单回路控制系统

合集下载

第12章单回路控制系统

第12章单回路控制系统
刘玉性长。
(四)阀门流量特性选择实例
1、根据物料平衡求对象特性
Q1
Q2
A
dh dt
Q2 kb h
H (s) KP Q1(s) TCs 1
Q1
KP
1 KH
2 h0 kb0
,TC
A KH
2 A h0 kb0
h
A
2、画控制系统方框图
B(s) k h0 Q2(s)
kb0 2 h0
GC(s)
GV(s) Q1(s)
l
Q 快开
l
刘玉负荷长改变
数学分析法选控制阀流量特性注意事项
(1)不同扰动引起的对象变化,要求补偿用的流量 特性可能是不一样,甚至是相反的,所以应根 据引起工作点移动的主要干扰来选取控制阀流 量特性;
(2)采用分析推理方法得到的流量特性有时为快开 特性,考虑到快开特性特点,一般用于双位控 制或程序控制而不适合于连续自动调节,此时 可用线性阀代替;
1
H(s)
As
刘玉长
Gm(s)
LC
LT
Q2
3、设定值扰动引起工作点移动
出液阀开度b不变,KP会随设定值变化,静态推理:
若h0↑
KP↑ 要维持KVKP恒定 要求KV↓ Q2↑ ∵稳定时Q1=Q2 Q1↑开度↑
要求阀在开度 增大时,阀增 益减少,故应 选快开阀
考虑对动态特性的补偿:
若h0↑
要维持稳定 TC↑,稳定性↑性能不变 要求KV↑ Q2↑ → Q1↑ → 要求阀开度↑
(二)控制阀口径计算计算步骤
(1)根据工艺专业委托的条件,初选阀的型式、流向及流 量特性,并决定流量系数C值的计算方法。
并考虑到控制器增益与检测变送环节增益通常 维持不变,则有

单回路控制系统概述

单回路控制系统概述

单回路控制系统概述
设定值r 偏差e 调节`器
u
调节阀
干扰 f (t)
μ
被控过程
测量值x
测量变送器
y(t) 被调参数
对于过程控制系统设计和应用来说,控制方案的设计和 调节器参数的整定是其中两个重要内容。如果控制方案设计 不正确,仅凭调节器参数的整定是不可能获得较好的控制质 量的;若控制方案很好,但是调节器参数整定不合适,也不 能使系统运行在最佳状态。
⑷ 执行器 执行器的图形符号是由执行机构和调节机构的图形符号
组合而成的。
单回路控制系统
单回路控制系统概述
2.仪表位号
在检测控制系统中,构成回路的每个仪表(或元件)都用仪表位 号来标识。仪表位号由字母代号组合和回路编号两部分组成.首 字母表示被控变量,后继字母表示仪表的功能。回路的编号由 工序号和顺序号组成,一般用3-5位阿拉伯数字表示。
单回路控制系统
单回路控制系统概述
1.1 单回路控制系统的构成
单回路控制系统示例
液位控制系统
温度控制系统
压力控制系统
单回路控制系统
单回路控制系统概述
1.2 控制系统的工程表示
工艺控制系统流程图(管道仪表流程图):
液位控制系统
温度控制系统
压力控制系统
带测控点工艺流程图是自控设计的文字代号、图形 符号在工艺流程图上描述生产过程控制的原理图, 是控制系统设计、施工中采用的一种图示形式。
国家行业标准HG20505-92过程检测和控制系统用文字代号和图形符号
单回路控制系统
单回路控制系统概述
一些常用的图形符号和文字代号
1.图形符号
过程检测和控制系统图形符号包括测量点、连接线(引线、信 号线)和仪表圆圈等。 ⑴ 测量点

单回路控制系统设计

单回路控制系统设计

控制仪表的选择
(1) 仪表的选型——电动单元组合仪表(DDZ) (2) 测温元件与变送器:
热电阻温度计,三线制接法配温度变送器。
(3) 调节阀选型:选气动调节阀,且事故时要求不 要超温!
气关形式,流量特性选择?
(4)调节器: PI或PID。
控制仪表的选择
调节器的正反作用的确定:
由于调节阀为气关方式 因此KV 0 由于冷风量(控制量) 增加炉温(被控量)降 低,K0 0 通常传感器的增益为正 , Km 0
典型最佳调节过程 1 b
a
生产过程中的控制系 统多为恒值调节系统, 评定控制系统性能的常 用指标有稳态误差、最 大超调或超调率、衰减 率和过渡过程时间等。
在过程控制系统中更
多的采用衰减率 来表
示调节系统的稳定度。
工程上通常将 0.75的调节过程当作“典型最佳调节过程”
临界比例度法
一.临界比例度法(Ziegler-Nichols 稳定边界法)
F(s) Gf (s)
C(s)
Y (s) H (s)
系统输出与干扰之间的传递函数为:
C(S)
Gf (S)
F(S) 1 Gc (S)Gv (S)Gp (S)H (S)
假设:G
f
(S
)
K Tf s
f
1
干扰通道的影响
C(S)
1
• Kf
F(S) 1 Gc (S)Gv (S)Gp (S)H (S) Tf s 1
干扰通道的影响
干扰进入位置对控制质量的影响
F(s)
Gf (s)
R(s) E(s)
U (s)
Q(s)
GC (s)
Gv (s)
C(s) Gp (s)

