第4讲 二次根式(讲练)(精品解析版)
初中数学二次根式(讲义及答案)附解析
一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列运算错误的是( )A =B .=C .)216=D .)223= 3.下列运算正确的是( )A =B . 3C =﹣2D =4.下列二次根式中,最简二次根式是( )A B C D5.下列各式中,运算正确的是( )A =﹣2B +C 4D .=26.下列运算正确的是( )A =B =C .3=D 2=7.化简二次根式 )A B C D8.的下列说法中错误的是( )A 12的算术平方根B .34<<C 不能化简D 是无理数9.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .10.若a b > )A .-B .-C .D .二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.)30m -≤,若整数a 满足m a +=a =__________.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.14.若2x ﹣3x 2﹣x=_____.15.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 16.已知2,n=1222m n mn +-的值________.17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=1332=_____.18.11122323-=11113-23438⎛⎫= ⎪⎝⎭11114-345415⎛⎫= ⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.19.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 20.2121=-+3232=+4343=+20202324320202019+++++……=___________. 三、解答题21.(1111242-=112393-=1134164-=;……写出④ ;⑤ ; (2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律;(3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析.【解析】【分析】 (1)根据题目中的例子直接写出结果;(2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.【详解】解:(1)由例子可得,④=25,6,(2)如果n 为正整数,用含n (3)证明:∵n 是正整数,n.n.故答案为5=25 n ;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.22.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x -【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案.【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x -∴ 3,4x y ==当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.23.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可.【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.24.计算(1+(2+-(3÷ (4)(【答案】(1)23)4;(4)7. 【分析】 (1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)根据二次根式的乘除法则运算;(4)利用平方差公式计算;【详解】(1+22=+=;(2==;(3)2b ÷2b =4=;(4)( (22=- =7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.25.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.26.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式计算即可求出值.【详解】解:(1)原式=1(23⨯⨯=3-⨯=⨯⎭=6-;(2)原式=3﹣4+12﹣=12﹣.【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A 3=,此项错误;B 2=-,此项错误;C 、27=≠D 2==,此项正确;故选:D .【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键. 2.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确;故选:C.【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.4.C解析:C【分析】化简得到结果,即可做出判断.【详解】解:AB,不是最简二次根式;C是最简二次根式;D故选:C.【点睛】本题考查最简二次根式,熟练掌握二次根式的化简公式是解题关键.5.C解析:C【分析】根据二次根式的性质对A进行判断;根据二次根式的加减法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】A、原式=2,故该选项错误;B=,故该选项错误;C4,故该选项正确;D故选:C .【点睛】此题主要考查了二次根式的运算及性质,熟练掌握二次根式乘法、性质及加减法运算法则是解题关键.6.D解析:D【分析】利用二次根式的加减法对A 、C 进行判断;利用二次根式的性质对B 进行判断;利用二次根式的除法法则对D 进行判断.【详解】解:AA 选项错误;B=B 选项错误;C、=C 选项错误;D2=,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.B解析:B【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可【详解】 2202a a aa a +-∴+<∴<-a a ∴==•=-故选B 【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A 12的算术平方根,故该项正确;B 、34<<,故该项正确;C =D =是无理数,故该项正确;故选:C .【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.9.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.10.D解析:D【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a 3b≥0∵a >b ,∴a >0,b <0a ab =-,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5【分析】)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.13.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.a=a+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.14.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 16.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.17.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.18.【解析】上述各式反映的规律是(n ⩾1的整数),得到第5个等式为: (n ⩾1的整数).故答案是: (n ⩾1的整数).点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;=【解析】上述各式反映的规律是=n ⩾1的整数),得到第5==n ⩾1的整数).=n ⩾1的整数). 点睛:这是一道等式规律探寻题,此类题的一般推倒方法为:第一步.标序号;第二步,找规律,分别比较等式中各部分与序号之间的关系,把其蕴含的规律用含序数的代数式表示出来;第三步,根据找出的规律得出第n 个等式.19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n=-n 为正整数),则2020++,2020=+,=, 20202=-,2018,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
二次根式典型例题讲解
二次根式典型例题讲解【知识要点】1的式子叫做二次根式。
注意:这里被开方数可以是数,也可以是单项式,多项式,分式等代数式,其中为二次根式的前提条件。
2、二次根式的性质:(1(2)(3(4)(53、二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变。
即。
4、二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变。
5、最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数中不含能开得尽方的因数或因式;(2)根号下不含分母,分母中不含根号。
6、分母有理化:把分母中的根号化去的方法叫做分母有理化。
分母有理化的依据是分式的基本性质和二次根式的性质公式。
有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就称这两个代数式互为有理化因式。
一般常见的互为有理化因式有如下几种类型:①④都是最简二次根式)7、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
8、二次根式的加减法二次根式的加减,就是合并同类二次根式。
二次根式加减法运算的一般步骤:(1)将每一个二次根式化为最简二次根式; (2)找出其中的同类二次根式;(3)合并同类二次根式。
【典型例题】例1、下列各式哪些是二次根式?哪些不是?为什么?(1(2(3 (4(5 (60)a ≥a 0a ≥0(0)a ≥2(0)a a =≥a )0b ,0a (b a ab ≥≥⋅=0,0)a b =≥>)0b ,0a (ab b a ≥≥=⋅0,0)a b =≥>2(0)a a =≥a a例2、是怎样的实数时,下列各式有意义。
(1(2(3(4例3、(1;(2(3)设为的三边,化简例4、化简:(1(2(3(4)例5、把下列各式中根号外的因式适当改变后移到根号内。
(1)(2)(3)(4)例6、计算:(1)(2)(3)(4)(5)x2,,a b c ABC∆0,0,0)x y z>>>)56(1031-⋅-(x-(1x-)484(456-⋅-)1021(32531-⋅⋅648545)321(÷-12531110845-++【模拟试题】一、填空题:1、计算:=________;=________;=________;=________。
二次根式(讲练)-简单数学之2020-2021学年八年级下册同步讲练(解析版)(人教版)
专题16.1 二次根式典例体系(本专题共14题38页一、知识点a≥)的式子叫做根式;1.(0a根式有意义的条件是:被开方数大于等于0,根式为零被开方数为0;a≥0(双重非负性)2.二次根式的性质:①0a≥)②2= a(0运算顺序:先做开方运算,再做乘方运算;a≥)③a(0a≥)=(0a运算顺序:先做乘方运算,再做开方运算;二、考点点拨与训练考点1:二次根式有意义的条件y=,则y x=__________.典例:(2021·四川成都市·石室中学八年级期末)已知2【答案】9【详解】y=,解:∵2∴x-3≥0且3-x≥0,∴x=3,∴y=2,∴y x=9,故答案为:9. 方法或规律点拨本题考查了二次根式的非负性,掌握二次根式被开方数大于或等于0是解题的关键. 巩固练习1.(2020·宜昌市第二十二中学九年级期中)则x 的取值范围是( )A .31x -≤<B .3x ≥-且1x ≠C .1x <且3x ≠-D .1x ≠且3x ≠-【答案】B 【详解】在实数范围内有意义,3010x x +≥⎧⎨-≠⎩, 解得3x ≥-且1x ≠,则x 的取值范围是3x ≥-且1x ≠. 故选择:B .2.(2021·湖南益阳市·八年级期末)13x -在实数范围内有意义,则x 的取值范围是( ) A .2x ≤ B .3x = C .2x <且3x ≠D .2x ≤且3x ≠【答案】A 【详解】 解:根据题意,得203x x解之得:2x ≤, 故选:A .3.(2021·北京东城区·x 的取值范围是( ) A .2x ≠ B .2x ≥ C .2x ≤ D .0x ≥【答案】B 【详解】解:20,x ∴-≥2.x ∴≥故选:.B4.(2020·浙江杭州市·a 应该满足的条件是( ) A .0a ≥ B .0a =C .0a ≤D .0a ≠【答案】B 【详解】∴a⩾0且−a⩾0, ∴a⩾0且a⩾0, ∴a=0, 故选:B .5.(2019·2x =-,则x 的取值范围是( ) A .x >2 B .x≥2C .x≤2D .x <2【答案】C 【详解】,2x =-, ∴2-x≥0, 解得2x ≤. 故选:C.6.(2021·北京石景山区·在实数范围内有意义的条件是( ) A .12x >-B .12x ≠-C .12x <-D .21x ≥-【答案】D 【详解】解:根据题意得:2x +1≥0, 解得:x≥12-. 故选:D .7.(2021·北京门头沟区·八年级期末)在实数范围内有意义,那么x 的取值范围是( ) A .3x ≠- B .3x ≤- C .3x ≥- D .3x >-【答案】C 【详解】解:依题意有x+3≥0, 即x≥-3时,二次根式有意义. 故选:C .8.(2021·河北邯郸市·=m 、n 满足的条件是( ). A .0mn ≥ B .0m ≥,0n ≥C .0m ≥,0n >D .0m >,0n ≥【答案】B 【详解】=∴000m n m n ⋅≥⎧⎪≥⎨⎪≥⎩∴0m ≥,0n ≥ 故选:B .9.(2020·河北承德市·m 能取的最小整数值是( ) A .m = 0 B .m = 1C .m = 2D .m = 3【答案】B 【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1. 故选:B .10.(2020·浙江杭州市·七年级期末)已知3y =,则x y =________.【答案】9. 【详解】解:∵20x -≥,20x -≥, ∴2x =,∴0033y =++=,则239x y ==.故答案是:9.11.(2021·四川成都市·八年级期末)若实数x 、y满足12y =+,则xy =________.【答案】2【详解】 解:根据题意,4040x x -≥⎧⎨-≥⎩,解得:4x =, ∴12y =, ∴1422xy =⨯=. 故答案为:2.12.(2020·河南许昌市·七年级期中)如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b ,且a 、b 满足20a +=,点C 的坐标为()0,3.(1)求a ,b 的值; (2)求三角形ABC 的面积. 【答案】(1)a =﹣2,b =4;(2)9 【详解】解:(1)∵20a +=, ∴a +2=0,b -4=0, ∴a =﹣2,b =4;(2)点A 、B 的坐标分别是(﹣2,0)、(4,0), ∴△ABC 的面积=1163922AB OC ⋅=⨯⨯=. 考点2:二次根式中的字母参数问题典例:(2020·河北唐山市·八年级期末)是正整数,则满足条件的n 的最小正整数值为__________. 【答案】6 【详解】∴6n为完全平方数,∴n的最小值是6.故答案为:6.方法或规律点拨本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.巩固练习1.(2020·江苏淮安市·9﹣m,则实数m的取值范围是()A.m>9B.m<9C.m≥9D.m≤9【答案】D|9﹣m|=9﹣m,∴9﹣m≥0,∴m≤9,故选:D.2.(2020·辽宁阜新蒙古族自治县第四中学八年级期末)实数a,b在数轴上对应点的位置如图所示,则化简代数式a b+的结果是().A.-b B.2a C.-2a D.-2a-b【答案】A【详解】由数轴得b<a<0,∴a+b<0,∴a b+=-a-b+a=-b,故选:A.3.(2021·贵州铜仁市·=________.【答案】1 . 3【详解】解:3030x x -≥⎧∴⎨-≥⎩①②由①得:3,x ≥ 由②得:3,x ≤∴ 不等式组的解集为: 3.x =1.3=== 4.(2020·达州市第一中学校八年级期中)若a 、b 为实数,且,则a+b 的值为__. 【答案】3 【详解】解:根据二次根式的性质,被开方数大于等于0可知:a 2−1≥0且1−a 2≥0, 解得a 2=1,即a =±1,又0做除数无意义,所以a -1≠0, 故a =-1,将a 值代入b 的代数式得b =4, ∴a +b =3, 故答案为:3.5.(2019·6y =,求x y 的算术平方根________.【答案】6 【详解】 解: ∵2020x x -≥⎧⎨-≥⎩,∴22x x ≤⎧⎨≥⎩,即=2x ; 当=2x 时,6y =-,x y =(-6)2=36.