎣⎦可看作抛物线22x xy -=上一点2,2n n A n ⎛⎫- ⎪⎝⎭与直线162y x =-+上一点1(,6)2B t t -+的距离的平方,数形结合可知,当3n =时,()3,3A 距离最小,()()222min95n n t b m ⎡⎤-+-==⎣⎦ 二、选择题【宝山15】用数学归纳法证明n n135(1)(2n 1)(1)n,n N*-+-+⋅⋅⋅+--=-∈.那么,“当n 1=时,命题成立”是对“n N*∈时命题成立”的( )【A 】充分不必要 【B 】必要不充分 【C 】充要【D 】既不充分也不必要 【答案】B【解析】由数学归纳法可知,“当n 1=时,命题成立”需要加上第二步假设证明才能得到“n N*∈时命题成立”【崇明15】设{}n a 是各项为正数的无穷数列,i A 是边长为i a 、1i a +的矩形的周长(1,2,i =⋅⋅⋅),则“数列{}n A 为等差数列”的充要条件是( ) 【A 】{}n a 是等差数列【B 】1321,,,,n a a a -⋅⋅⋅⋅⋅⋅或242,,,,n a a a ⋅⋅⋅⋅⋅⋅是等差数列 【C 】1321,,,,n a a a -⋅⋅⋅⋅⋅⋅和242,,,,n a a a ⋅⋅⋅⋅⋅⋅都是等差数列【D 】1321,,,,n a a a -⋅⋅⋅⋅⋅⋅和242,,,,n a a a ⋅⋅⋅⋅⋅⋅都是等差数列,且公差相同 【答案】D【解析】(),21++=i i i a a A 若{}n a 为等差数列,设公差为d ,则21da a i i =-+, 即数列{}n a 的奇数项城等差,偶数项成等差;反之,若,22221212da a a a n n n n =-=---+则d A A n n =-+212为等差。

2020年普通高等学校招生全国统一考试数学(上海卷)(含答案)

2020年普通高等学校招生全国统一考试数学(上海卷)(含答案)

2020年普通高等学校招生全国统一考试数学卷(上海卷)一、填空题(本题共12小题,满分54分,其中1-6题每题4分,7-12题每题5分)1. 已知集合{}1,2,4A =,{}2,3,4B =,求A B =_______【分值】4分 【答案】{}2,42. 1lim31n n n →∞+=-________【分值】4分【答案】133. 已知复数z 满足12z i =-(i 为虚数单位),则z =_______【分值】4分4. 已知行列式126300a cd b =,则行列式a cd b=_______【分值】4分 【答案】25. 已知()3f x x =,则()1f x -=_______【分值】4分 【答案】()13xx R ∈6.已知a 、b 、1、2的中位数为3,平均数为4,则ab= 【分值】4分 【答案】367.已知20230x y y x y +≥⎧⎪≥⎨⎪+-≤⎩,则2z y x =-的最大值为【分值】5分 【答案】-18.已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【分值】5分 【答案】2789.从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。

【分值】5分 【答案】18010.椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【分值】5分【答案】10x y +-=11、设a R ∈,若存在定义域R 的函数()f x 既满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”又满足“关于x 的方程()f x a =无实数解”,则α的取值范围为【分值】5分【答案】()()(),00,11,-∞⋃⋃+∞【解析】题目转换为是否为实数a ,使得存在函数()f x满足“对于任意0x R ∈,()0f x 的值为20x 或0x ”,又满足“关于的方程()f x a =无实数解”构造函数;()2,,x x af x x x a≠⎧=⎨=⎩,则方程()f x a =只有0,1两个实数解。

上海2020届高三数学二模汇编数列

上海2020届高三数学二模汇编数列

2020届高三数学二模汇编数列、填空题:已知等差数列{a n }的各项不为零,且 a 3、a 13、a 63成等比数列,则公比是记S n 为等差数列{a n }的前n 项和,若S 3 2s l S 2, a 2,已知直线l 1:y x,斜率为q (0 q 1)的直线与x 轴交于点A,与y 轴交于点B o (0,a),过B o 作x 轴的平 行线,交11于点A,过A 1作y 轴的平行线,交12于点B 1,再过B 1作x 轴的平行线交11于点A2,,这样依次得线一 n 1 1 ........... 设C n 3 ,则数列 C n 的前2020项之和为 a n b n1. 已知无穷数列a n2 ("W_ _ * ............... . _ _ 一・一 .. .n N ,则数列{a n }的各项和为2. 3. 数列{a n }的通项公式a n1 ,n n 1 2n ,n 1,2 * n N ,刖n 项和为S n ,则lim S n n4. LT 我们把一系列向量a i (i LT1,2, ,n)按次序排成一列,称为向量列,记作 {a i },已知向量ur {a i }满足 a (1,1),LU 1 ULLT UTa n (x n ,y n ) 2 Jn 1 y n 1, x n 1 y n 1)(n 2),设 n 表示向量 2门 1 与 2门夹角,若2b n n5. —log a (1 2a)恒成立,则实数a 的取值范围是 b 2n6.、… _ _ *. .n设 n N , a n 为(x 2)(x 1)n 的展开式的各项系数之和,1—t 6, t 2 R,b n[a 1] [2a 2]3 323n([x]表示不超过实数x 的最大整数)22(n t)2(b m)2的最小值为7. 8. 记x n 为点B n 的横坐标,则lim x n n na 33,a 3 a 410.若二项式1 2x4展开式的第4项的值为412 ,则lim x n3.. 一-,则 lim S n 2 nn11.已知数列 a n , b n 满足a 〔 D 1 ,对任何正整数n 均有 a n 1 a n b n{a bn , b n 1a nb n J a 2 b n 2,不等式5若a ?12.等差数列a n的前n项和为S n ,若a〔a§ 42a7.............. .. .一一an 1 an * ................. — . _ 一.13.已知数列a n的首项a i 1,且满足0 n N ,数列a n的前n项和为& ,则n ।/ n 11/1 2lim S n n -------------------14.已知集合A n K,X2,L ,X n |x 1,i 1,2,L ,n ,元素1n 1,1,L ,1称为集合A n的特征元素,对于A n中的元素a 2,a2,L ,a n与b b1,b2,L b n,定义:f n a b a1bl a2b2L a n b n,当n=9 时,若a是集合A中的非特征元素,则f919 a 1的概率为15.记等差数列a n的前n项和为S n,若a3 1§ 14 ,则a§二、选择题:1.用数学归纳法证明13 5 ( 1)n(2n 1)( 1)n n , n N成立.那么,“当n 1时,命题成立”是“对* ..... .. ..n N时,命题成立”的()A.充分不必要B.必要不充分C.充要D.既不充分也不必要..... ・ . .. .. --- . . . ................................................................. .. . . . . - * ... .2.已知等差数列{a n}与等比数列{b n}的首项均为1,且公比q 1,若存在数对(k,t), k,t N ,使得a k b t,称这样的数对(k,t)为{a n}与{b n}相关数对,则这样的数对(k,t)最多有()对则数列{b n}是(A.单调递增数列且lim b n 1B.单调递减数列且lim b n1n 2 n 2C.单调递增数列且lim bnn 2 D.单调递减数列且lim b nn212,则S7 ____________A. 2B. 3C. 4D. 53.设等比数列{a n}的前n项和为S n,首项a 1,且2s2 S4 3s3,已知-* … \ 一. ■m,n N ,若存在正整数i、j (1 使彳# ma、mn、na j成等差数列,则mn的最小值为(A. 16B.12r ur4.已知e、f是互相垂直的单位向量,C. 8D. 6ur r uu ur uu向量a n满足:e a n n , f a nir uur2n 1 , b n是向量f与a n夹角的正切值,A是边长为科同i的矩形的周长i 1,2,L ,则“数列A n为等差数列”的充要条件是()A.a n是等差数列B.a1,a3, L , a?n i,L 或a2, a4,L , a?n,L 是等差数列C.a i,a3,L , a2n i,L 和a2,a4,L ,a?n,L 都是等差数列D.a i,a3,L ,a2ni,L和a2,a4,L ,a2n,L都是等差数列,且公差相同6.我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增5.设a n是各项为正数的无穷数列,倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍, 小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为(A. 3B. 4 D. 62x A.记椭圆一42ny4n ii围成的区域(含边界)n ( n i,2,),当点(x, y)分别在上时,x y的最大值分别是M i, M2, ,则lim M nnA. 2 ,5B.4C.3D.2.2三、解答题:1.据相关数据统计,2019年底全国已开通5G基站13万个,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,今年一月份全国共建基站3万个.(1)如果从2月份起,以后的每个月比上一个月多建设2000个,那么,今年底全国共有基站多少万个.(精确到0.1万个)(2)如果计划今年新建基站60万个,到2022年底全国至少需要800万个,并且,今后新建的数量每年比上一年以等比递增,问2021年和2022年至少各建多少万个才能完成计划?(精确到1万个)2.已知项数为m (m N , m 2)的数列{4}满足条件:① a n N* (n 1,2, ,m)^a1 a2 a m ;若数列{b n}满足b n (a-a ----------------------- a m)-a n N* (n 1,2, ,m),m 1则称{ b n}为数列{为}的“关联数列”.(1)数列1, 5, 9, 13, 17是否存在“关联数列”?若存在,写出其“关联数列”,若不存在,请说明理由;(2)若数列{a n}存在“关联数列” {b n},证明:a n 1 a n m 1 (n 1,2, ,m 1);(3)已知数列{a n}存在“关联数列” {b n},且a1 1, a m 2049,求数列{a0}项数m的最小值与最大值.3.若数列C n满足“对任意正整数i,j,i j ,都存在正整数k,使得C k GC j”,则称数列C n具有“性质P”,已知数列a n无无穷数列.(1)若a n为等比数列,且a1 1,判断数列a n是否具有“性质P”,并说明理由;(2)若a n为等差数列,且公差d<0 ,求证:数列a n不具有“性质P” ;(3)若等差数列a n具有“性质P”,且a3 2 ,求数列a n的通项公式a n.4.已知函数f x的定义域为D,若存在实常数及a a 0 ,对任意x D,当x a D且x a D时,都有fxa f x a f x成立,则称函数f x具有性质M ,a .2(1)判断函数f x x是否具有性质M ,a,并说明理由;(2)若函数g x sin2x sinx具有性质M ,a,求及a应满足的条件;1 * (3)已知函数y h x不存在零点,当x R时具有性质M t - ,1 (其中t 0,t 1),记a n h n n N ,求证:数列a n为等比数列的充要条件是a2t或电1.a1 a1 t5.若数列{a n}与函数f (x)满足:①{a n}的任意两项均不相等,且f(x)的定义域为R ;② 数列{a0}的前n的项*的和S n f(a n)对任意的n N都成立;则称{a n}与f(x)具有“共生关系”. n(1)若a n 2 ( n N ),试写出一个与数列{a0}具有“共生关系”的函数f(x)的解析式;(2)若f(x) ax b与数列{a n}具有“共生关系”,求实数对(a,b)所构成的集合,并写出a n关于a、b、n的表达式;(3)若f(x) x2 cx h ,求证:“存在每项都是正数的无穷等差数列{a n},使得{a n}与f(x)具有‘共生关系’”,、一,“,,… 1 1 ,,的充要条件是“点(c,h)在射线x 1(y 卷)上.* *6.对于无穷数列{a n}、{b n}, n N ,若b k max{a1,a2,L ,aj min{a i,a2 ,L , aQ , k N ,则称数列{b n}是数列{a n}的“收缩数列",其中max{a1,a2,L ,aj、min{q, a2,L ,aj分别表示a1,a2,L冏中的最大项和最小项,已知数列{a n}的前n项和为S n ,数列{b n}是数列{%}的“收缩数列”.(1)若a n 3n 1 ,求数列{b n}的前n项和;(2)证明:数列{b n}的“收缩数列”仍是{b n};(3)若s S2 L S n n(n%1 n(n1)b n (n 1,2,3 ),求所有满足该条件的数列{a n}.2 27.若数列a n对任意连续三项a i ,a i 1,aj i 2,均有aia 2 a i 1 0,则称该数列为“跳跃数歹(1)判断下列两个数列是否是跳跃数列:1,2 ,3,4,5,(2)若数列0 ai 1.(3)跳跃数列8.在无穷数列(1)若a1(2)若S3(3)证明:1,a n11112,4, 8 ,16满足对任何正整数均有a n a i an & 0 .证明:数列a n是跳跃数列的充分必要条件是a n满足对任意正整数均有a n19a n中,a n N ,且a na n 1 2a n2a n,一一—,求首项a1的取值范围.a n是偶数、》工土 , c,记a n的刖n项和为S n.3,10,17,a n求S9的值;求a1的值;中必有一项为1或3.9.已知数列{X n},若对任意n N* ,都有x x n 2X n 1成立,则称数列{X n}为“差增数列”.22(1)试判断数列a n n2 (n N )是否为“差增数列”,并说明理由; ......................... .… ......................................................................................................... . * .・................. .・一・一(2)若数列{a n}为“差增数列",且a n N , a i a2 1,对于给定的正整数m,当a m ,项数k的最大值为20时,求m的所有可能取值的集合; __________________ _ . .. . . * . . . . . 一■(3)右数列{lg x n}为“差增数列” ,(n N , n 2020),且lgX i lgx? lg .20 0 ,证明:x^x.1 .10.随着疫情的有效控制,人们的生产生活逐渐向正常秩序恢复,位于我区的某著名赏花园区重新开放,据统计研、 .. . ................................................... ... 一................................... . *究,近期每天赏花的人数大致符合以下数学模型( nN)200n 1500 1 n 6n 6300 3k 2400 7 n 28表示第n个时刻进入园区的人数,以f (n)23400 650n 29 n 360 1 n 15以g(n) 400n 5000 16 n 28表示第n个时刻离开园区的人数8200 29 n 36设定每15分钟为一个计算单位,上午8点15分作为第1个计算人数单位,即n 1 , 8点30分作为第2个计算单位,即n 2 ,依次类推,把一天内从上午8点到下午5点分成36个计算单位(最后结果四舍五入,精确到整数).(1)试分别计算当天12: 30至13: 30这一小时内,进入园区的游客人数f(19) f (20)f(21) f (22)和离开园区的游客人数g(19) g(20) g(21) g(22);(2)请问,从12点(即n 16)开始,园区内游客总人数何时达到最多?并说明理由^_ _ .、 . _ _ .. . . . ..* ............... - . * . . 一・,… ・. - -11.右无否数列{a n}满足:存在k N ,对任意的n n° ( n N ),都有a n k a n d (d为常数),则称{a n}具有,f'生质Q(k,n0,d).(1)若无穷数列{小}具有性质Q(3,1,0),且a i 1,% 2, a3 3 ,求a? a3 a4的值;(2)若无穷数列{b n}是等差数列,无穷数列{G}是公比为正数的等比数列, b C5 1,b5 G 81, a n b n C n ,判断{a n}是否具有性质Q(k,n o,0),并说明理由; . .. - - .... _ *(3)设无穷数列{a n}既具有性质Q(i,2,d1),又具有性质Q(j2d2),其中i, j N , i j,i、j互质,求证:数列{4}具有f质Q(j izLidJ.i* -- - -12.定义:{a n}是无穷数列,若存在正整数k使得对任意n N ,均有a n k a n (a n k a n),则称{a n}是近似递增(减)数列,其中k叫近似递增(减)数列{a n}的间隔数.(1)若a n n ( 1)n, {a n}是不是近似递增数列,并说明理由;............ 一一, 1 …一二 4 一,、,…,…,(2)已知数列{a n}的通项公式为a n ——" a ,其前n项的和为& ,若2是近似递增数列{ S n}的间隔数,求a (2)n 1的取值范围;(3)已知a n n sinn ,证明{小}是近似递减数列,并且4是它的最小间隔数.213.两个数列{0}、{n},当{0}和{n}同时在0 %时取得相同的最大值,我们称{0}与{n}具有性质P,其*中n N .(1)设(1 x)2022的二项展开式中x k 的系数为a (k 0,1,2,3, ,2022 ), k N,记a o c1, a1 C2, ,依次下去 , a2022 C2023 ,组成的数列是{c n};1 2022 . . k , -一同样地,(x -) 的二项展开式中x的系数为d(k 0,1,2,3, ,2022 ), k N,x记b0 d1,bi d2 , ,依次下去, b2022 d2023 , 组成的数列是{d n};判别{C n}与{d n}是否具有性质P,请说明理由;(2)数列{t dn}的前n项和是s ,数列{1982 3n}的前n项和是T n ,若{S n}与{T n}具有性质P , d,t N*,则这样的数列{t dn}一共有多少个?请说明理由;_ 、 > » 1 一一一.一一 . * ............................................................(3)两个有限项数列{a n}与{b n}满足a n 1 a n (b n 1 b n) , n N ,且a1 b 0 ,是否存在实数,使得{,}与{b n}具有性质P,请说明理由.。

