第二章水静力学

合集下载

第二章水静力学(环境)

第二章水静力学(环境)

h
H
H
L
L
h H H
h
P
H H
P
L
L/3
h
h
H
H
e
L
H
h
h H
h
H
( H h)
请画出上图正确的静水压强分布图
画出以上三个容器左侧壁面上的压强分布图
A h H
B
R

平衡方程为
p X 0 x

1 p X 0 x
1 p Y 0 y
1 p Z 0 z
同理有
和 其中 X, Y, Z 是质量力 f 的三个分量。

平衡微 分方程的 矢量形式
1 p X 0 x 1 p Y 0 y 1 p Z 0 z
z py
dz
px pn
n
dx dy pz
o
y
pn p x p y p z
x
此时,pn,px,py,pz已是同一点(M点)在不同方位作用面上 的静压强,其中斜面的方位 n 又是任取的,这就证明了静水压 强的大小与作用面的方位无关。
静止液体中一点的应力
p p( x, y, z )
在这个表达式中,已 包含了应力四要素: 作用点、作用面、受 力侧和作用方向。
p
pA / zA

,所以
pB /
叫测压管水头。
zB
O O
• 敞口容器和封口容器接上测压管后的情况如图
•4. 静水压强的方程式的物理意义
z 位置势能,(从
基准面 z = 0 算起铅 垂向上为正。 )
p
压强势能(从
大气压强算起)
z
p

水力学 水静力学 水静力学

水力学  水静力学 水静力学
0
压力中心位置:
0.6
Ph D dP h

1 h 2 [0.5 2 (0.6 h) cot 600 ]dh 0.37m P 0
1 hD dP h P0
h
受压面为梯形,是对称图形,所以其压力中心位于对称轴上。
§2.5 平面上静水总压力计算 2.5.1 图解法(矩形平面)
PyD ydP gyy sin dA
A
g sin y 2 dA g sin I x
A
yD
g sin I x
P

g sin I x I x g sin yc A yc A
2 (惯性矩平行移轴定理 ) I x I C Ayc
yD
2 I xC Ayc I yc C yc A yc A
dx 1 p pM p x , y, z p dx 2 2 x dx 1 p pN p x , y, z p dx 2 2 x
质量力在x轴的分量为:
fx dx dy dz
X方向的平衡方程:
1 p 1 p dx dydz p dx dydz f x dxdydz 0 p 2 x 2 x
2.3
重力场中流体静压强的分布规律
液体中任一点的压强为:
dp ( f x dx f y dy f z dz )
质量力只有重力:fx= fy =0, fz =-g,可得:
dp gdz
p c z c 积分可得: p gz g g p C 也可变形为 z g
微小面元dA上水压力
dP pdA ghdA
作用在平面上的总水压力 是平行分布力的合力

第二章 水静力学

第二章  水静力学

第二章 水静力学水静力学(Hydrostatics )是研究液体处于静止状态时的力学规律及其在实际工程中的应用。

“静止”是一个相对的概念。

这里所谓“静止状态”是指液体质点之间不存在相对运动,而处于相对静止或相对平衡状态的液体,作用在每个液体质点上的全部外力之和等于零。

绪论中曾指出,液体质点之间没有相对运动时,液体的粘滞性便不起作用,故静止液体质点间无切应力;又由于液体几乎不能承受拉应力,所以,静止液体质点间以及质点与固壁间的相互作用是通过压应力(称静水压强)形式呈现出来。

水静力学的主要任务是根据力的平衡条件导出静止液体中的压强分布规律,并根据其分布规律,进而确定各种情况下的静水总压力。

因此,水静力学是解决工程中水力荷载问题的基础,同时也是学习水动力学的基础。

§2-1 静水压强及其特性1.静水压强的定义 在静止的液体中,围绕某点取一微小作用面,设其面积为ΔA ,作用在该面积上的压力为ΔP ,则当ΔA 无限缩小到一点时,平均压强A P ∆∆/便趋近于某一极限值,此极限值便定义为该点的静水压强(Hydrostatic Pressure),通常用符号p 表示,即dA dP A P p A =∆∆=→∆0lim (2-1) 静水压强的单位为2/m N (Pa(帕)),量纲为[][]21--=T ML p 。