所以xy 的算术平方根为6.6.(2019·广西百色市·八年级期中)1a =-,则a =______(请写出其中一个符合条件的a 值) . 【答案】0(1a ≤的所有值均符合条件) 【详解】11a a =-=-,∴10a -≤,即1a ≤,故答案为:0(a≤1a≤1的所有值均符合条件).7.(2020·山西八年级期末)已知n 是整数,则n 的最小值为________. 【答案】2 【详解】 解:∵98=72×2,又∵n ∴符合n 的最小值是2, 故答案为:2.8.(2020·河北邯郸市·02=,则a =______. 【答案】1 【详解】02==1,∴a=1, 故答案为:1.9.(2019·河北唐山市·有意义,则x 能取得最小整数是___________. 【答案】0 【详解】解:根据题意得,4x +1≥0, 解得x ≥14-, ∴x 可以取的最小整数为0. 故答案为:0.10.(2021·北京顺义区·1a =-,则实数a 的取值范围是__________. 【答案】1a ≥ 【详解】11a a =-=-, ∴10a -≤,即1a ≥. 故答案是:1a ≥.11.(2019·海口市金盘实验学校九年级期中)当2<a <3时,化简:2a -______. 【答案】2a -5 【详解】 ∵2<a <3,∴a-2>0,a-3<0,∴|原式=a−2-(3−a)=a-2-3+a=2a-5.故答案为:2a-5.考点3:利用二次根式的性质化简典例:.(2020·福建泉州市·泉州七中八年级期中)已如实数a、b在数轴上的位置如图所示,请化简-1b【答案】0【详解】-,0<b<1,解:由题意得:2-<a<1∴+<0,+a b<0,1b->0,a1-1b=+-++-a ab b11=--+++-11a ab b=0.方法或规律点拨本题考查的是实数的大小比较,二次根式的性质,二次根式的化简,绝对值的化简,合并同类项,掌握以上知识是解题的关键.巩固练习1.(2021·河北唐山市·的值为()A.2B.4C.2±D.【答案】A【详解】,故选:A.2.(2020·浙江杭州市·)A.3B.3-C.3±D.9【答案】A【详解】, 故选A .3.(2020·吉林长春市· ) A .3 B .-3C .±3D .9【答案】A 【详解】3-=3故选A .4.(2019·安徽阜阳市·八年级期中)知-6 【答案】45. 【详解】由二次根式的被开方数的非负性得:2019020190m m -≥⎧⎨-≥⎩则20190m -=,解得2019m =将2019m =代入得:66n ==-将2019,6m n ==-45===.5.(2020·浙江杭州市·八年级期末)计算:2=___________. 【答案】2 【详解】2=2,故答案为:26.(2020·_____.1. 【详解】1,|1(11=--=1.7.(2021·北京通州区·八年级期末)如果23=,那么m 的值是_____.【答案】3【详解】∵23=∴m=3故答案为:3.8.(2020·a c -+.【答案】-2b【详解】解:原式()b c a c a b =++-+-,根据数轴得0b a c <<<,∴原式2b c a c a b b =---++-=-.故答案是:2b -.9.(2020·渠县贵福中学八年级期中)已知a ,b0b =(1)a=_______, b=______(2)把a ,b 的值代下以下方程并求解关于x 的方程()221a x b a ++=-【答案】(1)-4;(2)4x =【详解】(10b=∴00b ==⎪⎩∴280a b +=⎧⎪⎨=⎪⎩∴4a b =-⎧⎪⎨=⎪⎩故答案为:-4(2)根据(1)的结论,得: ()24241x -++=--∴235x -+=-∴4x =.10.(2021·北京延庆区·八年级期末)我们规定用(a ,b )表示一对数对.给出如下定义:记m=,n =其中(a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”. 例如:(4,1)的一对“对称数对”为(12,1)和(1,12);(1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”,1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”,,求ab 的值.【答案】(1)1(3与1)3, ;(2)13 ;(3)1 ;(4)16ab =或6ab =【详解】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭,∵数对(3,y )的一对“对称数对”相同,= ∴13y =;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”1), 1=,∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=, 综上所述,16ab =或6ab =.。
二次根式(讲义及答案)及答案
一、选择题1.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+ C .1a a a a÷⋅= D .()244-=-2.下列各式计算正确的是( ) A .235+=B .2222+=C .236⨯=D .1222= 3.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-14.下列各式中,正确的是( ) A .42=±B .822-=C .()233-=- D .342=5.二次根式23的值是( ) A .-3 B .3或-3 C .9 D .3 6.若31m -有意义,则m 能取的最小整数值是( ) A .m = 0 B .m = 1 C .m = 2 D .m = 3 7.式子2x -在实数范围内有意义,则x 的取值范围是( )A .0x <B .0xC .2xD .2x8.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .69.化简(﹣3)2的结果是( ) A .±3B .﹣3C .3D .910.已知实数x 、y 满足222y x x =-+--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________. 13.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____. 14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数). 15.把1m m-根号外的因式移到根号内,得_____________. 16.若x +y =5+3,xy =15-3,则x+y=_______. 17.已知20n 是整数,则正整数n 的最小值为___18.若a 、b 都是有理数,且2222480a ab b a -+++=,则ab =__________. 19.若实数123a =-,则代数式244a a -+的值为___. 20.如果0xy >,化简2xy -__________.三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简: (一)5353333⨯==⨯; (二)231)=3131(31)(31)-=-++-(; (三) 22(3)1(31)(31)=3131313131-+-===-++++.以上这种化简的方法叫分母有理化. (1)请用不同的方法化简5+3: ①参照(二)式化简5+3=__________. ②参照(三)式化简5+3=_____________ (2)+315+37+599+97+【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果; (2)原式各项分母有理化,计算即可. 【详解】 解:(1)①;②; (2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.像552)=1a a =a (a ≥0)、b b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因552 +12﹣1,353﹣5因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1)33;(2)2332+--; (3)2018201720172016的大小,并说明理由. 【答案】(123(2)32(3)< 【解析】分析:(13×3=1,确定互为有理化因式,由此计算即可; (2)确定分母的有理化因式为23与23+3232然后分母有理化后计算即可;(3201820172017201620182017与20172016,20182017+20172016+,然后比较即可.详解:(1) 原式;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222225.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差. 试题解析:(1)原式=4﹣3+2=6﹣3; (2)原式=﹣3﹣2+﹣3 =-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65; 乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.26.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.27.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab 的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可. 【详解】(1)∵a b ,∴a +ba ﹣b =,∴a 2﹣b 2=(a +b )(a ﹣b )==;(2)∵ab, ∴ab =)×)=3﹣2=1,则原式=22b a ab +=()22a b ab ab +-=(2211-⨯=10. 【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.28.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1 (2)∵1<a,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确;C.111a a1a a a÷⋅=⋅=,选项错误;D44=-=,选项错误.故选:B.2.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=2,故选项D错误.故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.A解析:A【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项.【详解】解:由题意得:x-1≥0解之:x≥1.1>.故选:A.【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D 11223334=(2)2==,故该选项错误; 故选:B . 【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.D解析:D 【分析】根据二次根式的性质进行计算即可.【详解】|3|3=. 故选:D .【点睛】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩.6.B解析:B 【分析】根据被开方数大于等于0列式计算即可得解.【详解】310m-≥, 解得13m ≥, 所以,m 能取的最小整数值是1. 故选:B . 【点睛】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.D解析:D 【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键. 8.C解析:C【解析】=,22222=-=--+=251510x x,=.5故选C.9.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,∴=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)∵,∴,p=20解析:(1)2a-2b+1;(2)3;(3)130°或50°.【解析】(1)∵-1<a<0,b>1,=|a+1|-|a-2b|=1+a-2b+a=2a-2b+1.(2)==∴p=14x 3(其中x 为正整数),同理可得:q=14y 2(其中y 为正整数),则x+3y=12(x 、y 为正整数) ∴963,,123x x x y y y ===⎧⎧⎧⎨⎨⎨===⎩⎩⎩, ∴整数对有(p,q )=(14⨯81,141⨯),或(1436,144)⨯⨯ ,或(149,149⨯⨯)。
初中数学八年级《二次根式》知识点讲解及例题解析
《二次根式》知识讲解及例题解析【学习目标】1、理解二次根式及最简二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论: a ≥0,(a ≥0),(a ≥0),(a ≥0),并利用它们进行计算和化简.【要点梳理】要点一、二次根式的概念一般地,我们把形如(a ≥0)•的式子叫做二次根式,“”称为二次根号. 要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.要点二、二次根式的性质 1.a ≥0,(a ≥0); 2.(a ≥0);3..4.积的算术平方根等于积中各因式的算术平方根的积,即(a ≥0,b ≥0).5.商的算术平方根等于被除数的算术平方根与除数的算术平方根的商, 即()a a a b a b b b=÷=÷或(a ≥0,b >0).要点诠释: (1)二次根式(a ≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即2()(0a a a =≥).(22a 2()a 要注意区别与联系:①a 的取值范围不同,2()a 中a ≥02a a 为任意值。
②a ≥0时,2()a 2a a ;a <0时,2()a 2a a -.要点三、最简二次根式(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况: (1) 被开放数是分数或分式; (2)含有能开方的因数或因式.【典型例题】类型一、二次根式的概念1.当x 是__________时,+在实数范围内有意义?【答案】 x ≥-且x ≠-1【解析】依题意,得由①得:x ≥-由②得:x ≠-1 当x ≥-且x ≠-1时,+在实数范围内有意义.【总结升华】本题综合考查了二次根式和分式的概念.举一反三:【变式】方程480x x y m -+--=,当0y >时,m 的取值范围是( )A .01m << B.m ≥2 C.2m < D.m ≤2【答案】C.类型二、二次根式的性质2.根据下列条件,求字母x 的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三:【变式】问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3.我们可以计算出①=2=;=3而且还可以计算=2==3(1)根据计算的结果,可以得到:①当a>0时=a;②当a<0时=.(2)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简﹣﹣.【思路点拨】(1)直接利用a 的取值范围化简求出答案;(2)利用a ,b 的取值范围,进而化简二次根式即可.【答案与解析】解:(1)由题意可得:①当a >0时=a ;②当a <0时=﹣a ;故答案为:a ,﹣a ;(2)如图所示:﹣2<a <﹣1,0<b <1, 则﹣﹣=﹣a ﹣b +(a +b )=0.【总结升华】此题主要考查了二次根式的性质与化简以及实数与数轴,正确化简二次根式是解题关键.类型三、最简二次根式4 (122389)+++【思路点拨】此类题型为规律题型,应该是在分母有理化的基础上寻找规律. 【答案与解析】原式1(21)1(32)19-8...(12)(21)(23)(32)+9-8⨯-⨯-⨯++-+-()(89)()2132...9891 =2【总结升华】找出规律,是这一类型题的特点,要总结此类题型并加以记忆.举一反三: 2323+-a ,小数部分是b ,求22a ab b -+的值.【答案】2(23)(23)=3=7+43(23)(23)-+原式()又因为整数部分是a ,小数部分是b 则a =13,b =43622221313(436)(436)a ab b ∴-+=-⨯+=3311003-。
中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件
1
10,则a- 的值为
±
.
6. (2022·
南通海门模拟)如图,四边形ABCD和CEFG是两个相邻的正
方形,其中B,C,E三点在同一条直线上,点D在CG上,它们的面积分
7
别为27平方米和48平方米,则BE的长为
1
2
3
4
5
6
7
米.
8
7. 计算:
(1) 48÷ 3+
1
×
2
解:原式= ÷ +
典例7 (2023·
南通二模)如图,从一个大正方形中恰好可以裁去面积为
2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中涂色部分),
则大正方形的边长为
3
cm.
典例8 (2023·
海安模拟)先化简,再求值:
4+4
+
+2
÷ 2 ,其中m
= 2-2.
++ + (+)
C )
1
的结果是(
3
4. (2022·
青岛)计算( 27- 12)×
A.
