刘鸿文版材料力学课件全套

合集下载

简明材料力学全套精品课件

简明材料力学全套精品课件
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
Mo(F) 0
FN
Pa M 0
M Pa
目录
§1.4 内力、截面法和应力的概念
为了表示内力在一点处的强度,引入内力集度,
即应力的概念。
F
pm

F A
—— 平均应力
A
C
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳、块体
材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆
目录
§1.2 变形固体的基本假设
在外力作用下,一切固体都将发生变形, 故称为变形固体。在材料力学中,对变形固体 作如下假设: 1、连续性假设: 认为整个物体体积内毫无空隙地充满物质 灰口铸铁的显微组织 球墨铸铁的显微组织
杆切开
F1

(2)留下左半段或右半段
F2
(3)将弃去部分对留下部
F5
分的作用用内力代替 F1

(4)对留下部分写平衡方
F2
程,求出内力的值。
m F4

m
F3
F4

F3
目录
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
古代建筑结构
传统具有柱、梁、檩、椽的木 制房屋结构

刘鸿文主编-材料力学课件

刘鸿文主编-材料力学课件

各向同性假设
总结词
各向同性假设认为材料在不同方向上具有相同的性质 和行为。
详细描述
各向同性假设是材料力学中的另一个重要假设。它意味 着材料在不同方向上具有相同的性质,如弹性模量、泊 松比等。这一假设使得我们可以用统一的数学模型来描 述材料的性质和行为,简化计算过程。在实际应用中, 对于一些各向同性较好的材料,可以采用统一的标准来 近似获得其整体性质。需要注意的是,各向同性材料并 不是指所有方向上的性质都完全相同,而是在一定范围 内可以近似认为各向同性。
机械零件设计
材料力学在机械领域中应用于各 种机械零件的设计,如轴、轴承
、齿轮等。
设备强度分析
对机械设备的强度进行分析,确保 设备在各种工况下的安全运行。
疲劳寿命预测
利用材料力学知识,预测机械零件 的疲劳寿命,提高设备的使用寿命 。
航空航天领域
飞行器结构分析
材料力学在航空航天领域 中应用于飞行器的结构分 析,确保飞行器的安全性 和稳定性。
详细描述
弹性力学理论是材料力学的基本理论之一,主要研究材料在弹性范围内受力时的变形和内力关系。该 理论基于胡克定律,即材料在弹性范围内受力时发生的形变与外力成正比,并引入了应变和应力等概 念来描述材料的变形和受力情况。
塑性力学理论
总结词
描述材料在超过弹性极限后发生塑性形 变时的应力-应变关系。
VS
根据船舶的工作环境和要求,选择具 有优良力学性能的材料。
05
材料力学的未来发展
新材料的研发
高强度轻质材料
如碳纤维复合材料、钛合金等, 在航空、汽车、体育器材等领域
有广泛应用前景。
智能材料
如形状记忆合金、压电陶瓷等, 具有自适应、自修复等特性,可 用于制造智能传感器、执行器等

材料力学全ppt课件

材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

pq
Me
x
圆轴扭转的平面假设:
pq
圆轴扭转变形前原为平面的横截面,变形后仍 保持为平面,形状和大小不变,半径仍保持为直线; 且相邻两截面间的距离不变。
§3.4 圆轴扭转时的应力
Me
pq
Me
_ 扭转角(rad)
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
d _ dx微段两截面的
x
相对扭转角
边缘上a点的错动距离:
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确 定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
P 7 .5 M x T 9 5 4 9 n 9 5 4 9 1 0 0 7 1 6 .2 N m
d
T GI p dx
G
d
dx
T Ip
§3.4 圆轴扭转时的应力
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方向与扭矩 方向相同,并垂直于半径。切应力的大 小与其和圆心的距离成正比。

Wt
Ip R
抗扭截面系数
m ax
T Wt
在圆截面边缘上, 有最大切应力
§3.4 圆轴扭转时的应力
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
§3.3 纯剪切