2020年上海市高考数学试卷(秋季)(全网最专业解析 )

2020年上海市高考数学试卷(秋季)(全网最专业解析 )

2020年上海市秋季高考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = .2.计算:1lim31n n n →∞+=- .3.已知复数12(z i i =-为虚数单位),则||z = .4.已知函数3()f x x =,()f x '是()f x 的反函数,则()f x '= . 5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩,则2z y x =-的最大值为 .6.已知行列式126300a bc d =,则a bc d= . 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = .8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋯+= .9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 种安排情况.10.已知椭圆22:143x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是 .11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;(2)关于x 的方程()f x a =无实数解, 则a 的取值范围是 .12.已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是 . 二、选择题(本大题共4题,每题5分,共20分) 13.下列等式恒成立的是( ) A .222a b ab + B .222a b ab +- C .2||a b ab + D .222a b ab +-14.已知直线方程3410x y ++=的一个参数方程可以是( )A .1314x t y t =+⎧⎨=--⎩B .1413x ty t =-⎧⎨=-+⎩C .1314x t y t =-⎧⎨=-+⎩D .1413x t y t =+⎧⎨=-⎩15.在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线相交的面是( )A .面11AAB BB .面11BBC CC .面11CCD DD .面ABCD16.命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件 C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.18.(14分)已知函数()sin f x x ω=,0ω>.(1)()f x 的周期是4π,求ω,并求1()2f x =的解集;(2)已知1ω=,2()()3()()2g x f x x f x π=--,[0x ∈,]4π,求()g x 的值域.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度.1100135(),040()3(40)85,4080x x v f x k x x ⎧-<<⎪==⎨⎪--+⎩. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =,交通流量50v =,求车辆密度q 的最大值.20.(16分)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x y b b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分.(1)若A x =b 的值;(2)当b2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D +斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.21.(18分)已知数列{}n a 为有限数列,满足12131||||||m a a a a a a --⋯-,则称{}n a 满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P ,请说明理由; (2)若11a =,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围; (3)若{}n a 是1,2,3,⋯,m 的一个排列(4)m ,{}n b 符合1(1k k b a k +==,2,⋯,1)m -,{}n a 、{}n b 都具有性质P ,求所有满足条件的数列{}n a .2020年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = {2,4} .【思路分析】由交集的定义可得出结论. 【解析】:因为{1A =,2,4},{2B =,4,5}, 则{2AB =,4}.故答案为:{2,4}.【总结与归纳】本题考查交集的定义,属于基础题.2.计算:1lim 31n n n →∞+=-13. 【思路分析】由极限的运算法则和重要数列的极限公式,可得所求值.【解析】:1111lim1101limlim 113130333limn n n n n n n n nn →∞→∞→∞→∞++++====----, 故答案为:13.【总结与归纳】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题.3.已知复数12(z i i =-为虚数单位),则||z【思路分析】由已知直接利用复数模的计算公式求解.【解析】:由12z i=-,得||z . .【总结与归纳】本题考查复数模的求法,是基础的计算题.4.已知函数3()f x x =,()f x '是()f x 的反函数,则()f x '= 13x ,x R ∈ .【思路分析】由已知求解x ,然后把x 与y 互换即可求得原函数的反函数. 【解析】:由3()y f x x ==,得x =,把x 与y互换,可得3()f x x =的反函数为1()f x -=【总结与归纳】本题考查函数的反函数的求法,注意反函数的定义域是原函数的值域,是基础题.5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩,则2z y x =-的最大值为 1- .【思路分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解析】:由约束条件202300x y x y y +-⎧⎪+-⎨⎪⎩作出可行域如图阴影部分,化目标函数2z y x =-为2y x z =+,由图可知,当直线2y x z =+过A 时,直线在y 轴上的截距最大, 联立20230x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,即(1,1)A .z 有最大值为1211-⨯=-.故答案为:1-.【总结与归纳】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题. 6.已知行列式126300a bc d =,则a bc d= 2 . 【思路分析】直接利用行列式的运算法则求解即可. 【解析】:行列式126300a bc d =,可得36a b c d =,解得2a bc d=. 故答案为:2.【总结与归纳】本题考查行列式的应用,代数余子式的应用,是基本知识的考查. 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = 36 .【思路分析】分别由题意结合中位数,平均数计算方法得13a b +=,232a+=,解得a ,b ,再算出答案即可.【解析】:因为四个数的平均数为4,所以441213a b +=⨯--=,因为中位数是3,所以232a+=,解得4a =,代入上式得1349b =-=,所以36ab =, 故答案为:36.【总结与归纳】本题考查样本的数字特征,中位数,平均数,属于基础题.8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋯+=278.【思路分析】根据等差数列的通项公式可由1109a a a +=,得1a d =-,在利用等差数列前n 项和公式化简12910a a a a ++⋯+即可得出结论.【解析】:根据题意,等差数列{}n a 满足1109a a a +=,即11198a a d a d ++=+,变形可得1a d =-,所以1129110119899369362729998da a a a a d d d a a d a d d d ⨯+++⋯++-+====++-+. 故答案为:278.【总结与归纳】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析1a 与d的关系,属于基础题.9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 180 种安排情况.【思路分析】根据题意,由组合公式得共有112654C C C 排法,计算即可得出答案. 【解析】:根据题意,可得排法共有112654180C C C =种. 故答案为:180.【总结与归纳】本题考查组合数公式,解题关键是正确理解题意并熟悉组合数公式,属于基础题.10.已知椭圆22:143x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是10x y +-= .【思路分析】求出椭圆的右焦点坐标,利用已知条件求出直线的斜率,然后求解直线方程.【解析】:椭圆22:143x y C +=的右焦点为(1,0)F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',可知直线l 的斜率为1-,所以直线l 的方程是:(1)y x =--, 即10x y +-=. 故答案为:10x y +-=.【总结与归纳】本题考查椭圆的简单性质的应用,直线与直线的对称关系的应用,直线方程的求法,是基本知识的考查.11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;(2)关于x 的方程()f x a =无实数解,则a 的取值范围是 (-∞,0)(0⋃,1)(1⋃,)+∞ .【思路分析】根据条件(1)可知00x =或1,进而结合条件(2)可得a 的范围 【解析】:根据条件(1)可得00x =或1,又因为关于x 的方程()f x a =无实数解,所以0a ≠或1, 故(a ∈-∞,0)(0⋃,1)(1⋃,)+∞, 故答案为:(-∞,0)(0⋃,1)(1⋃,)+∞.【总结与归纳】本题考查函数零点与方程根的关系,属于基础题.12.已知1a ,2a ,1b ,2b ,⋯,(*)k b k N ∈是平面内两两互不相等的向量,满足12||1a a -=,且||{1i j a b -∈,2}(其中1i =,2,1j =,2,⋯,)k ,则k 的最大值是 6 . 【思路分析】设11OA a =,22OA a =,结合向量的模等于1和2画出图形,由圆的交点个数即可求得k 的最大值.【解析】:如图,设11OA a =,22OA a =,由12||1a a -=,且||{1i j a b -∈,2}, 分别以1A ,2A 为圆心,以1和2为半径画圆,其中任意两圆的公共点共有6个.故满足条件的k 的最大值为6. 故答案为:6.【总结与归纳】本题考查两向量的线性运算,考查向量模的求法,正确理解题意是关键,是中档题.二、选择题(本大题共4题,每题5分,共20分) 13.下列等式恒成立的是( ) A .222a b ab + B .222a b ab +- C .2||a b ab + D .222a b ab +-【思路分析】利用2()0a b +恒成立,可直接得到222a b ab +-成立,通过举反例可排除ACD .【解析】:A .显然当0a <,0b >时,不等式222a b ab +不成立,故A 错误;B .2()0a b +,2220a b ab ∴++,222a b ab ∴+-,故B 正确;C .显然当0a <,0b <时,不等式2||a b ab +不成立,故C 错误;D .显然当0a >,0b >时,不等式222a b ab +-不成立,故D 错误.故选:B .【总结与归纳】本题考查了基本不等式的应用,考查了转化思想,属基础题. 14.已知直线方程3410x y ++=的一个参数方程可以是( ) A .1314x t y t =+⎧⎨=--⎩B .1413x t y t =-⎧⎨=-+⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=-⎩【思路分析】选项的参数方程,化为普通方程,判断即可.【解析】:1314x t y t=+⎧⎨=--⎩的普通方程为:1314x y -=-+,即4310x y +-=,不正确;1413x t y t=-⎧⎨=-+⎩的普通方程为:1413x y -=-+,即3410x y ++=,正确; 1314x t y t=-⎧⎨=-+⎩的普通方程为:1314x y -=-+,即4310x y +-=,不正确; 1413x t y t=+⎧⎨=-⎩的普通方程为:1413x y -=--,即3470x y +-=,不正确; 故选:B .【总结与归纳】本题考查直线的参数方程与普通方程的互化,是基本知识的考查. 15.在棱长为10的正方体1111ABCD A B C D -中,P 为左侧面11ADD A 上一点,已知点P 到11A D 的距离为3,P 到1AA 的距离为2,则过点P 且与1A C 平行的直线相交的面是( )A .面11AAB BB .面11BBC CC .面11CCD DD .面ABCD 【思路分析】由图可知点P 在△1AA D 内,过P 作1//EF A D ,且1EFAA 于E ,EFAD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,由平面与平面平行的判定可得平面//EFG 平面1A DC ,连接AC ,交FG 于M ,连接EM ,再由平面与平面平行的性质得1//EM AC ,在EFM ∆中,过P 作//PN EM ,且PN FM 于N ,可得1//PN AC ,由此说明过点P 且与1A C 平行的直线相交的面是ABCD . 【解析】:如图,由点P 到11A D 的距离为3,P 到1AA 的距离为2, 可得P 在△1AA D 内,过P 作1//EF A D ,且1EF AA 于E ,EFAD 于F ,在平面ABCD 中,过F 作//FG CD ,交BC 于G ,则平面//EFG 平面1A DC .连接AC ,交FG 于M ,连接EM ,平面//EFG 平面1A DC ,平面1A AC ⋂平面11A DC AC =,平面1A AC ⋂平面EFM EM =, 1//EM AC ∴. 在EFM ∆中,过P 作//PN EM ,且PNFM 于N ,则1//PN AC . 线段FM 在四边形ABCD 内,N 在线段FM 上,N ∴在四边形ABCD 内.∴过点P 且与1A C 平行的直线相交的面是ABCD .故选:D .【总结与归纳】本题考查空间中直线与直线位置关系的判定及应用,考查空间想象能力与思维能力,是中档题.16.命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件 C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【思路分析】对于命题1q :当0a >时,结合()f x 单调递减,可推出()()()f x a f x f x f +<<+(a ),命题1q 是命题p 的充分条件.对于命题2q :当00a x =<时,f (a )0()0f x ==,结合()f x 单调递增,推出()()f x a f x +<,进而()()f x a f x f +<+(a ),命题2q 也是p 的充分条件.【解析】:对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减, 所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ),所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .【总结与归纳】本题考查命题的真假,及函数的单调性,关键是分析不等式之间关系,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知ABCD 是边长为1的正方形,正方形ABCD 绕AB 旋转形成一个圆柱. (1)求该圆柱的表面积;(2)正方形ABCD 绕AB 逆时针旋转2π至11ABC D ,求线段1CD 与平面ABCD 所成的角.【思路分析】(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,依次求出圆面和矩形的面积,相加即可;(2)先利用线面垂直的判定定理证明1AD ⊥平面ADB ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角,再利用三角函数的知识求出1cos D CA ∠即可.【解析】:(1)该圆柱的表面由上下两个半径为1的圆面和一个长为2π、宽为1的矩形组成,221214S πππ∴=⨯⨯+⨯=.故该圆柱的表面积为4π.(2)正方形11ABC D ,1AD AB ∴⊥, 又12DAD π∠=,1AD AD ∴⊥,ADAB A =,且AD 、AB ⊂平面ADB ,1AD ∴⊥平面ADB ,即1D 在面ADB 上的投影为A ,连接1CD ,则1D CA ∠即为线段1CD 与平面ABCD 所成的角, 而1126cos 3AC D CA CD ∠===,∴线段1CD 与平面ABCD所成的角为 【总结与归纳】本题考查圆柱的表面积、空间线面夹角问题,熟练掌握线面垂直的判定定理是解题的关键,考查学生的空间立体感和运算能力,属于基础题. 18.(14分)已知函数()sin f x x ω=,0ω>.(1)()f x 的周期是4π,求ω,并求1()2f x =的解集;(2)已知1ω=,2()()()()2g x f x x f x π=--,[0x ∈,]4π,求()g x 的值域.【思路分析】(1)直接利用正弦型函数的性质的应用求出结果. (2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【解析】:(1)由于()f x 的周期是4π,所以2142πωπ==,所以1()sin 2f x x =.令11sin 22x =,故1226x k ππ=+或526k ππ+,整理得43x k ππ=+或543x k ππ=+.故解集为{|43x x k ππ=+或543x k ππ=+,}k Z ∈.(2)由于1ω=,所以()sin f x x =.所以21cos2111()sin )sin()22cos2sin(2)222226x g x x x x x x x x ππ-=--==-+=-+.由于[0x ∈,]4π,所以22663x πππ+. 1sin(2)126x π+, 故11sin(2)62x π--+-,故1()02g x -.所以函数()g x 的值域为1[,0]2-.【总结与归纳】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(14分)在研究某市场交通情况时,道路密度是指该路段上一定时间内通过的车辆数除以时间,车辆密度是该路段一定时间内通过的车辆数除以该路段的长度,现定义交通流量为qv x=,x 为道路密度,q 为车辆密度.1100135(),040()3(40)85,4080x x v f x k x x ⎧-<<⎪==⎨⎪--+⎩. (1)若交通流量95v >,求道路密度x 的取值范围;(2)已知道路密度80x =,交通流量50v =,求车辆密度q 的最大值.【思路分析】(1)易知v 越大,x 越小,所以()v f x =是单调递减函数,0k >,于是只需令1100135()953x ->,解不等式即可;(2)把80x =,50v =代入()v f x =的解析式中,求出k 的值,利用q vx =可得到q 关于x 的函数关系式,分段判断函数的单调性,并求出各自区间上q 的最大值,取较大者即可.【解析】:(1)qv x=,v ∴越大,x 越小,()v f x ∴=是单调递减函数,0k >, 当4080x 时,v 最大为85,于是只需令1100135()953x ->,解得3x >,故道路密度x 的取值范围为(3,40).(2)把80x =,50v =代入()(40)85v f x k x ==--+中,得504085k =-+,解得78k =.1100135(),04037(40)85,40808x x x x q vx x x x x ⎧-<<⎪⎪∴==⎨⎪--+⎪⎩,当040x <<时,q 单调递增,40110040135()4040003q <⨯-⨯⨯≈;当4080x 时,q 是关于x 的二次函数,开口向下,对称轴为4807x =,此时q 有最大值,为2748048028800()12040008777-⨯+⨯=>.故车辆密度q 的最大值为288007.【总结与归纳】本题考查分段函数的实际应用,考查学生分析问题和解决问题的能力,以及运算能力,属于中档题.20.(16分)已知双曲线2212:14x y bΓ-=与圆2222:4(0)x yb b Γ+=+>交于点(A A x ,)A y (第一象限),曲线Γ为1Γ、2Γ上取满足||A x x >的部分.(1)若A x =b 的值;(2)当b 2Γ与x 轴交点记作点1F 、2F ,P 是曲线Γ上一点,且在第一象限,且1||8PF =,求12F PF ∠;(3)过点2(0,2)2b D+斜率为2b-的直线l 与曲线Γ只有两个交点,记为M 、N ,用b 表示OM ON ,并求OM ON 的取值范围.【思路分析】(1)联立曲线1Γ与曲线2Γ的方程,以及A x =,解方程可得b ; (2)由双曲线的定义和三角形的余弦定理,计算可得所求角;(3)设直线24:22b b l y x +=-+,求得O 到直线l 的距离,判断直线l 与圆的关系:相切,可设切点为M ,考虑双曲线的渐近线方程,只有当2A y >时,直线l 才能与曲线Γ有两个交点,解不等式可得b 的范围,由向量投影的定义求得OM ON ,进而得到所求范围.【解析】:(1)由A x =A 为曲线1Γ与曲线2Γ的交点,联立222222144A A A A x y bx y b ⎧-=⎪⎨⎪+=+⎩,解得A y =,2b =;(2)由题意可得1F ,2F 为曲线1Γ的两个焦点,由双曲线的定义可得12||||2PF PF a -=,又1||8PF =,24a =, 所以2||844PF =-=,因为b =3c =, 所以12||6F F =,在△12PF F 中,由余弦定理可得22212121212||||||cos 2||||PF PF F F F PF PF PF +-∠=6416361128416+-==⨯⨯,由120F PF π<∠<,可得1211arccos 16F PF ∠=;(3)设直线24:22b b l y x +=-+,可得原点O 到直线l 的距离24||b d +== 所以直线l 是圆的切线,设切点为M ,所以2OM k b =,并设2:OM y x b =与圆2224x y b +=+联立,可得222244x x b b+=+,可得x b =,2y =,即(,2)M b ,注意直线l 与双曲线的斜率为负的渐近线平行, 所以只有当2A y >时,直线l 才能与曲线Γ有两个交点, 由222222144A A A Ax y b x y b ⎧-=⎪⎨⎪+=+⎩,可得4224A b y b=+, 所以有4244b b<+,解得22b >+22b<-(舍去), 因为OM 为ON 在OM 上的投影可得,24OM ON b =+,所以246OM ON b =+>+, 则(6OM ON ∈+)+∞.【总结与归纳】本题考查双曲线与圆的定义和方程、性质,考查直线和圆的方程、双曲线的方程的联立,以及向量的数量积的几何意义,考查方程思想和化简运算能力,属于中档题. 21.(18分)已知数列{}n a 为有限数列,满足12131||||||m a a a a a a --⋯-,则称{}n a 满足性质P .(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P ,请说明理由; (2)若11a =,公比为q 的等比数列,项数为10,具有性质P ,求q 的取值范围; (3)若{}n a 是1,2,3,⋯,m 的一个排列(4)m ,{}n b 符合1(1k k b a k +==,2,⋯,1)m -,{}n a 、{}n b 都具有性质P ,求所有满足条件的数列{}n a .【思路分析】(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P 即可;(2)假设公比q 的等比数列满足性质p ,可得:11111||||n n a a q a a q ---,推出11(1)[(1)2]0n n q q q q ---+-,通过1q ,01q <时,10q -<时:1q <-时,四种情况讨论求解即可.(3)设1a p =,分1p =时,当p m =时,当2p =时,当1p m =-时,以及{3P ∈,4,⋯,3m -,2}m -,五种情况讨论,判断数列{}n a 的可能情况,分别推出{}n b 判断是否满足性质P 即可.【解析】:(1)对于数列3,2,5,1,有|23|1-=,|53|2-=,|13|2-=,满足题意,该数列满足性质P ;对于第二个数列4、3、2、5、1,|34|1-=,|24|2-=,|54|1-=.不满足题意,该数列不满足性质P . (2)由题意:11111||||n n a a q a a q ---,可得:1|1||1|n n q q ---,{2n ∈,3,⋯,9},两边平方可得:22212121n n n n q q q q ---+-+,整理可得:11(1)[(1)2]0n n q q q q ---+-,当1q 时,得1(1)20n q q -+-此时关于n 恒成立, 所以等价于2n =时,(1)20q q +-,所以,(2)(1)0q q +-,所以2q -,或1q ,所以取1q ,当01q <时,得1(1)20n q q -+-,此时关于n 恒成立,所以等价于2n =时,(1)20q q +-, 所以(2)(1)0q q +-,所以21q -,所以取01q <. 当10q -<时:11[(1)2]0n n q q q --+-,当n 为奇数时,得1(1)20n q q -+-,恒成立,当n 为偶数时,1(1)20n q q -+-,不恒成立; 故当10q -<时,矛盾,舍去.当1q <-时,得11[(1)2]0n n q q q --+-,当n 为奇数时,得1(1)20n q q -+-,恒成立, 当n 为偶数时,1(1)20n q q -+-,恒成立;故等价于2n =时,(1)20q q +-, 所以(2)(1)0q q +-,所以2q -或1q ,所以取2q -, 综上(q ∈-∞,2](0,)-+∞.(3)设1a p =,{3p ∈,4,⋯,3m -,2}m -,因为1a p =,2a 可以取1p -,或1p +,3a 可以取2p -,或2p +,如果2a 或3a 取了3p -或3p +,将使{}n a 不满足性质P ;所以{}n a 的前5项有以下组合: ①1a p =,21a p =-;31a p =+;42a p =-;52a p =+; ②1a p =,21a p =-;31a p =+;42a p =+;52a p =-; ③1a p =,21a p =+;31a p =-;42a p =-;52a p =+; ④1a p =,21a p =+;31a p =-;42a p =+;52a p =-;对于①,11b p =-,21||2b b -=,31||1b b -=,与{}n b 满足性质P 矛盾,舍去;对于②,11b p =-,21||2b b -=,31||3b b -=,41||2b b -=与{}n b 满足性质P 矛盾,舍去; 对于③,11b p =+,21||2b b -=,31||3b b -=,41||1b b -=与{}n b 满足性质P 矛盾,舍去; 对于④11b p =+,21||2b b -=,31||1b b -=,与{}n b 满足性质P 矛盾,舍去; 所以{3P ∈,4,⋯,3m -,2}m -,均不能同时使{}n a 、{}n b 都具有性质P . 当1p =时,有数列{}:1n a ,2,3,⋯,1m -,m 满足题意. 当p m =时,有数列{}:n a m ,m -1,⋯,3,2,1满足题意.当2p =时,有数列{}:2n a ,1,3,⋯,1m -,m 满足题意.当1p m =-时,有数列{}:1n a m -,m ,2m -,3m -,⋯,3,2,1满足题意. 所以满足题意的数列{}n a 只有以上四种.【总结与归纳】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须要有较高的数学思维逻辑修养才能解答.。