3
3
C. 5
B. 1
B )
D. 3
5. 已知2,5,m是某三角形三边的长,则 ( − 3)2 + ( − 7)2 的
值为(
D )
A. 2m-10
B. 10-2m
C. 10
D. 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. (2022·
呼伦贝尔)实数a在数轴上的对应点的位置如图所示,则化简
10月21日二次根式知识讲解+例题解析+强化训练
10月21日二次根式知识讲解+例题解析+强化训练◆知识讲解1.二次根式a≥0)叫做二次根式.2.最简二次根式同时满足:①被开方数的因数是整数,因式是整式(分母中不含根号);②被开方数中含能开得尽方的因数或因式.这样的二次根式叫做最简二次根式.3.同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式.4.二次根式的性质2=a(a≥0);│a│=(0)0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩;(a≥0,b≥0);=b≥0,a>0).5.分母有理化及有理化因式把分母中的根号化去,叫做分母有理化;两个含有二次根式的代数式相乘,•若它们的积不含二次根式,则称这两个代数式互为有理化因式.6.二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.◆例题解析例1填空题:(1)下列各式-其中是二次根式的是_________(填序号).(2x的取值范围是_______.(3)实数a,b,c a-b│.o【解答】(1)1) 3) 4) 5) 7).(2)由x-3≥02≠0,得x≥3且x≠7.(3)由图可知,a<0,b>0,c<0,且│b│>│c│-a,-│a-b│=a-ba-b│.例2选择题:(1)在下列各组根式中,是同类二次根式的是()A BC(2)在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)(3)已知a>b>0,的值为()A B.2 C D.1 2【解答】(1A 错.3,B 正确.|b =│a , ∴C 错,而显然,D 错,∴选B . (2)选C .(3)∵a>b>0)2)2=a+b -1,2===,故选A . 例3(2006,辽宁十一市)先化简,再求值:11()ba b b a a b ++++,其中,.【解答】原式=22()()()()ab a a b b a b a b ab a b ab a b ab+++++==++当a=12,b=12◆强化训练 一、填空题1.(2007,福州)当x______2.已知0<x<1.3.已知最简二次根式b a=______,b=_______.4.(2008,长沙)已知a,b为两个连续整数,且,则a+b=______.5.已知实数x,y满足x2+y2-4x-2y+5=0的值为________.6.(2006,内蒙古)已知a-1,a+1)(b-1)=_______.7.观察下列分母有理化的计算:===,从计算结果中找出规律,并利用这一规律计算:(200620062005+++++1)=________.二、选择题8.(2006,四川南充)已知a<02a│可化简为()A.-a B.aC.-3a D.3a9.已知xy>0,化简二次根式的正确结果为()A..C D10,甲,乙两位同学的解法如下==甲乙对于甲,乙两位同学的解法,正确的判断()A.甲,乙的解法都正确B.甲正确,乙不正确C.甲,乙都不正确D.甲不正确,乙正确11.若a,3-b,则a+b等于()A.0 B.1 C.-1D.±112.如果表示a,b两个实数的点在数轴上的位置如图所示,那么化简│a-b│ob a的结果等于( )A .-2bB .2bC .-2aD .2a13.若a=3a 2-6a -2的值为( ) A .0 B .-1 C .1 D .314.若ab ≠0=成立的条件是( ) A .a>0,b>0 B .a>0,b<0 C .a<0,b>0 D .a<0,b<015.(2007,连云港)已知m ,n 是两个连续自然数(m<n ),且q=mn ,设则p ( )A .总是奇数B .总是偶数C .有时是奇数,有时是偶数D .有时是有理数,有时是无理数 三、解答题16.计算:(1)(2008)(2)(2008,南通)计算:(1517.(2008,广州)如图所示,实数a ,bb a18.(2006,江苏淮安)已知+1,求(22121x x x x x x +---+)÷1x 的值.19.对于题目“化简求值:1a ,其中a=15”,甲、乙两个学生的解答不同.甲的解答是:1a =1a 1a +1a -a=2495a a -=乙的解答是:1a =1a 1a +a -1a =a=15谁的解答是错误的?为什么?答案:1.x ≥3 2.2x 3.0 24.5 5. 6 7.20058.C 9.D 10.A 11.B 12.A 13.B 14.B 15.A 16.(1)4 (2)2 17.-2b 18.原式=21(1)x -=-1219.对于甲的解答,当a=15时,1a -a=5-15=445>01a -a 正确;而乙的解答,当a=15时,a -1a =15-5=-445<0a -1a ,因此乙的解答是错误的.。
中考数学一轮教材梳理复习课件:第4课二次根式
首页
下一页
最简二次根式3】(2019·河池)下列式子中,为最简二次根式的 是( B )
1 A. 2
B. 2
C. 4
D. 12
首页
下一页
10.(2020·上海)下列二次根式中,与 3 是同类二 次根式的是( C )
A. 6
B. 9
C. 12
D. 18
首页
下一页
首页
下一页
5.(2020·济宁)下列各式是最简二次根式 的是( A )
A. 13
B. 12
C. a3
D.
5 3
首页
下一页
5.二次根式的性质与运算
(1)双重非负性: a ≥0 且 a≥0;
(2)( a )2=a(a≥0), a2 =|a| (a 取全体实数);
(3) ab = a · b (a≥0,b≥0);
(4)
a b
=
a b
(a≥0,b>0).
首页
下一页
6. (1)计算:
52 =___5___;( 5 )2=___5___;
(-5)2 =__5____.
(2)计算:
1 2
×
8 =___2____.
(3)计算: 63 ÷ 7 =____3____.
首页
下一页
考点精炼
二次根式有意义的条件(7 年 6 考)
【例 1】(2020·武汉)式子 x-2 在实数范围内有
意义,则 x 的取值范围是( D )
A.x≥0
B.x≤2
C.x≥-2
D.x≥2
首页
下一页
7.(2020·常德)若代数式
2 在实数范围内有 2x-6
意义,则 x 的取值范围是___x_>_3___.
数学二次根式(讲义及答案)含答案
一、选择题1.下列计算正确的是( ) A .93=±B .382-=C .2(7)5=D .222=2.下列根式是最简二次根式的是( ) A .4B .21x +C .12D .40.53.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣14.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A . B .C .D .5.下列计算正确的是( ) A .325+=B .2222+=C .2651-=D .822-=6.下列运算正确的是 ( ) A .3223÷= B .235+= C .233363⨯=D .18126-=7.下列各式一定成立的是( ) A .2()a b a b +=+ B .222(1)1a a +=+ C .22(1)1a a -=- D .2()ab ab =8.下列运算正确的是( ) A .x + 2x =3x B .32﹣22=1C .2+5=25D .a x ﹣b x =(a ﹣b )x9.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a10.x ≥3是下列哪个二次根式有意义的条件( ) A 3x +B 13x - C 13x +D 3x -二、填空题11.能力拓展:1A =2A =;3:A =;4A =________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A()3-12.设a ﹣b=2b ﹣c=2a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.13.已知aa 3+5a 2﹣4a ﹣6的值为_____.14.+的形式(,,a b c 为正整数),则abc =______.15.10=,则222516x y +=______.16.下面是一个按某种规律排列的数阵:根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).17.若6x ,小数部分为y ,则(2x y 的值是___.18.下列各式:③4是最简二次根式的是:_____(填序号)19.n 为________. 20.(a ≥0)的结果是_________.三、解答题21.若x ,y 为实数,且y12.求x y y x ++2-xy y x +-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x ≥0且4x ﹣1≥0,解得x =14,此时y =12.即可代入求解. 【详解】解:要使y 有意义,必须140410x x -≥⎧⎨-≤⎩,即1414x x ⎧≤⎪⎪⎨⎪≥⎪⎩∴ x =14.当x =14时,y =12. 又∵x y y x ++2-x yy x +-2=-| ∵x =14,y =12,∴ x y <y x.∴+当x =14,y =12时,原式=.【点睛】(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.22.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14∴x =.0,∴x .【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.24.先化简,再求值:a+212a a-+,其中a=1007.如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:269a a-+a=﹣2018.【答案】(1)小亮(22a(a<0)(3)2013.【解析】试题分析:(12a,判断出小亮的计算是错误的;(22a的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可.试题解析:(1)小亮(22a(a<0)(3)原式=()23a-a+2(3-a)=6-a=6-(-2007)=2013.25.在一个边长为(35cm的正方形的内部挖去一个长为(310)cm,65cm的矩形,求剩余部分图形的面积.【答案】152【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(352﹣(31065)=(15)﹣(2﹣15152)=(152cm2).考点:二次根式的应用26.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.计算下列各题:(1(2)2-.【答案】(1)2)2-- 【分析】(1)根据二次根式的运算顺序和运算法则计算即可; (2)利用平方差、完全平方公式进行计算. 【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得. 【详解】A 3=,此项错误;B 2=-,此项错误;C 、27=≠D 2==,此项正确;故选:D . 【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.2.B解析:B 【分析】可以根据最简二次根式的定义进行判断. 【详解】A ,原根式不是最简二次根式;BC 2=,原根式不是最简二次根式;D 、=4== 故选B . 【点睛】本题考查最简二次根式的定义,熟练掌握最简二次根式的定义及二次根式的化简方法是解题关键.3.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小4.D解析:D 【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可. 【详解】∴被开方数x+2为非负数, ∴x+2≥0, 解得:x ≥-2. 故答案选D. 【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.5.D解析:D 【分析】直接利用二次根式的加减运算法则计算得出答案. 【详解】解:AC、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.6.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A、3=,故选项A正确;B B错误;C、18=,故选项C错误;D=D错误;故选:A.【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.7.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.8.D解析:D【解析】利用二次根式的加减法计算,可知:A、C 、2+5不能合并,此选项错误;D 、a x ﹣b x =(a ﹣b )x ,此选项正确. 故选:D .9.A解析:A 【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.10.D解析:D 【分析】根据二次根式有意义的条件逐项求解即可得答案. 【详解】A 、x+3≥0,解得:x≥-3,故此选项错误;B 、x-3>0,解得:x >3,故此选项错误;C 、x+3>0,解得:x >-3,故此选项错误;D 、x-3≥0,解得:x≥3,故此选项正确, 故选D . 【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于0.二、填空题11.(1)、;(2);(3) 【解析】 【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1) 54+11n n n n+=++;(2),,><<;(3),,<<< 【解析】 【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.12.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15. 解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=222(2(242++=15.故答案为:15.13.-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可. 【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.14.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a,b,c的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.15.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】 观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n (n ≥3且n 是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.3先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 18.②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【详解】② ③ 是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,解析:②③【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.是最简二次根式,故答案为②③.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
数学二次根式(讲义及答案)及解析