材料力学完整全套1—1精选ppt

材料力学完整全套1—1精选ppt

.
目录
§1.1 材料力学的任务
比萨斜塔
美国纽约马尔克大桥坍塌
.
§1.1 材料力学的任务
二、基本概念 1、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等) 理论力学—研究刚体,研究力与运动的关系。 材料力学—研究变形体,研究力与变形的关系。 2、变形:在外力作用下,固体内各点相对位置的 改变。(宏观上看就是物体尺寸和形状的改变)
.
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围
A
认为构件的变形极其微小,
比构件本身尺寸要小得多。
δ1
如右图,δ远小于构件的最小尺寸,
所以通过节点平衡求各杆内力时,把支
x
lim x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
.
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
.
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
.
目录
§1.1 材料力学的任务
C
p lim F A0 A
—— C点的应力
p
F4
F3

刘鸿文版材料力学(全套)

刘鸿文版材料力学(全套)
材料力学
刘鸿文主编(第4版) 高等教育出版社
精品课件
目录
第一章 绪论
精品课件
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
精品课件
目录
§1.1 材料力学的任务
精品课件
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围
A
认为构件的变形极其微小,
Байду номын сангаас比构件本身尺寸要小得多。
如右图,δ远小于构件的最小尺寸,
所以通过节点平衡求各杆内力时,把支
x方向的平均应变:
xm
s x
L
o M x
x+s
M'
N'
N
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim(LMN)
2 MN0
M L0
类似地,可以定义 y , z ,g 均为无量纲的量。
精品课件
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
F F
FN
m m
FN
2、轴力:截面上的内力
F
由于外力的作用线
与杆件的轴线重合,内
力的作用线也与杆件的
轴线重合。所以称为轴
力。 F 3、轴力正负号:

材料力学课件-刘鸿文

材料力学课件-刘鸿文

FmaxA
Fmax
W
sin
W
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
0.8m
B C
Fmax
FRCx C FRCy
d
由三角形ABC求出
1.9m
sin BC 0.8 0.388
A
AB 0.82 1.92
Fmax
W
sin
15 0.388
38.7kN
斜杆AB的轴力为
FN Fmax 38.7kN
圣 维 南 原 理
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
A 1
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
45° B
C
2
FN 1
F
y
FN 2 45° B x
目录
§2.1 轴向拉伸与压缩的概念和实例
受力特点与变形特点:
作用在杆件上的外力合力的作用线与 杆件轴线重合,杆件变形是沿轴线方向的伸 长或缩短。
拉(压)杆的受力简图
拉伸
F
FF
压缩
F
目录
§2.1 轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
m
F m
F
FN
FN
Fx 0
目录
§1.1 材料力学的任务
{弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失 刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

e
Mel EI
M e 2l 2EI
M 2l 2EI
横力弯曲:V
l
M 2 (x) dx 2E I ( x)
13-3 变形能的普遍表达式
F3
1
F2
F1
2 3
V
W
1 2
F11
1 2
F2 2
1 2
F3 3
即:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的 总和。
M (x)
M (x)
N ( x)
目录
疲劳极限
将若干根尺寸、材质相同的标准试样,在疲劳试验机上依次进行r = -1 的常幅疲劳试验。各试样加载应力幅 均不同,因此疲劳破坏所经历 的应力循环次数N 各不相同。
以 为纵坐标,以N 为横坐标(通常为对数坐标),便可绘出该材料的应 力—寿命曲线即S-N 曲线如图(以40Cr钢为例)
注:由于在r =-1时,max = /2,故S-N 曲线纵坐标也可以采用max 。
M e L2 2EI
A
( A ) F
( A ) Me
FL2 2EI
MeL EI
V
W
1 2
FwA
1 2
M
e
A
F 2 L3 6EI
MeF2 2EI
M
2 e
L
2EI
§13-4 互等定理
F1
F2
1
2
F1
11
21
F2
12
22
ij
荷载作用点
•位移发生点
F1
11
21
F2
12
22
先作用 F1,后作用 F2,外力所作的功:
1F 2
Fl EA