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.参考答案与试题解析⼀.选择题(共8⼩题)1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8【解答】解:在等差数列{a n}中,a n=a1+(n﹣1)d,∴a2=a1+d,a4=a1+3d,a8=a1+7d,b n+1=S2n+2﹣S2n,∴b2=S4﹣S2=a3+a4,b4=S8﹣S6=a7+a8,b6=S12﹣S10=a11+a12,b8=S16﹣S14=a15+a16,A.2a4=a2+a6,根据等差数列的性质可得A正确,B.若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=(a3+a12)+(a4+a11),成⽴,B正确,C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合≤1,C正确;D.若b42=b2b8,则(a7+a8)2=(a3+a4)(a15+a16),即4a12+52a1d+169d2=4a12+68a1d+145d2,得16a1d=24d2,∵d≠0,∴2a1=3d,不符合≤1,D错误;故选:D.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣1)=2n﹣11.由a n=2n﹣11=0,得n=,⽽n∈N*,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=﹣9<0,T2=63>0,T3=﹣315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【解答】解:{a n}是等⽐数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,故选:D.4.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.15【解答】解:若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦,即有i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j =9,k=12,共5个;若k﹣j=4且j﹣i=3,则a i,a j,a k为原位⼩三和弦,可得i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j =8,k=12,共5个,总计10个.故选:C.5.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…【解答】解:对于A选项:序列1101011010C(1)=a i a i+1=(1+0+0+0+0)=,C(2)=a i a i+2=(0+1+0+1+0)=,不满⾜C(k)≤(k=1,2,3,4),故排除A;对于B选项:序列1101111011C(1)=a i a i+1=(1+0+0+1+1)=,不满⾜条件,排除;对于C选项:序列100011000110001C(1)=a i a i+1=(0+0+0+0+1)=,C(2)=a i a i+2=(0+0+0+0++0)=0,C(3)=a i a i+3=(0+0+0+0+0)=0,C(4)=a i a i+4=(1+0+0+0+0)=,符合条件,对于D选项:序列1100111001C(1)=a i a i+1=(1+0+0+0+1)=不满⾜条件.故选:C.6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣1【解答】解:设等⽐数列的公⽐为q,∵a5﹣a3=12,∴a6﹣a4=q(a5﹣a3),∴q=2,∴a1q4﹣a1q2=12,∴12a1=12,∴a1=1,∴S n==2n﹣1,a n=2n﹣1,∴==2﹣21﹣n,故选:B.7.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为⾸项,以2为公⽐的等⽐数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块【解答】解:⽅法⼀:设每⼀层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S2n成等差数列,且(S3n﹣S2n)﹣(S2n﹣S n)=n2d,则n2d=729,则n=9,则三层共有扇⾯形⽯板S3n=S27=27×9+×9=3402块,⽅法⼆:设第n环天⽯⼼块数为a n,第⼀层共有n环,则{a n}是以9为⾸项,9为公差的等差数列,a n=9+(n﹣1)×9=9n,设S n为{a n}的前n项和,则第⼀层、第⼆层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层⽐中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n2=729,解得n=9,∴S3n=S27==3402,故选:C.⼆.填空题(共6⼩题)9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【解答】解:根据题意,等差数列{a n}满⾜a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a4=2,所以a4=1,3d=a4﹣a1=3,即d=1,则S10=10a1=10×(﹣2)+45×1=25.故答案为:2511.(2020•浙江)已知数列{a n}满⾜a n=,则S3=10.【解答】解:数列{a n}满⾜a n=,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【解答】解:将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}是以1为⾸项、以6为公差的等差数列,故它的前n项和为n×1+=3n2﹣2n,故答案为:3n2﹣2n.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是4.【解答】解:因为{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),因为{a n}是公差为d的等差数列,设⾸项为a1;{b n}是公⽐为q的等⽐数列,设⾸项为b1,所以{a n}的通项公式a n=a1+(n﹣1)d,所以其前n项和S==n2+(a1﹣)n,当{b n}中,当公⽐q=1时,其前n项和S=nb1,所以{a n+b n}的前n项和S n=S+S=n2+(a1﹣)n+nb1=n2﹣n+2n﹣1(n∈N*),显然没有出现2n,所以q≠1,则{b n}的前n项和为S==+,所以S n=S+S=n2+(a1﹣)n+﹣=n2﹣n+2n﹣1(n∈N*),由两边对应项相等可得:解得:d=2,a1=0,q=2,b1=1,所以d+q=4,故答案为:4.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=7.【解答】解:由a n+2+(﹣1)n a n=3n﹣1,当n为奇数时,有a n+2﹣a n=3n﹣1,可得a n﹣a n﹣2=3(n﹣2)﹣1,…a3﹣a1=3•1﹣1,累加可得a n﹣a1=3[1+3+…+(n﹣2)]﹣=3•=;当n为偶数时,a n+2+a n=3n﹣1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+…+a16=92.∴a1+a3+…+a15=448.∴=448,∴8a1=56,即a1=7.故答案为:7.三.解答题(共8⼩题)15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等⽐数列{b n}的公⽐为q,由a1=1,a5=5(a4﹣a3),则1+4d=5d,可得d=1,∴a n=1+n﹣1=n,∵b1=1,b5=4(b4﹣b3),∴q4=4(q3﹣q2),解得q=2,∴b n=2n﹣1;(Ⅱ)证明:法⼀:由(Ⅰ)可得S n=,∴S n S n+2=n(n+1)(n+2)(n+3),(S n+1)2=(n+1)2(n+2)2,∴S n S n+2﹣S n+12=﹣(n+1)(n+2)<0,∴S n S n+2<S n+12(n∈N*);法⼆:∵数列{a n}为等差数列,且a n=n,∴S n=,S n+2=,S n+1=,∴==<1,∴S n S n+2<S n+12(n∈N*);(Ⅲ),当n为奇数时,c n===﹣,当n为偶数时,c n==,对任意的正整数n,有c2k﹣1=(﹣)=﹣1,和c2k==+++…+,①,由①×可得c2k=++…++,②,①﹣②得c2k=+++…+﹣﹣,∴c2k=﹣,因此c2k=c2k﹣1+c2k=﹣﹣.数列{c n}的前2n项和﹣﹣.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.【解答】解:(1)设等⽐数列{a n}的公⽐为q(q>1),则,∵q>1,∴,∴.(2)a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1=23﹣25+27﹣29+…+(﹣1)n﹣1•22n+1,==.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)k=1时,a n+1=S n+1﹣S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)﹣=,则an+1=S n+1﹣S n=(﹣)•(+)=•(+),因此+=•,即=,Sn+1=a n+1=(S n+1﹣S n),从⽽S n+1=4S n,⼜S1=a1=1,可得S n=4n﹣1,a n=S n﹣S n﹣1=3•4n﹣2,n≥2,综上可得a n=,n∈N*;(3)若存在三个不同的数列{a n}为“λ﹣3”数列,则S n+1﹣S n=λa n+1,则S n+1﹣3S n+1S n+3S n+1S n﹣S n=λ3a n+1=λ3(S n+1﹣S n),由a1=1,a n≥0,且S n>0,令p n=()>0,则(1﹣λ3)p n3﹣3p n2+3p n﹣(1﹣λ3)=0,λ=1时,p n=p n2,由p n>0,可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯⼀,不存在三个不同的数列{a n},λ≠1时,令t=,则p n3﹣tp n2+tp n﹣1=0,则(p n﹣1)[p n2+(1﹣t)p n+1]=0,①t≤1时,p n2+(1﹣t)p n+1>0,则p n=1,同上分析不存在三个不同的数列{a n};②1<t<3时,△=(1﹣t)2﹣4<0,p n2+(1﹣t)p n+1=0⽆解,则p n=1,同上分析不存在三个不同的数列{a n};③t=3时,(p n﹣1)3=0,则p n=1,同上分析不存在三个不同的数列{a n}.④t>3时,即0<λ<1时,△=(1﹣t)2﹣4>0,p n2+(1﹣t)p n+1=0有两解α,β,设α<β,α+β=t﹣1>2,αβ=1>0,则0<α<1<β,则对任意n∈N*,=1或=α3(舍去)或=β3,由于数列{S n}从任何⼀项求其后⼀项均有两种不同的结果,所以这样的数列{S n}有⽆数多个,则对应的数列{a n}有⽆数多个.则存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0,综上可得0<λ<1.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.【解答】解:(1)设{a n}是公⽐q不为1的等⽐数列,a1为a2,a3的等差中项,可得2a1=a2+a3,即2a1=a1q+a1q2,即为q2+q﹣2=0,解得q=﹣2(1舍去),所以{a n}的公⽐为﹣2;(2)若a1=1,则a n=(﹣2)n﹣1,na n=n•(﹣2)n﹣1,则数列{na n}的前n项和为S n=1•1+2•(﹣2)+3•(﹣2)2+…+n•(﹣2)n﹣1,﹣2S n=1•(﹣2)+2•(﹣2)2+3•(﹣2)3+…+n•(﹣2)n,两式相减可得3S n=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n•(﹣2)n=﹣n•(﹣2)n,化简可得S n=,所以数列{na n}的前n项和为.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)∵a2+a4=20,a3=8,∴+8q=20,解得q=2或q=(舍去),∴a1=2,∴a n=2n,(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,∴2n≤m,∴n≤log2m,故b1=0,b2=1,b3=1,b4=2,b5=2,b6=2,b7=2,b8=3,b9=3,b10=3,b11=3,b12=3,b13=3,b14=3,b15=3,b16=4,…,可知0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,…,由<100,>100可知b63=5,b64=b65=…=b100=6.∴数列{b m}的前100项和S100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.【解答】解:(1)设公⽐为q,则由,可得a1=1,q=3,所以a n=3n﹣1.(2)由(1)有log3a n=n﹣1,是⼀个以0为⾸项,1为公差的等差数列,所以S n=,所以+=,m2﹣5m﹣6=0,解得m=6,或m=﹣1(舍去),所以m=6.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.【解答】(Ⅰ)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2﹣q﹣1=0,解得q=﹣(舍去),或q=,∴c n+1=•c n=•c n=•c n=•c n=4•c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1•4n﹣1=4n﹣1,n∈N*.∴a n+1﹣a n=c n=4n﹣1,则a1=1,a2﹣a1=1,a3﹣a2=41,•••a n﹣a n﹣1=4n﹣2,各项相加,可得a n=1+1+41+42+…+4n﹣2=+1=.(Ⅱ)证明:依题意,由c n+1=•c n(n∈N*),可得b n+2•c n+1=b n•c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n==•=(1+)•=(1+)(﹣),⼜∵b1=1,d>0,∴b n>0,∴c1+c2+…+c n=(1+)(﹣)+(1+)(﹣)+…+(1+)(﹣)=(1+)(﹣+﹣+…+﹣)=(1+)(﹣)=(1+)(1﹣)<1+,∴c1+c2+…+c n<1+,故得证.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.【解答】解:(1)数列{a n}为公差为d的等差数列,S10=70,a1=1,可得10+×10×9d=70,解得d=,则a n=1+(n﹣1)=n﹣;(2)数列{a n}为公⽐为q的等⽐数列,a4=,a1=1,可得q3=,即q=,则a n=()n﹣1,S n==2﹣()n﹣1,S n>100a n,即为2﹣()n﹣1>100•()n﹣1,即2n>101,可得n≥7,即n的最⼩值为7.考点卡⽚1.数列的函数特性【知识点的认识】1、等差数列的通项公式:a n=a1+(n﹣1)d;前n项和公式S n=na1+n(n﹣1)d或者S n=2、等⽐数列的通项公式:a n=a1q n﹣1;前n项和公式S n==(q≠1)3、⽤函数的观点理解等差数列、等⽐数列(1)对于等差数列,a n=a1+(n﹣1)d=dn+(a1﹣d),当d≠0时,a n是n的⼀次函数,对应的点(n,a n)是位于直线上的若⼲个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为S n,则S n=pn2+qn(p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可⽤⼆次函数的⽅法解决等差数列问题.(2)对于等⽐数列:a n=a1q n﹣1.可⽤指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等⽐数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等⽐数列{a n}是递减数列.当q=1时,是⼀个常数列.当q<0时,⽆法判断数列的单调性,它是⼀个摆动数列.【典型例题分析】典例1:数列{a n}满⾜a n=n2+kn+2,若不等式a n≥a4恒成⽴,则实数k的取值范围是()A.[﹣9,﹣8]B.[﹣9,﹣7]C.(﹣9,﹣8)D.(﹣9,﹣7)解:a n=n2+kn+2=,∵不等式a n≥a4恒成⽴,∴,解得﹣9≤k≤﹣7,故选:B.典例2:设等差数列{a n}满⾜a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最⼤值是()A.310B.212C.180D.121解:∵等差数列{a n}满⾜a1=1,a n>0(n∈N*),设公差为d,则a n=1+(n﹣1)d,其前n项和为S n=,∴=,=1,=,=,∵数列{}也为等差数列,∴=+,∴=1+,解得d=2.∴S n+10=(n+10)2,=(2n﹣1)2,∴==,由于为单调递减数列,∴≤=112=121,故选:D.2.等差数列的通项公式【知识点的认识】等差数列是常⻅数列的⼀种,数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,已知等差数列的⾸项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代⼊2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第⼀项这个数列是等差数列,但如果把⾸项放进去的话就不是等差数列,题中a n的求法是数列当中常⽤到的⽅式,⼤家可以熟记⼀下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为⾸项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的⼀个重要性质,即等差中项的特点,通过这个性质然后解⽅程⼀样求出⾸项和公差即可.【考点点评】求等差数列的通项公式是⼀种很常⻅的题型,这⾥⾯往往⽤的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】等差数列是常⻅数列的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字⺟d表示.其求和公式为S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出⾸项a1的值,然后套⽤公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运⽤.其实⽅法都是⼀样的,要么求出⾸项和公差,要么求出⾸项和第n项的值.【考点点评】等差数列⽐较常⻅,单独考察等差数列的题也⽐较简单,⼀般单独考察是以⼩题出现,⼤题⼀般要考察的话会结合等⽐数列的相关知识考察,特别是错位相减法的运⽤.4.等⽐数列的性质【等⽐数列】(⼜名⼏何数列),是⼀种特殊数列.如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列,因为第⼆项与第⼀项的⽐和第三项与第⼆项的⽐相等,这个常数叫做等⽐数列的公⽐,公⽐通常⽤字⺟q表示(q≠0).注:q=1时,a n 为常数列.等⽐数列和等差数列⼀样,也有⼀些通项公式:①第n项的通项公式,a n=a1q n﹣1,这⾥a1为⾸项,q为公⽐,我们发现这个通项公式其实就是指数函数上孤⽴的点.②求和公式,S n=,表示的是前⾯n项的和.③若m+n=q+p,且都为正整数,那么有a m•a n =a p•a q.例:2,x,y,z,18成等⽐数列,则y=.解:由2,x,y,z,18成等⽐数列,设其公⽐为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运⽤了等⽐数列第n项的通项公式,这也是⼀个常⽤的⽅法,即知道某两项的值然后求出公⽐,继⽽可以以已知项为⾸项,求出其余的项.关键是对公式的掌握,⽅法就是待定系数法.【等⽐数列的性质】(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.5.等⽐数列的通项公式【知识点的认识】1.等⽐数列的定义如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐值等于同⼀个常数,那么这个数列叫做等⽐数列,这个常数叫做等⽐数列的公⽐,通常⽤字⺟q表示(q≠0).从等⽐数列的定义看,等⽐数列的任意项都是⾮零的,公⽐q也是⾮零常数.2.等⽐数列的通项公式设等⽐数列{a n}的⾸项为a1,公⽐为q,则它的通项a n=a1•q n﹣13.等⽐中项:如果在a与b中间插⼊⼀个数G,使a,G,b成等⽐数列,那么G叫做a与b的等⽐中项.G2=a•b(ab≠0)4.等⽐数列的常⽤性质(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.6.等⽐数列的前n项和【知识点的知识】1.等⽐数列的前n项和公式等⽐数列{a n}的公⽐为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等⽐数列前n项和的性质公⽐不为﹣1的等⽐数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等⽐数列,其公⽐为q n.7.数列的应⽤【知识点的知识】1、数列与函数的综合2、等差数列与等⽐数列的综合3、数列的实际应⽤数列与银⾏利率、产品利润、⼈⼝增⻓等实际问题的结合.8.数列的求和【知识点的知识】就是求出这个数列所有项的和,⼀般来说要求的数列为等差数列、等⽐数列、等差等⽐数列等等,常⽤的⽅法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等⽐数列前n项和公式:③⼏个常⽤数列的求和公式:(2)错位相减法:适⽤于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等⽐数列.(3)裂项相消法:适⽤于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所⽤的⽅法,就是将⼀个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常⻅的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满⾜:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使⽤裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第⼆问⽤的关键⽅法就是裂项求和法,这也是数列求和当中常⽤的⽅法,就像友情提示那样,两个等差数列相乘并作为分⺟的⼀般就可以⽤裂项求和.【解题⽅法点拨】数列求和基本上是必考点,⼤家要学会上⾯所列的⼏种最基本的⽅法,即便是放缩也要往这⾥⾯考.9.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前⼏项),且任⼀项a n与它的前⼀项a n﹣1(或前⼏项)间的关系可以⽤⼀个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容⼀个重点,要认真掌握.注意:(1)⽤a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成⽴的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统⼀为⼀个式⼦.(2)⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等⽐数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,⽤作差法:a n=.⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,⽤作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,⽤累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,⽤累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以⽤构造法(构造等差、等⽐数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以⽤待定系数法转化为公⽐为k的等⽐数列后,再求a n.②形如a n=的递推数列都可以⽤倒数法求通项.(7)求通项公式,也可以由数列的前⼏项进⾏归纳猜想,再利⽤数学归纳法进⾏证明.10.等差数列与等⽐数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与⾸末两端“等距离”的两项和相等,并且等于⾸末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第⼆项开始起,每⼀项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(⾸项不⼀定选a1).2、等⽐数列的性质.(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.31。