一、选择题1.下列计算正确的是( )A =B .3=C 2=D 2.下列计算正确的是( ) A .()222a b a b -=- B .()322x x 8x ÷=+C .1a a a a÷⋅= D 4=-3.下列二次根式中,是最简二次根式的是( )ABC .D4.已知2a =,2b =的值为( ) A .4B .5C .6D .7 5.下列计算正确的是( )A =B .2=C .1=D =6.下列二次根式中,是最简二次根式的是( )A BC D7.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =8.下列式子中,为最简二次根式的是( )A B C D9.下列说法错误的个数是( )a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个10.下列计算正确的是( )A =B =C 4=D 3=-二、填空题11.已知a ,b 是正整数,且满足是整数,则这样的有序数对(a ,b )共有____对.12.设a ﹣b=2+3,b ﹣c=2﹣3,则a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.13.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.14.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.15.若613x ,小数部分为y ,则(213)x y 的值是___. 16.(623÷=________________ .17.已知a ,b 是正整数,若有序数对(a ,b )使得11)a b的值也是整数,则称(a ,b )是11)a b 的一个“理想数对”,如(1,4)使得112(a b =3,所以(1,4)是11)a b 的一个“理想数对”.请写出11)a b其他所有的“理想数对”: __________.18.已知2,n=1222m n mn +-的值________. 19.36,3,2315,,则第100个数是_______.20.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 三、解答题21.计算及解方程组: (11324-2-1-26()(2)2+(3)解方程组:251032x y x y x y -=⎧⎪+-⎨=⎪⎩【答案】(1)2)7;(3)102x y =⎧⎨=⎩. 【分析】(1)首先化简绝对值,然后根据二次根式乘法、加减法法则运算即可; (2)首先根据完全平方公式化简,然后根据二次根式加减法法则运算即可; (3)首先将第二个方程化简,然后利用加减消元法即可求解. 【详解】(11-1+(11=1(22+)=34-=7-=7-(3)251032x y x y x y-=⎧⎪⎨+-=⎪⎩①②由②得:50x y -= ③ ②-③得: 10x = 把x=10代入①得:y=2 ∴原方程组的解是:102x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,加减消元法解二元一次方程,熟练掌握二次根式的运算法则是本题的关键.22.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.23.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222224.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b、,得:a = ,b = ; (2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析: (1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.先化简,再求值:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y,其中x y ==. 【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y()()()222=x y x y x x x x x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y---⋅+x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.26.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】 【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2). 考点:二次根式的应用27.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的运算法则逐项计算即可判断. 【详解】解:AB 、C 2÷=,故错误;D ,故正确.故选D. 【点睛】本题考查了二次根式的四则运算.2.B解析:B 【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断. 【详解】解: A .()222a b a 2ab b -=-+,选项错误; B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .3.D解析:D 【分析】根据最简二次根式的特点解答即可. 【详解】A ,故该选项不符合题意;B =C 、=3,故该选项不符合题意;D 不能化简,即为最简二次根式, 故选:D . 【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.4.B解析:B 【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果. 【详解】解:∵2a =,2b =, ∴227a b ++2252527 55454745425=∴255故选:B.【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键5.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.6.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】AB不是最简二次根式,故本选项不符合题意;10C,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.7.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.8.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】=,故A不是最简二次根式;2是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.9.C解析:C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3=,③错误;a数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.二、填空题11.7【解析】解:∵=+,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即=4;②当a=60,b=60时,即=2;③当a=15,b=60时,即=3;④当a=60解析:7【解析】解:∵2,∴a、b的值为15,60,135,240,540.①当a=15,b=15时,即2=4;②当a=60,b=60时,即2=2;③当a=15,b=60时,即2=3;④当a=60,b=15时,即2=3;⑤当a =240,b =240时,即2=1;⑥当a =135,b =540时,即2=1;⑦当a =540,b =135时,即2=1; 故答案为:(15,15)、(60、60)、(15,60)、(60,15)、(240,240)、(135,540)、(540,135).所有满足条件的有序数对(a ,b )共有 7对.故答案为:7.点睛:本题考查了二次根式的性质和化简,解决此题的关键是分类讨论思想,得出a 、b 可能的取值.12.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=222(2(242++=15. 故答案为:15.13.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB=BC =1,∠B=90°.∴在Rt△ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).14.-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,∴∴﹣|a ﹣c|+﹣|﹣b|=解析:-2a【分析】根据数轴判断出a 、b 、c 的正负情况以及大小情况,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.【详解】由图可知,0c a b <<<∴00.a c c b >,<|a ﹣c ﹣|﹣b |=||()||a ac c b b =()aa cbc b =aa cbc b =-2a .【点睛】本题考查二次根式的性质与化简和化简绝对值.在解决本题时需注意①对于任意实数a ,都有||a =;②在化简绝对值时,绝对值内如果是一个多项式,要给化简后的结果带上括号. 15.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2,y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2,y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2,y=4-,所以(2xy=(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 16.【解析】=,故答案为.解析:【解析】÷====-, 故答案为17.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”, 当a=412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 18.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====. 故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.19.【分析】原来的一列数即为,,,,,,于是可得第n 个数是,进而可得答案.【详解】解:原来的一列数即为:,,,,,,∴第100个数是.故答案为:.【点睛】本题考查了数的规律探求,属于常考解析:【分析】,,于是可得第n 进而可得答案.【详解】,∴第100=.故答案为:【点睛】 本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.20.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初中数学二次根式(讲义及答案)及解析
一、选择题1.下列等式正确的是( )A 7=-B 3=C .5D .=2.下列二次根式中,是最简二次根式的是( )A B C D3.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .04.x 的取值范围是( )A .x≥2020B .x≤2020C .x> 2020D .x< 2020 5.下列各式中,正确的是( )A .B .a 3 • a 2=a 6C .(b+2a) (2a -b) =b 2 -4a 2D .5m + 2m = 7m 26.有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠2 7.“分母有理化”是我们常用的一种化简的方法,如:7==+x =>,故0x >,由22332x ==-=,解得x=结果为( )A .5+B .5+C .5D .5-8.给出下列化简①()2=2=2=12=,其中正确的是( ) A .①②③④B .①②③C .①②D .③④ 9.下列运算一定正确的是( )A a =B =C .222()a b a b ⋅=⋅D ()0n a m=≥10.如果实数x ,y =-(),x y 在( )A .第一象限B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上 二、填空题11.化简322+=___________. 12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.13.已知120654010144152118+++可写成235a b c ++的形式(,,a b c 为正整数),则abc =______.14.计算()623÷+=________________ .15.已知a ,b 是正整数,若有序数对(a ,b )使得112()a b +的值也是整数,则称(a ,b )是112()a b +的一个“理想数对”,如(1,4)使得112()a b+=3,所以(1,4)是112()a b +的一个“理想数对”.请写出112()a b +其他所有的“理想数对”: __________.16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+⋅--=+--+--,则p =__________.17.计算:11882--=_____________. 18.已知x ,y 为实数,y =22991x x -+-+求5x +6y 的值________. 19.已知x =51-,y =51+,则x 2+xy +y 2的值为______. 20.观察分析下列数据:0,3-,6,-3,23,15-,32,…,根据数据排列的规律得到第10个数据应是__________.三、解答题21.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如3,31+这样的式子,其实我们还可以将其进一步化简:(一3533333==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.22.2722322312-310【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10.【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.23.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.25.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.26.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】 先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式的性质求出每个式子的值,再得出选项即可.【详解】解:AB3=,故本选项符合题意;C、5=-,故本选项不符合题意;D、=-,故本选项不符合题意;故选:B.【点睛】本题考查了二次根式的性质和化简,能熟记二次根式的性质是解此题的关键.2.D解析:D【分析】最简二次根式的被开方数中不含能开得尽方的因数或因式,其中小数要转化为分数,分数中分母不可以是二次根式,注意这几点即可得出答案.【详解】ABC,不是最简二次根式,故本选项不符合题意;2D故选:D.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式,最简二次根式必须满足两个条件:被开方数中不含能开得尽方的因数或因式;被开方数的因数是整数,因式是整式,本题属于基础题型.3.D解析:D【分析】把x 的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D .【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.4.A解析:A【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】∴x-2020≥0,解得:x ≥2020;故选:A .【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.5.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.6.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.7.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C【分析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式==,故④错误,故选C.【点睛】本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.9.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A|a|,故此选项错误;B.,则a,b均为非负数,故此选项错误;C.a2•b2=(a•b)2,正确;D m n a(a≥0),故此选项错误.故选C.【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键.10.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题11.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.14.【解析】=,故答案为.解析:【解析】÷====-, 故答案为15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”, 当a =412,要使+或12时,分别为3和2, 得出(4,1)和(4,4)是的“理想数对”, 当a =913,要使16时,=1, 得出(9,36)是的“理想数对”, 当a =1614,要使14时,=1, 得出(16,16)是的“理想数对”, 当a =3616,要使13时,=1, 得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=, ∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16. 故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 19.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=251515151)222=5-1=4. 20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初中数学章节专项《二次根式》教案及习题
二次根式教案日期:教师:本章学习目标1.理解二次根式的概念,了解被开方数必须是非负数;2.了解最简二次根式的概念;3.理解二次根式的性质;4.掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
本章知识结构1.0)a ≥的式子叫做二次根式,2.代数式概念:用基本运算符号(基本运算符号包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,称为代数式。
3.二次根式的性质(1)()0≥a a 是一个非负数 (2)()()02≥=a a a(3)()()⎩⎨⎧<-≥==002a a a a a a(40,0)a b =≥≥(50,0)a b =≥> 4.将二次根式化为最简二次根式最简二次根式要满足的条件:①被开方数不含分母②被开方数不含能开得尽方的因数或因式(不含完全平方数) 同类二次根式(1)积的算术平方根:()0,0≥≥•=b a b a ab(2)商的算术平方根:()0,0>≥=b a bab a 5.二次根式的乘法法则:()0,0≥≥=•b a ab b a6.二次根式的除法法则:①()0,0>≥=b a baba ②分母有理化 7.二次根式的乘除混合运算法则:先把除以一个因式或因数变为乘这个因式或因数的倒数,将除法统一成乘法 8.二次根式的加减混合运算法则:二次根式加减时可以先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并本章重点难点本章的主要内容是二次根式的化简和运算,重点是理解二次根式的概念和基本性质,并会熟练运用法则进行运算,对二次根式的定义与性质有较深刻的认识。