2.静水压强的特性静水压强具有两个重要的特性:(1)静水压强方向与作用面的内法线方向重合。

在静止的液体中取出一团液体,用任意平面将其切割成两部分,则切割面上的作用力就是液体之间的相互作用力。

现取下半部分为隔离体,如图2-1所示。

假如切割面上某一点M 处的静水压强p 的方向不是内法线方向而是任意方向,则p 可以分解为切应力τ和法向应力p n 。

从绪论中知道,静止的液体不能承受剪切力也不可能承受拉力,否则将平衡破坏,与静止液体的前提不符。

所以,静水压强唯一可能的方向就是和作用面的内法线方向一致。

(2)静水压强的大小与其作用面的方位无关,亦即任何一点处各方向上的静水压强大小相等。

第二章水静力学

第二章水静力学

n
= p • D Ax
p =
n n

1 2
Dy

Dz
代入第一式
F F F px pncos(n, x) x =0 则:
1 2
Dy
Dz
px
1 2
Dy
Dz
pn
1 6
Dx Dy
Dz
fx
=
0
整理后,有
px
pn
1 Dx
3
fx
=
0
当四面体无限缩小到A点时,Dx
p x
=
p n
同理,我们可以推出:
0 因此:
△h
G
z1
2p 2
z2
0
h
G
p
0
(a)
(b)
圆柱上表面的静水压力 F1 = p1DA
圆柱下表面的静水压力 F2 = p2DA
小水柱体的重力
G = gDADh
力的平衡方程 p2DA p1DA gDADh = 0
p 0 ▽
h1 h2
△h
p
11
G
z1
2p 2
z2
0
(a)
p 0 ▽
h
G
p
0 (b)
单位重量的液体在某点所具有的位置势能(单位位
能):
z1
=
mgz1 mg
z 的能量意义是单位重量液体所具有的位置势能,
称为单位位能。
pa
p1 g
h12
1
z1
pa
p2 g
z2
0
0
Z Fpy
D Fpn Fpx
z
A y CBOFpzYX
相应面上的总压力为

2第二章 水静力学

2第二章 水静力学
Байду номын сангаас
A
p0 h z z0
式中,h=z0-z 表示该点在自由面以下的液柱高度。 上式即计算静水压强的基本公式。它表明,静止液体内任 意点的静水压强由两部分组成:一部分是自由面上的气体 压强p0(当自由面与大气相通时, p0=pa ,为当地大气压 强),另一部分是γh ,相当于单位面积上高度为 h 的水柱 重量。
∆P dP = ∆A→0 ∆A dA lim
静水压力的单位为N或kN; 静水压强的单位为Pa或kPa 。
• 二、静水压强的特性
静水压强有两个重要的特性: 1.静水压强的方向与受压面垂直并指向受压面(垂直指向性)
在平衡液体中静水压强的方向与作用面垂直并指向作用面, 即静水压力只能是垂直的压力。
2.静水压强各向同性(各向等值性):任一点静水压强的大 小和受压面方向无关,或者说作用于同一点上个方向的静水压 强大小相等。
dp = ρ(−adx − gdz) 积分得 p = ρ(−ax − gz) + C
当x=z=0时,p=p0,故C=p0,从而 a p = ρ(−ax − gz) + C 或 p = p0 + γ (− x − z)
g
令p0=98kPa,x=-1.5m,z=-1.0m,代入上式,得A点压强为
p A = 98 + 9.8[− 0.98 (−1.5) − (−1.0)] = 109.27kPa 9.8
例题分析
一洒水车,以0.98m/s2的等加速度向前行驶,设以水面中心点为 原点,建立xOz坐标系,试求自由表面与水平面的夹角θ;又自 由表面压强p0=98kPa,车壁某点A的坐标为x=-1.5m,z=-1.0m, 求A点的压强。
例题分析

第二章 流体静力学

第二章 流体静力学

d
例题3

考虑左侧水的作用
a a
a
a
b
b
b
b
c
c
c
c
ab段曲面(实 压力体)
bc段曲面(虚 压力体)
阴影部分相 互抵消
abc曲面(虚压 力体)
例题3

考虑右侧水的作用
a
b
c
bc段曲面 (实压力体)
例题3

合成
a a
a
a
b
b
b
b
c
c
c
c
左侧水的作 用
右侧水的作 用
abc曲面(虚压 力体)
例4
圆柱形压力水罐,半径R=0.5m,长l=2m,压 力表读值p=23.72kN/M2,试求(1)端部平 面盖板所受水压力;(2)上、下半圆筒所 受水压力。
分析思路
流体作用在曲面各微元面积上的压力 不是平行的,不能直接相加,而是采取 力学中“先分解,后合成”的方法确定总压 力。
§2.5 作用在曲面上的静水总压力
压力大小
dP ghd
一、静水总压力的水平分力
水平分力
dPx dP cos ghd cos ghd x
hd 为压力体体积
z
z
压力体
z
h d z
定义: 压力体相当于从曲面向上引至液 面(自由液面)的无数微小柱体的 体积总和,它是纯数学概念,与这 个体积内是否充满液体无关。
画法: (1)自由液面 (2)曲面 (3)根据静压强作用的方向找特殊点 (4)分段 (5)沿曲面的边界引垂直液面的铅垂面
空气 A 水
故A点的真空值为
p v p a p A (h2 h1 ) 1000 9.8 (2 1) 9800 Pa

