关于高考数学中的恒成立问题与存在性问题

合集下载

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

高考数学(理)函数与导数 专题14 恒成立及存在性问题(解析版)

函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。

②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。

考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。

函数的恒成立、存在性问题的方法总结大全(干货)

函数的恒成立、存在性问题的方法总结大全(干货)

关于函数的恒成立、存在性(能成立)问题关于二次函数的恒成立、存在性(能成立)问题是常考考点,其基本原理如下:(1)已知二次函数2()(0)f x ax bx c a =++≠,则:0()00a f x >⎧>⇔⎨∆<⎩恒成立;0()00a f x <⎧<⇔⎨∆<⎩恒成立. (2)若表述为:“已知函数2()(0)f x ax bx c a =++≠”,并未限制为二次函数,则应有:00()000a a b f x c >==⎧⎧>⇔⎨⎨∆<>⎩⎩恒成立或;00()000a a b f x c <==⎧⎧<⇔⎨⎨∆<<⎩⎩恒成立或.注:在考试中容易犯错,要特别注意!!!恒成立问题与存在性(能成立)问题,在解决此类问题时,可转化为其等价形式予以解答,将此类问题的可能出现的17种情形归纳总结大全如下,并通过常考例题进行讲解:已知定义在[,]a b 上的函数()f x ,()g x .(1)[,]x a b ∀∈,都有()f x k >(k 是常数)成立等价于min [()]f x k >([,]x a b ∈). (2)[,]x a b ∀∈,都有()f x k <(k 是常数)成立等价于max [()]f x k <([,]x a b ∈). (3)[,]x a b ∀∈,都有()()f x g x >成立等价于min [()()]0f x g x ->([,]x a b ∈). (4)[,]x a b ∃∈,都有()()f x g x >成立等价于max [()()]0f x g x ->([,]x a b ∈). (5)1[,]x a b ∀∈,2[,]x a b ∀∈都有12()()f x g x >成立等价于min max [()][()]f x g x >. (6)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于min min [()][()]f x g x >. (7)1[,]x a b ∃∈,2[,]x a b ∀∈使得12()()f x g x >成立等价于max max [()][()]f x g x >. (8)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于max min [()][()]f x g x >.(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max [()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.(10)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于()f x 的值域与()g x 的值域交集不为∅.(11)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x k +≥(k 是常数)成立等价于min max [()][()]f x g x k +≥.(12)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≤(k 是常数)成立等价于max min [()][()]g x f x k-≤且.max min [()][()]f x g x k -≤. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≤(k 是常数)成立等价于max min ()()f x f x k -≤.(13)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≥(k 是常数)成立等价于min max [()][()]g x f x k-≥或.min max [()][()]f x g x k -≥. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≥(k 是常数)成立等价于min max ()()f x f x k -≥.(14)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min max [()][()]g x f x k-≤且.min max [()][()]f x g x k -≤. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≤(k 是常数)成立等价于min max ()()f x f x k -≤.