第七章 单回路控制系统

第七章 单回路控制系统

7.1 单回路控制系统组成 控制原理:
例 液位控制系统
流入量
液位是被控参数,液位变送器LT 将 反映液位高低的检测信号送往液位 液位变送器 液位调节器 控制器 LC;控制器根据实际检测值 与液位设定值的偏差情况,输出控 液位设定值制信号给执行器(调节阀),改变 调节阀的开度,来调节水箱输出流 量,以维持液位稳定。
T0 s 1 1 Ex ( s) X ( s) X (S ) 1 Gc ( s)Go ( s) (T0 s 1) K 0 K c
E f ( s) G f ( s) 1 Gc (s)Go (s) F ( s) K f (T0 s 1) (T0 s 1)(T f s 1) K0 Kc (T f s 1) F ( s)
E ( s) X ( s) Y ( s) ( 3)
(2)代入(3)可得:
G f ( s) 1 E ( s) X ( s) F ( s ) E x ( s ) E f ( s ) ( 4) 1 GC (s)GO (s) 1 GC (s)GO (s)
G f ( s) 1 式中: F ( s) Ex ( s) X ( s) ,E f (s) 1 GC (s)GO (s) 1 GC ( s)GO ( s)
流出量 调节器 调节阀
图7.1 液位控制系统
测量变送器
被控过程
图7.2 单回路控制系统框图
7.1 单回路控制系统组成 对过程控制系统设计的一般要求
自动控制系统的一般要求: 1.过程控制系统必须是稳定的; 2.系统必须具有适当的稳定裕量 ; 3.系统应是一个衰减振荡过程(特殊生产要求例 外),但过渡过程时间要短,余差要小。
E f ( s)