水力学-第二章水静力学

水力学-第二章水静力学
在压强的变化。
13
水力学 液体平衡的全微分方程 2.
Xdx Ydy Zdz
第 二 章 水 静 力 学
3、等压面
1

dp
Xdx Ydy Zdz 0
W X x W Y y W Z z
力势函数
W W W dx dy dz dp x y z
p g (
2r 2
2g
z) c
由边界条件:x = y = z = 0,p = p0 则得
C=p0
p p 0 g (

r
2 2
2g
z)
47
水力学
静水总压力Static Surface Forces
第 二 章 水 静 力 学
平面压力Forces on plane areas
水力学
相对压强
第 二 章 水 静 力 学
pr pabs pa
真空压强
pv pa pabs
A
A点相 对压强 大气压强 pa A点绝 对压强
压强
相对压强基准
B
B点真空压强
B点绝对压强 绝对压强基准
O
O
水力学
p 3、 z C 的物理意义和几何意义 g
第 二 章 水 静 力 学
p dxdydz Xdxdydz 0 x
10
水力学
以ρdxdydz 除以上式各项,并化简,
第 二 章 水 静 力 学
得x方向的液体平衡微分方程。同 理可得出其他两个方向的液体平衡微分 方程
(Differential equation of liquid equilibrium)。
11
作用 点…… 记住了 吗? ?

2、水静力学

2、水静力学
题 2-3 图 -1z1 z3
p1
2
2
A CD B
p2
z2
第二章 水静力学
pC = p1 +γ (z1 + z3 ) = 137 + (0.5 + 2.3) × 9.8 = 164.44 KPa pD = p2 +γz2 = 39 + 0.5 × 9.8 = 43.9 KPa ∴ p A 141.9 = = 14.48m; γ 9.8 pB 43.9 = = 4.48m; γ 9.8 = 4.48m
A1 = 0.25πd 2 = 0.25π × 12 = 0.785m 2 A2 = 0.25πD 2 = 0.25π × 22 = 3.14 m 2 (1) pA = pB =
' '
F A B d h
F 4 = = 5.096 kN / m 2 A1 0.785
A' D 题 2-6 图 B'
p A = p B = pA + γh = 5.096 + 9.8 × 2 = 24.696 kN / m 2 (2) F = p A A2 = 24.696 × 3.14 = 77.595 kN
-3-
B
题 2-8 图
第二章 水静力学
X dx+ Y dy+ Z dz = 0 X = - a, Y = 0, Z = - g dz a ∴ tan θ = =− dx g a = − g tan θ= − gh 5 = −9.8 × = 1.63m / s 2 −l −30
2-9 在做等角速度旋转的物体上,装有 U 形管式角速度测定器,如图所示,测得 U 形管液面差△z = 0.272m, 两支管旋转半径 R1 = 7.5cm,R2=37.5cm,试求该物体的旋转角速度 ω 。 解:

水力学_第2章静水力学

水力学_第2章静水力学
A
c
A
P g sin S x g sin yc A ghc A pc A
31
水力学
上式表明:任意形状平面上的静水
第 二 章 水 静 力 学
总压力P 等于该平面形心点C 的压强 pc
与平面面积 A的乘积。
2.静水总压力的方向 静水总压力P 的方向垂直指向受压面。
32
水力学
第 二 章 水 静 力 学
定义:在静止液体内部 ,将压强相等的各点连 成的面称等压面。
由于在等压面上p C,则dp 0
则等压面方程为f x dx f y dy f z dz 0
特性:等压面上各点质量力与等压面正交。
f .ds f x dx f y dy f z dz 0
由z z0 , p p0代入上式得C p0 gz0
p p0 g ( z0 z )
p p0 gh
p A pB gh
17
水力学
第 二 章 水 静 力 学
p z C g
上式是重力作用下水静力学基本方程之
一。它表明:当质量力仅为重力时,静止液
第 二 章 水 静 力 学
则可得出: y D
利用惯性矩平行移轴定理: I x I c yc2 A
34
水力学
将此定理代入上式可最后得出yD
第 二 章 水 静 力 学
2 Ic yc A Ic yD yc yc A yc A
35
水力学
2.6.2 矩形平面静水压力——压力图法
第 二 章 水 静 力 学
12
水力学
上式为液体的平衡微分方程式。它是
第 二 章 水 静 力 学
欧拉(Euler)于1755年首先得出的,又称 为欧拉平衡微分方程。它反映了平衡液体