(15)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max min [()][()]g x f x k-≥或.max min [()][()]f x g x k -≥. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≥(k 是常数)成立等价于max min ()()f x f x k -≥.(16)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min min [()][()]g x f x k-≤且.max max [()][()]f x g x k -≤. (17)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max max [()][()]g x f x k-≥或.min min [()][()]f x g x k -≥. 【评注】(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max[()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.()y g x =所在区域能包含()y f x =所在区域时,满足条件.∀⊆∃.题目中有时会这样表述:对任意的1[,]x a b ∈,都有2[,]x a b ∈,使得12()()f x g x =成立,(9)的表达的意思完全相同.所以大家要深入理解定理中的“任意的”、“都有”的内涵:即当1[,]x a b ∈时,()f x 的值域不过是()g x 的子集.【例1】(1)(2010•山东•理14)若对任意0x >,231xa x x ++恒成立,则a 的取值范围是 . (2)现已知函数2()41f x x x =-+,且设12314n x x x x <<<⋯<,若有12231|()()||()()||()()|n n f x f x f x f x f x f x M --+-+⋯+-,则M 的最小值为( )A .3B .4C .5D .6(3)已知21()lg(31)()()2x f x x x g x m =++=-,,若对任意1[03]x ∈,,存在2[12]x ∈,,使12()()f x g x >,则实数m 的取值范围是 .(4)已知函数()f x x =,2()252()g x x mx m m R =-+-∈,对于任意的1[2,2]x ∈-,总存在2x R ∈,使得12()()f x g x =成立,则实数m 的取值范围是( ) A .1[,1]9B .(,1]-∞C .(,1][4,)-∞+∞D .(,1][3,)-∞+∞(5)已知函数2()1f x x x =-+,[1,2]x ∈,函数()1g x ax =-,[1,1]x ∈-,对于任意1[1,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,4]-∞- B .[4,)+∞C .(,4][4,)-∞-+∞D .(,4)(4,)-∞-+∞(6)(2008•天津•文10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( ) A .{|12}a a <B .{|2}a aC .{|23}a aD .{2,3}(7)(2008•天津•理15)设1a >,若仅有一个常数c 使得对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log a a x y c +=,这时a 的取值的集合为 .)0x >,12x∴(当且仅当112353=+15,故答案为:1[,)5+∞.2()x x =-的图象是开口向上,过的抛物线,由图象可知,函数在上单调递减,在上单调递增,12314n x x x x <<<⋯<,(1)2f ∴=-,(2)f =-对应的函数值(2()41f x x x =-+图象上的点的纵坐标)之差的绝对值,结合231)||()()||()()|n n f x f x f x f x -+-+⋯+-表示函数max M ,||(1)(2)f f -5M ,故上单调递增,)法一:()2(2f x x ==-+2,2]时,x 2()3f x ,(f x ∴12)(22)2x x +=--<+,令f 单调递增,当(1,2]x ∈-,也是最大值;又(2)f 22[52m m --∈--,对于任意的的值域的子集,22m ,1m 或4m ,故选:)因为2()f x x x =-0时,()g x 在[1-[1,1]B a a =---,由题意可得,1113-,解得4a ;0时,()g x 在[1-的值域为[1,1]a a ---, 1113-,解得4a -,4][4,)+∞.故选:C .)3xy =,得,在[,2a a 上单调递减,所以2a ,即2a 故选:B .)log log a x c +,log a xy c ∴=,cxy a ∴=c a1122a a -⇒223a c log c +⎧⎨⎩的取值的集合为{2}.