DCS单回路控制系统设计资料讲解

DCS单回路控制系统设计资料讲解

DCS单回路控制系统设计资料讲解DCS,即分散控制系统,是一种基于微处理器的工业控制系统,广泛应用于化工、电力、石油等领域。

单回路控制系统是DCS系统中的一种常用架构,主要用于单个设备或过程的控制。

单回路控制系统的设计资料包括以下几个方面:1.系统结构:在单回路控制系统设计资料中,首先需要明确系统的总体架构和组成部分。

一般来说,单回路控制系统由传感器、执行器、控制器和人机界面组成。

传感器用于采集过程变量,执行器用于控制过程变量,控制器负责执行控制算法,人机界面则用于实现操作和监视。

2.控制策略:在单回路控制系统设计资料中,需要明确应用的控制策略。

常用的控制策略包括比例控制、积分控制、微分控制和模糊控制等。

根据具体的应用需求和控制对象的特性,选择合适的控制策略以实现稳定、准确的控制。

3.控制算法:在单回路控制系统设计资料中,需要详细描述控制器的工作原理和控制算法。

控制算法是控制器的核心部分,它根据输入的传感器信号和输出的执行器信号,通过运算和判断来实现过程变量的控制。

常见的控制算法有PID算法、模糊控制算法等。

4.通信协议:在单回路控制系统设计资料中,需要考虑通信协议的选择。

DCS系统是分布式控制系统,需要通过网络将各个部分连接起来,实现相互之间的数据交换和协同控制。

常用的通信协议有MODBUS、OPC等。

5.安全性与可靠性:在单回路控制系统设计资料中,需要考虑系统的安全性和可靠性。

安全性包括防止非法操作和保护系统免受外部攻击,可靠性包括系统硬件和软件的稳定性和可用性。

设计资料中需要详细说明安全和可靠性措施,例如设备的备份和冗余、数据的备份和恢复策略等。

6.软件架构:在单回路控制系统设计资料中,需要描述控制系统的软件架构。

软件架构包括了操作系统、控制算法、通信协议的实现等部分。

设计资料中需要详细描述软件的结构和模块之间的关系。

7.硬件配置:在单回路控制系统设计资料中,需要描述控制系统的硬件配置。

硬件配置包括了各个模块的型号和数量、布线方式、电源要求等。

第三章单回路控制系统-2012

第三章单回路控制系统-2012

(4)根据单回路控制系统方框图,可知闭环系统的输
入与输出关系式是:
R(S)+ E(S) -
Gc(s)
U(S)
Gv(s)
F(S)
Gf(s) Q(S) Go(s)
+ + Y(S)
X(S)
Gm(s)
Y(S)=1+GCG(SC()SG)VG(SV()SG)oG(So()SG)M(S)
R(S)+
GF(S)
F(S)
➢ 所选的间接指标参数必须有足够大的变化 灵敏度,以便反映产品质量的变化。
➢ 在被控变量选择时还需考虑到工艺的合理 性和国内、外仪表生产的现状 。
第三节 操纵变量(控制参数)的选择
3.3.1 控制参数选择的意义
扰动作用:
由扰动通道对过程的被控参数产生影响,力图使被控参数偏离给定值。
控制作用:
由控制通道对过程的被控参数起主导影响,抵消扰动影响,使被控参数尽力维 持在给定值。
s
e f s
对上式进行拉氏反变换,系统在单位阶跃干扰作用下,被控量的时间响应
y t y'(t d0)
扰动通道迟延时间τ的存在仅使被调量在时间轴上平 移了一个τ值即过渡过程增加了一个τ时间。并不影响系统 的控制质量。
Kf
Tf
n
扰动作用点位置对控制质量的影响
f1
1#
LC
f2
2# f3
3#
LT
因此,选择控制参数时,应力求使干扰信号远离被控量的检测点。
几点说明:
图中的各个信号值都是增量初始状态为零;图中箭头表示的是 信号流向,而不是物料或能量的流向。
各环节的增益有正、负之别: 控制器:正作用时增益为“负” 反作用时增益为“正” 控制阀:气开阀增益为“正” 气闭阀增益为“负” 变送器:一般为“正” 控制对象:根据操纵变量Q(S)的变化引起被控变量 Y(S)的变化来确定 Q(S) Y(S) 增益为“正”,反之为“负”

第四节单回路控制系统

第四节单回路控制系统

第四节单回路控制系统在热工生产过程控制中,最基本的且应用最多的单回路控制系统,其他各种复杂控制系统都是在单回路系统的基础上发展起来的,而且许多复杂控制系统的整定都利用了单回路控制系统的整定方法,可以说单回路控制系统是过程控制系统的基础。

一、单回路控制系统的组成及初步设计单回路控制系统的组成原理方框图如图3-44所示,它是仅有一个测量变送器,一个调节器和一个执行器(包括调节阀),连同被控对象组成的闭环负反馈控制系统。

图1-26 单回路控制系统组成原理方框图1、被调量的选择在图1-26中,被调量是表征生产过程是否符合工艺要求的物理量,在热工生产过程中主要是温度、压力、流量、化学成分等。

一般情况下,欲维持的工艺参数就是系统的被调量,如火力发电厂锅炉过热蒸汽温度控制系统的任务就是维持锅炉过热器出口蒸汽温度,所以汽温控制系统的被调量就是过热器出口汽温。

但是生产过程中,有些工艺参数目前还没有获得直接的快速测量手段,如火电厂进入磨煤机的原煤干燥程度的测量。

这种情况下往往采用间接测量手段,如采用磨煤机入口介质的温度来代表原煤的干燥程度。

以间接参数作为系统的被调量,要求被调量与实际所需维持的工艺参数之间为单值函数关系,否则要采取相应的补偿措施。

对于那些虽有直接测量手段,但所测得的信号过于微弱或迟延较大的情况,不如选用间接参数作为系统的被调量。

为提高测量的灵敏度,减小迟延,应采用先进的测量方法,选择合理的取样点,正确合理地安装检测元件。

2、控制量的选择选择什么样的控制量去克服扰动对被调量的影响呢?原则上是选择工艺上允许作为控制手段的变量作为控制量,一般不应选择工艺上的主要物料或不可控制的变量作为控制量。

例如:火力发电厂锅炉负荷控制系统,其被调量是主蒸汽压力,而影响主蒸汽压力的主要因素是汽轮机进汽量和锅炉燃料量,前者是电力生产要求所确定的,因而不能作为控制量,而只能选择燃料量作为控制量。

给定值 调节器 对象被调量 - μ 扰动 扰动 图1-28 单回路调节系统 3、控制通道和扰动通道单回路控制系统的组成如图1-27所示,图中W 01(s )为对象的传递函数,它是包括了检测元件、测量变送器、执行机构和调节阀在内的广义对象特性;W c (s )为调节器的传递函数,D 为扰动信号,W 02(s )为被调量与扰动信号间的传递函数。

单回路控制系统

单回路控制系统

J ITAE et dt
0
对存在余差的系统,采用
作为误差项代入。
采用不同积分指标,所获得的过渡过程的性能要求也不同。
例如,ISE最小的系统着重于抑制过渡过程中的大误差,但衰减比很大;
ITAE最小的系统着重于惩罚过渡过程时间过长,但过渡过程振荡激烈。
误差积分指标不能都保证控制系统具有合适的衰减比。
3.1 单回路控制系统的结构与组成 控制系统的有关术语
控制通道:操纵变量到被控变量的通道。 扰动通道:扰动变量到被控变量的通道。
扰动影响被控变量或设定值变化时,通过控制通道调节。 改变操纵变量,克服扰动对被控变量的影响或跟随设定变化。
定值控制系统:设定值固定的控制系统。 随动控制系统:被控变量跟随设定值变化的控制系统。 采样控制系统:包含采样开关的控制系统。如,计算机控制
(2)绝对误差积分准则IAE( Integral of Absolute Value of Error Criterion ):
(3)时间乘绝对误差积分准则ITAE( Integral of Time Multiplied by The Value
of Error Criterion ):
f e, t e t;
控制器(Controller):根据设定值与测量值间的偏差, 按控制规律输出信号的设备;
执行器(Control Valve):接受控制器输出信号,控制操 纵变量的设备。
3.1 单回路控制系统的结构与组成 控制系统的有关术语
框图中的各个信号是增量。箭头表示信号流向,不是物流和能量流。 各环节增益的正负根据稳态条件下输出增量与输入增量之比确定。该环 节输入增加时,输出增加,增益为正;输出减少,增益为负。 常用执行器、被控对象和检测变送环节组成广义对象,用G0(s)表示。 该环节增益除以该物理量基准值表示为无量纲描述。控制器输入和输出 采用标准信号时,广义对象增益是无量纲的。