第二章水静力学-王瑜

第二章水静力学-王瑜
2
18
19
Ic LD Lc Lc A
LD为压力作用点 D的横坐标
Lc 为平面EF形心点C到Ob轴的距离
I c为对形心横轴的惯性矩
20
Ic LD Lc Lc A
Ic表示平面EF对于通过 其形心C且与Ob轴平行 的轴线的惯性矩。
由此看出 LD Lc ,即总压力作用点D在平面形心C之下。 再将静水压力对OL轴取矩:
6
作用点:1、当压强分布图为三角形分布时,压力中心D离
底部距离为 e 1 L或压力中心位于水平面 下 2 h处;
3 3
7
2、当压强分布图为梯形分布时,压力中心离底部的距离
L(2h1 h2 ) e 3(h1 h2 )
P32
8
二、作用于任意平面上的静水总压力
P28
面积矩:面积与它到轴的距离之积。平面图形对某一 轴的面积矩S,等于此图形中各微面积与其到该轴距 离的乘积的代数和,也等于此图形的面积与此图形 的形心到该轴距离的乘积。 合力矩定理:合力对任一轴的力矩等于各分力对同一轴 力矩之和。
FP 9.8 12.61 4 6 2964 kN
求P的作用点距水面的斜距 LD LC
LC
IC LC A
h1 1 10 3 3 11.5 14.5m 0 2 sin 60 0.87
对矩形平面,绕形心轴的面积惯矩为
1 I C 4 6 3 72 m 4 12
可见,采用上述两种方法计算其结果完全相同。
72 LD 14.5 14.5 0.21 14.71m 14.5 4 6
(3)沿斜面拖动闸门的拉力
FT FP f 2964 0.25 741 kN

第2章 水静力学

第2章 水静力学

第二章 水静力学目的要求:掌握静水压强的有关概念;作用在平面、曲面上静水总压力的计算方法。

难点:压力体的绘制 全部内容均为重点水静力学研究液体平衡时的规律及其实际应用,静止时0=τ,只有p 存在。

§2-1 静水压强及其特性 一、定义P ∆—面积ω∆上的静水压力 (N )平均静水压强ω∆∆=Ppa 点的静水压强)(/lim 20a P m N d dpP p ωωω=∆∆=→∆二、静水压强的特性1、第一特性:静水压强的方向垂直指向被作用面。

2、第二特性:作用于同一点上各方向的静水压强大小相等。

yzp⊿⊿⊿zxxpp ynpxzynACBnzyxpppp,,,,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆∆∆∆∆∆∆spyxpzxpzypnzyx212121⎪⎪⎪⎩⎪⎪⎪⎨⎧∆∆∆∆∆∆∆∆∆zyxZzyxYzyxX616161ρρρ沿x方向力的平衡方程:61),cos(21=∆∆∆+∆-∆∆zyxXxnspzypnxρ612121=∆∆∆+∆∆-∆∆zyxXzypzypnxρ1=∆+-xXppρ取微分四面体无限缩至o 点的极限表面力质量力C pz C z p dz gdz dp =+→'+-=→-=-=γγγρ或 γγ2211p z p z +=+——重力作用下水静力学的基本方程。

对于液面点与液体内任意点h p p pz p h z γγγ+=→+=++00——水静力学基本方程的常用表达式说明:(1)当 2121z z p p >< ,位置较低点压强恒大于位置较高点压强。

液面压强0p 由γh 产生的压强(3) p 随h 作线性增大。

(4)常用a a p h p p ,γ+=为大气压强, 取p a =1个工程大气压=98kN/m 2。

(5)h p p ∆+=γ12二、等压面1、定义:在同一种连续的静止液体中压强相等的点组成的面2、等压面方程:0=dp 0=++Zdz Ydy Xdx3、特性:(1)平衡液体中等压面即是等势面。

第2章水静力学

第2章水静力学
+13598×9.8×0.3-9.8×800×0.2 +13598×9.8×0.25-9.8×1000×0.6 =67805.2(Pa)=67.8(KPa)
第二章 水静力学
例题图示
第二章 水静力学
二、静水压强分布图
根据静水力学基本方程及静水压 强的两个特性,可用带箭头的直线表 示压强的方向,用直线的长度表示压 强的大小,将作用面上的静水压强分 布规律形象而直观地画出来。
w
FP pc w
w w
依力矩定理, P yD y dP y gy sin dw g sin y 2 dw
2 2 I I y y dw 其中 为平面对Ob轴的面积惯性矩,记为 x c c w
整理可得静水总压力的压心位置: yD yc
dP ghdw gy sin dw
P dP gy sin dw
w w
P dP
O (b) α h C dw M(x,y) C D YC
hc
D
g sin ydw
w
y
x
其中 为平面对Ox轴的面积矩 P g sin yc w ghc w 所以静水总压力的大小为
1 0.1 12h 6