刘鸿文版材料力学第四版课件全套

刘鸿文版材料力学第四版课件全套

改变。(宏观上看就是物体尺寸和形状的改变)
目录
§1.1 材料力学的任务

弹性变形 — 随外力解除而消失 塑性变形(残余变形)— 外力解除后不能消失
刚度:在载荷作用下,构件抵抗变形的能力。 3、内力:构件内由于 发生变形而产生的相 互作用力。(内力随 外力的增大而增大) 强度:在载荷作用下, 构件抵抗破坏的能力。
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力 杆件的强度不仅与轴力有关,还与横截面面 积有关。必须用应力来比较和判断杆件的强度。
在拉(压)杆的横截面上,与轴 力FN对应的应力是正应力 。根据连 续性假设,横截面上到处都存在着内 力。于是得静力关系:
FN dA
A
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力 观察变形:
直杆轴向拉伸或压缩时斜截面上的应力 材料拉伸时的力学性能 材料压缩时的力学性能 失效、安全因数和强度计算 轴向拉伸或压缩时的变形 轴向拉伸或压缩的应变能 拉伸、压缩超静定问题 温度应力和装配应力 应力集中的概念 剪切和挤压的实用计算
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.1
轴向拉伸与压缩的概念和实例
目录
§2.2 轴向拉伸或压缩时横截面上的内力和应力
例题2.2
A 1
45°
C
2
FN 1
y
图示结构,试求杆件AB、CB的 应力。已知 F=20kN;斜杆AB为直 径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。 解:1、计算各杆件的轴力。 B (设斜杆为1杆,水平杆为2杆) 用截面法取节点B为研究对象 F
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

1kPa=103N/m2 1MPa=106N/m2 1GPa=109N/m2
目录
§1.5 变形与应变
1.位移 MM'
M'
刚性位移; 变形位移。
2.变形
M
物体内任意两点的相对位置发生变化。
取一微正六面体
y
g
两种基本变形:
线变形
L
—— 线段长度的变化
角变形
——线段间夹角的变化 o
M
x
L'
x+s
M'
N'
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
§1.1 材料力学的任务
四、材料力学的研究对象 构件的分类:杆件、板壳*、块体*
目录
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
第一章 绪论
目录
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
§1.1 材料力学的任务
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V W
1 2
F l
1 2
F
Fl EA
F

F l 2 EA
2

FN l 2 EA
2
F
l l
V
2 EA ( x ) d x
l
FN (x)
2
二、扭转
m

m

V W
1 2
M
e

2
1 2
M
M el
e

M
2 e
l

T l 2G I p
2
GIp
2G I p
0
(x)
0

l
[( M ( x ) M 2E I
( x )]
2
dx
F 0 作功:
共做功 F1 、 F 2 作功: V W1 V 0 V 1 F 0 在 上又作功: 1
V 0
F1 F2
F0 1
C

W1 V1
V 0 V 1
2 3
V1 V 2 V
⑷ 用普遍定理
w A (w A ) F (w A ) M
0


FL
2
3


M eL 2 EI
M eL
2
3 EI
FL 2 EI

A
( A ) F ( A ) M
e
V W
1 2
Fw
A

1 2
M e
A

EI 2 3 F L

M eF 2 EI
V
2G I
l
T (x)
p
dx
(x)
三、弯曲
V W
纯弯曲:
1 2
M e
1 2
2
M
M el
e

M
2 e
l

M l 2EI
2
EI
2EI
横力弯曲:V


2 E I ( x) dx
l
M
(x)
13-3 变形能的普遍表达式
F3
F2
F1
1
2
3
V W
总和。
1 2
F1 1
m
m
(
max

min
)
一个非对称循环应力可以看作是在一个平均应力 m 上叠加一个应力幅为 的对称循环应力组合构成。
目录
疲劳极限
将若干根尺寸、材质相同的标准试样,在疲劳试验机上依次进行r = -1 的常幅疲劳试验。各试样加载应力幅 均不同,因此疲劳破坏所经历 的应力循环次数N 各不相同。 以 为纵坐标,以N 为横坐标(通常为对数坐标),便可绘出该材料的应 力—寿命曲线即S-N 曲线如图(以40Cr钢为例) 注:由于在r =-1时,max = /2,故S-N 曲线纵坐标也可以采用max 。
1 2
F 2 2
1 2
F 3 3
即:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的
M (x)
N (x)
M (x)
N (x)
T (x)
T (x)
V