DCS单回路控制系统设计资料讲解

DCS单回路控制系统设计资料讲解

DCS单回路控制系统设计资料讲解DCS(Distributed Control System)单回路控制系统是指由多个控制器组成的系统,每个控制器负责一个回路的控制。

本文将对DCS单回路控制系统的设计资料进行讲解,包括系统结构、硬件配置、软件设计等。

一、系统结构DCS单回路控制系统的基本结构包括控制器、输入/输出(I/O)模块、通信网络和上位机。

控制器是系统的核心部分,负责接收传感器输入信号、控制执行器输出信号,并根据设定值和反馈信号进行控制。

每个回路对应一个控制器,回路之间相互独立。

I/O模块用于与外部设备进行数据交换,包括接收传感器信号、控制执行器、报警、人机界面等功能。

通信网络用于连接各个控制器和上位机,实现数据的共享和交互。

上位机用于监控、配置和管理整个系统。

二、硬件配置DCS单回路控制系统的硬件配置包括控制器、I/O模块和传感器/执行器。

控制器通常由中央处理器(CPU)、存储器、输入/输出接口等组成,其性能和规模决定了系统的处理能力和扩展性。

I/O模块负责将外部设备的数据转换为数字信号,并通过通信网络传输给控制器。

传感器用于采集控制对象的状态信息,执行器用于对控制对象施加控制信号。

三、软件设计DCS单回路控制系统的软件设计包括控制算法、通信协议和用户界面。

控制算法按照系统的要求,如PID控制算法、模糊控制算法等,对控制器进行程序设计。

通信协议用于控制器之间和上位机之间的数据交换。

用户界面提供操作界面和显示功能,以便用户能够实时监控和操作系统。

在软件设计中,需要考虑到系统的稳定性、可靠性和实时性。

稳定性是指系统在受到扰动时能够恢复到稳态的能力;可靠性是指系统能够按照要求工作,不出现故障;实时性是指系统能够对输入信号进行及时响应,使控制效果更好。

四、设计资料要求DCS单回路控制系统的设计资料需要包括系统的拓扑结构图、硬件配置表、控制算法程序、通信协议、用户界面设计以及相关参数的设置。

拓扑结构图描述了系统各组成部分之间的连接关系;硬件配置表包括了控制器、I/O模块、传感器/执行器的型号、数量和安装位置;控制算法程序描述了对控制器的编程要求;通信协议用于实现不同组成部分之间的数据交互;用户界面设计根据实际需求进行设计,以方便用户使用和操作;相关参数的设置是指对系统各项参数进行设定,如控制周期、采样周期等。

第3章 单回路控制系统

第3章 单回路控制系统

当温度TD 恒定时, 组分XD和压力P之间也存 在单值对应关系,如图 3-5 所示。
在温度 TD 和压力P两者之间,只要固定其中一个 参数,另一个就可作为间接参数来反映组分XD的变化。 大量经验证明,塔压力的稳定有利于保证产品的纯 度,提高塔的效率和降低操作费用。因此,固定塔压, 选择温度作为被控变量对精馏塔的出料组分进行间接指 标控制是可行的,也是合理的。
二、控制器正、反作用的确定 工业控制器一般都具有正作用和反作用两种工作方 式。 控制器的输出信号随着被控变量的增大而增加时, 控制器工作于正作用方式; 控制器输出信号随着被控变量的增大而减小时,控 制器工作于反作用方式。 控制器设置正、反作用的目的是为了适应对不同被 控对象实现闭环负反馈控制的需要。 控制器正、反作用的选择并不是一项困难的工作。 下面介绍的判别准则具有普遍的指导作用。
阀流量特性选择,见表3-1。

二、执行器开、闭形式的选择 气动执行器有气开和气关两种工作方式。 在控制系统中,选用气开式还是气关式,主要由具 体的生产工艺来决定。 提供几条原则作为选择的依据。 1、首先要考虑生产的安全。 2、有利于保证产品的质量。 3、有利于降低原料成本和节能。 选择时需注意两点: 1.按照上述原则选择开闭形式可能会得出相互矛盾的结 果。在这种情况下,首先考虑生产的安全性。 2.由于工艺要求不同,同一个执行器可以有两种不同的 选择结果。
在整个系统中各信号的传递关系可以用图3-2 所示的方块图表示。
单回路控制系统是按负反馈的原理根据偏差进行 工作的,组成自动化装置各环节的设备数量均为一个, 它们与被控对象有机地构成一个闭环系统。 单回路控制系统具有结构简单、工作可靠、所需 自动化工具少、投资成本低、便于操作和维护等优点, 是目前研究最多也是最为成熟的过程控制系统,适用 于对象的纯滞后和惯性较小、负荷和干扰的变化都不 太频繁和剧烈、控制品质要求不是很高的应用场合。