4 h m 3
第二章 水静力学
【例题】一垂直放置的圆形平板闸
门如图所示,已知闸门半径R=1m, 形心在水下的淹没深度hc=8m,试用 解析法计算作用于闸门上的静水总压 力。 解:
R4pc w ghc R2 9.8 8 12 246kN
水静力学的主要内容
§2-1 静水压强 §2-2 静水压强的分布规律 §2-3 作用在平面上的静水总压力 §2-4 作用在曲面上的静水总压力

水力学第2章 水静力学

水力学第2章 水静力学
A点的相对压强为
pA gL sin
当被测点压强很大时:所需测压管很长,这时可以 改用U形水银测压计。
2.6.2 U形水银测压计
在U形管内,水银面N-N为等压面,因而1点和2点压强相等。
对测压计右支 p2 pa m gh
对测压计左支
p1
p' A
gb
A点的绝对压强
p
A
pa
m gh
gb
A点的相对压强
量力只有重力的同一种连续介质。对不连续液体或一
个水平面穿过了两种不同介质,位于同一水平面上的
各点压强并不相等。
2-5 绝对压强与相对压强
2.5.1 绝对压强
假设没有大气存在的绝对真空状态作为零点计量的压强, 称为绝对压强。总是正的。
2.5.2 相对压强 把当地大气压作为零点计量的压强,称为相对压强。相
p
' A
p0
gh1
25
9.8 5
74 k Pa
pB' p0 gh2 25 9.8 2 44.6kPa
故A点静水压强比B点大。 实际上本题不必计算也可得出此结论(因淹没深度大的点, 其压强必大)。
例:如图,有一底部水平侧壁倾斜之油槽,侧壁角为300,被
油淹没部分壁长L为6m,自由面上的压强 pa =98kPa,油的密
面积所受的平均静水压力为:
p Fp
(1.1)
A
点的静水压强
p lim Fp A0 A
(1.2)
静水压力 Fp 的单位:牛顿(N); 静水压强 p 的单位:牛顿/米2(N/m2),
又称为“帕斯卡”(Pa)
2.1.2 静水压强的特性 静水压强的两个重要特性:
1.静水压强的方向与垂直并指向受压面。

经典:流体力学-第二章-水静力学

经典:流体力学-第二章-水静力学
23
压力体可分为实压力体和虚压力体
实压力体判定方法: 绘出的压力体图形与实际的水体居于受压曲面同侧(重叠),
为实压力体。方向向下。
虚压力体判定方法: 绘出的压力体图形与实际的水体分居受压曲面两侧(不重叠),
为虚压力体。方向向上。
对于复式断面,先根据压力体的三个面围出压力体,再根据上述原 则判定虚、实。
第二章流体静力学25作用在平面上的静水总压力一用解析法求任意平面上的静水总压力二用压力图法求矩形平面上的静水总压力26作用在曲面上的静水总压力一曲面上静水压力二压力体27浮力与浮潜体的稳定一浮力二潜体的平衡与稳定性三浮体的平衡及稳定性第四讲25作用在平面上的静水总压力工程实践中需要解决作用在结构物表面上的液体静压力的问题
2.合力P对Ox轴取力矩
总压力P对Ox轴的力矩为: P y D g sa ix n y S D g sa i c A n y y D
3.据力矩定理
得:
yD
Ix Sx
Ix yc A
6
yD
Ix Sx
Ix yc A
上式表明:平面上静水总压力作用点D的纵坐标yD等于受压面面积A对Ox 轴的惯性矩与静矩之比。
其中
为图形对形心轴
的静矩,其值应等于零,则得
IyIyca2A
结论:同一平面内对所有相互平行的坐标轴的惯性矩,对形心轴的最小 。 在使用惯性矩移轴公式时应注意a ,b的正负号。
8
故对于本问题有: Ix Ay 2 d A A (y c a )2 d A Ay c 2 d A 2 y cA a d A a A 2 d A Ix Ic y c2 A
2.液体总压力P的铅直分力Pz:
B' F' E'A'