2020年全国各地高考题分类汇编【数列】(北京,上海,江苏,浙江,天津卷)

2020年全国各地高考题分类汇编【数列】(北京,上海,江苏,浙江,天津卷)

2020年全国各地高考题分类汇编【数列部分】(北京、上海、江苏、浙江、天津卷)【2020年天津市高考数学试卷真题第19题】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗); (Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.【2020年江苏省高考数学试卷真题第11题】设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______.【2020年江苏省高考数学试卷真题第20题】已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k −S n 1k =λa n+11k 成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【2020年上海市高考数学试卷真题第12题】已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .【2020年上海市高考数学试卷真题第21题】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【2020年浙江省高考数学试卷真题第7题】⩽1.记b1=S2,b n+1=S n+2−S2n,n∈已知等差数列{a n}的前n项和S n,公差d≠0,a1dN∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【2020年浙江省高考数学试卷真题第11题】}就是二阶等我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2},(n∈N∗)的前3项和______.差数列,数列{n(n+1)2【2020年浙江省高考数学试卷真题第20题】⋅c n(n∈已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1,n∈N∗.d【2020年北京市高考数学试卷真题第8题】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【2020年北京市高考数学试卷真题第21题】已知{a n}是无穷数列.给出两个性质:=a m;①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在一项a m,使得 a i2a j②对于{a n}中任意一项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2.a l (Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满足性质①,说明理由;(Ⅱ)若a n=2n−1(n=1,2,…),判断数列{a n}是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满足性质①和性质②,证明:{a n}为等比数列.2020年全国各地高考题分类汇编【数列部分】 (北京、上海、江苏、浙江、天津卷)【答案】【2020年天津市高考数学试卷真题第19题】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗); (Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5,可得d =1, ∴a n =1+n −1=n ,∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2), 解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0,∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14kn k=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=142+343+⋯+2n−34 n +2n−14n+1,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n ,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k nk=1=4n 2n+1−6n+59×4−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n −49. 【解析】(Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则课证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题.【2020年江苏省高考数学试卷真题第11题】设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和S a n =n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d2)n ,当{b n }中,当公比q =1时,其前n 项和S b n =nb 1,所以{a n +b n }的前n 项和S n =S a n +S b n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为S b n =b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =S a n +S b n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.【2020年江苏省高考数学试卷真题第20题】已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k −S n 1k =λa n+11k 成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【答案】解:(1)k =1时,a n+1=S n+1−S n =λa n+1,由n 为任意正整数,且a 1=1,a n ≠0,可得λ=1; (2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.【2020年上海市高考数学试卷真题第12题】已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .【答案】278【解析】【分析】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析a 1与d 的关系,属于基础题.根据等差数列的通项公式可由a 1+a 10=a 9,得a 1=−d ,在利用等差数列前n 项和公式化简a 1+a 2+⋯+a 9a 10即可得出结论.【解答】解:根据题意,等差数列{a n }满足a 1+a 10=a 9,即a 1+a 1+9d =a 1+8d ,变形可得a 1=−d , 所以a 1+a 2+⋯+a 9a 10=9a 1+9×8d 2a 1+9d=9a 1+36d a 1+9d=−9d+36d −d+9d=278.故答案为:278.【2020年上海市高考数学试卷真题第21题】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1−a1q n|≥|a1−a1q n−1|,可得:|q n−1|≥|q n−1−1|,n∈{2,3,…,9},两边平方可得:q2n−2q n+1≥q2n−2−2q n−1+1,整理可得:(q−1)q n−1[q n−1(q+1)−2]≥0,当q≥1时,得q n−1(q+1)−2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+ 1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质p,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【2020年浙江省高考数学试卷真题第7题】已知等差数列{a n}的前n项和S n,公差d≠0,a1d⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【答案】B【解析】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.【2020年浙江省高考数学试卷真题第11题】我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.【答案】10【解析】【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满足a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.【2020年浙江省高考数学试卷真题第20题】已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2⋅c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1d,n∈N∗.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,⋅⋅⋅a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1) =(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力.本题属综合性较强的偏难题.(1)先根据等比数列的通项公式将b2=q,b3=q2代入b1+b2=6b3,计算出公比q的值,然后根据等比数列的定义化简c n+1=b nb n+2⋅c n可得c n+1=4c n,则可发现数列{c n}是以1为首项,4为公比的等比数列,从而可得数列{c n}的通项公式,然后将通项公式代入c n+1= a n+1−a n,可得a n+1−a n=c n+1=4n,再根据此递推公式的特点运用累加法可计算出数列{a n}的通项公式;(2)通过将已知关系式c n+1=b nb n+2⋅c n不断进行转化可构造出数列{b n b n+1c n},且可得到数列{b n b n+1c n}是一个常数列,且此常数为1+d,从而可得b n b n+1c n=1+d,再计算得到c n=1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.【2020年北京市高考数学试卷真题第8题】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案.【解答】解:设等差数列{a n}的首项为d,由a1=−9,a5=−1,得d=a5−a15−1=−1−(−9)4=2,∴a n=−9+2(n−1)=2n−11.由a n=2n−11=0,得n=112,而n∈N∗,可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值.可知T1=−9<0,T2=63>0,T3=−315<0,T4=945>0为最大项,自T5起均小于0,且逐渐减小.∴数列{T n}有最大项,无最小项.故选:B.【2020年北京市高考数学试卷真题第21题】已知{a n}是无穷数列.给出两个性质:①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在一项a m,使得 a i2a j=a m;②对于{a n}中任意一项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2a l.(Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满足性质①,说明理由;(Ⅱ)若a n=2n−1(n=1,2,…),判断数列{a n}是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满足性质①和性质②,证明:{a n}为等比数列.【答案】解:(Ⅰ)不满足,理由:a 32a 2=92∉N ∗,不存在一项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满足性质①和性质②,理由:对于任意的i 和j ,满足a i 2a j=22i−j−1,因为i ∈N ∗,j ∈N ∗且i >j ,所以2i −j ∈N ∗,则必存在m =2i −j ,此时,2m−1∈{a i }且满足a i2a j=22i−j−1=a m ,性质①成立,对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,满足n =2k −l 即可,因为k ∈N ∗,l ∈N ∗,且k >l ,所以2k −l 可表示所有正整数,所以必有一组k ,l 使n =2k −l ,即满足a n =a k2a l,性质②成立.(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,那么必有一项a l 绝对值最小或者有a l 与a l+1同时取得绝对值最小, 如仅有一项a l 绝对值最小,此时必有一项a m =a l2a j,此时|a m |<|a l |与前提矛盾,如有两项a l 与a l+1 同时取得绝对值最小值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件矛盾, 所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k 2a l=a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等比数列,数学归纳法:(1)已证n =3时,满足{a n }是等比数列,公比q =a2a 1,(2)假设n =k 时,也满足{a k }是等比数列,公比q =a2a 1,那么由①知a k 2a k−1=qa k 等于数列的某一项a m ,证明这一项为a k+1即可,反证法:假设这一项不是a k+1,因为是递增数列,所以该项a m =a l2a l−1=qa k >a k+1,那么a k <a k+1<qa k ,由等比数列{a k }得a 1q k−1<a k+1<a 1q k , 由性质②得a 1qk−1<a m2a l<a 1q k,同时a k+1=a m2a l>a m >a l ,s 所以k +1>m >l ,所以a m ,a l 分别是等比数列{a k }中两项,即a m =a 1q m−1,a l =a 1q l−1,原式变为a 1q k−1<a 1q 2m−l−1<a 1q k ,所以l −1<2m −l −1<k ,又因为k ∈N ∗,m ∈N ∗,l ∈N ∗,不存在这组解,所以矛盾, 所以知a k 2ak−1=qa k =a k+1,前{a k+1}为等比数列,由数学归纳法知,{a n }是等比数列得证, 同理,数列恒负,{a n }也是等比数列.【解析】(Ⅰ)由a 32a 2=92∉N ∗,即可知道不满足性质.(Ⅱ)对于任意的i 和j ,满足a i2a j=22i−j−1,⇒2i −j ∈N ∗,必存在m =2i −j ,可得满足性质①;对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,⇒n =2k −l 即可,必存在有一组k ,l 使使得它成立,故满足性质②.(Ⅲ)先用反证法证明数列必然恒正或恒负,再用数学归纳法证明{a n }也是等比数列,即可.本题属于新定义题,考查等比数列的性质,数学归法等,考查逻辑思维能力,属于难题.。