本章中考内容及中考要求1.了解二次根式的概念,会确定二次根式有意义的条件;会利用二次根式的性质进行化简;能根据二次根式的性质对代数式作简单的变形,在特定条件下确定字母的值。
2.理解二次根式的加、减、乘、除运算法则;会进行二次根式的化简,会进行二次根式的混合运算(不要求分母教学过程1、 二次根式的定义形如()0≥a a 的式子叫做二次根式,“”称为二次根号例1:下列哪些是二次根式:()()()()()()()026,15,4,73,32,3123<-+-a a x a 解:(1)是二次根式,因为3>0.(2)不是二次根式,因为—3<0(3)不是二次根式,因为根指数是3,不是2(4)当0≥a 时,是二次根式;当0<a 时,不是二次根式(5)是二次根式,因为02≥x ,所以012>+x (6)是二次根式,因为0<a 时,02>-a 练习一:1、 下列哪些是二次根式:⎪⎭⎫ ⎝⎛<---2112,1,4,,82423a a x a2、 下列哪些是二次根式:()05,2,36,7,2723≤-+--x x a3、 下列哪些是二次根式:()()01,22,25,9,925≤+-+--x x x4、 下列哪些是二次根式:()03,4,225,8,6425≤---x x b5、下列哪些是二次根式:()09,9,81,27,2723≤-+-x x x 。
二次根式知识点总结及习题带答案
二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。
()注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。
1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。
二次根式(讲义及答案)附解析
一、选择题1.若01x <<,则221144x x x x ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭( ). A .2xB .2x-C .2x -D .2x2.已知x 1=3+2,x 2=3-2,则x₁²+x₂²等于( ) A .8B .9C .10D .113.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D .27123-=4.下列各式计算正确的是( ) A .2+3=5 B .43-33=1 C .2333=63⨯ D .123=2÷5.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .66.下列计算正确的是( )A 235=B 623=C 23(3)86-=-D 321=7.12的下列说法中错误的是( ) A 1212的算术平方根 B .3124<< C 12不能化简D 12是无理数8.若|x 2﹣4x+4|23x y --x+y 的值为( ) A .3B .4C .6D .99.已知实数x 、y 满足222y x x =--,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定 10.3x -在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x >3C .x ≥3D .x ≤3二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 13.已知3x x+=,且01x <<,则2691x x x =+-______.14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =+++,则S=________________ (用含有n 的代数式表示,其中n 为正整数).15.甲容器中装有浓度为a 的果汁40kg ,乙容器中装有浓度为b 的果汁90kg ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____. 17.若实数23a =-,则代数式244a a -+的值为___. 18.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.19.函数y =42xx --中,自变量x 的取值范围是____________. 20.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________.三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中21x =. 2. 【分析】根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1, ∴()21343=123--;(3)∵22265(5)525a m n m n mn +=+=++, ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.23.阅读下列材料,然后回答问题: 在进行二次根式运算时,我们有时会碰上如3、3+1这样的式子,其实我们还可以将其进一步化简:535==33333⨯⨯;22(31)2(31)=313+1(3+1)(31)(3)1⨯-⨯-==--- . 以上这种化简过程叫做分母有理化.3+1还可以用以下方法化简:22(3)1(3+1)(31)=313+13+13+13+1--===-. (1)请用其中一种方法化简1511-;(2)化简:++++3+15+37+599+97.【答案】(1) 15+11;(2) 311-1. 【分析】(1)运用了第二种方法求解,即将4转化为1511-;(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.24.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【答案】3【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++()211,11x x x x -+=⋅-+1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.2.C解析:C 【详解】12x x +==12321x x ==-=,所以()2221212122x x x x x x +=+-=(22112210-⨯=-=,故选:C . 【点睛】对于形如2212x x +的式子,改变其中两个字母的位置后,并不改变代数式的值,通常将具有这个特点的代数式称为轮换对称式,如1211+x x ,1221x x x x +,12x x -等,轮换对称式都可以用12x x +,12x x 来表示,所以求轮换对称式的值,一般是先将式子用12x x +,12x x 来表示,然后再整体代入计算.3.D解析:D 【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案. 【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误; D==D 正确; 故选:D . 【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.4.D解析:D 【解析】试题分析:根据同类二次根式,可知2与3不是同类二次根式,因此不能计算,故不正确.-=3,故不正确;根据同类二次根式,可知4333⨯=18,故不正确;根据二次根式的性质,可知2333÷=÷=,故正确.根据二次根式除法的性质,可知2733333故选D.5.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1,第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:,•=6,故选D6.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】2与3A选项错误;6===B选项正确;62632223-=-=,所以C选项错误;(3)83212与3D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.7.C解析:C【分析】根据算术平方根的定义,无理数的定义及估值,二次根式的化简依次判断.【详解】A1212的算术平方根,故该项正确;B、3124<<,故该项正确;C1223=D=是无理数,故该项正确;故选:C.【点睛】此题考查算术平方根的定义,无理数的定义及估值,二次根式的化简,熟练掌握各知识点并运用解题是关键.8.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.9.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.C解析:C【详解】解:根据题意得:x-3≥0解得:x≥3故选C.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239xx=++==,∴17xx+=,∴212725xx=-+=-=,∵01x<<,=,∴1xx=-=-∴原式====..【点睛】本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.14.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】 解:∵1221191=124S =++311122===+-; ∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m故答案为:5【点睛】 本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键. 16.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.17.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.18.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
二次根式及其运算知识讲义(解析版)
专题01 二次根式及其运算知识讲义【相关概念】二次根式:a≥0)的式子叫做二次根式.a为被开方数,a可以是数字或代数式.代数式:含有字母的数学表达式称为代数式.整式、分式均为代数式.最简二次根式:1、被开方数中不含能开得尽方的因数或因式;2、被开方数的因数是整数,因式是整式.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【二次根式运算】乘法=a≥0,b≥0)除法=(a≥0,b >0)加(减)法先把各根式化成最简根式,再合并同类根式分母有理化====【二次根式性质】,a≥0非负数:|a|,a 2n()()00a a a a ≥⎧=⎨-≤⎩2a =【二次根式应用】因式的内移和外移:(1)负号不能移到根号下;(2)根号下的负号不能移到根号外.【题型一】二次根式有意义条件例1. (2020·m 能取的最小整数值是()A .m = 0B .m = 1C .m = 2D .m = 3【答案】B.3m -1≥0,解得:m≥13, 所以,m 能取的最小整数值是1.故答案为:B .例2. (2020·=-,那么x 的取值范围是_______. 【答案】-3≤x≤0.【解析】解:∵233x x +-∴x≤0,且x+3≥0,解得:-3≤x≤0,故答案为:-3≤x≤0.例3.(2019·=x 的取值范围是______. 【答案】x≥2.=∴x≥0,x−2≥0,∴x≥2.故答案为:x≥2.【题型二】同类二次根式例4. (2020·是同类二次根式,那么满足条件的m 中最小正整数是________.【答案】4.【解析】解:当5m+8=7时,m=-15,不合题意,,即5m+8=28时,m=4,是同类二次根式,那么m 的最小正整数是4,故答案为:4.例5. mn =_________.【答案】10.∴n=2,2m-5=5,∴m=5,n=2∴mn=10故答案为:10.例6. mn=________.【答案】21.∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴mn=21故答案为:21.【题型三】变式考查例7. (2020·浙江宁波市期中)我们把形如b(a,b为最简二次根式)32是()A型无理数B C型无理数D型无理数【答案】B.【解析】解:2故答案为:B.例8. (1n所有可能的值;(2是整数,求正整数n的最小值.【答案】(1)自然数n 的值为2、9、14、17、18;(2)正整数n 的最小值为6.【解析】解:(1是整数,∴18-n=0或1或4或9或16,解得:n=18或17或14或9或2,则自然数n 的值为2,9,14,17,18;(2=是整数,n 为正整数,∴正整数n 的最小值为6.例9.(2020·21x =-,则x=__________. 【答案】12或1.21x =-,∴2x-1=0或2x-1=1,解得:x=12或x=1. 故答案为12或1. 【题型四】二次根式运算例10.(2020·周长为( )A .B .C .D .无法确定【答案】A.若,,则周长为若,∴,此三角形不存在,∴个三角形的周长为故答案为:A .例11)2211-.)2211--1313=--+-=例12.(2020·福建省泉州月考)已知1x =,x 的整数部分为a ,小数部分为b ,求a b的值..【解析】解:∵3,∴+1<4,故a=3,-2,∴)3232274a b ====-. 例13.(2020·广东佛山市月考)先阅读,再解答:由222=-= 可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号,例如:==,请完成下列问题:1的有理化因式是;(2)= .(直接写结果)>或<)(4)利用你发现的规律计算下列式子的值:)1+【答案】(1+1;(2);(3)<;(4)2017.【解析】解:(1+1;(2333==+;(3=>(4)原式=)120181+=)11=2018-1=2017.例14. 若a,b都是正整数,且a<b是可以合并的二次根式,是否存在a,b,=a,b的值;若不存在,请说明理由.【答案】当a=3,b=48;当a=12,b=27.,m、n为正整数,m<n,∴m=1,n=4或m=2,n=3故a=3,b=48或a=12,b=27.例15.(2019·辽宁大连市期中)[观察]请你观察下列式子的特点,并直接写出结果:11112=+-=;11123=+-=;11134=+-=;……[发现]根据你的阅读回答下列问题:(1)请根据上面式子的规律填空:=(n为正整数);(2)请证明(1) 中你所发现的规律.[应用]请直接写出下面式子的结果:11n++=.【答案】[观察]32,76,1312;[发现](1)1111n n+-+或221n nn n+++;(2)证明见解析;[应用]221n nn++.【解析】[观察]32,76,1312,[发现](1)1111n n+-+或221n nn n+++(2)左边=====∵n 为正整数,∴()11111011n n n n +-=+>++ ∴左边=右边[应用11n +++111111111111223341n n =+-++-++-+++-+…… 1111n n =⨯+-+ 1n n n =++ 22=1n n n ++. 【题型五】化简求值例16. (2021·江苏南通市期末)化简2+的结果是( ) A .152x -B .1-C .27x -D .1 【答案】A.【解析】解:∵二次根式被开方数为非负数,∴7-x≥0,则x≤7∴x-8<0,原式=7-x+8-x=15-2x故答案为:A .例17.(2020·浙江杭州期中)实数a ,b 在数轴上的位置如图,||a b -的结果为( )A .2aB .2a -C .2bD .2b -【答案】B.【解析】解:由题意得:a >b ,|a |<|b |,a >0,b <0,∴a -b >0,a +b <0,∴原式=-a -b -a +b =-2a ,故答案为:B .例18.若数轴上表示数x 的点在原点的左边,则化简3x + ) A .4x - B .4x C .2x - D .2x【答案】C.【解析】解:∵数x 的点在原点的左边,∴x <0,∴原式=|3x +|x ||=|3x -x |=|2x |=-2x .故答案为:C .例19.(2020·温州月考)下列四个式子中,与(a -的值相等的是() AB .CD .【答案】D.【解析】解:由题意得:2021-a>0,得:a<2021,∴a-2021<0,∴原式=(2021a --== 故答案为:D . 例20.下列给出的四个命题:①若a b = ,则a a b b =;②若a 2﹣5a+5=01a =- ;③(1a -=其中是真命题是【答案】②.【解析】解:①当a=-1,b=1时,命题不成立,是假命题,②a 2=5a-5,∴5a-5≥0,即a≥1,,是真命题;③(a -==,是假命题, 故答案为:②.【题型六】阅读材料例21.(2021·北京延庆区期末)我们规定用(a ,b )表示一对数对.给出如下定义:记m=,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”.例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”,1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”,,求ab 的值.【答案】(1)1(3与1)3, ;(2)13;(3)1 ;(4)16或6.【解析】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,= ∴y=13;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), 1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=,综上所述,16ab =或6ab =. 例22. 阅读理解:二次根式的除法,要化去分母中的根号,需将分子、分母同乘以一个恰当的二次根式..11==. 类比应用:(1= ; (29++=+ . 拓展延伸:的矩形叫黄金矩形.如图①,已知黄金矩形ABCD 的宽AB =1. (1)黄金矩形ABCD 的长BC = ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF ,猜想矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连结AE ,则点D 到线段AE 的距离为 .