第2章水静力学

第2章水静力学
p pabs pa pv 7 104 Pa
例2:若当地大气压强相当于700mm汞柱高,试将绝对压强 pabs=19.6×104N/m2用其不同的单位表示。 解: (1)对于绝对压强 ①用水柱高度表示
h水 10m 4 9.8 10 Pa 19.6 104 Pa
10 19.6 104 h水 = =20m 4 9.8 10
p2/γ z2
p1/γ
z1
1 2
2、静水压强分布图
定义:用带有箭头的直线表示压强的方向,用直线
长度表示压强的大小,将作用面上的静水压强分布
规律形象直观地画出来,此几何图形就是静水压强
分布图。 绘制的规则:
(1)按一定比例,用线段长度代表该点静水压强的大小。
(2)用箭头表示静水压强的方向,并与作用面垂直。 方法: 只要绘出两端点的压强,即可确定静水压强的直线分布。
形式1:
p p0 gh
形式2:
z
p C g
z
水静力学基本方程的物理意义
z p
pa

C
p0
p/γ
Δm Δmgz Δmgz z Δmg
z
Δm
z0
单位液重所具有的位能
z
水静力学基本方程的物理意义
z p
pa

C
p0
p/γ
Δm Δmg Δmg p

p
z
Δm
z0

Δmg

p

单位液重所具有的压能
计量的压强,用pabs表示,工程大气压98KPa 用p表示。
相对压强 ——以当地大气压作为零点计量的压强,
若将当地大气压强用pa表示,则有
p pabs pa

水力学(2)水静力学

水力学(2)水静力学
武汉理工大学 土木工程与建筑学院
金溪
水力学
2.1 静水压强及其特性
第 二 章 水 静 力 学
一、定义 水静力学:研究液体处于静止状态下的平衡规律和液体与 固体边界间的作用力及其在工程中的应用。 二、核心问题 所谓静止包含两种情况:绝对静止、相对静止。 绝对静止:液体与地球之间没有相对运动,液体内部质点之 间没有相对运动。 相对静止:液体与地球之间存在相对运动,液体与容器之间 没有相对运动,液体质点之间不存在相对运动。
绝对静止 V=0,a=0 相对静止 V ≠ 0,a恒定且不为0 相对静止 V ≠ 0,a =0
2.1 静水压强及其特性
第 二 章 水 静 力 学
三、本章基本内容 水静力学的核心问题是根据平衡条件来求 得静水压强在空间的分布规律,进而确定 静水压力的方向、大小和作用点。



平衡条件:受力的平衡 压强分布规律:水静力学基本方程 压力的求解:方向、大小、作用点
sin J x sin yc A
Jx yc A
Jx= JC+yC2A,
★ yD> yC ,即D点一般 在C点的下面。
Jc yc yc A
2.6 作用在平面壁上的静水总压力
第 二 章 水 静 力 学
2.6 作用在平面壁上的静水总压力
例2-4
第 二 章 水 静 力 学
同一静止液体中,不论哪一点 z+p/r总是常数。(能量守恒)
2.2 重力作用下静水压强的分布规律
2.2.2 静水压强基本方程的另一种形式及意义
第 二 章 一、几何意义和水力学意义 1. z —位置水头(计算点位置高度) 2. p/r —压强水头(压强高度或测压管高度) 3. z+p/r —测压管水头 4. z+p/r=C—静止液体中各点 位置高度与压强高度之和不变

流体力学第2章_水静力学--用

流体力学第2章_水静力学--用
第二章
流体静力学
§2-1 静水压强及其基本特性 §2-2 液体平衡微分方程及其积分 §2-3 重力作用下静水压强的分布规律 §2-4 几种质量力作用下液体的相对平衡 §2-5 作用于平面上的静水总压力 §2-6 作用于曲面上的静水总压力
流体静力学就是研究平衡流体的力学规律及其应用的科 学。 所谓平衡 或者说静止), 平衡( ),是指流体宏观质点之间没有 所谓平衡(或者说静止),是指流体宏观质点之间没有 相对运动,达到了相对的平衡。 相对运动,达到了相对的平衡。 因此流体处于静止状态包括了两种形式: 因此流体处于静止状态包括了两种形式: 一种是流体对地球无相对运动,叫绝对静止, 一种是流体对地球无相对运动,叫绝对静止,也称 为重力场中的流体平衡。 为重力场中的流体平衡。如盛装在固定不动容器中的液 体。 另一种是流体整体对地球有相对运动, 另一种是流体整体对地球有相对运动,但流体对运动 容器无相对运动,流体质点之间也无相对运动, 容器无相对运动,流体质点之间也无相对运动,这种静 止叫相对静止或叫流体的相对平衡。 止叫相对静止或叫流体的相对平衡。例如盛装在作等加 速直线运动和作等角速度旋转运动的容器内的液体。 速直线运动和作等角速度旋转运动的容器内的液体。
p0
z y
x
h1 z0 1 z1
dp = ρ ( Xdx + Ydy + Zdz )
0
z2 0
(2-4)
返回
2
h2
z
若取图示1 若取图示1、2两点,则得: 两点,则得
Z1 +
p1 p = Z2 + 2 ρg ρg
p0
y
x
h1 z0 1 z1
上式为重力作用下静止液体中的压强分布规律。 上式为重力作用下静止液体中的压强分布规律。 对于流体中的任意点和表面点运用此方程, 对于流体中的任意点和表面点运用此方程, 可得: 可得