2020年全国各地高考题分类汇编【数列】(北京,上海,江苏,浙江,天津卷)

2020年全国各地高考题分类汇编【数列】(北京,上海,江苏,浙江,天津卷)

2020年全国各地高考题分类汇编【数列部分】(北京、上海、江苏、浙江、天津卷)【2020年天津市高考数学试卷真题第19题】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗); (Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.【2020年江苏省高考数学试卷真题第11题】设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______.【2020年江苏省高考数学试卷真题第20题】已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k −S n 1k =λa n+11k 成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【2020年上海市高考数学试卷真题第12题】已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .【2020年上海市高考数学试卷真题第21题】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【2020年浙江省高考数学试卷真题第7题】⩽1.记b1=S2,b n+1=S n+2−S2n,n∈已知等差数列{a n}的前n项和S n,公差d≠0,a1dN∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【2020年浙江省高考数学试卷真题第11题】}就是二阶等我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2},(n∈N∗)的前3项和______.差数列,数列{n(n+1)2【2020年浙江省高考数学试卷真题第20题】⋅c n(n∈已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1,n∈N∗.d【2020年北京市高考数学试卷真题第8题】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【2020年北京市高考数学试卷真题第21题】已知{a n}是无穷数列.给出两个性质:=a m;①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在一项a m,使得 a i2a j②对于{a n}中任意一项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2.a l (Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满足性质①,说明理由;(Ⅱ)若a n=2n−1(n=1,2,…),判断数列{a n}是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满足性质①和性质②,证明:{a n}为等比数列.2020年全国各地高考题分类汇编【数列部分】 (北京、上海、江苏、浙江、天津卷)【答案】【2020年天津市高考数学试卷真题第19题】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗); (Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1b n+1,n 为偶数.求数列{c n }的前2n 项和.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5,可得d =1, ∴a n =1+n −1=n ,∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2), 解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0,∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14kn k=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=142+343+⋯+2n−34 n +2n−14n+1,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n ,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k nk=1=4n 2n+1−6n+59×4−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n −49. 【解析】(Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则课证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题.【2020年江苏省高考数学试卷真题第11题】设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),则d +q 的值是______. 【答案】4【解析】解:因为{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),因为{a n }是公差为d 的等差数列,设首项为a 1;{b n }是公比为q 的等比数列,设首项为b 1, 所以{a n }的通项公式a n =a 1+(n −1)d ,所以其前n 项和S a n =n[a 1+a 1+(n−1)d]2=d2n 2+(a 1−d2)n ,当{b n }中,当公比q =1时,其前n 项和S b n =nb 1,所以{a n +b n }的前n 项和S n =S a n +S b n =d2n 2+(a 1−d2)n +nb 1=n 2−n +2n −1(n ∈N ∗),显然没有出现2n ,所以q ≠1, 则{b n }的前n 项和为S b n =b 1(q n −1)q−1=b 1q n q−1+b 1q−1,所以S n =S a n +S b n =d2n 2+(a 1−d2)n +b 1q n q−1−b1q−1=n 2−n +2n −1(n ∈N ∗),由两边对应项相等可得:{d2=1a 1−d 2=−1q =2b 1q−1=1解得:d =2,a 1=0,q =2,b 1=1,所以d +q =4, 故答案为:4.由{a n +b n }的前n 项和S n =n 2−n +2n −1(n ∈N ∗),由{a n }是公差为d 的等差数列,设首项为a 1;求出等差数列的前n 项和的表达式;{b n }是公比为q 的等比数列,设首项为b 1,讨论当q 为1和不为1时的前n 项和的表达式,由题意可得q ≠1,由对应项的系数相等可得d ,q 的值,进而求出d +q 的值.本题考查等差数列及等比数列的综合及由前n 项和求通项的性质,属于中档题.【2020年江苏省高考数学试卷真题第20题】1. 已知数列{a n }(n ∈N ∗)的首项a 1=1,前n 项和为S n .设λ和k 为常数,若对一切正整数n ,均有S n+11k−S n 1k =λa n+11k成立,则称此数列为“λ−k ”数列.(1)若等差数列{a n }是“λ−1”数列,求λ的值;(2)若数列{a n }是“√33−2”数列,且a n >0,求数列{a n }的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0?若存在,求出λ的取值范围;若不存在,说明理由.【答案】解:(1)k =1时,a n+1=S n+1−S n =λa n+1,由n 为任意正整数,且a 1=1,a n ≠0,可得λ=1; (2)√S n+1−√S n =√33√a n+1,则a n+1=S n+1−S n =(√S n+1−√S n )⋅(√S n+1+√S n )=√33⋅√a n+1(√S n+1+√S n ),因此√S n+1+√S n =√3⋅√a n+1,即√S n+1=23√3a n+1,S n+1=43a n+1=43(S n+1−S n ), 从而S n+1=4S n ,又S 1=a 1=1,可得S n =4n−1, a n =S n −S n−1=3⋅4n−2,n ≥2, 综上可得a n ={1,n =13⋅4n−2,n ≥2,n ∈N ∗;(3)若存在三个不同的数列{a n }为“λ−3”数列, 则S n+113−S n 13=λa n+113,则S n+1−3S n+123S n 13+3S n+113S n 23−S n =λ3a n+1=λ3(S n+1−S n ), 由a 1=1,a n ≥0,且S n >0,令p n =(S n+1S n)13>0,则(1−λ3)p n 3−3p n 2+3p n −(1−λ3)=0,λ=1时,p n =p n 2,由p n >0,可得p n =1,则S n+1=S n , 即a n+1=0,此时{a n }唯一,不存在三个不同的数列{a n },λ≠1时,令t =31−λ3,则p n 3−tp n 2+tp n −1=0,则(p n −1)[p n 2+(1−t)p n +1]=0, ①t ≤1时,p n2+(1−t)p n +1>0,则p n =1,同上分析不存在三个不同的数列{a n }; ②1<t <3时,△=(1−t)2−4<0,p n2+(1−t)p n +1=0无解, 则p n =1,同上分析不存在三个不同的数列{a n };③t =3时,(p n −1)3=0,则p n =1,同上分析不存在三个不同的数列{a n }.④t >3时,即0<λ<1时,△=(1−t)2−4>0,p n2+(1−t)p n +1=0有两解α,β, 设α<β,α+β=t −1>2,αβ=1>0,则0<α<1<β,则对任意n ∈N ∗,S n+1S n=1或S n+1S n=α3或S n+1S n=β3,此时S n =1,S n ={1,n =1β3,n ≥2,S n={1,n =1,2β3,n ≥3均符合条件. 对应a n ={1,n =10,n ≥2,a n ={1,n =1β3−1,n =20,n ≥3,a n ={1,n =1β3−1,n =30,n =2,n ≥4,则存在三个不同的数列{a n }为“λ−3”数列,且a n ≥0,综上可得0<λ<1.【解析】(1)由“λ−1”数列可得k =1,结合数列的递推式,以及等差数列的定义,可得λ的值;(2)运用“√33−2”数列的定义,结合数列的递推式和等比数列的通项公式,可得所求通项公式;(3)若存在三个不同的数列{a n }为“λ−3”数列,则Sn+113−S n 13=λa n+113,由两边立方,结合数列的递推式,以及t 的讨论,二次方程的实根分布和韦达定理,即可判断是否存在λ,并可得取值范围.本题考查数列的新定义的理解和运用,考查等差数列和等比数列的通项公式的运用,以及数列的递推式的运用,考查分类讨论思想,以及运算能力和推理论证能力,是一道难题.【2020年上海市高考数学试卷真题第12题】已知数列{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+⋯+a 9a 10= .【答案】278【解析】【分析】本题考查等差数列的前n 项和与等差数列通项公式的应用,注意分析a 1与d 的关系,属于基础题.根据等差数列的通项公式可由a 1+a 10=a 9,得a 1=−d ,在利用等差数列前n 项和公式化简a 1+a 2+⋯+a 9a 10即可得出结论.【解答】解:根据题意,等差数列{a n }满足a 1+a 10=a 9,即a 1+a 1+9d =a 1+8d ,变形可得a 1=−d , 所以a 1+a 2+⋯+a 9a 10=9a 1+9×8d 2a 1+9d=9a 1+36d a 1+9d=−9d+36d −d+9d=278.故答案为:278.【2020年上海市高考数学试卷真题第21题】1.已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1−a1q n|≥|a1−a1q n−1|,可得:|q n−1|≥|q n−1−1|,n∈{2,3,…,9},两边平方可得:q2n−2q n+1≥q2n−2−2q n−1+1,整理可得:(q−1)q n−1[q n−1(q+1)−2]≥0,当q≥1时,得q n−1(q+1)−2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+ 1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质p,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【2020年浙江省高考数学试卷真题第7题】已知等差数列{a n}的前n项和S n,公差d≠0,a1d⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【答案】B【解析】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.【2020年浙江省高考数学试卷真题第11题】我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.【答案】10【解析】【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满足a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.【2020年浙江省高考数学试卷真题第20题】已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2⋅c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1d,n∈N∗.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,⋅⋅⋅a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1) =(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力.本题属综合性较强的偏难题.(1)先根据等比数列的通项公式将b2=q,b3=q2代入b1+b2=6b3,计算出公比q的值,然后根据等比数列的定义化简c n+1=b nb n+2⋅c n可得c n+1=4c n,则可发现数列{c n}是以1为首项,4为公比的等比数列,从而可得数列{c n}的通项公式,然后将通项公式代入c n+1= a n+1−a n,可得a n+1−a n=c n+1=4n,再根据此递推公式的特点运用累加法可计算出数列{a n}的通项公式;(2)通过将已知关系式c n+1=b nb n+2⋅c n不断进行转化可构造出数列{b n b n+1c n},且可得到数列{b n b n+1c n}是一个常数列,且此常数为1+d,从而可得b n b n+1c n=1+d,再计算得到c n=1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.【2020年北京市高考数学试卷真题第8题】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案.【解答】解:设等差数列{a n}的首项为d,由a1=−9,a5=−1,得d=a5−a15−1=−1−(−9)4=2,∴a n=−9+2(n−1)=2n−11.由a n=2n−11=0,得n=112,而n∈N∗,可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值.可知T1=−9<0,T2=63>0,T3=−315<0,T4=945>0为最大项,自T5起均小于0,且逐渐减小.∴数列{T n}有最大项,无最小项.故选:B.【2020年北京市高考数学试卷真题第21题】已知{a n}是无穷数列.给出两个性质:①对于{a n}中任意两项a i,a j(i>j),在{a n}中都存在一项a m,使得 a i2a j=a m;②对于{a n}中任意一项a n(n≥3),在{a n}中都存在两项a k,a l(k>l),使得a n=a k2a l.(Ⅰ)若a n=n(n=1,2,…),判断数列{a n}是否满足性质①,说明理由;(Ⅱ)若a n=2n−1(n=1,2,…),判断数列{a n}是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n}是递增数列,且同时满足性质①和性质②,证明:{a n}为等比数列.【答案】解:(Ⅰ)不满足,理由:a 32a 2=92∉N ∗,不存在一项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满足性质①和性质②,理由:对于任意的i 和j ,满足a i 2a j=22i−j−1,因为i ∈N ∗,j ∈N ∗且i >j ,所以2i −j ∈N ∗,则必存在m =2i −j ,此时,2m−1∈{a i }且满足a i2a j=22i−j−1=a m ,性质①成立,对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,满足n =2k −l 即可,因为k ∈N ∗,l ∈N ∗,且k >l ,所以2k −l 可表示所有正整数,所以必有一组k ,l 使n =2k −l ,即满足a n =a k2a l,性质②成立.(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,那么必有一项a l 绝对值最小或者有a l 与a l+1同时取得绝对值最小, 如仅有一项a l 绝对值最小,此时必有一项a m =a l2a j,此时|a m |<|a l |与前提矛盾,如有两项a l 与a l+1 同时取得绝对值最小值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件矛盾, 所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k 2a l=a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等比数列,数学归纳法:(1)已证n =3时,满足{a n }是等比数列,公比q =a2a 1,(2)假设n =k 时,也满足{a k }是等比数列,公比q =a2a 1,那么由①知a k 2a k−1=qa k 等于数列的某一项a m ,证明这一项为a k+1即可,反证法:假设这一项不是a k+1,因为是递增数列,所以该项a m =a l2a l−1=qa k >a k+1,那么a k <a k+1<qa k ,由等比数列{a k }得a 1q k−1<a k+1<a 1q k , 由性质②得a 1qk−1<a m2a l<a 1q k,同时a k+1=a m2a l>a m >a l ,s 所以k +1>m >l ,所以a m ,a l 分别是等比数列{a k }中两项,即a m =a 1q m−1,a l =a 1q l−1,原式变为a 1q k−1<a 1q 2m−l−1<a 1q k ,所以l −1<2m −l −1<k ,又因为k ∈N ∗,m ∈N ∗,l ∈N ∗,不存在这组解,所以矛盾, 所以知a k 2ak−1=qa k =a k+1,前{a k+1}为等比数列,由数学归纳法知,{a n }是等比数列得证, 同理,数列恒负,{a n }也是等比数列.【解析】(Ⅰ)由a 32a 2=92∉N ∗,即可知道不满足性质.(Ⅱ)对于任意的i 和j ,满足a i2a j=22i−j−1,⇒2i −j ∈N ∗,必存在m =2i −j ,可得满足性质①;对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,⇒n =2k −l 即可,必存在有一组k ,l 使使得它成立,故满足性质②.(Ⅲ)先用反证法证明数列必然恒正或恒负,再用数学归纳法证明{a n }也是等比数列,即可.本题属于新定义题,考查等比数列的性质,数学归法等,考查逻辑思维能力,属于难题.。