自动控制系统培训(1)单回路系统

自动控制系统培训(1)单回路系统
ห้องสมุดไป่ตู้
控制系统中,工艺参数需要控制的生产过程、设备或机器等。
被控变量:被控对象内要求保持设定数值的工艺参数。
操纵变量:受控制器操纵的,用以克服干扰的影响,使被控保持设
定值的物料量或能量。
扰动量:除操纵变量外,作用于被控对象并引起被控变量变化的因
素。
设定植:被控变量的预定值
20偏24/差7/2:6 被控变量的设定植和实际值之差
X轴
报警 控制
检测元件
后续字母


指示 自动-手动操作 灯
连接点、测试点
记录
开关、联锁
传送
阀、风门、百叶窗
套管
继动器、计算器、转换器
驱动器、执行机构或未分类的最终执行元件
12
2、控制阀环节介绍
干扰
F(s)
设定值R(s偏) 差E(s)
控制变量 控制器 U(s) 控制阀
操纵变量 Q(s)
受控对象受控变量Y(s)
-
Gc(s)
Gv(s)
Gp(s)
测量值Z(s)
测量变送器
Gm(s) 单回路控制系统方块图
2024/7/26
13
2.1 控制阀的作用及结构类型
一、作用 控制阀在系统中接受控制器的信号,通过改变阀的开度来改变操
纵变量。
{ 二、结构类型
1、控制阀从结构上看
执行机构 调节机构
执行机构:把调节器输出信号转换成直线或角位移。
2024/7/26
22
2.3 控制阀的选择
1、阀口径选择
正常工况下,阀门开度应在15~85%之间, 口径选择过小,在大扰动时可能处于全开的非线性状态, 口径过大时,阀经常处于小开度,流体对阀芯和阀座的冲击 严重,易因不平衡力作用产生振荡。

热工控制系统课堂ppt第四章单回路控制系统

热工控制系统课堂ppt第四章单回路控制系统
详细描述
在农业领域,单回路控制系统广泛应用于温室环境控制、灌溉系统、农业机械等 方面。通过自动化控制技术,实现对温室内的温度、湿度、光照等环境因素的精 确调控,提高农作物的生长效率和产量,降低农业生产成本。
04
单回路控制系统的优化与改进
控制算法优化
PID控制算法改进
01
通过调整PID控制器的比例、积分和微分参数,提高系统的响应
通过机器学习算法,可以对历史数据进 行分析,预测未来的运行状态,提前进 行干预,避免事故发生。同时,还可以 根据历史数据优化控制策略,提高控制
效果。
人工智能技术还可以用于故障诊断和预 测,通过分析系统的运行数据,提前发 现潜在的故障,及时进行维修和更换,
避免事故发生。
新型传感器与执行器的发展
随着科技的不断进步,新型传感器和执行器不断涌现,为单回路控制系统提供了更 多的选择和可能性。
优化控制算法的代码实现, 减少计算量和时间复杂度, 提高控制器的实时性能。
控制器容错技术
采用冗余技术和故障检测 技术,提高控制器的可靠 性和可用性。
执行器与传感器技术发展
执行器技术发展
开发新型执行器,提高执行器的 响应速度、精度和可靠性。
传感器技术发展
研发高精度、高稳定性的传感器, 提高测量数据的准确性和可靠性。
智能传感器技术
利用微处理器和人工智能技术, 实现传感器的自校准、自诊断和
自适应功能。
05
单回路控制系统的发展趋势与挑战
人工智能与机器学习在单回路控制系统中的应用
人工智能与机器学习在单回路控制系统 中发挥着越来越重要的作用。这些技术 可以帮助系统自动调整参数,优化控制
效果,提高系统的稳定性和可靠性。
热工控制系统课堂ppt第 四章单回路控制系统

第三节 单回路控制系统

第三节 单回路控制系统
带法(也称稳定边界法)的扩充,是一种闭环整定的 实验经验方法。按该方法整定PID参数的步骤如下:
• (1)选择一个足够短的采样周期 Tmin。所谓足够短, 具体地说就是采样周期选择为纯滞后时间的1/10以下。 • (2)将数字PID控制器设定为纯比例控制,并逐步减 小比例带 ( 1 ),使闭环系统产生临界振荡。此时 Kp 的比例带和振荡周期称为临界比例带 和临界振荡周 k 期 。

• (5)按求得的整定参数投入在投运中观察控 制效果,再适当调整参数,直到获得满意的控 制效果。
3、衰减曲线法(参见P183)
调节器取纯比例形式,
由大到小调节,使过渡过
程衰减比达到4 :1 (或10 :1 ), 如右图所示。
记录此时的 S、TS, 根据表5 (表 8 5 9)计 算调节器参数。
间接参数要有足够的灵敏度。
3、选择被控参数的一般原则(P158)
选择对产品的产量和质量、安全生产、经济运行和环境 保护具有决定作用的、可直接测量的工艺参数为被控量。
当不能用直接参数作为被控量时,应选择一个与直接参 数有单值函数关系的间接参数作为被控参数。 被控参数必须具有足够大的灵敏度。 被控参数的选取,必须考虑工艺过程的合理性和所用仪 表的性能。
简之:就是确定最佳过渡过程中控制器的比例度 、积分时间
常数 TI 和微分时间常数 TD 的具体值。 单回路参数整定的目标:使过渡过程呈现4:1(缓慢过程为 10:1)的衰减过程。 整定方法:
理论计算法: 计算烦琐
工程整定法: 是一种近似方法,但简单、方便、适用。
工程整定法 1、经验法(现场实验整定法) 按照 先比例、后积分、再微分 的顺序进行整定
X (S )
Wc (S ) WV (S ) W01(S ) W02 (S ) W03(S )