故答案为:【评注】深入理解(6)题题干中的“任意的”、“都有”的内涵:即当[,2]x a a ∈时,()f x 的值域M 不过是2[,]a a 的子集.值得关注的是:“[,2]x a a ∈”是指每一个这样的x ,2[,]y a a ∈是指存在这样的y ,理解到由函数的定义域导出值域M 是2[,]a a 的子集,由此才有:222[,][,]2a a a a ⊆.(6)与(7)唯一的差别就是:(7)中要求时唯一的,如何转化“唯一”这个条件是本题的关键,与函数的单调性联系起来来进行解答,需要有较强的转化问题的能力. 【例2】已知函数2()[2sin()sin ]cos ,3f x x x x x x R π=++∈.(1)求函数()f x 的最小正周期; (2)若存在05[0,]12x π∈,使不等式0()f x m <成立,求m 的取值范围. ))x .存在【例3】已知实数0a >,且满足以下条件:①x R ∃∈,|sin |x a >有解;②3[,]44x ππ∀∈,2sin sin 10x a x +-; 求实数a 的取值范围.【解析】实数10得:1sin sin a x-2[,1]2t ∈时,2()2f t f =1sin sin ax -22a ;综上,a 的取值范围是2{1}a a <.【例4】(1)已知函数2()2f x k x k =+,[0,1]x ∈,函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x <成立.求k 的取值范围.(min min ()()g x f x <)(2)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()f x 的值域是()g x 的值域的子集即可.) (3)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.存在1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()g x 的值域与()f x 的值域的交集非空.)5k ,解得5k ,则求5k .,当[0,1]x ∈时,函数单调递增,2[,2k k k +2)[5,2210]k k ∈++,[0,1],存在210]k +,即225222k k k k k ⎧⎨++⎩,解得5k ,则求5k . 时,函数单调递增,2,2]k k +,1)k x +++10]+,由对存,存在2x 1()f x =成2][5,2k +,即252k k +且22210k k k +,解得4114k-或1414k --.【例5】已知(2)23x f x x =-+. (1)求()f x 的解析式;(2)函数2(2)5()1x a x ag x x +-+-=-,若对任意1[24]x ∈,,总存在2[24]x ∈,,使12()()g x f x =成立,求a 取值范围.,即2()(log )2log f t t =-)(log 2log x x =-+【例6】(1)已知函数1()f x e =-,3(4)g x x x =-+-,若有()()f a g b =,则b 的取值范围为( )A .]2222[+-,B .)2222(+-,C .]31[,D .)31(,(2)已知函数()1x f x e =-,2()44g x x x =-+-.若有()()f a g b =,则b 的取值范围为( ) A.[2-+ B.(2-+ C .[1,3]D .(1,3))()f x e =【例7】(1)(2014•江苏•10)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+都有()0f x <,则实数m 的取值范围为 .(2)已知函数2()(f x x bx c b =++、)c R ∈且当1x时,()0f x ,当13x 时,()0f x 恒成立. (ⅰ)求b ,c 之间的关系式;(ⅱ)当3c 时,是否存在实数m 使得2()()g x f x m x =-在区间(0,)+∞上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.(3)(2017•天津•理8)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()||2x f x a +在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[-D .39[]16- (4)已知定义域为R 的函数()f x 满足22(())()f f x x x f x x x -+=-+. (①)若(2)3f =,求(1)f ;又若(0)f a =,求()f a ;(①)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.【解析】(1)二次函数2()1f x x mx =+-的图象开口向上,对于任意[,1]x m m ∈+,都有()0f x <成立,∴(1)0与(1)0f 同时成立,则必有m ,使满足题设的(g 22()()g x f x b m x c =+-+开口向上,且在0b .20b m ∴.3c ,1)4b ∴=-.