2020上海高三数学二模分类汇总-数列(含答案)

2020上海高三数学二模分类汇总-数列(含答案)

2020上海高三数学二模分类汇总-数列(含答案)2020届二模分类汇总-数列一、等差等比数列的性质与判定1、【2020年闵行区二模第4题】记n S 为等差数列{}n a 的前n 项和,若3122S S S =+,12a =,则5a = 【答案:6】2、【2020年松江区二模第4题】等差数列的前项和为,若,则= .【答案:28 】3、【2020年长宁区二模第8题】记等差数列{}n a 的前n 项和为n S .若31a =,714S =,则5a =__________.【答案:3】4、【2020年奉贤区二模第8题】已知等差数列{}n a 的各项不为零,且3a 、13a 、63a 成等比数列,则公比是【答案: 5 】5、【2020年嘉定区二模第7题】设各项均为正数的等比数列{}na 的前n 项和为n S ,11a =,236a a +=,则6S = 【答案: 63 】6、【2020年崇明区二模第15题】设{}n a 是各项为正数的无穷数列,i A 是边长为i a 、1i a +的矩形的周长(1,2,i =),则“数列{}n A 为等差数列”的充要条件是() A. {}n a 是等差数列B. 1321,,,,n a a a -或242,,,,n a a a 是等差数列C. 1321,,,,n a a a -和242,,,,n a a a 都是等差数列D. 1321,,,,n a a a -和242,,,,n a a a 都是等差数列,且公差相同【答案: D 】{}n a n n S 15374,12a a a a +=+=7S7、【2020年嘉定区二模第16题】设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项.若对任意的*n N ∈,都有1 3[n nS s S -∈,]t ,则t s -的最小值为( ) A .23 B .94 C .12 D .16【答案: B解析:由题意,64n n a S +=,∴1164n n a S --+=,作差11143n n n n n a a a a a ---=?=-,为等比数列,由111642a S a +=?=,1(1)31[1()]123n n n a q S q -==---,111()[,]339n -∈-,∴4[,2]3n S ∈,∴113113[,]42n n S S -∈,∴min 1113()24t s -=-=94。

2020年上海高考数学试题(试卷版+解析版)

2020年上海高考数学试题(试卷版+解析版)

2020上海高考数学试题(试卷版+解析版)
1.已知集合{1A =,2,4},集合{2B =,4,5},则A B = .
2.计算:1lim 31
n n n →∞+=- . 3.已知复数12(z i i =-为虚数单位),则||z = .
4.已知函数3
()f x x =,()f x '是()f x 的反函数,则()f x '= . 5.已知x 、y 满足202300x y x y y +-⎧⎪+-⎨⎪⎩
,则2z y x =-的最大值为 .
6.已知行列式126300
a b c d =,则a b c d = . 7.已知有四个数1,2,a ,b ,这四个数的中位数是3,平均数是4,则ab = .
8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则12910
a a a a ++⋯+= . 9.从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有 种安排情况.
10.已知椭圆22
:143
x y C +=的右焦点为F ,直线l 经过椭圆右焦点F ,交椭圆C 于P 、Q 两点(点P 在第二象限),若点Q 关于x 轴对称点为Q ',且满足PQ FQ ⊥',求直线l 的方程是 .
11.设a R ∈,若存在定义域为R 的函数()f x 同时满足下列两个条件:
(1)对任意的0x R ∈,0()f x 的值为0x 或20x ;
(2)关于x 的方程()f x a =无实数解,
则a 的取值范围是 .。

2020年高考数学上海卷附答案解析版

2020年高考数学上海卷附答案解析版

.
x 2 y 3≤0
a a a

8.已知an是公差不为零的等差数列,且 a 1 a10 a ,9 则 1
2
a10
9
.
9.从 6 人中挑选 4 人去值班,每人值班 1 天,第一天需要 1 人,第二天需要 1 人,第三
天需要 2 人,则有
种排法.

10.椭圆 x2 y2 1 ,过右焦点F 作直线 l 交椭圆于P 、 Q 两点, P 在第二象限已知 43
性质 p . (1)判断数列 3,2,5,1 和 4,3,2,5,1 是否具有性质 p ,请说明理由. (2)若 a1 1 ,公比为q 的等比数列,项数为 10,具有性质 p ,求 q 的取值范围.
(3)若 an 是 1,2,…, m 的一个排列m≥4, bk ak1 k 1, 2 m 1 ,an, bn,都具有性质 p ,求所有满足条件的an .
PF1 8 ,求∠F1PF2 ;
(3)过点 S
0, 2
b2 2
且斜率为
b的直线l 2
交曲线 于 M
、N
两点,用 b
的代数式
表示OM ON,并求出OM ON的取值范围。
21.有限数列an,若满足 a1 a2 ≤ a1 a3 ≤≤ a1 an , m 是项数,则称an满足
数学试卷 第 3 页(共 4 页)
2 /6
18.【答案】(1)
1, 2
x
x∣x
3
4k或x
5
3
4k
,
k
Z;
(2)
1 2
,
0
19.【答案】(1)
x
0,
80 3

(2)
x

2020年上海市高三数学一模分类汇编:数列与极限

2020年上海市高三数学一模分类汇编:数列与极限

2(2020普陀一模). 132lim 31n nnn +→∞+=+ 3(2020闵行一模). 计算:23lim13(21)n n n →∞=++⋅⋅⋅+- 4(2020嘉金一模). 计算2lim1n nn →∞=+4(2020崇明一模). 已知等差数列{}n a 的首项为1,公差为2,则该数列的前n 项和n S = 4(2020青浦一模). 我国古代庄周所著的《庄子⋅天下篇》中引用过一句话:“一尺之棰,日取其半,万世不竭.”,其含义是:一根一尺长的木棒,每天截下其一半,这样的过程可以无限地进行下去.若把“一尺之棰”的长度记为1个单位,则第n 天“日取其半”后,记木棒剩下部分的长度为n a ,则n a =5(2020虹口一模). 设等差数列{}n a 的前n 项和n S ,若2712a a +=,48S =,则n a =6(2020崇明一模). 计算:1132lim 32n nnn n +-→∞-=+ 7(2020普陀一模). 各项都不为零的等差数列{}n a (*n ∈N )满足22810230a a a -+=,数列{}n b 是等比数列,且88a b =,则4911b b b =8(2020杨浦一模). 已知数列{}n a 的通项公式为1(2)1()(3)2n n nn a n -≤⎧⎪=⎨≥⎪⎩(n ∈*N ),n S 是数列{}n a 的前n 项和. 则lim n n S →∞=8(2020徐汇一模). 已知等差数列{}n a 的公差3d =,n S 表示的前n 项和,若数列{}n S 是递增数列,则1a 的取值范围是8(2020闵行一模). 若首项为正数的等比数列{}n a ,公比lg q x =,且10099101a a a <<,则实数x 的取值范围是8(2020青浦一模). 已知数列{}n a 中,11a =,1112n n n a a -+-=(*n ∈N ),则lim n n a →∞= 9(2020松江一模). 在无穷等比数列{}n a 中,若121lim()3n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是11(2020宝山一模). 已知{}n a 、{}n b 均是等差数列,n n n c a b =⋅,若{}n c 前三项是7、9、9,则10c =11(2020徐汇一模). 已知数列{}n a 的前n 项和为n S ,对任意*n ∈N ,1(1)32n n n n S a n =-++-且12()()0a p a p --<,则实数p 的取值范围是 11(2020嘉金一模). 已知数列{}n a 满足:11a =,112{,,,}n n n a a a a a +-∈⋅⋅⋅(*n ∈N ),记数列{}n a 的前n 项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M ,最小值为m ,则M m +=16(2020青浦一模). 设等比数列{}n a 的公比为q ,其前n 项之积为n T ,并且满足条件:11a >,201920201a a >,20192020101a a -<-,给出下列结论:① 01q <<;② 2019202110a a ->;③ 2019T 是数列{}n T 中的最大项;④ 使1n T >成立的最大自然数等于4039;其中正确结论的序号为( )A. ①②B. ①③C. ①③④D. ①②③④16(2020闵行一模). 已知各项为正数的非常数数列{}n a 满足11n an a a +=,有以下两个结论:① 若32a a >,则数列{}n a 是递增数列;② 数列{}n a 奇数项是递增数列;则( ) A. ①对②错 B. ①错②对 C. ①②均错误 D. ①②均正确16(2020奉贤一模). 由9个互不相等的正数组成的矩阵111213212223313233a a a a a a a a a ⎛⎫⎪⎪ ⎪⎝⎭中,每行中的三个数成等差数列,且111213a a a ++、212223a a a ++、313233a a a ++成等比数列,下列判断正确的有( )① 第2列中的12a 、22a 、32a 必成等比数列;② 第1列中的11a 、21a 、31a 不一定成等比 数列;③ 12322123a a a a +>+;A. 1个B. 2个C. 3个D. 0个20(2020嘉金一模). 已知数列{}n a 各项均为正数,n S 为其前n 项的和,且n a 、n S 、2na (*n ∈N )成等差数列.(1)写出1a 、2a 、3a 的值,并猜想数列{}n a 的通项公式n a ; (2)证明(1)中的猜想;(3)设1n n b ta =-(0t >),n T 为数列{}n b 的前n 项和,若对于任意*n ∈N ,都有*{|}n m T b m ∈∈N , 求实数t 的值.20(2020徐汇一模). 给正有理数i i m n 、jjm n (i j ≠,*,i j ∈N ,*,,,i i j j m n m n ∈N ,且i jm m =和i j n n =不同时成立),按以下规则P 排列:① 若i i j j m n m n +<+,则ii m n 排在j jm n 前面;② 若i i j j m n m n +=+,且i j n n <,则ii m n 排在j jm n 的前面,按此规则排列得到数列{}n a .(例如:121,,,112⋅⋅⋅).(1)依次写出数列{}n a 的前10项;(2)对数列{}n a 中小于1的各项,按以下规则Q 排列:①各项不做化简运算;②分母小的项排在前面;③分母相同的两项,分子小的项排在前面,得到数列{}n b ,求数列{}n b 的前10项的和10S ,前2019项的和2019S ;(3)对数列{}n a 中所有整数项,由小到大取前2019个互不相等的整数项构成集合1232019{,,,,}A c c c c =⋅⋅⋅,A 的子集B 满足:对任意的,x y B ∈,有x y B +∉,求集合B中元素个数的最大值.21(2020宝山一模). 已知数列{}n a 满足11a =,2a e =(e 是自然对数的底数),且2n a +=ln n n b a =(n ∈*N ).(1)证明:2n b +> (2)证明:211{}n n n n b b b b +++--是等比数列,且{}n b 的通项公式是121[1()]32n n b -=--;(3)是否存在常数t ,对任意自然数n ∈*N 均有1n n b tb +≥成立?若存在,求t 的取值范围,否则,说明理由.21(2020松江一模). 已知数列{}n a 满足:① n a ∈N (*n ∈N );② 当2k n =(*k ∈N )时,2n na =;③ 当2k n ≠(*k ∈N )时,1n n a a +<,记数列{}n a 的前n 项和为n S . (1)求1a ,3a ,9a 的值;(2)若2020n S =,求n 的最小值;(3)求证:242n n S S n =-+的充要条件是211n a +=(*n ∈N ).21(2020崇明一模). 已知无穷数列{}n a 、{}n b 、{}n c 满足:对任意的*n ∈N ,都有1||||n n n a b c +=-,1||||n n n b c a +=-,1||||n n n c a c +=-,记max{||,||,||}n n n n d a b c =(max{,,}x y z 表示3个实数x 、y 、z 中的最大值). (1)若11a =,12b =,14c =,求4a 、4b 、4c 的值; (2)若11a =,12b =,求满足23d d =的1c 的所有值;(3)设1a 、1b 、1c 是非零实数,且1||a 、1||b 、1||c 互不相等,证明:存在正整数k ,使得数列{}n a 、{}n b 、{}n c 中有且只有一个数列自第k 项起各项均为0.21(2020虹口一模). 在数列{}n a 中,10a =,且对任意的*m ∈N ,21m a -、2m a 、21m a +构成以2m 为公差的等差数列.(1)求证:4a 、5a 、6a 成等比数列; (2)求数列{}n a 的通项公式;(3)设2222323n nn S a a a =++⋅⋅⋅+,试问2n S n -是否存在极限?若存在,求出其值,若不存在,请说明理由.21. 已知无穷数列{}n a 的前n 项和为n S ,若对于任意的正整数n ,均有210n S -≥,20n S ≤, 则称数列{}n a 具有性质P .(1)判断首项为1,公比为2-的无穷等比数列{}n a 是否具有性质P ,并说明理由; (2)已知无穷数列{}n a 具有性质P ,且任意相邻四项之和都相等,求证:40S =;(3)已知21n b n =-,n ∈*N ,数列{}n c 是等差数列,122n n n b n a c n +⎧⎪=⎨⎪⎩为奇数为偶数,若无穷数列{}n a 具有性质P ,求2019c 的取值范围.21(2020普陀一模). 数列{}n a 与{}n b 满足:1a a =,1n n n b a a +=-,n S 是数列{}n a 的前n 项和(*n ∈N ).(1)设数列{}n b 是首项和公比都为13-的等比数列,且数列{}n a 也是等比数列,求a 的值;(2)设121nn n b b +-=-,若3a =且4n a a ≥对*n ∈N 恒成立,求2a 的取值范围;(3)设4a =,2n b =,22n n nS C λ+=(*n ∈N ,2λ≥-),若存在整数k 、l ,且1k l >>, 使得k l C C =成立,求λ的所有可能值.。