【答案】类比应用:(1);(2)2;拓展延伸:(1)12;(2)矩形DCEF为黄金矩形,理由见解析;(3【解析】解:类比应用:(1)根据题意可得:== (2)根据题意可得:9++(9+++19-+-1=2;拓展延伸:(1的矩形叫黄金矩形, 若黄金矩形ABCD 的宽AB =1,则黄金矩形ABCD 的长BC; (2)矩形DCEF 为黄金矩形,理由是:由裁剪可知:AB=AF=BE=EF=CD=1,根据黄金矩形的性质可得:AD=BC=1=∴FD=EC=AD-AF=112-=12,∴DF EF =11122÷=,故矩形DCEF 为黄金矩形;(3)连接AE ,DE ,过D 作DG ⊥AE 于点G ,∵AB=EF=1,,∴=在△AED 中,S △AED =1122AD EF AE DG ⨯⨯=⨯⨯,即AD EF AE DG ⨯=⨯1DG =,解得∴点D 到线段AE 的距离为4+. 例23. (2019·四川月考)阅读下列材料,然后回答问题.一样的式子,其实我们还可以将其进一步化简:====1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求 a 2 + b 2 .我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则 a 2 + b 2 = (a + b)2 - 2ab = x 2- 2y = 4+ 6=10.这样,我们不用求出a ,b ,就可以得到最后的结果.(1...+(2)已知 m 是正整数, ab且 2a 2+ 1823ab + 2b 2 = 2019 .求 m . (31=【答案】(1)12;(2)2;(3)9. 【解析】解:(1)原式12019+2222=+++2019++== (2)∵ab∴=2(2m+1),=1∵2a 2+ 1823ab + 2b 2 = 2019∴2(a 2+b 2)+1823=2019∴a 2+b 2=98∴4(2m+1)2=100∴m=2或m=-3∵m是正整数∴m=2.(31=,得:21=20=2281=-+=0≥≥.例24.(2020·湖南怀化市期末)同学们,我们以前学过完全平方公式222)2(a ab b a b ±+=±,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的非负数(以及0)都可以看作是一个数的平方,如23=,25=,下面我们观察:)2221211213=-⨯=-=-23211)-=-=,∴231)-=1= 求:(1;(2(3=,则m 、n 与a 、b 的关系是什么?并说明理由.【答案】(11;(21;(3)m+n=a ,mn=b ,理由见解析.【解析】解:(11;(21==;(3)m+n =a ,mn =b.=∴2a =+,∴,∴m+n =a ,mn =b.例25.(2020·安徽安庆市)阅读理解题,下面我们观察:2221)211213=-⨯=-=-反之23211)-=-=,所以231)-=1= 完成下列各题:(1)在实数范围内因式分解:(2(3.【答案】(1)2(1+;(21;(3【解析】解:(1)22231(1+=+=+(21==(3==。
第四讲 二次根式-【满分之路】备战2022年中考数学一轮复习精讲精练(全国通用)(解析版)
模块一数与式第四讲二次根式知识梳理夯实基础知识点1:二次根式的相关概念知识点2:二次根式的性质知识点3:二次根式的运算注意:1.有理数的加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律以及多项式的乘法公式仍适用于二次根式的运算.2.二次根式运算的结果一定要化为最简.知识点4:二次根式的估值用有理数估算二次根式的大致范围时,一般采用“相邻平方比较”法,即用两个相邻数的平方与被开方数比较,若被开方数介于这两个相邻数的平方之间,则这个二次根式的值就在这两个相邻数之间,估算的精确度可由相邻数的精确度来确定。
直击中考 胜券在握1.(2021·海南海口·有意义,a 的取值范围是( )A .0a ≠B .2a >-C .2a ³D .2a ³-且0a ≠【答案】D 【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案即可.【详解】解:由题意得:20a +³,且0a ≠, 解得:2a ³-且0a ≠,故选:D .【点睛】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.2.(2021·杭州中考)下列计算正确的是( )A 2=B 2=-C 2=±D 2=±【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.【详解】2==,故A 正确,C 错误;2,故B 、D 错误;故选:A.【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.3.(2021·武威中考)下列运算正确的是()A3=B.4==C=D4【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.【详解】=,故A错;=B错;=C正确;=,故D错.2故选:C.【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.4.(2021·河南辉县·九年级期中)下列计算正确的是( )A=B=C=D=﹣5【答案】A【分析】由二次根式的乘法运算可判断A,由二次根式的化简可判断B,D,由二次根式的加法运算可判断C,从而可得答案.【详解】==故A符合题意;B不符合题意;=≠故C不符合题意;5,==故D 不符合题意;故选A 【点睛】本题考查的是二次根式的化简,二次根式的乘法运算与加法运算,熟悉二次根式的化简与加法,乘法的运算法则是解本题的关键.5.(2021·23x =-,则x 的取值范围是( )A .23x ³B .23x >C .23x £D .x <23【答案】C 【分析】x 的取值范围.【详解】解:3223x x =-=-,∴320x -£,∴23x £.故选:C .【点睛】6.(2021·黑龙江·哈尔滨市萧红中学八年级阶段练习)下列计算中,正确的是( )A .+=B .10==C .(33+-=-D .)2b a b+=+【答案】C 【分析】根据二次根式的性质和二次根式的混合运算计算即可得出答案.【详解】解:A 、B 、=C、(39123+-=-=-,此选项正确,符合题意;D、2+=b a)2+故选:C.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.=,那么7.(2021·四川省隆昌市第一中学八年级期中)已知实数a满足条件2011a 2a-的值为( )2011A.2010B.2011C.2012D.2013【答案】C【分析】由题意可知a-2012≥0,可得2011-=,移项后平方得a-2012=20112,变形得a-20112=2012.a a【详解】解:有意义,∴a-2012≥0,∴a≥2012,∴2011-a<0,∴2011a a-=,=2011∴a-2012=20112,∴a-20112=2012.故选C.【点睛】本题考查二次根式有意义条件,化简绝对值,代数式的值,掌握二次根式有意义条件得出a≥2012,化简绝对值得出a-2012=20112是解题关键.8.(2021·()A B C D.【答案】C【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】BC 是同类二次根式;D 故选:C .【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.解题关键是掌握同类二次根式的概念、二次根式的化简.9.(2021·陕西高陵·八年级阶段练习)实数a ,b =()A .-a bB .2a b -+C .a b +D .2a b ++【答案】B 【分析】先根据数轴上两点的位置确定1a +和1b -的正负,再根据二次根式的性质化简计算即可.【详解】解:观察数轴可得,10a -<<,12b <<,∴10a +>,10b ->,\()11a b =+--11a b =+-+2a b =-+故选B .【点睛】本题主要考查了结合数轴上点的位置化简二次根式,熟练掌握二次根式的性质是解题的关键.10.(2021·全国·九年级专题练习)实数a ,b在数轴上的位置如图所示,化简:|||+|-+a b a b 的结果是()A .2a ﹣b +1B .a ﹣2b +1C .﹣a +2b ﹣1D .2a +b ﹣1【答案】C 【分析】根据二次根式的定义先化简,再根据绝对值的意义进行计算即可.【详解】解:观察实数a ,b 在数轴上的位置可知:a +1>0,a ﹣b <0,1﹣b <0,a +b >0,|||+|-+a b a b =|a +1|+|a ﹣b |+2|1﹣b |﹣|a +b |=a +1+b ﹣a +2(b ﹣1)﹣(a +b )=a +1+b ﹣a +2b ﹣2﹣a ﹣b =﹣a +2b ﹣1.故选:C .【点睛】本题考查了二次根式的性质与化简、实数与数轴,解决本题的关键是掌握绝对值的意义.11.(泸州中考)已知三角形的三边长分别为a 、b 、c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式()()()c p b p a p p S ---=,1202-1261)曾提出利用三角形的三边求其面积的秦,若一个三角形的三边长分别为2,3,4,则其面积是( )A C D【答案】B 【分析】将三角形的三边长2,3,4代入题目中的秦九韶公式,,从而可以解答本题.【详解】∵S =12∴若一个三角形的三边长分别为2,3,4,则其面积是:S 【点睛】解答本题的关键是明确题意,求出相应的三角形的面积.12.(2021·贵州毕节·八年级期中)计算:(2021(2020=__________.【答案】2【分析】先把原式写成(((20202020222´´,然后再运用积的乘法法则的逆用和平方差公式运算即可.【详解】解:(2021(2020,(((20202020222=´´=((2020222éù+´ëû=(202012´2=故答案为:2【点睛】本题考查了二次根式的混合运算,灵活运用积的乘方法则和平方差公式是解答本题的关键.13.(2021·四川达州·中考真题)已知a ,b 满足等式2690a a ++=,则20212020a b =___________.【答案】-3【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解.【详解】解:由2690a a ++=,变形得()230a ++=,∴130,03a b +=-=,∴13,3a b =-=,∴()()()()20202020202020212020202120201113=33=33=3333ab⎛⎫⎛⎫⎛⎫=-´-´-´-´-´- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-3【点睛】本题考查了完全平方公式,平方、算术平方根的非负性,同底数幂的乘法、积的乘方的逆用等知识,根据题意求出a 、b 的值,熟知同底数幂的乘法、积的乘方是解题关键.14.(2020·全国·八年级单元测试)已知5y x =-+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=-当4x ³时,451y x x =--+=则所求的总和为(921)(922)(923)111-´+-´+-´++++L 75312017=+++´2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.15.(2021·山东蒙阴·八年级期末)对于任意不相等的两个实数a ,b ( a > b )定义一种新运算a ※b =,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.16.(2018·湖北沙洋·八年级阶段练习)把_____.【解析】∵1a->0,∴a<0∴=17.(2021·北京·北大附中八年级期中)当x=___取最小值为___.【答案】2 1【分析】根据二次根式有意义的条件,可求出x的物质范围,根据二次根式的性质求解即可.【详解】解:∵x-2≥0,解得x≥2,当x≥2,,∴x=2取最小值1,故答案为:2,1.【点睛】此题主要考查了二次根式的性质,关键是明确二次根式的被开方数越大,值越大.18.(2021·山西·__________.【答案】13【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.【详解】13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.19.(2021·河南·九年级专题练习)在函数15y x =-中,自变量x 的取值范围是_________.【答案】3x ³且5x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:301050x x x -³⎧ï+>⎨ï-≠⎩,解得:3x ³且5x ≠.故答案为:3x ³且5x ≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.20.(2021·全国·九年级专题练习)m =,则54322202022021m m m m m --+--的值是________.【答案】1-【分析】先根据二次根式的分母有理化可得1m =,从而可得()212021m -=,再利用完全平方公式进行运算求值即可得.【详解】由m =1m ==,则())221112021m -=-=,因此54322202022021m m m m m --+--,5433222021212022m m m m m m =--+-+-+,()()2332212021212022m m m m m m =--+-+-+,()()22331202112022m m m m =--+--,332021202120212022m m =-+-,1=-,故答案为:1-.【点睛】本题考查了二次根式的分母有理化、完全平方公式,熟练掌握并灵活运用完全平方公式是解题关键.21.(浙教版八年级下册第一章数的开方与二次根式综合练习题)用教材中的计算器进行计算,开机后依次按下,把显示结果输入右侧的程序中,则输出的结果是______.【答案】7【分析】先根据计算器计算出输入的值,再根据程序框图列出算式:接下来判断计算结果是否大于1,可得出),由此计算即可.【详解】由题意知输入的值为23=9,则输出的结果为(9÷3)->1故答案为7.【点睛】本题考查计算器-基础知识,二次根式混合运算,解题的关键是根据程序框图列出算式,并熟练掌握二次根式的混合运算顺序和运算法则22.(2021·四川省巴中中学八年级期中)计算:(1(2)¸.【答案】(1)(2)72【分析】(1)先化简每个二次根式,再合并同类二次根式即可;(2)先计算并化简括号内的,合并结果,再算除法.【详解】解:(1+=13+´==(2)+¸=43⎛´¸ ⎝=(¸=7 2【点睛】本题主要考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.(2021·山东·枣庄市台儿庄区教育局教研室八年级期中)(1(2)(3(41)【答案】(1)1;(2)2-;(3)4(4)3.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用二次根式的乘法运算法则以及结合绝对值的性质化简,先算乘法,再化简二次根式,去绝对值,最后利用二次根式的加减运算法则计算得出答案;(3)直接利用二次根式的乘除运算法则化简,先算乘除,再利用二次根式的加减运算法则计算得出答案;(4)直接利用二次根式的乘法运算法则化简,先算乘除,再利用有理数的加减运算法则计算得出答案.【详解】解:(13212=-312122=--+=1;(2)-=2=--(3=4==1)31=-21231=+-+-3=.【点睛】本题主要考查了二次根式的混合运算以及实数运算,正确化简二次根式是解题关键.24.(2021·河南·(12(2-+;(2)2(11)-+-.【答案】(1)9;(2)15.【分析】(1)根据二次根式的混合运算的法则计算即可;(2)利用平方差公式和完全平方公式展开,再合并即可.【详解】解:(12(2+45=++9=;(2)2(11)-+-11231=--+15=-.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.25.(1+(2)-﹣1)2.【答案】(12)3.【分析】(1)先算乘法,化成最简二次根式,再算加减即可;(2)先算乘除和运用完全平方公式计算,再合并.【详解】===1)221=-3=3=.【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算的法则进行解答.26.(2011年汕头市九年级第一学期期末考试数学卷)矩形的两条边长分别是矩形的面积和对角线的长.【答案】解:面积S = 22=- 12210=-=对角线长l ====27.(山东省鄄城县2020-2021学年八年级上学期期中数学试题)已知a ,b ,c 满足2|(0a c =.(1)求a 、b 、c 的值(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由.【答案】(1)a =5b =,c =(2)能,5+【分析】(1)根据非负数的性质可求出a 、b 、c 的值;(2)根据三角形三边关系,再把三角形三边相加即可求解.【详解】解:(1)由题意得: 0a =,50b -=,0c =,解得:a ==5b =,c ==(2)根据三角形的三边关系可知,a 、b 、c 能构成三角形此时三角形的周长为55a b c ++=+=+【点睛】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.28.(贵州省黔西南州兴义市鲁屯中学2018学年七年级下学期期中测试数学试卷)化简求值:()1已知a 3=()2已知:实数a ,b b +-.【答案】(1)±3;(2)2a +b ﹣1.【详解】分析:(1)由于34a =3,根据算术平方根的定义可求b (2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a =3.=3,∴b =9,,±3;(2)由数轴可得:﹣1<a <0<1<b ,则a +1>0,b ﹣1>0,a ﹣b <0+2|a﹣b|=a+1+2(b﹣1)+(a﹣b)=a+1+2b﹣2+a﹣b=2a+b﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.29.(2021·全国·九年级专题练习)已知a,b是有理数,若4b=,求ab的平方根.【答案】±【分析】根据二次根式及分数的意义,可得:22404020aaa⎧-³ï-³⎨ï-≠⎩,可求出a=﹣2,此时b=﹣4,即可得出答案.【详解】解:若要使4b=-有意义,则2240 4020aaa⎧-³ï-³⎨ï-≠⎩,解得a=﹣2,此时b=﹣4,则ab的平方根==±.【点睛】本题考查二次根式的意义及平方根的求法,属于基础题型.==(1=(2)用字母表示思思发现的规律;(3)请你给出这个结论的一般性的证明.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用前面三个式子的规律直接写出第4个和第5个等式;(2)写出第n+1个等式即可;(3)根据二次根式的性质进行证明.【详解】解:(2的整数);(3n≥2的整数).【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.31.阅读下面的解答过程,然后作答:m和n,使m2+n2=a且mn,则a可变为m2+n2+2mn,即变成(m+n)2化简.例如:∵=2+2)2请你仿照上例将下列各式化简(1(2【答案】(1)(2-.【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵222 7-=-=,==32.(四川省遂宁市射洪中学外国语实验学校2020-2021学年八年级上学期第三次月考试数学试题)下面是一个按某种规律排列的数阵:1 第一行2第二行34 …… …… …… …… …… …… …… …… …… …… ……根据数阵排列的规律,第n (n 为整数且3n ³)行从左向右数第(2)n -个数是______(用含n 的代数式表示).【分析】根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n -1)行的最后一个数,然后被开方数加上(n -2)即可.【详解】解:由观察可知:第(n )1-,\第(3n n …且n 是整数)行从左向右数第2n -..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.33.(2021·福建·三明市列东中学八年级期中)阅读下列解题过程:-1;;…解答下列各题:(1= ;(2= .(3)利用这一规律计算:+×).【答案】(13;(2(3)2020【分析】(1(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】33;==(3)×)-)×+1)11)×+1)=20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.。