10单回路控制系统11复杂控制系统

10单回路控制系统11复杂控制系统

温度控 制器
流量控 制器
控制 阀

流量 对象
温度 对象
流量变 送器
温度变 送器
总之,扰动进入副回路时,由于副回路控制通道短,滞后小, 时间常数小,故可获得比单回路控制超前的作用。扰动小时,副环 可完全克服扰动的影响;扰动大时,副环抢先控制,剩少量由主、 副环一起控制,故整个控制过程速度快,质量高。
比例积分微分控制:(1)特点:对克服对象的容量滞后有显著的效果。
(2)适用:负荷变化大,容量滞后大,控制质量 要求很高的系统。
常用的PID调节规律:
y

Kp
(e

1 Ti

edt

Td

de) dt
PID调节规律特点综述:
控制器正、反作用的选择
10.6 控制器的参数整定
控制器的参数整定,就是确定最佳过渡过程中控制器的比 例带δ、积分时间TI、微分时间TD的具体数值。
一般希望控制通道克服扰动的能力要强,动态响 应应比扰动通道快。通过正确选择控制参数,构成一 个控制性能良好的过程控制系统,可有效克服扰动的 影响。
f
对象扰动通道
xo
yf
控制器
广义对象
y x
扰动作用下系统的方框图
选择原则:
① 操纵量应是可控的,即工艺上允许调节的变量。 ② 操纵量一般比其它干扰对被控变量的影响更加灵敏。
选择原则
作为被控量,必须能够获得检测信号并有足够大的 灵敏度,滞后要小。
必须考虑工艺生产的合理性和仪表的现状,检测点 的选取必须合适。
10.1.2 操纵量的选择
用来克服干扰对被控变量的影响,实现控制作用的变量。
当生产过程中有多个因素能影响被控量变化时, 应分析过程扰动通道特性与控制通道特性对控制质量 的影响,正确地选择可控性良好的变量作为操纵(控 制)量。

单回路控制系统

单回路控制系统
1) 控制通道的抗扰动能力要强,动态响应比 扰动通道快。
2) 根据控制和扰动通道的过程参数(K、T、) 对系统品质的影响,选择控制参数。
7.2.2 操纵量的选择
(1) 放大系数对控制质量的影响 (2) 干扰通道动态特性对控制质量的影响 (3) 控制通道动态特征对控制质量的影响
7.2.2 操纵量的选择
控制阀的流量特性基本概念: 1) 理想流量特性:阀两端压力恒定时的流量特性,
即制造厂提供的阀特性;理想流量特性有直线、 对数、抛物线和快开四种。
2) 工作流量特性:阀两端压力变化时的流量特性; 由过程特性决定阀门工作流量特性。
3) 流量系数:阀全开时阀两端压力 / 管道系统的总 压差;以此衡量控制阀实际工作流量特性相对 于理想流量特性的变化程度。
结论
一般 o/T0 0.3的对象较易控制,而o/T0 > (0.50.6)的对象较难控制。
在选控制参数(操纵量)时,要设法减小o/T0 的比值。减少信号传输距离或提高信号传输速 度等都是常用方法。另外,有时增大T0 值也收 到较好效果。
3)时间常数匹配对控制质量的影响
图7.8 具有三个时间常数的控制系统
控制阀的工作流量特性(串联管道)
a. 控制阀与管道设备串联工作时,若总压差 一定,随着控制阀开度增大,流量增加, 管道设备上的压力降增大,控制阀前后的 压差将逐渐减小,结果控制阀的流量特性 将发生变化。
b. 对线性阀来说,其理想流量特性是一条直 线,由于串联阻力的影响,其实际的工作 流量特性变成为对数阀工作流量特性。
1) 控制饱和蒸汽的供汽质量:选饱和蒸汽压力为被 控量。其与燃料量构成的控制系统解决蒸汽负荷 变化与燃料波动对蒸汽质量的影响。
2) 控制过热蒸气的供汽质量:选过热蒸气压力及过 热蒸气温度作为被控量。

单回路控制系统详解

单回路控制系统详解

一、单回路控制系统1. 画出图示系统的方框图:2. 一个简单控制系统总的开环增益(放大系数)应是正值还是负值?仪表行业定义的控制器增益与控制系统中定义的控制器的增益在符号上有什么关系?为什么?3. 试确定习题1中控制器的正反作用。

若加热变成冷却,且控制阀由气开变为气关,控制器的正反作用是否需要4. 什么是对象的控制通道和扰动通道?若它们可用一阶加时滞环节来近似,试述K P 、K f 、τp 、τf 对控制系统质量的影响。