2020年上海市高三数学二模分类汇编:数列与极限

2020年上海市高三数学二模分类汇编:数列与极限

4(2020闵行二模). 记n S 为等差数列{}n a 的前n 项和,若3122S S S =+,12a =,则5a = 4(2020松江二模). 等差数列{}n a 的前n 项和为n S ,若154a a +=,3712a a +=,则7S =5(2020宝山二模). 已知无穷数列2(3)n na =-,n ∈*N ,则数列{}n a 的各项和为 5(2020杨浦二模). 若{}n a 是无穷等比数列,首项113a =,公比13q =,则{}n a 各项的和S =6. (2020松江二模) 已知数列{}n a 的首项11a =,且满足1012n na a +=(*N n ∈),数列{}n a 的前n 项和为n S ,则lim n n S →∞=7(2020奉贤二模). 在△ABC 中,222sin sin sin sin sin A B C B C ≤+-⋅,则A 的取值范围是7(2020嘉定二模). 设各项均为正数的等比数列{}n a 的前n 项和为n S ,11a =,236a a +=,则6S =8(2020奉贤二模). 已知等差数列{}n a 的各项不为零,且3a 、13a 、63a 成等比数列,则公比是8(2020闵行二模). 从1,2,3,4,5,6,7,8,9中任取3个不同的数,并从小到大排成一个数列,此数列为等比数列的概率为 (结果用最简分数表示)8(2020金山二模). 数列{}n a 的通项公式1,1,21,32n nn na n ⎧=⎪⎪=⎨⎪≥⎪⎩,n ∈*N ,前n 项和为n S ,则lim n n S →∞=8(2020崇明二模). 已知数列{}n a 是无穷等比数列,其前n 项和记为n S ,若233a a +=,3432a a +=,则lim n n S →∞=8(2020长宁二模). 记等差数列{}n a 的前n 项和为n S ,若31a =,714S =,则5a = 9(2020杨浦二模). 数列{}n a 满足11a =,且132n n a a n ++=+对任意*n ∈N 均成立,则2020a =9(2020闵行二模). 已知直线1:l y x =,斜率为q (01q <<)的直线2l 与x 轴交于点A ,与y 轴交于点0(0,)B a ,过0B 作x 轴的平行线,交1l 于点1A ,过1A 作y 轴的平行线,交2l 于点1B , 再过1B 作x 轴的平行线交1l 于点2A ,⋅⋅⋅,这样依次得线 段01B A 、11A B 、12B A 、22A B 、⋅⋅⋅、1n n B A -、n n A B ,记n x 为点n B 的横坐标,则lim n n x →∞=11(2020金山二模). 我们把一系列向量i a u r(1,2,,)i n =⋅⋅⋅按次序排成一列,称为向量列,记作{}i a u r ,已知向量列{}i a u r 满足1(1,1)a =u u r ,11111(,)(,)2n n n n n n n a x y x y x y ----==-+u u r (2)n ≥,设n θ表示向量1n a -u u u r 与n a u u r 夹角,若2n n n b θπ=,对任意正整数n,不等式log (12)a a ⋅⋅⋅>-恒成立,则实数a 的取值范围是 12(2020浦东二模). 已知数列{}n a 、{}n b 满足111a b ==,对任何正整数n均有1n n n a a b +=+1n n n b a b +=+113()n n n nc a b =+,则数列{}n c 的前2020项之和为14(2020青浦二模). 我国古代数学著作《九章算术》中记载问题:“今有垣厚八尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是“今有土墙厚8尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠几天打通相逢?”两鼠相逢需要的最少天数为( )A. 3B. 4C. 5D. 615(2020宝山二模). 用数学归纳法证明135(1)(21)(1)n n n n -+-+⋅⋅⋅+--=-,n ∈*N 成立. 那么,“当1=n 时,命题成立”是“对n ∈*N 时,命题成立”的( ) A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要 15(2020崇明二模). 设{}n a 是各项为正数的无穷数列,i A 是边长为i a 、1i a +的矩形的周长(1,2,i =⋅⋅⋅),则“数列{}n A 为等差数列”的充要条件是( ) A. {}n a 是等差数列B. 1321,,,,n a a a -⋅⋅⋅⋅⋅⋅或242,,,,n a a a ⋅⋅⋅⋅⋅⋅是等差数列C. 1321,,,,n a a a -⋅⋅⋅⋅⋅⋅和242,,,,n a a a ⋅⋅⋅⋅⋅⋅都是等差数列D. 1321,,,,n a a a -⋅⋅⋅⋅⋅⋅和242,,,,n a a a ⋅⋅⋅⋅⋅⋅都是等差数列,且公差相同16(2020奉贤二模). 已知等差数列{}n a 与等比数列{}n b 的首项均为1,且公比1q ≠,若存在数对(,)k t ,*,N k t ∈,使得k t a b =,称这样的数对(,)k t 为{}n a 与{}n b 相关数对,则这样的数对(,)k t 最多有( )对A. 2B. 3C. 4D. 516(2020虹口二模). 设等比数列{}n a 的前n 项和为n S ,首项11a =,且24323S S S +=,已知*,N m n ∈,若存在正整数i 、j (1i j <<),使得i ma 、mn 、j na 成等差数列,则mn 的最小值为( )A. 16B. 12C. 8D. 616(2020杨浦二模). 设{}n a 是2020项的实数数列,{}n a 中的每一项都不为零,{}n a 中任意连续11项110,,,n n n a a a ++⋅⋅⋅的乘积是定值(1,2,3,,2010n =⋅⋅⋅),命题 ① 存在满足条件的数列,使得其中恰有365个1; ② 不存在满足条件的数列,使得其中恰有550个1; 的真假情况为( )A. ①和②都是真命题B. ①是真命题,②是假命题C. ②是真命题,①是假命题D. ①和②都是假命题 16(2020长宁二模). 在数列的极限一节,课本中给出了计算由抛物线2y x =、x 轴以及直线1x =所围成的曲边区域面积S 的一种方法:把区间[0,1]平均分成n 份,在每一个小区间上作一个小矩形,使得每个矩形的坐上端点都在抛物线2y x =上(如图),则当n →∞时,这些小矩形面积之和的极限就是S ,已知22221123(1)(21)6n n n n +++⋅⋅⋅+=++,利用此方法计算出的由曲线y x =x 轴以及直线1x =所围成的曲边区域的面积为( ) A.6 B. 3 C. 34D. 23 16(2020嘉定二模). 设数列{}n a 的前n 项和为n S ,且2n S 是6和n a 的等差中项,若对任意的*n ∈N ,都有13[,]n nS s t S -∈,则t s -的最小值为( ) A.23 B. 94 C. 12D. 16 16(2020徐汇二模). 若数列{}n a 、{}n b 的通项公式分别为2020(1)n n a a +=-,2019(1)2n n b n+-=+,且n n a b <对任意n *∈N 恒成立,则实数a 的取值范围为( )A. [2,1)-B. 3[2,)2-C. 1[1,)2- D. [1,1)-21(2020闵行二模). 已知数列{}n x ,若对任意*N n ∈,都有212n n n x x x +++>成立, 则称数列{}n x 为“差增数列”.(1)试判断数列2n a n =(*N n ∈)是否为“差增数列”,并说明理由;(2)若数列{}n a 为“差增数列”,且*N n a ∈,121a a ==,对于给定的正整数m , 当k a m =,项数k 的最大值为20时,求m 的所有可能取值的集合; (3)若数列{lg }n x 为“差增数列”,(*N n ∈,2020n ≤), 且122020lg lg lg 0x x x ++⋅⋅⋅+=,证明:101010111x x <.21(2020徐汇二模). 设数列{}n a (n *∈N )中前两项1a 、2a 给定,若对于每个正整数3n ≥,均存在正整数k (11k n ≤≤-)使得12n n n kn a a a a k---+++=L ,则称数列{}n a 为“Ω数列”.(1)若数列{}n a (n *∈N )为11a =,212a =-的等比数列,当3n ≥时,试问: n a 与122n n a a --+是否相等,并说明数列{}n a (n *∈N )是否为“Ω数列”; (2)讨论首项为1a 、公差为d 的等差数列{}n a 是否为“Ω数列”,并说明理由; (3)已知数列{}n a 为“Ω数列”,且10a = ,21a =,记12(,)n n S n k a a --=+++Ln k a -(2n ≥,n *∈N ),其中正整数1k n ≤-,对于每个正整数3n ≥,当正整数k 分别取1、2、⋅⋅⋅、1n -时,(,)S n k k的最大值记为n M 、最小值记为n m ,设()n n n b n M m =⋅-, 当正整数n 满足32020n ≤≤时,比较n b 与1n b +的大小,并求出n b 的最大值.21(2020宝山二模). 定义:}{n a 是无穷数列,若存在正整数k 使得对任意n ∈*N ,均有n k n a a +>()n k n a a +<,则称}{n a 是近似递增(减)数列,其中k 叫近似递增(减)数列}{n a 的间隔数.(1)若(1)nn a n =+-,}{n a 是不是近似递增数列,并说明理由;(2)已知数列}{n a 的通项公式为a a n n +-=-1)2(1,其前n 项的和为n S ,若2是近似递增数列}{n S 的间隔数,求a 的取值范围; (3)已知sin 2n na n =-+,证明}{n a 是近似递减数列,并且4是它的最小间隔数.21(2020金山二模). 若无穷数列{}n a 满足:存在*N k ∈,对任意的0n n ≥(*N n ∈),都有n k n a a d +-=(d 为常数),则称{}n a 具有性质0(,,)Q k n d .(1)若无穷数列{}n a 具有性质(3,1,0)Q ,且11a =,22a =,33a =,求234a a a ++的值; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+,判断{}n a 是否具有性质0(,,0)Q k n ,并说明理由;(3)设无穷数列{}n a 既具有性质1(,2,)Q i d ,又具有性质2(,2,)Q j d ,其中*,N i j ∈,i j <,i 、j 互质,求证:数列{}n a 具有性质1(,2,)j iQ j i d i--.21(2020奉贤二模). 两个数列{}n α、{}n β,当{}n α和{}n β同时在0n n =时取得相同的最大值,我们称{}n α与{}n β具有性质P ,其中*N n ∈.(1)设2022(1)x +的二项展开式中k x 的系数为k a (0,1,2,3,,2022k =⋅⋅⋅),N k ∈, 记01a c =,12a c =,⋅⋅⋅,依次下去,20222023a c =,组成的数列是{}n c ;同样地,20221()x x-的二项展开式中k x 的系数为k b (0,1,2,3,,2022k =⋅⋅⋅),N k ∈,记01b d =,12b d =,⋅⋅⋅,依次下去,20222023b d =,组成的数列是{}n d ;判别{}n c 与{}n d 是否具有性质P ,请说明理由;(2)数列{}t dn -的前n 项和是n S ,数列{19823}n -的前n 项和是n T ,若{}n S 与{}n T 具有性质P ,*,N d t ∈,则这样的数列{}t dn -一共有多少个?请说明理由;(3)两个有限项数列{}n a 与{}n b 满足11()n n n n a a b b λ++-=-,*N n ∈,且110a b ==,是否存在实数λ,使得{}n a 与{}n b 具有性质P ,请说明理由.21(2020崇明二模). 在无穷数列{}n a 中,*N n a ∈,且123nn n n n a a a a a +⎧⎪=⎨⎪+⎩是偶数是奇数,记{}n a 的前n 项和为n S .(1)若110a =,求9S 的值; (2)若317S =,求1a 的值; (3)证明:{}n a 中必有一项为1或3.21(2020浦东二模). 若数列{}n a 对任意连续三项i a 、1i a +、2i a +,均有221()()0i i i i a a a a +++-->(*N i ∈),则称该数列为“跳跃数列”.(1)判断下列两个数列是否是跳跃数列: ① 等差数列:1,2,3,4,5,⋅⋅⋅; ② 等比数列:1,12-,14,18-,116,⋅⋅⋅;(2)若数列{}n a 满足对任何正整数n ,均有11n an a a +=(10a >),证明:数列{}n a 是跳跃数列的充分必要条件是101a <<;(3)跳跃数列{}n a 满足对任意正整数n 均有21195nn a a +-=,求首项1a 的取值范围.21(2020长宁二模). 若数列{}n c 满足“对任意正整数i 、j ,i j ≠,都存在正整数k ,使得k i j c c c =”,则称数列{}n c 具有“性质P ”,已知数列{}n a 为无穷数列.(1)若{}n a 为等比数列,且11a =,判断数列{}n a 是否具有“性质P ”,并说明理由; (2)若{}n a 为等差数列,且公差0d <,求证:数列{}n a 不具有“性质P ”; (3)若等差数列{}n a 具有“性质P ”,且32a =,求数列{}n a 的通项公式n a .21(2020虹口二模). 已知项数为m (*N m ∈,2m ≥)的数列{}n a 满足条件:①*N n a ∈(1,2,,n m =⋅⋅⋅);②12m a a a <<⋅⋅⋅<;若数列{}n b 满足*12()N 1m nn a a a a b m ++⋅⋅⋅+-=∈-(1,2,,n m =⋅⋅⋅),则称{}n b 为数列{}n a 的“关联数列”.(1)数列1,5,9,13,17是否存在“关联数列”?若存在,写出其“关联数列”,若不存在,请说明理由;(2)若数列{}n a 存在“关联数列”{}n b ,证明:11n n a a m +-≥-(1,2,,1n m =⋅⋅⋅-); (3)已知数列{}n a 存在“关联数列”{}n b ,且11a =,2049m a =, 求数列{}n a 项数m 的最小值与最大值.21(2020嘉定二模). 已知m 为正整数,各项均为正整数的数列{}n a 满足:12nn n n n a a a a m a +⎧⎪=⎨⎪+⎩为偶数为奇数,记数列{}n a 的前n 项和为n S .(1)若18a =,2m =,求7S 的值;(2)若5m =,325S =,求1a 的值;(3)若11a =,m 为奇数,求证:“1n a m +>”的充要条件是“n a 为奇数”.21(2020青浦二模). 对于无穷数列{}n a 、{}n b ,*n ∈N ,若1212max{,,,}min{,,,}k k k a a a a a a b =-L L ,*k ∈N ,则称数列{}n b 是数列{}n a 的“收缩数列”,其中12max{,,,}k a a a L 、1min{,a 2,,}k a a L 分别表示12,,,k a a a L 中的最大项和最小项,已知数列{}n a 的前n 项和为n S ,数列{}n b 是数列{}n a 的“收缩数列”. (1)若31n a n =-,求数列{}n b 的前n 项和; (2)证明:数列{}n b 的“收缩数列”仍是{}n b ; (3)若121(1)(1)22n n n n n n S S S a b +-+++=+L (1,2,3n =⋅⋅⋅),求所有满足该条件 的数列{}n a .21(2020黄浦二模). 若数列{}n a 与函数()f x 满足:① {}n a 的任意两项均不相等,且()f x 的定义域为R ;② 数列{}n a 的前n 的项的和()n n S f a =对任意的*n ∈N 都成立;则称{}n a 与()f x 具有“共生关系”.(1)若2nn a =(*n ∈N ),试写出一个与数列{}n a 具有“共生关系”的函数()f x 的解析式;(2)若()f x ax b =+与数列{}n a 具有“共生关系”,求实数对(,)a b 所构成的集合, 并写出n a 关于a 、b 、n 的表达式;(3)若2()f x x cx h =++,求证:“存在每项都是正数的无穷等差数列{}n a ,使得{}n a 与()f x 具有‘共生关系’”的充要条件是“点(,)c h 在射线11()216x y =≤上”.。