16.1 二次根式(解析版) -八年级数学下册精讲精练
16.1 二次根式知识点1:二次根式的定义一般地,我们把形如)0(0≥≥a a 的式子叫做二次根式。
二次根式的实质是一个非负数数a 的算数平方根。
注意:二次根式从形式上看,应含有二次根号;被开方数的取值范围有限制即被开方数a 必须是非负数。
二次根式无意义的条件是因负数没有算术平方根,所以当a ﹤0时,没有意义。
知识点2:二次根式的性质 (1)二次根式的非负性,)0(0≥≥a a 的最小值是0;也就是说a ()是一个非负数,即)0(0≥≥a a 。
注:因为二次根式)0(0≥≥a a 表示a 的算术平方根,这个性质在解答题目时应用较多,如 0a b =,则a=0,b=00a b =,则a=0,b=020a b =,则a=0,b=0。
(2)2()a a =()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式2()a a=()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则2()a a =,如:22(2)=(3)知识点3:与的异同点(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以 是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义,而.【例题1】下列计算正确的是( ) A .=﹣3B .=C .=±6D .﹣=﹣0.6【答案】D .【解析】直接利用二次根式的性质以及立方根的性质分析得出答案.A.=3,故此选项错误;B.=﹣,故此选项错误;C.=6,故此选项错误;D.﹣=﹣0.6,正确.在实数范围内有意义,则x的取值范围是.【例题2】若代数式√2x−6【答案】x>3.【解析】由题意得:2x﹣6>0,解得:x>3,【点拨】根据二次根式有意义的条件可得2x﹣6>0,再解即可.一、选择题1.化简|√2−3|的结果正确的是()A.√2−3 B.−√2−3 C.√2+3 D.3−√2【答案】D【解析】∵√2−3<0,∴|√2−3|=−(√2−3)=3−√2.【点拨】根据绝对值的定义解答即可.2.下列运算正确的是()A.=﹣2 B.(2)2=6 C.+=D.×=【答案】D【解析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.A.=2,故本选项错误;B.=12,故本选项错误;C.与不是同类二次根式,不能合并,故本选项错误;D.根据二次根式乘法运算的法则知本选项正确.3.若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1【答案】D.【解析】根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.∵代数式+有意义,∴,解得x≥0且x≠1.4.当1<a<2时,代数式+|1﹣a|的值是()A.﹣1 B. 1 C.2a﹣3 D.3﹣2a【答案】B【解析】首先判断出a﹣2<0,1﹣a<0,进而利用绝对值以及二次根式的性质化简求出即可.∵当1<a<2时,∴a﹣2<0,1﹣a<0,∴+|1﹣a|=2﹣a+a﹣1=1.5.把根号外的因式移到根号内,得( )A. B.C. D.【答案】C.【解析】由二次根式的意义知x<0,则.6.要使代数式有意义,则x的()A.最大值是B.最小值是C.最大值是D.最小值是【答案】A【解析】根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∵代数式有意义,∴2﹣3x≥0,解得x≤.7.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【答案】C【解析】直接利用二次根式有意义的条件进而得出x﹣1≥0,求出答案.要使式子有意义,故x﹣1≥0,解得:x≥1.则x的取值范围是:x≥1.8.若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠2【答案】A【解析】根据负数没有平方根列出关于a的不等式,求出不等式的解集确定出a的范围即可.∵二次根式有意义∴a﹣2≥0,即a≥2则a的范围是a≥29.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【答案】C【解析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.依题意得:x﹣1>0,解得x>1.10.实数a,b在数轴上对应点的位置如图,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【答案】A【解析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.11.下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【答案】B【解析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.A.x2•x3=x5,故此选项错误;B.=|x|,正确;C.(x2﹣)÷x=x﹣,故此选项错误;D.x2﹣x+1=(x﹣)2+,故此选项错误。
专题1.1二次根式(精讲精练)(解析版)
2019-2020学年八年级下学期期中考试高分直通车(人教版)专题1.1二次根式(精讲精练)【目标导航】【知识梳理】1.二次根式的定义a (a≥0)的式子叫做二次根式,称为二次根号;判断一个式子是二次根式,需要满足以下条件:(1)根指数必须是2;(2)被开方数为非负数.2.二次根式有无意义的条件:(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.(2)如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.3.二次根式的性质:(1)0a ≥0a ≥(双重非负性).(2)2(),0a a a =≥(任何一个非负数都可以写成一个数的平方的形式). 应用:在实数范围内分解因式:22247(2)(7)(27)(27)m m m m -=-=+(3,0,0a aaa a≥⎧⎪==⎨-≤⎪⎩(4(a≥0,b≥0)(5(a≥0,b>0)4.二次根式的化简:(1)二次根式化简的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2,所得结果为最简二次根式或整式.(2)最简二次根式的条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式.5.二次根式的运算:(1)二次根式的乘法(a≥0,b≥0)文字语言:二次根式与二次根式相乘,等于各个被开数的积的算术平方根.=0≥≥≥(a0,b0....k)(2a≥0,b>0)文字语言:二次根式与二次根式相乘,等于各个被开数的商的算术平方根.(3)二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.二次根式的加减步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.6.二次根式的混合运算:(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.①与实数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个单项式,多个不同类的二次根式的和可以看作多项式.(2)二次根式的运算结果要化为最简二次根式或整式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.【典例剖析】【例1】(2019秋•浦东新区期中)下列各式中,一定是二次根式的是( )A B C D 【分析】根据二次根式的定义判断即可.【解析】解:A 、当10a +,即1a -B 、当10a -,即1aC 、当210a -D 、22222211(1)10a a a a a ++=+++=++>,∴一定是二次根式,本选项正确;故选:D .0)a 的式子叫做二次根式.【变式1-1】(2019春•东港区校级期中)下列各式中一定是二次根式的是( )A B C D 【分析】根据二次根式被开方数是非负数判断.【解析】解:ABCD故选:C .【变式1-2】(2019是整数,则正整数a 的最小值是( )A .2B .3C .4D .5【分析】把18分解质因数,然后根据二次根式的性质解答.【解析】解:21823=⨯,∴是整数的正整数a 的最小值是2.故选:A .【例2】(2019x 的取值范围是( ) A .25x B .25x C .52x D .52x > 【分析】根据二次根式有意义的条件可得250x -,再解即可. 【解析】解:由题意得:250x -,解得:52x , 故选:C .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.【变式2-1】(2019有意义的条件是( ) A .2x ≠ B .2x >- C .2x D .2x >【分析】根据二次根式和分式有意义的条件可得20x ->,再解即可.【解析】解:由题意得:20x ->,解得:2x >, 故选:D .【变式2-2】(2019有意义的实数x 的取值范围是( ) A .3x B .3x 且0x ≠ C .3x < D .3x <且0x ≠【分析】直接利用二次根式有意义的条件得出答案.【解析】解:使式子3x x -有意义的实数x 的取值范围是:30x -,且0x ≠, 解得:3x 且0x ≠.故选:B . 考点3 二次根式的性质与化简【例3】(2019春•庐阳区校级期中)实数a ,b 在数轴上的位置如图所示,则化简22(1)(2)a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++【分析】根据二次根式的性质以及绝对值的性质即可求出答案.【解析】解:由数轴可知:102a b -<<<<,10a ∴+>,20b ->,∴原式|1||2|a b =+-- 12a b =+-+ 3a b =-+,故选:A .【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.【变式 3-1】(2019春•黄石期中)若12a 221|2|a a a -++-的结果是( )A .23a -B .a -C .32a -D .1【分析】利用二次根式的性质以及绝对值的性质进行化简即可.【解析】解:12a ,∴221|2|a a a -++-|1||2|a a =-+-12a a =-+-1=,故选:D .【变式3-2】(20192(1)1a a -=-,则a 的取值范围是( )A .1a >B .1aC .1a <D .1a【分析】根据二次根式的非负性,即可得到a 的取值范围.【解析】解:10a -,1a ∴,故选:B .【例4】(2019秋•雨城区校级期中)下列根式中是最简二次根式的是( )A B . C D 【分析】最简二次根式的条件为:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.【解析】解:A .被开方数含分母,故不符合题意;B .被开方数不含分母;被开方数不含能开得尽方的因数或因式,故符合题意;C .被开方数含能开得尽方的因数或因式,故不符合题意;D .被开方数含能开得尽方的因数或因式,故不符合题意;故选:B .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.【变式4-1】(2019秋•福田区校级期中)下列二次根式中,最简二次根式的是( )A B C D 【分析】最简二次根式的条件为:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.【解析】解:A .被开方数含能开得尽方的因数或因式,故A 不符合题意;B .被开方数含能开得尽方的因数或因式,故B 不符合题意;C .被开方数含分母,故C 不符合题意;D .被开方数不含分母,被开方数不含能开得尽方的因数或因式,故D 符合题意;故选:D .【变式4-2】(2019a 的值为( )A.1B.3±C.D.3【分析】根据最简二次根式及同类二次根式的定义列方求解.【解析】解:3812a a∴+=-,解得:1a=,故选:A.【例5】(2019春•灵宝市期中)化简:(1;(2);(3【分析】(1)直接利用二次根式的乘法运算法则计算得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用平方差公式化简得出答案.【解析】解:(1)原式1213156=⨯=;(2)原式11553=-⨯=-;(3)原式===【点睛】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.【变式5-1】(2019春•邗江区校级期中)计算:(1(2【分析】(1)根据二次根式的性质把除式变形,根据二次根式的乘法法则计算;(2)根据二次根式的乘除法法则计算即可.【解析】解:(1==1=;9(2==【变式5-2】(2019春•偏关县期中)小明在学习中发现了一个“有趣”的现象:=①-=,②∴=-③∴=-.④22(1)上面的推导过程中,从第②步开始出现错误(填序号);(2)写出该步的正确结果.【分析】(1)②中等式的左边是负数,而右边是正数,据此可得答案;(2)根据二次根式的性质求解可得.【解析】解:(1)上面的推导过程中,从第②步开始出现错误,故答案为:②;(2)-=【例6】(2019【分析】直接化简二次根式进而合并得出答案.【解析】解:原式2=2=.【点睛】此题主要考查了二次根式的加减,正确化简二次根式是解题关键.【变式6-1】(2019春•徐汇区校级期中)计算:-【分析】根据二次根式的运算法则即可求出答案.【解析】解:原式=--== 【变式6-2】(2019春•武昌区期中)计算:(1(2【分析】(1)直接化简二次根式进而合并得出答案;(2)直接化简二次根式进而合并得出答案.【解析】解:(1)原式==(2)原式263=⨯-=0=.【例7】(2019秋•雁塔区校级期中)计算(1(2)22-【分析】(1)利用二次根式的乘除法则运算;(2)利用完全平方公式计算.【解析】解:(1)原式=(2)原式52(52)=+--=.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式7-1】(2019秋•昌平区校级期中)【分析】直接利用平方差公式计算得出答案.【解析】解:原式22=-1820=-2=-.【变式7-2】(2019秋•孟津县期中)计算(1)÷(2)2(11)-+-【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(2)利用平方差公式和完全平方公式计算.【解析】解:(1)原式=÷=÷143=;(2)原式112(121)=---1113=--+24=.【例8】(2019秋•锦江区校级期中)已知a ,b (1)化简a ,b ;(2)求224a ab b -+的值.【分析】(1)利用分母有理化求解可得;(2)将化简后的a 、b 的值代入原式2()2a b ab =--计算可得.【解析】解:(1)2a ====,2b ===; (2)原式2()2a b ab =--222)22)=--⨯2(4)2(54)=--⨯-162=-14=.【点睛】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的混合运算顺序和运算法则.【变式8-1】(2019秋•太仓市期中)已知2x =,求下列代数式的值(1)244x x ++;(2)32552x x x +++.【分析】(1)根据x 的值,可以求得所求式子的值;(2)根据(1)的值和x 的值,可以求得所求式子的值.【解析】解:(1)32x =-,244x x ∴++ 2(2)x =+222)=+3=;(2)32x =-,2443x x ++=,32552x x x ∴+++22(44)(44)32x x x x x x =+++++--3332x x =+--1=.【点睛】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.