水静力学

水静力学

式(2-3)是重力作用下流体平衡方程的又一重要形式。由 它可得到三个重要结论:
(1)在重力作用下的静止水体中,静压强随深度按线 性规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强p0;另一部分是该点到自由液 面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的 静压强相等,即任一水平面都是等压面。
流体静力学着重研究流体在外力作用下处于 平衡状态的规律及其在工程实际中的应用。 这里所指的静止包括绝对静止和相对静止两 种。以地球作为惯性参考坐标系,当流体相对于 惯性坐标系静止时,称流体处于绝对静止状态; 当流体相对于非惯性参考坐标系静止时,称流体 处于相对静止状态。 流体处于静止或相对静止状态,两者都表现 不出黏性作用,即切向应力都等于零。所以,流 体静力学中所得的结论,无论对实际流体还是理 想流体都是适用的。
pj pc 100% H 100% 1 pa pa
(2-8)
式中H通常称为真空度。 为了正确区别和理解绝对压强、相对(计示)压 强和真空之间的关系,可用图2-8来说明。 当地大气压强是某地气压表上测得的压强值,它 随着气象条件的变化而变化,所以当地大气压强 线是变动的。
第一节
流体பைடு நூலகம்压强及其特性
静止液体作用在每单位受压面积上的压力称为静 水压强,单位为(N/ m2),也称为帕斯卡(Pa)。
流体静压强有两个基本特性。
(1)流体静压强的方向与作用面垂直,并指向作用面。 这一特性可由反证法给予证明:
假设在静止流体中,流体静压强方向不与作用面相垂直, 而与作用面的切线方向成α角,如图2-1所示。
pn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章
水静力学
主讲老师: 主讲老师:柳素霞
本章学习要点
1. 2. 3. 4. 5.
理解静水压强及其特性。 理解静水压强及其特性。 理解静水压强的分布规律和等压面概 念。 掌握静水压强的计算方法,理解真空压 掌握静水压强的计算方法 理解真空压 强。 熟练绘制静压强分布图。 熟练绘制静压强分布图。 熟练掌握平面上的静水总压力的计算。 熟练掌握平面上的静水总压力的计算。
1 1 2 Fp = × γh × h = γh 2 2
静水总压力的方向: 静水总压力的方向: 垂直指向平板闸门 静水总压力作用位置
FP
H
yc
h e= 3
ρgH
练习:某两侧有水的直立闸门,闸门宽B=5m,闸 门的上游水深为4m,下游水深为2m,闸门自 重G=14kN, 问闸门上的静水总压力大小?
4m 2m
解:据静水压强基本方程式 水深为2m处压强 A p=pa+γh=9.8x2=19.6kpa 水深为10m处的压强 p=pa+γh=9.8x10=98kpa B pa 2m 10m
练习:已知密闭容器水深为10米处的A点静水压强为 196 kpa,液面压强p0为多少? 解:据静水压强基本方程式 p0 p=pa+γh 液面压强为: p 0 = p A − γh
= 196 − 9 .8 × 10 = 98 kPa
10m A
淹没水深 例2:某密闭水箱,液面下淹没水深 为1m点C处的相 :某密闭水箱,液面下淹没水深h为 点 处的相 对压强为3kpa,求液面的相对压强为 0和真空压强 v。 对压强为 ,求液面的相对压强为p 和真空压强p 解:C点的相对静水压强为
规律3 静止液体内,所有各点的测压管水头均相等。 规律3:静止液体内,所有各点的测压管水头均相等。
• 敞口容器和封口容器接上测压管后的情况如图
练习:标出各个容器中, 和 两点的测压管水头。 练习:标出各个容器中,A和B 两点的测压管水头。
pa
h真
p相 = −γh真 p真 = γh真
真空现象
三、真空和真空压强
一、静水压强及其特性
1.静水压强的概念 1.静水压强的概念
静水压强:单位面积上的静水压力符号用p表示。 压强的单位是(帕斯卡)Pa或kPa 1Pa=1N/m2
∆FP p= ∆A
∆FP
∆A
带鱼生活在深水中,你见过活着的带鱼吗? 带鱼生活在深水中,你见过活着的带鱼吗?
2.静压强的两个特性 2.宽B=5m,闸 门的上游水深为4m,下游水深为2m,闸门自 重G=14kN, 问闸门上的静水总压力大小?