上海市2020〖人教版〗高三数学复习试卷数列求和1

上海市2020〖人教版〗高三数学复习试卷数列求和1

上海市2020年〖人教版〗高三数学复习试卷数列求和创作人:百里安娜 创作日期:202X.04.01 审核人: 北堂王会创作单位: 明德智语学校1.在等差数列{}n a 中,9a =12162a +,则数列{}n a 的前11项和11S =( ). A .24 B .48 C .66 D .132 2.【高三第二次考试五校联考】已知数列{}n a 满足:21n a n n =+,且910n S =,则n 的值为( )A .7B .8C .9D .103.【石家庄五校联合体高三上学期第一次月考】数列2141n ⎧⎫⎨⎬-⎩⎭()n N *∈的前n 项的和n S =.4.【邯郸市高三上学期第二次模拟考试】已知等差数列{}n a ,公差0>d ,前n 项和为n S ,63=S ,且满足82132a a a a ,,-成等比数列. (I )求{}n a 的通项公式;(II )设21+⋅=n n n a a b ,求数列{}n b 的前n 项和n T 的值.5.【浙江余姚市高三第三次模拟考试】已知数列{},{}n n a b 满足下列条件:111,22 1.n n a a a n +=-=+(Ⅰ)求{}n b 的通项公式;(Ⅱ)设1{}nb 的前n 项和为n S ,求证:对任意正整数n ,均有19.420n S ≤< B 能力提升训练1.【淄博实验高三第一次诊断性考试】设等差数列{}n a 的前n 项和为n S ,若()2,*11≥∈-<<-+m N m a a a m m ,则必有A .0m S >且10m S +<B .0m S <且10m S +>C .0m S >且10m S +>D .0m S <且10m S +<2.【北京市石景山区高三3月统一测试】等差数列{}n a 中,11,m k a a k m ==()m k ≠,则该数列前mk 项之和为( )A .12mk -B .2mkC .12mk +D .12mk +3.【宁波市5月模拟考试】已知数列{}n a 满足0n a ≠,113a =,()1122,n n n n a a a a n n N *---=⋅≥∈,则=n a ,=+++100993221a a a a a a .4.【玉溪一中高三上学期第一次月考】数列{}n a 的通项公式1sin()12n n a n π+=+,其前n 项和为n S ,则2013S =.5.【上海市普陀区高三三模调研】对于给定数列{}n c ,如果存在实常数,p q ,使得1(0)n n c pc q p +=+≠对于任意的*n N ∈都成立,我们称这个数列{}n c 是“M 类数列”.(1)若*2,32,n n n a n b n N ==⋅∈,判断数列{},{}n n a b 是否为“M 类数列”,并说明理由;(2)若数列{}n a 是“M 类数列”,则数列1{}n n a a ++、1{}n n a a +⋅是否一定是“M 类数列”,若是的,加以证明;若不是,说明理由;(3)若数列{}n a 满足:*111,32()n n n a a a n N +=+=⋅∈,设数列{}n a 的前n 项和为n S ,求n S 的表达式,并判断{}n a 是否是“M 类数列”. C 思维拓展训练1.已知函数2()f x x ax =-的图像在点A(l,f(1))处的切线l 与直线x 十3y +2=0垂直,若数列1{}()f n 的前n 项和为n S ,则2013S 的值为 ( )A.20102011 B.20112012 C.20122013 D.201320142.【宁波市镇海高三5月模拟】在数列{}n a 中,若存在非零整数T ,使得m T m a a +=对于任意的正整数m 均成立,那么称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.若数列{}n x 满足11(2,)n n n x x x n n N +-=-≥∈,如121,(,0)x x a a R a ==∈≠,当数列{}n x 的周期最小时,该数列的前2015项的和是( )A .671B .672C .1342D .13443. 【学易大联考浙江版】已知α为锐角,且12tan -=α,函数)42sin(2tan 2)(παα++⋅=x x f ,数列{}n a 的首项11=a ,)(1n n a f a =+,则n S =.4.【泉州五中高三模拟考试】若数列{}n a 满足“对任意正整数n ,212n n n a a a +++≤恒成立”,则称数列{}n a 为“差非增数列”. 给出下列数列*{},N n a n ∈:①121n n a n=++,②21n a n =+,③21n a n =+,④ln1n n a n =+,⑤12n a n n=+. 其中是“差非增数列”的有________(写出所有满足条件的数列的序号). 5.【成都市第七高考热身考试】已知数列{}n a 的前n 和n n S n 25232+=,数列{}n b 的通项公式25+=n b n .(1)求数列{}n a 的通项公式;(2)设n n n b a c 1=,求证:2521<∑=ni i c ;创作人:百里安娜 创作日期:202X.04.01 审核人: 北堂王会创作单位: 明德智语学校。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三上期末考试数学试题分类汇编数列一、填空、选择题1、(宝山区2019届高三)如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则 公比q =2、(崇明区2019届高三)已知数列{}n a 满足:①10a =;②对任意的n ∈*N ,都有1n n a a +>成立. 函数1()|sin ()|n n f x x a n=-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m = 总有两个不同的根,则{}n a 的通项公式是3、(奉贤区2019届高三)各项均为正数的等比数列{}n a 的前n 项和为n S ,若1lim 3n n n n nS a S a →∞-<+,则q的取值范围 是( )A. (0,1)B. (2,)+∞C. (0,1](2,)+∞ D. (0,2)4、(虹口区2019届高三)已知7个实数1、2-、4、a 、b 、c 、d 依次构成等比数列,若成这7个数中任取2个,则它们的和为正数的概率为5、(金山区2019届高三)无穷等比数列{}n a 各项和S 的值为2,公比0q <,则首项1a 的取值范围是6、(浦东新区2019届高三)已知数列{}n a 为等差数列,其前n 项和为n S . 若936S =,则348a a a ++=7、(普陀区2019届高三)某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元,绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%, 照此推算,此人2019年的年薪为 万元(结果精确到0.1)8、(青浦区2019届高三)已知无穷等比数列{}n a 各项的和为4,则首项1a 的取值范围是 9、(松江区2019届高三)已知等差数列{}n a 的前10项和为30,则14710a a a a +++=10、(徐汇区2019届高三)若数列{}n a 的通项公式为*2()111n na n N n n=∈+,则lim n n a →∞=___________.11、(杨浦区2019届高三)在无穷等比数列{}n a 中,121lim()2n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围 是12、(长宁区2019届高三) 已知数列{}n a 的前n 项和为n S ,且112n n n a a ++=,若数列{}n S 收敛于常数A ,则首项1a 取值的集合为13、(闵行区2019届高三)等比数列{}n a 中,121a a +=,5616a a +=,则910a a += 14、(闵行区2019届高三)若无穷数列{}n a 满足:10a ≥,当n ∈*N ,2n ≥时,1121||max{,,,}n n n a a a a a ---=⋅⋅⋅(其中121max{,,,}n a a a -⋅⋅⋅表示121,,,n a a a -⋅⋅⋅中的最大项),有以下结论:① 若数列{}n a 是常数列,则0n a =(n ∈*N ); ② 若数列{}n a 是公差0d ≠的等差数列,则0d <; ③ 若数列{}n a 是公比为q 的等比数列,则1q >;④ 若存在正整数T ,对任意n ∈*N ,都有n T n a a +=,则1a 是数列{}n a 的最大项. 则其中的正确结论是 (写出所有正确结论的序号)参考答案一、填空、选择题1、32-2、(1)2n n n a π-= 3、B 4、47 5、(2,4) 6、127、10.4 8、(0,4)(4,8) 9、12 10、-1 11、11(0,)(,1)2212、⎭⎬⎫⎩⎨⎧31 13、256 14、①②③④二、解答题1、(宝山区2019届高三)如果数列{}n a 对于任意*n N ∈,都有2n n a a d +-=,其中d 为常数,则称数列{}n a 是“间等差数列”,d 为“间公差”.若数列{}n a 满足1235n n a a n ++=-,*n N ∈,()1a a a R =∈.(1)求证:数列{}n a 是“间等差数列”,并求间公差d ;(2)设n S 为数列{}n a 的前n 项和,若n S 的最小值为153-,求实数a 的取值范围; (3)类似地:非零..数列{}n b 对于任意*n N ∈,都有2n nb q b +=,其中q 为常数,则称数列{}n b 是“间等比数列”,q 为“间公比”。

已知数列{}nc 中,满足()10,c k k k Z =≠∈,11120182n n n c c -+⎛⎫=⋅ ⎪⎝⎭,*n N ∈,试问数列{}n c 是否为“间等比数列”,若是,求最大的整数.....k 使得对于任意*n N ∈,都有1n n c c +>;若不是,说明理由.2、(崇明区2019届高三)已知数列{}n a 、{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,11n n n a b S +=+(n ∈*N ).(1)若11a =,2n nb =,求4a 的值; (2)若{}n a 是公比为q (1q ≠)的等比数列,求证:数列1{}1n b q+-为等比数列; (3)若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列,求证:2a 、3a 、⋅⋅⋅、n a 、⋅⋅⋅ 成等差数列的充要条件是12d =. 3、(奉贤区2019届高三)若对任意的正整数n ,总存在正整数m ,使得数列{}n a 的前n 项和n m S a =,则称数列{}n a 是“回归数列”.(1)前n 项和为2nn S =的数列{}n a 是否是“回归数列”?并请说明理由;(2)设{}n a 是等差数列,首项11a =,公差0d <,若{}n a 是“回归数列”,求d 的值; (3)是否对任意的等差数列{}n a ,总存在两个“回归数列”{}n b 和{}n c ,使得n n n a b c =+ (n ∈*N )成立,请给出你的结论,并说明理由.4、(虹口区2019届高三)对于n ()n ∈*N 个实数构成的集合12{,,}n E e e e =,记12E n S e e e =+++.已知由n ()n ∈*N 个正整数构成的集合12{,,,}n A a a a =12(,3)n a a a n <<<≥满足:对于任意 不大于A S 的正整数m ,均存在集合A 的一个子集,使得该子集的所有元素之和等于m . (1)试求1a 、2a 的值;(2)求证:“1a 、2a 、、n a 成等差数列”的充要条件是“1(1)2A S n n =+”;(3)若2018A S =,求证:n 的最小值为11;并求n 取得最小值时,n a 的最大值.5、(金山区2019届高三)在等差数列{}n a 中,13515a a a ++=,611a =. (1)求数列{}n a 的通项公式;(2)对任意m ∈*N ,将数列{}n a 中落入区间121(2,2)m m ++内的项的个数记为{}m b ,记数列{}m b 的前m 项和为m S ,求使得2018m S >的最小整数m ;(3)若n ∈*N ,使不等式1111(21)n n n n a n a a a λ+++≤+≤+成立,求实数λ的取值范围.6、(浦东新区2019届高三)已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点123,,,,nA A A A (n ∈*N ),并在第一象限内的抛物线232y x =上依次取点123,,,,n B B B B (n ∈*N ),使得1k k k A B A -△ (k ∈*N )都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n . (1)求(1)f ,(2)f ,并猜想()f n ;(不要求证明)(2)令9()8n a f n =-,记m t 为数列{}n a 中落在区间2(9,9)m m 内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2m S λ≤对任意m ∈*N 恒成立?若存在, 求出λ的取值范围;若不存在,说明理由; (3)已知数列{}n b满足:1b =,1n b +=,数列{}n c 满足: 11c =,1n nc +=1()2n n n b f c π+<<.7、(普陀区2019届高三)设数列{}n a 满足135a =,132n n n a a a +=+(n ∈*N ).(1)求2a 、3a 的值; (2)求证:1{1}n a -是等比数列,并求12111lim()n n n a a a →∞++⋅⋅⋅+-的值;(3)记{}n a 的前n 项和为n S ,是否存在正整数k ,使得对于任意的n (n ∈*N 且2n ≥)均有n S k ≥成立?若存在,求出k 的值,若不存在,说明理由.8、(青浦区2019届高三)若存在常数k (k ∈*N ,2k ≥)、c 、d ,使得无穷数列{}n a 满足1n n nn a d ka n ca k +⎧+∉⎪⎪=⎨⎪∈⎪⎩**N N ,则称数列{}n a 为“Γ数列”,已知数列{}n b 为“Γ数列”.(1)若数列{}n b 中,11b =,3k =,4d =,0c =,试求2019b 的值;(2)若数列{}n b 中,12b =,4k =,2d =,1c =,记数列{}n b 的前n 项和为n S ,若不 等式43n n S λ≤⋅对n ∈*N 恒成立,求实数λ的取值范围;(3)若{}n b 为等比数列,且首项为b ,试写出所有满足条件的{}n b ,并说明理由.9、(松江区2019届高三)对于给定数列{}n a ,若数列{}n b 满足:对任意n ∈*N ,都有11()()0n n n n a b a b ++--<,则称数列{}n b 是数列{}n a 的“相伴数列”.(1)若n n n b a c =+,且数列{}n b 是{}n a 的“相伴数列”,试写出{}n c 的一个通项公式,并说明理由;(2)设21n a n =-,证明:不存在等差数列{}n b ,使得数列{}n b 是{}n a 的“相伴数列”; (3)设12n n a -=,1n n b b q -=⋅(其中0q <),若{}n b 是{}n a 的“相伴数列”,试分析实数b 、q 的取值应满足的条件.10、(徐汇区2019届高三)已知项数为0n 0(4)n ≥项的有穷数列{}n a ,若同时满足以下三个条件:①011,n a a m ==(m 为正整数);②10i i a a --=或1,其中02,3,,i n =…;③任取数列{}n a 中的两项,()p q a a p q ≠,剩下的02n -项中一定存在两项,()s t a a s t ≠,满足p q s t a a a a +=+. 则称数列{}n a 为Ω数列.(1)若数列{}n a 是首项为1,公差为1,项数为6项的等差数列,判断数列{}n a 是否是Ω数列,并说明理由;(2)当3m =时,设Ω数列{}n a 中1出现1d 次,2出现2d 次,3出现3d 次,其中*123,,d d d N ∈,求证:1234,2,4d d d ≥≥≥;(3)当2019m =时,求Ω数列{}n a 中项数0n 的最小值.11、(杨浦区2019届高三)记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,n ∈*N .(1)若2cos2n n n a π=+,请写出3b 的值; (2)求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3)若对任意n ,有||2018n a <,且||1n b =,请问:是否存在K ∈*N ,使得对于任意不小于K 的正整数n ,有1n n b b +=成立?请说明理由.12、(长宁区2019届高三)已知数列{}n a 的前n 项和为n S ,且11a =,2a a =. (1)若数列{}n a 是等差数列,且815a =,求实数a 的值;(2)若数列{}n a 满足22n n a a +-=(n *∈N ),且191019S a =,求证:{}n a 是等差数列; (3)设数列{}n a 是等比数列,试探究当正实数a 满足什么条件时,数列{}n a 具有如下性质M :对于任意的2n ≥(n *∈N ),都存在m *∈N ,使得1()()0m n m n S a S a +--<,写出你的探究过程,并求出满足条件的正实数a 的集合. 13、(闵行区2019届高三)参考答案二、解答题1、解:(1)由1235n n a a n ++=-得12233n n a a n +++=-,……………………2分 作差得22n n a a d +-==,………………………………………………………3分 即数列{}n a 是“间等差数列”,间公差2d =.…………………………………4分(2)由(1)得{}{}212,n n a a -分别以12,33a a a a ==--为首项,公差为2的等差数列,因此,()()21122212221235k ka a k k a a a k k a -=+-=-+⎧⎪⎨=+-=--⎪⎩所以()*121352n n a n k a k N n a n k +- =-⎧=∈⎨-- =⎩,,,,……………………………………6分 又1235n n a a n ++=-,所以,当n 为偶数时,()()()2123413323735222n n n n n n nS a a a a a a --+--=+++++=⨯=, 当18n =时,n S 最小值为18153S =-.……………………………7分当n 为奇数,()()()123421n n n n S a a a a a a a --=++++++233239135117222n n n nn a a -+---=⨯++-=++,…………8分当17n =时,n S 最小值为17136S a =-+,因为n S 的最小值为153-, 因此只需13615317a a -+≥-⇒≥-. ………………………10分(3)由11120182n n n c c -+⎛⎫=⋅ ⎪⎝⎭得12120182nn n c c ++⎛⎫=⋅ ⎪⎝⎭………………………11分作比得,212n n c c +=,所以数列{}n c 是“间等比数列”. ………………13分 由212n n c c +=得{}{}212,n n c c -分别以122018,c k c k ==为首项,公比为12的等比数列, 又1n n c c +>,所以123c c c >>>,又因为13524624,24c c c c c c ======,所以,由1230k c c c >⎧⎨>>⎩得20182kk k >>,……………………………………16分k <<即最大的整数.....63k =. …………………………………………………………18分 2、解:(1)由11,2n na b ==,知2344,6,8a a a ===.………………………4分 (2)因为11n n n a b S +=+①, 所以当2n ≥时,111n n n a b S --=+②, ①-②得,当2n ≥时,11n n n n n a b a b a +--=③, 所以111111n n n n n n n a a b b b a a q q--++=+=+,………………………3分 所以111111n n b b q q q -⎛⎫+=+ ⎪--⎝⎭,………………………5分 又因为101n b q+≠-(否则{}n b 为常数数列与题意不符), 所以1{}1n b q+- 为等比数列。

相关文档
最新文档