L
F N ( x ) dx 2 EA
2


L
M
2
( x ) dx

2 EI

L
T ( x ) dx 2 GI
P
2
所有的广义力均以静力方式,按一定比例由O增加至最终值。任一广义位移 整个力系有关,但与其相应的广义力 呈线性关系。

( 2 ) 在 B 截面作用一单位力偶 M ( x ) Fx , M
0
, 如图 ( c ) 所示
(x) 1

B
ห้องสมุดไป่ตู้

l
M (x) M EI
0
(x)
l
dx

0
Fx EI
dx

Fl
2


2 EI
§13-7计算莫尔积分的图乘法
在应用莫尔定理求位移时,需计算下列形
式的积分:


2
得: F w C 1 M
Fl
16 E I
2
由此得:
wC1
Ml
16 E I
例:求图示悬臂梁中点C处的铅垂位移 C 。
w C1
F

B2
解:由功的互等定理
F wC1 M B 2
得: F w C 1 M
由此得:
l F 2 2E I
Ml
2
2
wC1
目录
11-4. 影响持久极限的因数
1.构件外形的影响 构件外形的突然变化,例如构件上有槽、孔、缺口、轴肩等,将引起应力集中
有效应力集中因数
K
1 d 1 K
m ax n

K
1 d 1 K
理论应力集中因数
K
目录
2.零件尺寸的影响——尺寸因数

(
1
)d

(
1
)d
光滑零件的疲劳极限

1
试样的疲劳极限
1
查看表11.1 尺寸因数 3.表面加工质量的影响——表面质量因数

(
1
)


1
磨削加工(试样)
1
其他加工
1
一般情况下,构件的最大应力发生于表层,疲劳裂纹也多于表层生成。表面 加工的刀痕、擦伤等将引起应力集中,降低持久极限。所以表面加工质量对 持久极限有明显的影响。
l
M ( x )M ( x ) EI
dx
对于等直杆,EI=const,可以提到积分号外,
故只需计算积分

l
M ( x ) M ( x )d x
直杆的M0(x)图必定是直线或折线。
M ( x ) M ( x )d x
l
tg x M ( x ) d x
l
tg x C
F i i F1 1 F 2 2 F i i
所以: V

Fi i
i
V Fi
Fi 0
V Fi
i
变形能对任一载荷Fi 的偏导数,等于Fi作用点沿Fi方向的位移
卡氏第二定理
推导过程使用了互等定理,所以只适用线弹性结构。
8E I
13-5 卡氏定理
F3
F2
F1
1
V W
1 2
F1 1
1 2
F2 2
1 2
F3 3
2
3
i
Fi
若只给 F i 以增量 ,其余不变,在 F i 作用下,原各力作用点将 产生位移 , , , ,
1 2 i
变形能的增加量:
i

Fi
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
M (x) F x
l
x
V

l
M
2
(x)
dx
F l 6 EI
Fl
3
2
3
2E I
W
1 2
F wB
由 V W ,得
wB
3 EI
例题:悬臂梁在自由端承受集中力F及集中力偶矩M0作用。设EI为常数,试求 梁的应变能。

O
max
min
t
目录
通常用以下参数描述循环应力的特征 (1)应力比 r
r = -1 :对称循环 ;
r

min max
r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅 (3)平均应力


1 2
max

min
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
N 0 5 10
6
~ 10
7
时对应的
max
称为条件疲劳极限,用
N0 1
表示。
对低碳钢,其 其弯曲疲劳极限 拉压疲劳极限
b 400 ~ 500 MPa
( -1 ) b 170 ~ 220 MPa
( -1 ) t 120 ~ 160 MPa
横力弯曲:
i

桁架杆件受拉压:
V Fi

Fi
(
L
M (x) 2 EI
2
dx )

L
M ( x) M ( x ) dx EI Fi
V

j 1
n
FN j L j 2 EA
j
2
i
V Fi
V Fi


j 1
n
FN j L j EA
j

FN Fi
V
1 2
F i i F1 1 F 2 2 F i i
略去二阶小量,则:
V F1 1 F 2 2 F i i
如果把原有诸力看成第一组力,把 F i 看作第二组力,根据互等 定理:
0
(x)
dx
莫尔定理 (莫尔积分)
0

对于组合变形:

l
(x)
dx
相关文档
最新文档