这与上式矛盾,从而能满足题设的实数【评注】本题主要考查一元二次函数的图象与性质.一元二次函数的对称性、最值、单调性是每年高考必考内容,要引起重视.)法一:当1x 时,关于x 的不等式)||2x x a +在R 2332x a x x +-+,2133322x a x x +--+,由132y x =+-的对称轴为14处取得最大值-3的对称轴为334x =处取得最小值47391616a① 时,关于x 的不等式)||2x x a +在R 上恒成立,即为22)2x a x x++, 22)2x a x +,由3232()22322x x x x =-+-=-(当且仅当21)3x =>取得最大值212222x x x =(当且仅当21)x =>取得最小值2.则32a ①由①①可得,47216a . ()x 的图象和折线||2xa =+,1x 时,y =11145x解得4716a =-;1x >时,y 解得2a =.由图象平移可得,47216a .故选:法三:根据题意,作出的大致图象,如图所示.【例8】(2012•陕西•理21第2问•文21第3问)设函数2()f x x bx c =++,若对任意1x ,2[1,1]x ∈-,有12|()()|4f x f x -,求b 的取值范围.|4, 4M ,即min 4M . 2b <-时,min )|(1)f =-102b -<时,即2b 时,24M 恒成立,所以2b ;012b- 时,即20b 时,21)4M 恒成立,所以20b ;综上可得,22b -,即b 的取值范围是。

新高考数学一轮复习知识点解析21--- 恒成立和存在性问题

新高考数学一轮复习知识点解析21--- 恒成立和存在性问题

新高考数学一轮复习知识点解析1.积累常用的不等式,熟练运用导数解决不等式恒成立问题、存在性问题. 2.熟练使用分离参数、分类讨论等方法解决参数范围问题. 3.能够大致描绘函数图象,能借助图象理解题意和解题.【例1】已知函数()ln xf x ax x=-,a ∈R . (1)若()()2g x x f x '=,其中()f x '是函数()f x 的导函数,试讨论()g x 的单调性; (2)证明:当12a e≥时,()0f x ≥. 【答案】(1)当0a ≥时,()g x 在()0,∞+上单调递增;当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,∞+,()221ln 1ln x xx x f x a a x x⋅--'=-=-,恒成立和存在性问题()2221ln ln 1x a a x x g x x x -⎛⎫-=+- ⎪⎝⎭=,()21212ax g x ax x x+'=+=, 当0a ≥时,()0g x '≥恒成立,此时()g x 在()0,∞+上单调递增; 当0a <时,()0g x '>,即2210ax +>可得212x a-<,所以0x <<,由()0g x '<,即2210ax +<可得212x a->,所以x >所以当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减, 综上所述:当0a ≥时,()g x 在()0,∞+上单调递增;当0a <时,()g x在⎛ ⎝单调递增,在⎫+∞⎪⎪⎭单调递减. (2)当12a e≥时,()1ln 2xf x x e x ≥-, 设()1ln 2x h x x e x =-,则()222211ln ln 1111ln 222x x x x x x eh x e x e x x ⋅-+--'=-=-=, 令()21ln 12t x x x e =+-,则()110t x x e x '=+>, 所以()21ln 12t x x x e=+-在()0,∞+上单调递增,且1102t e e =⨯+=,所以0x <<时,()0t x <,即()0h x '<,此时()h x 单调递减;当x >()0t x >,即()0h x '>,此时()h x 单调递增, 所以()1ln 2x h x x e x=-在(上单调递减,在)+∞单调递增,所以()min 102h x h e ====, 所以()1ln 02xh x x e x=-≥对于()0,x ∈+∞恒成立, 所以()0f x ≥.【变式1.1】已知函数()2ln f x ax x =-. (1)讨论()f x 的单调性; (2)证明:当12a >时,()3f x >恒成立. 【答案】(1)0a ≤时,()f x 在()0,∞+为单调减函数;0a >时,()f x 在1(0,)2a为单调减函数,在1(,)2a+∞为单调增函数;(2)证明见解析. 【解析】(1)121()2ax f x a x x-'=-=,其中0x >; 当0a ≤时,()0f x '<,()f x 在()0,∞+为单调减函数; 当0a >时,1(0,)2x a ∈,()0f x '<,()f x 为单调减函数;1(,)2x a∈+∞,()0f x '>,()f x 为单调增函数,综上,0a ≤时,()f x 在()0,∞+为单调减函数;0a >时,()f x 在1(0,)2a 为单调减函数,在1(,)2a+∞为单调增函数.