5. 已知广义对象的传递函数为1)S (T e K P SτP P +-,若P P T τ的比值一定时,T P 大小对控制质量有什么影响?为什么?6. 一个简单控制系统的变送器量程变化后,对控制质量有什么影响?举例说明。

7. 试述控制阀流量特性的选择原则,并举例加以说明。

8. 对图示控制系统采用线性控制阀。

当负荷G 增加后,系统的响应趋于非周期函数,而G 减少时,系统响应震9. 一个简单控制系统中,控制阀口径变化后,对系统质量有何影响?10. 已知蒸汽加热器如图所示,该系统热量平衡式为:G 1C 1(θ0-θi )=G 2λ(λ为蒸汽的冷凝潜热)。

(1)主要扰动为θi 时,选择控制阀的流量特性。

(2)主要扰动为G 1时,量特性。

(3特性。

11.作用后,对系统质量有什么影响?为了保持同样的衰减比,比例度δ要增加,为什么?12. 试写出正微分和反微分单元的传递函数和微分方程;画出它们的阶跃响应,并简述它们的应用场合。

13. 什么叫积分饱和?产生积分饱和的条件是什么?14. 采用响应曲线法整定控制器参数,选用单比例控制时,δ=K P τP /T P ×100%,即δ∝K P ,δ∝τP /T P ,为什么?而选择比例积分控制时,δ=1.44K P τP /T P ×100%,即比例度增加,为什么?15. 采用临界比例度法整定控制器参数,在单比例控制时,δ=2δK (临界比例度),为什么?16. 在一个简单控制系统中,若对象的传递函数为)1T )(1S 1)(T S (T K W P V P +-+S ,进行控制器参数整定时,应注意什么? 17. 已知广义对象的传递函数为1)S (T e K P SτP P +-,采用比例控制,当系统达到稳定边缘时,K C =K CK ,临界周期为T K 。

第四章 单回路控制系统

第四章 单回路控制系统
4.2.1 被控参数的选择
② 选择被控参数_事例
a.
控制饱和蒸汽的供汽质量时,可以选饱和蒸汽压力为被控参数。其与燃 料量构成的控制系统解决蒸汽负荷变化与燃料波动对蒸汽质量的影响。
b.

控制过热蒸气的供汽质量时,选过热蒸气压力和温度作为被控参数。 必要性:过热蒸气温度过高,过热器易损坏,汽轮机内部过度的热膨 胀,影响运行安全;过热蒸气温度过低,设备效率降低,汽轮机后级 蒸汽湿度增加,引起叶片磨损。蒸气压力控制是克服蒸气负荷或燃料 状况波动影响过热蒸气温度稳定的有效手段。
F3 ( s ) Wo3 ( s ) Y (s)
W ( s)
Wv ( s )
Wo1 ( s )
Wm ( s)
结论5:扰动通道的作用点离被控参数越远越好、扰动通道阻力环节 越多越好(容量滞后越大越好)。
4.2 被控参数与控制参数的选择原则
4.2.2 控制参数的选择
② 过程动态特性对控制质量的影响
d. 控制通道动态特性的影响_可控性指标分析方法
第四章 单回路控制系统
本章主要内容
① 单回路控制系统的基本原理 ② 单回路控制系统主要应用范围 ③ 单回路控制系统设计要点
基本要求
① ② ③ ④
掌握单回路控制系统的基本原理 掌握单回路控制系统的适用范围 掌握单回路控制系统方案的设计方法 掌握单回路控制系统调节器的参数整 定方法
4.1 概述
4.1.1 单回路控制系统的组成及性能
4.1 概述
4.1.3 控制系统设计的基本内容
① 方案设计:主要包括被控参数和控制参数选择与确认,检测点的初步选择及
系统组成,调节器正/反作用方式的确定及其控制规律的选取,调节阀的选 择,绘制出带控制点的工艺流程图,编写控制方案设计说明书等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单回路控制系统
一、单回路控制系统的概述
图1为单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。

系统的给定量是某一定值,要求系统的被控制量稳定至给定量。

由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。

图1 单回路控制系统方框图
二、干扰对系统性能的影响
1.干扰通道的放大系数、时间常数及纯滞后对系统的影响。

会影响干扰加在系统中的幅值。

若系统是有差系统,干扰通道的放大系数K
f
则干扰通道的放大系数愈大,系统的静差也就愈大。

,则阶跃扰动通过惯性环节后,如果干扰通道是一惯性环节,令时间常数为T
f
越大,则系统的动态偏其过渡过程的动态分量被滤波而幅值变小。

即时间常数T
f
差就愈小。

通常干扰通道中还会有纯滞后环节,它使被调参数的响应时间滞后一个τ值,但不会影响系统的调节质量。

2.干扰进入系统中的不同位置。

复杂的生产过程往往有多个干扰量,它们作用在系统的不同位置,如图2所示。

同一形式、大小相同的扰动作用在系统中不同的位置所产生的静差是不一样
的。

对扰动产生影响的仅是扰动作用点前的那些环节。

图2 扰动作用于不同位置的控制系统
三、控制规律的选择
PID控制规律及其对系统控制质量的影响已在有关课程中介绍,在此将有关结论再简单归纳一下。

1.比例(P)调节
纯比例调节器是一种最简单的调节器,它对控制作用和扰动作用的响应都很快。

由于比例调节只有一个参数,所以整定很方便。

这种调节器的主要缺点是系统有静差存在。

其传递函数为:
G C (s)= K
P
=
δ
1
(1)
式中K
P
为比例系数,δ为比例带。

2.比例积分(PI)调节
PI调节器就是利用P调节快速抵消干扰的影响,同时利用I调节消除残差,但I调节会降低系统的稳定性,这种调节器在过程控制中是应用最多的一种调节
器。