【变式8-2】(2019春•沙雅县期中)已知:2a ,2b =,分别求下列代数式的值(1)222a ab b ++(2)22a b -【分析】(1)根据完全平方公式和32a =+,32b =-,可以求得所求式子的值;(2)根据平方差公式和32a =+,32b =-,可以求得所求式子的值.【解析】解:(1)32a =+,32b =-,23a b ∴+=,222a ab b ∴++2()a b =+2(23)=12=;(2)32a =+,32b =-,23a b ∴+=,4a b -=,22()()23483a b a b a b ∴-=+-=⨯=.考点9二次根式的应用【例9】(2019春•颍泉区校级期中)阅读材料:如果一个三角形的三边长分别为a ,b ,c ,记2a b c p ++=,那么这个三角形的面积()()()S p p a p b p c =---.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦---九韶公式”完成下列问题:如图,在ABC ∆中,7a =,5b =,6c =.(1)求ABC ∆的面积;(2)设AB 边上的高为1h ,AC 边上的高为2h ,求12h h +的值.【分析】(1)根据题意先求p ,再将p ,a ,b ,c 的值代入题中所列面积公式计算即可;(2)按照三角形的面积等于12⨯底⨯高分别计算出1h 和2h 的值,再求和即可. 【解析】解.(1)根据题意知92a b c p ++==所以()()()9(97)(95)(96)66S p p a p b p c =---=---=ABC ∴∆的面积为66;(2)12116622S ch bh === ∴1211656622h h ⨯=⨯= 126h ∴=,21265h = 122265h h ∴+=. 【点睛】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.【变式9-1】(2019春•沂水县期中)高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t (单位:)s 和高度h (单位:)m 近似满足公式5h t =(不考虑风速的影响) (1)从50m 高空抛物到落地所需时间1t 是多少s ,从100m 高空抛物到落地所需时间2t 是多少s ;(2)2t 是1t 的多少倍?(3)经过1.5s ,高空抛物下落的高度是多少?【分析】(1)将50h =代入15h t =100h =代入25h t = (2)计算2t 与1t 的比值即可得出结论;(3)将 1.5t =代入公式5h t =进行计算即可. 【解析】解:(1)当50h =时,150105t ==); 当100h =时,210020255t ==); (2)2125210t t == 2t ∴是1t 2(3)当 1.5t =时,1.55h =, 解得11.25h =, ∴下落的高度是11.25米.【变式9-2】(2019春•抚顺县期中)如图,某农场拟建两间长方形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留2m 宽的门垂直于墙的边AD 的长为|81|m -,平行于墙的边AB 的长为144m ,那么拟建墙体所需要的材料(不包括门)总长为多少m .(精确到0.)lm【分析】先求出AD 和AB 的长,再根据所需要的材料总长332AD AB =+-【解析】解:|81|819AD =-=,14412AB ==,依题意得,所需要的材料总长33239123227123 1.41434.8()AD AB m =+-⨯+-+-⨯≈;答:拟建墙体所需要的材料(不包括门)总长为34.8m .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战2021年中考数学总复习一轮讲练测第一单元数与式第4讲二次根式1.了解二次根式和最简二次根式的概念,知道二次根式中被开方数为非负数并且也是非负数.2.了解二次根式的加、减、乘、除运算法则并掌握二次根式的性质.3.能根据二次根式的运算法则及性质进行二次根式的加、减、乘、除和综合运算.1.(2020•温岭市校级一模)当x<1时,有意义.【思路点拨】根据二次根式及分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【答案】解:∵有意义,∴x﹣1<0,解得x<1.故答案为:<1.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式的被开方数具有非负性是解答此题的关键.2.(2019春•余姚市期末)下列各式正确的是()A.=±3 B.=±3 C.=3 D.=﹣3【思路点拨】根据算术平方根的定义求解,即正数正的平方根是算术平方根.【答案】解:A、=3,故此选项计算错误,不符合题意;B、=3,故此选项计算错误,不符合题意;C、=3,故此选项计算错误,符合题意;D、=3,故此选项计算错误,不符合题意.故选:C.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.3.(2020春•临邑县期末)下列运算中,正确的是()A.=±6 B.﹣1C.=5 D.3=3【思路点拨】利用算术平方根的定义对A进行判断;利用二次根式的性质对B进行判断;利用完全平方公式对C进行判断;根据二次根式的加减法对D进行判断.【答案】解:A、=6,所以A选项错误;B、原式=|1﹣|=﹣1,所以B选项正确;C、原式=2+2+3=5+2,所以C选项错误;D、原式=2,所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.(2018•恩阳区模拟)若,则()A.b>3 B.b<3 C.b≥3 D.b≤3【思路点拨】等式左边为非负数,说明右边3﹣b≥0,由此可得b的取值范围.【答案】解:∵,∴3﹣b≥0,解得b≤3.故选:D.【点睛】本题考查了二次根式的性质:≥0(a≥0),=a(a≥0).5.(2019•石家庄二模)如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78 cm2B.cm2C.cm2D.cm2【思路点拨】根据题意求出阴影部分的面积进而得出答案.【答案】解:从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是+=+4,留下部分(即阴影部分)的面积是(+4)2﹣30﹣48=8=24(cm2).故选:D.【点睛】此题主要考查了二次根式的应用,正确求出阴影部分面积是解题关键.6.(2019•武汉)计算的结果是4.【思路点拨】根据二次根式的性质求出即可.【答案】解:=4,故答案为:4.【点睛】本题考查了二次根式的性质和化简,能熟练地运用二次根式的性质进行化简是解此题的关键.7.((2020春•越城区校级月考)如果y=+3+2,那么x y=49.【思路点拨】根据二次根式有意义的条件即可求出x与y的值.【答案】解:由题意可知:,∴x=7,∴y=2,∴原式=72=49,故答案为:49.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.8.(2018春•杭州期末)已知(m﹣3)≤0.若整数k满足m+k=3,则k=2.【思路点拨】先根据(m﹣3)≤0,由≥0,可知m﹣3≤0,被开方数是非负数列不等式组可得m的取值,又根据m+k=3,表示m的值代入不等式的解集中可得结论.【答案】解:由题意得:,∴2≤m≤3,∵整数k 满足m +k =3,∴m =3﹣k ,∴2≤3﹣k ≤3,∴3﹣3≤k ≤3﹣2,∴k 是整数,∴k =2,故答案为:2.【点睛】本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m 的值是本题的关键.9.(2020•金华二模)先化简,再求值:(a +)(a ﹣)﹣a (a ﹣2),其中a =+1.【思路点拨】原式利用平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a 的值代入计算即可求出值.【答案】解:原式=a 2﹣2﹣a 2+2a=2a ﹣2,当a =+1时,原式=2(+1)﹣2=2.【点睛】此题考查了二次根式的化简求值,熟练掌握运算法则是解本题的关键.1.二次根式的有关概念:(1)(2)最简二次根式需满足两个条件: ①被开方数不含分母.②被开方数中不含开得尽方的因数或因式.2.二次根式的性质:(1)(a )2=a (a ≥0).(2)a 2=|a |=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).(3)ab a ≥0,b ≥0).(4)a b =a ≥0,b >0). 二次根式的双重非负性是指它的被开方数与结果均为非负数.3.二次根式的运算:(1)二次根式加减法的实质是合并同类二次根式.(2)二次根式的乘法:a ·b a ≥0,b ≥0).(3)二次根式的除法:ab=a≥0,b>0).运算结果中的二次根式,一般都要化成最简二次根式或整式.【考点一二次根式中字母的取值范围】例1.(2020•亳州模拟)若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1 【思路点拨】根据二次根式有意义的条件可得x+1≥0,根据分式有意义的条件可得x﹣1≠0,再解即可.【答案】解:由题意得:x+1≥0,且x﹣1≠0,解得:x≥﹣1,且x≠1,故选:D.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不为零.【变式训练】1.(2019•诸暨市模拟)若在实数范围内有意义,则a的取值范围是()A.a≤3 B.a>3 C.a≥3 D.a<3【思路点拨】根据二次根式和分式有意义的条件可得a﹣3>0,再解即可.【答案】解:由题意得:a﹣3>0,解得:a>3.故选:B.【点睛】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.2.(2019•临朐县一模)代数式中x的取值范围在数轴上表示为()A.B.C.D.【思路点拨】根据二次根式有意义的条件以及分式有意义的条件即可求出答案.【答案】解:由题意可知:∴x≤3且x≠1,故选:A.【点睛】本题考查二次根式,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.3.(2020•杭州模拟)要使代数式有意义,则x的取值范围是x>﹣1.【思路点拨】直接利用二次根式的定义分析得出答案.【答案】解:要使代数式有意义,则x+1>0,解得:x>﹣1.故答案为:x>﹣1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4. (2019秋•玉环市期末)要使代数式有意义,则x的取值范围为x≤1.【思路点拨】根据二次根式有意义的条件得出1﹣x≥0且x2+1≥0,再求出即可.【答案】解:要使代数式有意义,必须1﹣x≥0且x2+1≥0,解得:x≤1,故答案为:x≤1.【点睛】本题考查了二次根式有意义的条件,能熟记中a≥0是解此题的关键.5.(2019秋•港南区期末)若|2017﹣m|+=m,则m﹣20172=2018.【思路点拨】根据二次根式的性质求出m≥2018,再化简绝对值,根据平方运算,可得答案.【答案】解:∵|2017﹣m|+=m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017+=m.化简,得=2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:2018.【点睛】本题考查了二次根式有意义的条件,利用二次根式的性质化简绝对值是解题关键.【考点二二次根式的性质】例2.(2019春•沂水县期末)下列化简正确的是()A.=4 B.=﹣5 C.D.=【思路点拨】根据二次根式的性质逐一化简可得.【答案】解:A.=2,错误;B.=5,错误;C.=,错误;D.=,正确;故选:D.【点睛】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质.【变式训练】1.(2020•余杭区一模)下列计算正确的是()A.=±7 B.=﹣7 C.=1 D.=【思路点拨】根据二次根根式的运算法则即可求出答案.【答案】解:(A)原式=|﹣7|=7,故A错误.(B)原式=|﹣7|=7,故B错误.(C)原式==,故C错误.(D)原式==,故D正确.故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.2.(2019•中山市模拟)把a•的根号外的a移到根号内得()A.B.﹣C.﹣D.【思路点拨】根据二次根式有意义的条件可得a≤0,原式变形为﹣(﹣a)•,然后利用二次根式的性质得到﹣,再把根号内化简即可.【答案】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故选:C.【点睛】本题考查了二次根式的性质:=a(a≥0).3.(2019•鄂州模拟)如果1≤a≤,则的值是()A.6+a B.﹣6﹣a C.﹣a D.1【思路点拨】由已知判断a﹣1,a﹣2的符号,根据二次根式的性质解答.【答案】解:∵1≤a≤,∴a﹣1≥0,a﹣2<0故=+|a﹣2|=a﹣1+2﹣a=1.故选:D.【点睛】本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a =0时,=0.解决此类题目的关键是掌握二次根式及绝对值的运算.4.(2019秋•淮阳县校级月考)阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:+,其中a=”有不同的解答.甲的解答是:+=+=+﹣a=﹣a=;乙的解答是+=+=+a﹣=a+=(1)填空:的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a的式子表示这个性质(3)请你正确运用上述性质解决问题:当3<x<5时,化简+【思路点拨】根据已知材料,读懂材料,然后根据二次根式的性质解答.【答案】解:(1)乙的做法错误.当a=时,,,故乙的做法错误.故答案为:乙(2)当a<0时,;(3)∵3<x<5,∴x﹣7<0,2x﹣5>0.+==7﹣x+2x﹣5=x+2【点睛】本题考查了二次根式的化简求值,熟练掌握二次根式的性质是解答此题关键【考点三二次根式的运算】例3.(2020春•奉化区期末)计算:(1)(﹣)÷;(2)(+2)(﹣2)+.【思路点拨】(1)根据二次根式除法法则进行计算,再合并同类二次根式;(2)根据平方差公式及二次根式的性质进行计算.【答案】解:(1)原式=;(2)原式=3﹣4+=﹣2.【点睛】本题主要考查了二次根式的混合运算,关键是掌握二次根式的运算法则和二次根式的性质.【变式训练】1.(2019春•官渡区期末)下列计算正确的是()A.=±8 B.C.4=1 D.【思路点拨】根据二次根式的性质对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的乘法法则对D进行判断.【答案】解:A、原式=8,所以A选项计算错误;B、原式===,所以,B选项计算正确;C、原式=,所以C选项计算错误;D、原式==2,所以,D选项计算错误.故选:B.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.2019春•莒南县期末)下列计算正确的是()A.=B.3 C.×=7 D.=2【思路点拨】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【答案】解:,故选项A错误,,故选项B错误,,故选项C正确,,故选项D错误,故选:C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式的混合运算的计算方法.3.(2020春•温岭市期末)计算:2+(﹣)÷.【思路点拨】利用二次根式的除法法则运算.【答案】解:原式=+1﹣=1.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并即可.针对题目特点,灵活运用二次根式的性质计算.4.(2019•长沙一模)在计算的值时,小亮的解题过程如下:解:原式==2……①=2……②=(2﹣1)……③=……④(1)老师认为小亮的解法有错,请你指出:小亮是从第步开始出错的;(2)请你给出正确的解题过程.【思路点拨】根据二次根式的运算法则即可求出答案.【答案】解:(1)③(2)原式=2﹣=6﹣2=4【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【考点四二次根式的化简求值及应用】例4.(2019•宁波模拟)先化简,再求值:2(a+)(a﹣)﹣a(a﹣6)+6,其中a=﹣1.【思路点拨】直接利用多项式乘法将原式变形,进而把已知代入求出答案.【答案】解:原式=2(a2﹣3)﹣a2+6a+6=2a2﹣6﹣a2+6a+6=a2+6a把a=﹣1代入,得,原式=a2+6a=(﹣1)2+6(﹣1)=4﹣3.【点睛】此题主要考查了二次根式的化简求值,正确化简原式是解题关键.【变式训练】1.(2019春•潢川县期末)如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为8﹣12cm2.【思路点拨】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【答案】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故答案为:8﹣12.【点睛】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.2.(2018秋•宁强县期末)若一直角三角形两直角边的长分别为,,则这个直角三角形斜边上的中线为.【思路点拨】根据勾股定理可以求得斜边长,再根据斜边上的中线等于斜边的一半即可解答本题.【答案】解:∵一直角三角形两直角边的长分别为,,∴斜边长为:=2,∴这个直角三角形斜边上的中线为,故答案为:.【点睛】本题考查二次根式的应用,解答本题的关键是明确题意,利用勾股定理解答.3.(2018春•上虞区期末)解答下列各题(1)计算:3﹣(+)+;(2)当a=+,b=﹣时,求代数式a2﹣ab+b2的值.【思路点拨】(1)先化简各二次根式,再合并同类二次根式即可得;(2)将a、b的值代入原式,根据完全平方公式和平方差公式计算可得.【答案】解:(1)原式=3﹣2﹣+3=;(2)方法一:当a=+,b=﹣时,原式=(+)2﹣(+)(﹣)+(﹣)2=5+2﹣(3﹣2)+5﹣2=9.方法二:当a=+,b=﹣时,a+b=++﹣=2,ab=(+)(﹣)=3﹣2=1,则原式=(a+b)2﹣3ab=(2)2﹣3×1=12﹣3=9.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质与运算法则.。