(2)证明:因为12a >2=≥当且仅当2=12x a=时,取等号.由(1)知min 1()()1ln 22f x f a a==+,所以()ln 21f x a +≥+,令1()ln 21()2g x x x =+>,则()g x 为增函数,所以1()()32g x g >=,即12a >时,()3f x >恒成立. 【例2】已知函数()xe f x x=.(1)求曲线()y f x =在2x =处的切线方程;(2)设()()ln 2G x xf x x x =--,证明:()3ln 22G x >--.【答案】(1)24e y x =;(2)证明见解析.【解析】(1)2()x x e x e f x x -'=,22222(2)24e e e f -'==且2(2)2e f =,所以切线方程22(2)24e e y x -=-,即24e y x =.(2)由()()ln 2(0)G x xf x x x x =-->,1()2x G x e x '=--,21()0xG x e x''=+>,所以 ()G x '在(0,)+∞为增函数,又因为(1)30G e '=-<,25(2)02G e ''=->, 所以存在唯一0(1,2)x ∈,使()000120x G x e x '=--=, 即012x e x =+且当()00,x x ∈时,()0G x '<,()G x 为减函数, ()0,x x ∈+∞时,()0G x '>,()G x 为增函数,所以()0min 0000001()ln 22ln 2x G x G x e x x x x x ==--=+--,0(1,2)x ∈, 记1()2ln 2H x x x x =+--,(12)x <<, 211()20H x x x'=---<,所以()H x 在(1,2)上为减函数,所以13()(2)2ln 24ln 222H x H >=+--=--,所以()03()ln 22G x G x ≥>--. 【变式2.1】已知函数()()322361f x x ax a x =++-(a ∈R ).(1)讨论函数()f x 的单调性;(2)若()15f =,4m <,求证:当1x >时,()()2ln 1mx x f x +≤.【答案】(1)见解析;(2)证明见解析. 【解析】(1)函数()f x 的定义域为(),-∞+∞,且()()()()26661611f x x ax a x x a '=++-=++-⎡⎤⎣⎦.①若2a =,则()0f x '≥,因而()f x 在(),-∞+∞上单调递增;②若2a <,则当(),1x ∈-∞-及()1,x a ∈-+∞时,()0f x '>,()f x 单调递增, 当()1,1x a ∈--时,()0f x '<,()f x 单调递减;③若2a >,则当(),1x a ∈-∞-及()1,x ∈-+∞时,()0f x '>,()f x 单调递增, 当()1,1x a ∈--时,()0f x '<,()f x 单调递减, 综上,当2a =时,()f x 在(),-∞+∞上单调递增;当2a <时,()f x 在(),1-∞-,()1,a -+∞上单调递增;在()1,1a --上单调递减; 当2a >时,()f x 在(),1-∞-a ,()1,-+∞上单调递增,在()1,1a --上单调递减. (2)由题意知()()123615f a a =++-=,∴1a =,故()3223f x x x +=.欲证当1x >时,()()2ln 1mx x f x +≤,∵当1x >时,21x >,ln 11x +>. ∴只需证:()()2ln 1f x m x x ≤+,即23ln 1x m x +≤+在()1,+∞上恒成立,设()()()123,ln 1x h x x x +=∈++∞,则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++.设()32ln x x x ϕ=-,则()223x x xϕ'=+,故当()1,x ∈+∞时,()0x ϕ'>,()x ϕ单调递增. 又()3ln16322ln 2022ϕ-=-=<,()320e eϕ=->,∴()0h x '=有且只有一个根0x ,且02x e <<,0032ln x x =. ∴在()01,x 上,()0h x '<,()h x 单调递减;在()0,x +∞上,()0h x '>,()h x 单调递增, ∴函数()h x 的最小值()0000002323243ln 112x x h x x x x ++===>++. 又∵4m <,∴23ln 1x m x +≤+在()1,+∞上恒成立, 故()()2ln 1mx x f x +≤成立.利用导数证明不等式恒成立的两种情形(1)若函数最值可以通过研究导数求得,则可先利用导数研究函数单调性,将不等式恒成立问题转化成函数最值问题来解决:()()min f x a f x a >⇒>;()()max f x a f x a <⇒<.(2)若函数最值无法通过研究导数求得,即导函数的零点无法精确求出时,可以利用“虚设和代换”的方法求解.