其传递函数为:G
C (s)=K
P
(1+
s
1
I
T
)=
δ
1
(1+
s
1
I
T
) (2)
式中T
I
为积分时间。

3.比例微分(PD)调节
这种调节器由于有微分的超前作用,能增加系统的稳定度,加快系统的调节过程,减小动态和静态误差,但微分抗干扰能力较差,且微分过大,易导致调节
阀动作向两端饱和。

因此一般不用于流量和液位控制系统。

PD调节器的传递函
数为: G
C (s)=K
P
(1+T
D
s)=
δ
1
(1+T
D
s) (3)
式中T
D
为微分时间。

4.比例积分微分(PID)调节器
PID是常规调节器中性能最好的一种调节器。

由于它具有各类调节器的优点,因而使系统具有更高的控制质量。

它的传递函数为
G C (s)=K
P
(1+
s
1
I
T
+T
D
s)=
δ
1
(1+
s
1
I
T
+T
D
s) (4)
图3表示了同一对象在相同阶跃扰动下,采用不同控制规律时具有相同衰减率的响应过程。

图3 各种控制规律对应的响应过程
四、调节器参数的整定方法
调节器参数的整定一般有两种方法:一种是理论计算法,即根据广义对象的数学模型和性能要求,用根轨迹法或频率特性法来确定调节器的相关参数;另一种方法是工程实验法,通过对典型输入响应曲线所得到的特征量,然后查照经验表,求得调节器的相关参数。

工程实验整定法有以下四种:
(一)经验法
若将控制系统按照液位、流量、温度和压力等参数来分类,则属于同一类别的系统,其对象往往比较接近,所以无论是控制器形式还是所整定的参数均可相互参考。

表1为经验法整定参数的参考数据,在此基础上,对调节器的参数作进
一步修正。

若需加微分作用,微分时间常数按T
D =(
3
1

4
1
)T
I
计算。

表1 经验法整定参数
系统
参数
δ(%)T
I (min) T
D
(min)
温度20~60 3~10 0.5~3 流量40~100 0.1~1
压力30~70 0.4~3
液位20~80
(二)临界比例度法
图4 具有周期T
S
的等幅振荡
这种整定方法是在闭环情况下进行的。

设T
I =∞,T
D
=0,使调节器工作在纯比
例情况下,将比例度由大逐渐变小,使系统的输出响应呈现等幅振荡,如图4所
示。

根据临界比例度δ
k 和振荡周期T
S
,按表2所列的经验算式,求取调节器的
参考参数值,这种整定方法是以得到4:1衰减为目标。

表2 临界比例度法整定调节器参数
调节器参数
调节器名称δT
I
(S) T
D
(S)
P 2δ
k
PI 2.2δ
k T
S
/1.2
PID 1.6δ
k 0.5T
S
0.125T
S
临界比例度法的优点是应用简单方便,但此法有一定限制。

首先要产生允许受控
变量能承受等幅振荡的波动,其次是受控对象应是二阶和二阶以上或具有纯滞后的一阶以上环节,否则在比例控制下,系统是不会出现等幅振荡的。

在求取等幅振荡曲线时,应特别注意控制阀出现开、关的极端状态。

(三)衰减曲线法(阻尼振荡法)
图5 4:1衰减曲线法图形
在闭环系统中,先把调节器设置为纯比例作用,然后把比例度由大逐渐减小,加阶跃扰动观察输出响应的衰减过程,直至出现图5所示的4:1衰减过程为止。

这时的比例度称为4:1衰减比例度,用δ
S
表示之。

相邻两波峰间的距离称为4:
1衰减周期T
S 。

根据δ
S
和T
S
,运用表3所示的经验公式,就可计算出调节器预整
定的参数值。

表3 衰减曲线法计算公式
调节器参数
调节器名称
δ(%)T
I
(min) T
D
(min)
P δ
S
PI 1.2δ
S
0.5T
S
(四)动态特性参数法
所谓动态特性参数法,就是根据系统开环广义过程阶跃响应特性进行近似计算的方法,即根据第二章中对象特性的阶跃响应曲线测试法测得系统的动态特性参数(K、T、τ等),利用表4所示的经验公式,就可计算出对应于衰减率为4:1时调节器的相关参数。

如果被控对象是一阶惯性环节,或具有很小滞后的一阶惯性环节,若用临界比例度法或阻尼振荡法(4:1衰减)就有难度,此时应采用动态特性参数法进行整定。

表4 经验计算公式。

相关文档
最新文档