闸门上游的静水总压力为: 1 2 1 Fp1 = γh = × 9.8 × 4 2 = 78.4kN
2 2
闸门下游的静水总压力为:
1 2 1 Fp 2 = γh = × 9.8 × 2 2 = 19.6kN 2 2
三种压强单位之间的关系: 98kN/m2=1个工程大气压=10mH2O
五、静压强分布图
静压强分布图的绘制方法:按一定比例, 静压强分布图的绘制方法:按一定比例, 用线段长度代表该点静水压强的大小; 用线段长度代表该点静水压强的大小;用箭头 垂直指向作用面代表静水压强的方向。 垂直指向作用面代表静水压强的方向。
例3:求作用在矩形闸门上的静水总压力。已知: :求作用在矩形闸门上的静水总压力。已知: 闸门宽度为b,水深为H。 闸门宽度为 ,水深为 。
H
例3:求作用在矩形闸门上的静水总压力。已知: :求作用在矩形闸门上的静水总压力。已知: 闸门宽度为b,水深为H。 闸门宽度为 ,水深为 。
静水总压力的大小: 静水总压力的大小:
二、静水压强的基本规律
1.静水压强基本公式
p = p 0 + ρ gh
---表示液面上某点在 h ---表示液面上某点在 液面以下的淹没深度 ---液面上的压强 液面上的压强。 P0 ---液面上的压强。
规律1: 规律 :压强随淹没深度按 线性规律变化。 线性规律变化。 注意:若液面与大气相通时, 为当地大气压强, 注意:若液面与大气相通时,p 0为当地大气压强,p0=0。 。
真空(负压):当液体中某点的相对压强低于 真空(负压): ): 大气压强(出现负值)时,则称该点存在真空(负 压)。 真空度(真空压强): ):负压的绝对值称为真空 真空度(真空压强): 度,以P真表示。
P真=|p相|
录像
真空压强在水泵中的应用
例1:求蓄水池中水深为2m、lOm处的静水压强。 已知水池表面大气压强为pa=0。
等压面的应用: 等压面的应用:
连通器原理: 连通器原理:在均质、连通、静止的液体中,水平面是等压面。
录像
3.位置水头、 3.位置水头、压强水头和测压管水头 位置水头
p z+ =C ρg
Z----位置水头 p ----压强水头 ρg
p z+ ----测压管水头 ρg
0
pa
h1 H
1
Z1
h2
2
Z2 0
p0
h
A
2.等压面 2.等压面 等压面: 等压面:液体中把压强相等的点相连所 得到的面称为等压面。
规律2 只有重力作用下的静止液体, 规律2:只有重力作用下的静止液体,其 等压面必然是水平面。 等压面必然是水平面。
h1 H
录像
h1
2
1
等压面的应用: 等压面的应用:
连通器原理: 连通器原理:在均质、连通、静止的液体中,水平面是等压面。
h
ρgh
h
ρgh
压强分布图的形状:三角形、梯形、矩形
六、平面静水总压力的计算——图解法 平面静水总压力的计算——图解法 ——
静水总压力的大小: 静水总压力的大小:
FP=Ω×b ×
Ω:静压力分布图的面积 Ω:静压力分布图的面积 b:矩形平面的宽度 b:矩形平面的宽度 静水总压力的方向: 静水总压力的方向:垂直指向受压面 静水总压力作用位置:过压强分布图的形心。 静水总压力作用位置:过压强分布图的形心。
特性1:静水压强的方向垂直并且指向受压面。 特性1:静水压强的方向垂直并且指向受压面。 1:静水压强的方向垂直并且指向受压面
特性2:静止液体内任一点沿各方向上静水压强的大小 特性2:静止液体内任一点沿各方向上静水压强的大小 2: 都相等,与作用面的方位无关。 都相等,与作用面的方位无关
录像
静水压强的测量装置
4m
闸门上的静水总压力的合力为: Fp1
Fp = 78.4 − 19.6 = 58.8kN
Fp2 2m
本章重点
1.熟练掌握各点压强的计算。 2.熟练绘制静压强分布图。 3.熟练掌握作用于平面上的液体总 压力计算。
p 0 = p c − γ h = 6 − 9 .8 × 1 = − 3 . 8 kPa
相对压强为负值, 相对压强为负值,说明液面 存在真空。则其真空压强为: 存在真空。则其真空压强为:
p v =| p o |= 3 . 8 kpa
四、压强的单位
(1)kN/m2(kpa) (2)工程大气压 (3)用水柱高度表示(mH2o)。
相关文档
最新文档