“虚设和代换”法当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点存在,再虚设为0x ,接下来通常有两个方向:(1)由()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入()0f x ,从而求得()0f x ,然后解决相关问题.(2)根据导函数()f x '的单调性,得出0x两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解.【例3】已知函数()()ln 1f x x =+,()()g x kx k =∈R . (1)证明:当0x >时,()f x x <;(2)证明:当1k <时,存在00x >,使得任意()00,x x ∈,恒有()()f x g x >;(3)确定k 的所有可能取值,使得存在0t >,对任意的()0,x t ∈,恒有()()2f xg x x -<.【答案】(1)证明见解析;(2)证明见解析;(3)1k =. 【解析】(1)证明:令()()()[)ln 1,0,F x f x x x x x =-=+-∈+∞, 所以()1111xF x x x-'=-=++. 当[)0,x ∈+∞时,()0F x '<,所以()F x 在()0,+∞上单调递减. 又因为()00F =,所以当0x >时,()0F x <,即()0f x x -<, 所以()f x x <.(2)证明:令()()()()ln 1G x f x g x x kx =-=+-,[)0,x ∈+∞,()()1111kx k G x k x x-+-'=-=++. 当0k ≤时,()0G x '>,所以()G x 在()0,+∞上单调递增, 所以()()00G x G >=,即()()f x g x >, 故对任意的正实数0x 均满足题意. 当01k <<时,令()0G x '=,得1110k x k k-==->, 取011x k=-,对任意()00,x x ∈,恒有()0G x '>, 所以()G x 在()00,x 上单调递增,()()00G x G >=,即()()f x g x >.综上,当1k <,总存在00x >,使得对任意()00,x x ∈,恒有()()f x g x >. (3)当1k >时,由(1)知,对于任意()0,x ∈+∞,()()g x x f x >>, 故()()g x f x >.此时()()()()()ln 1f x g x g x f x kx x -=-=-+.令()()[)2ln 1,0,M x kx x x x =-+-∈+∞,则有()()22211211x k x k M x k x x x-+-+-'=--=++. 令()0M x '=,得()22210x k x k -+-+-=,x =(另一根为负,舍去),故当x ⎛ ∈ ⎝⎭时,()0M x '>,即()M x 在⎛ ⎝⎭上单调递增, 故()()00M x M >=,即()()2f xg x x ->.所以满足题意的t 不存在.当1k <时,由(2)知,存在00x >,使得对任意的()00,x x ∈,恒有()()f x g x >, 此时()()()()()ln 1f x g x f x g x x kx -=-=+-.令()()[)2ln 1,0,N x x kx x x =+--∈+∞,则有()()22211211x k x k N x k x x x--+-+'=--=++. 令()0N x '=,即()22210x k x k --+-+=,得x =(另一根为负,舍去),故当x ⎛ ∈ ⎝⎭时,()0N x '>,即()N x 在⎛ ⎝⎭上单调递增, 故()()00N x N >=,即()()2f xg x x -=.记0x 中较小的为1x ,则当()10,x x ∈时,恒有()()2f xg x x ->,故满足题意的t 不存在.当1k =时,由(1)知,当()0,x ∈+∞时,()()()()()ln 1f x g x g x f x x x -=-=-+.令()()[)2ln 1,0,H x x x x x =-+-∈+∞,则有()2121211x xH x x x x--'=--=++. 当0x >时,()0H x '<,即()H x 在()0+∞,上单调递减, 故()()00H x H <=.故当0x >时,恒有()()2f xg x x -<,此时任意正实数t 满足题意,综上,k 的取值为1.【变式3.1】已知函数()xf x e x =-. (1)求函数()xf x e x =-的极值;(2)求证:对任意给定的正数a ,总存在正数x ,使得不等式11x e a x--<成立. 【答案】(1)()1f x =极小值,无极大值;(2)证明见解析.【解析】(1)因为()x f x e x =-,所以()1x f x e '=-,令()0f x '=,则0x =,当0x >时,()0f x '>,即()f x 在()0,∞+上单调递增; 当0x <时,()0f x '<,即()f x 在(),0-∞上单调递减,所以0x =时,()f x 取得极小值,()()01f x f ==极小值,无极大值.(2)由(1)知当0x >时,110x e x -->,要证11x e a x --<,即11x e a x--<,即证当0a >时,不等式1x e x ax -<-,即10x e ax x ---<在(0,)+∞上有解. 令()1x H x e ax x =---,即证min ()0H x <, 由()10x H x e a '=--=,得ln(1)0x a =+>. 当0ln(1)x a <<+时,()0H x '<,()H x 单调递减; 当ln(1)x a >+时,()0H x '>,()H x 单调递增,min ()(ln(1))1ln(1)ln(1)1H x H a a a a a ∴=+=+-+-+-,令()ln 1V x x x x =--,其中11x a =+>,则()1(1ln )ln 0V x x x '=-+=-<,()V x ∴递减,()()10V x V ∴<=, 综上得证.【例4】已知函数()2ln ()f x ax x a =-+∈R .(1)讨论()f x 的单调性;(2)若存在()(),1,x f x a ∈+∞>-,求a 的取值范围.【答案】(1)分类讨论,答案见解析;(2)1,2⎛⎫-∞ ⎪⎝⎭.【解析】(1)函数()f x 的定义域为()0,+∞,()21122ax f x ax x x-='=-+,当0a ≤时,()0f x '>,则()f x 在()0,+∞上递增, 当0a >时,由()0f x '=,得x =由()0f x '>,得x ⎛∈ ⎝;由()0f x '<,得x ⎫∈+∞⎪⎭,于是有()f x 在⎛ ⎝上递增,在⎫+∞⎪⎭上递减.(2)由()f x a >-,得()21ln 0a x x --<,(1,)x ∈+∞, 2ln 0,10x x -<->,当0a ≤时,()21ln 0a x x --<,满足题意;当12a ≥时,令()()21()ln 1g x a x x x =-->,()2210ax x xg '=->,()g x 在()1,+∞上递增,则()()10g x g >=,不合题意; 当12a <<时,由()0g x '>,得x ⎫∈+∞⎪⎭;由()0g x '<,得x ⎛∈ ⎝,于是有()g x 在⎛ ⎝上递减,在⎫+∞⎪⎭上递增,()()min 10g g g x <==, 则102a <<时,()()1,,0x g x ∃∈+∞<,综上,a 的取值范围为1,2⎛⎫-∞ ⎪⎝⎭.【变式4.1】已知函数()()()21222x f x xe a x x a =-+-∈R .(1)当1a e≤时,讨论函数()f x 的极值;(2)若存在()00,x ∈+∞,使得()()00001ln 222f x x x a ax <+--,求实数a 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)(),1-∞-.【解析】(1)由题意,函数()()21222x f x xe a x x =-+-,可得()()()()()111x xf x e a x x e a x '=+-+=+-.①当0a ≤时,若1x <-,则()0f x '<;若1x >-,则()0f x '>, 所以()f x 在区间(),1-∞-上是减函数,在区间()1,-+∞上是增函数,所以当1x =-时,()f x 取得极小值()1312f e a --=-+,无极大值;②当10a e<<时,若ln x a <或1x >-,则()0f x '>;若ln 1a x <<-,则()0f x '<,()f x 在区间(),ln a -∞上是增函数,在区间()ln ,1a -上是减函数,在区间()1,-+∞上是增函数,所以当ln x a =时,()f x 取得极大值()()21ln ln 2f a a a a =-,当1x =-时,()f x 取得极小值()1312f e a --=-+;③当1a e =时,()0f x '≥,∴()f x 在区间(),-∞+∞上是增函数,∴()f x 既无极大值又无极小值,综上所述,当0a ≤时,()f x 有极小值()1312f e a --=-+,无极大值;当10a e <<时,()f x 有极大值()()21ln ln 2f a a a a =-,极小值()1312f e a --=-+; 当1a e=时,()f x 既无极大值又无极小值.(2)由题知,存在()00,x ∈+∞,使得0000ln 0xx e x x a --+<,设()ln xh x xe x x a =--+,则()()()11111x x h x x e x e x x ⎛⎫'=+--=+- ⎪⎝⎭, 设()()10xm x e x x=->,∴()m x 在区间()0,∞+上是增函数,又1202m ⎛⎫=< ⎪⎝⎭,()110m e =->,∴存在11,12x ⎛⎫∈ ⎪⎝⎭,使得()10m x =,即111x e x =,∴11ln x x =-, 当10x x <<时,()0m x <,即()0h x '<;当1x x >时,()0m x >,即()0h x '>, ∴()h x 在区间()10,x 上是减函数,在区间()1,x +∞上是增函数,∴()()11111111min 11ln 1x h x h x x e x x a x x x a a x ==--+=⨯+-+=+, ∴10a +<,∴1a <-,∴实数a 的取值范围为(),1-∞-.【例5】已知函数()22ln 1f x x x x ax =+-+.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式()02f x ≥-成立,求实数a 的取值范围.【答案】(1)320x y --=;(2)1,23e e ⎛⎤-∞-++⎥⎝⎦. 【解析】(1)当1a =时,()22ln 1f x x x x x =+-+,则()2ln 2212ln 21f x x x x x '=++-=++,所以()13f '=,而()11f =,所以曲线()y f x =在点()()1,1f 处的切线方程为()131y x -=-,即320x y --=.(2)若存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式()02f x ≥-成立,即存在01,x e e ⎡⎤∈⎢⎥⎣⎦,使不等式200002ln 12x x x ax +-+≥-成立,存在01,x e e ⎡⎤∈⎢⎥⎣⎦,不等式00032ln a x x x ≤++成立, 设()32ln h x x x x =++,1,x e e ⎡⎤∈⎢⎥⎣⎦,则()2(3)(1)x x h x x +-'=,当1[,1)x e ∈时,()0h x '<,()h x 在1[,1)e上单调递减;当(]1,x e ∈时,()0h x '>,()h x 在(]1,e上单调递增,又1123h e e e ⎛⎫=-++ ⎪⎝⎭,()32h e e e =++,()12240h e h e e e ⎛⎫-=-++< ⎪⎝⎭, 即()max 1123h x h e e e ⎛⎫==-++ ⎪⎝⎭,故()max 123a h x e e ≤-++=,所以实数a 的取值范围为1,23e e⎛⎤-∞-++ ⎥⎝⎦.【变式5.1】已知e 是自然对数的底数,函数()cos xf x x me =+,[]π,πx ∈-.(1)若曲线()y f x =在点()()0,0f 处的切线斜率为1,求()f x 的最小值;(2)若当[]π,πx ∈-时,()xf x e >有解,求实数m 的取值范围.【答案】(1)π11e -;(2)π41,e ⎛⎫+∞ ⎪ ⎪⎝⎭. 【解析】(1)由()cos x f x x me =+,得()sin xf x x me '=-+.曲线()y f x =在点()()0,0f 处的切线斜率为1,()01f m '∴==,()cos x f x x e ∴=+,()sin x f x x e '=-+.当[)π,0x ∈-时,sin 0x -≥,0x e >,()0f x '∴>, 当[0,π]x ∈时,01x e e ≥=,sin 1x ≤,则()0f x '≥,()f x ∴在[]π,π-上单调递增,()()πmin 1π1f x f e∴=-=-. (2)()cos 1xx x f x e m e >⇔>-,设()cos 1xxg x e =-,[]π,πx ∈-,则当[]π,πx ∈-时,()xf x e >有解()min mg x ⇔>.()cos 1x x g x e=-,()πsin cos 4x xx x x g x e e ⎛⎫+ ⎪+⎝⎭'∴==. 当[]π,πx ∈-时,π3π5π,444x ⎡⎤+∈-⎢⎥⎣⎦,解()0g x '=,可得04πx +=或π4πx +=,解得14πx =-,23π4x =. 当ππ4x -≤<-时,()0g x '<,此时函数()g x 单调递减; 当π3π44x -<<时,()0g x '>,此时函数()g x 单调递增; 当3ππ4x <≤时,()0g x '<,此时函数()g x 单调递减.4π14πg e ⎛⎫-= ⎪⎝⎭,()π1π1g e =+,且()π4πg g ⎛⎫-< ⎪⎝⎭,()nπ4mi 142πg x g e ⎛⎫∴=-=- ⎪⎝⎭,m ∴的取值范围为π41,2e ⎛⎫-+∞ ⎪ ⎪⎝⎭. 【例6】已知函数()2ln f x x x ax a =+-(a ∈R ).(1)当1a =时,求函数()f x 在点()()1,1f 处的切线方程; (2)当1x ≥时,不等式()0f x ≥恒成立,求实数a 的取值范围.【答案】(1)330x y --=;(2)[)0,+∞. 【解析】(1)当1a =时,()2ln 1f x x x x =+-,()ln 21f x x x +'=+.则曲线()f x 在点()()1,1f 处的切线的斜率为()13f '=. 又()10f =,所以切线方程为330x y --=.(2)由函数()()2ln 10f x x x a x =+-≥,等价于ln 0ax ax x+-≥恒成立, 则()ln a g x x ax x =+-,其中1x ≥,()2221a ax x ag x a x x x ++=++=',当0a ≥时,因为1x ≥,所以0g x ,()g x 在[)1,+∞上单调递增,则()()10g x g ≥=,符合题意;当0a <时,令()2t x ax x a =++,214Δa =-,当2140Δa =-≤时,解得12a ≤-,()0g x '≤,()g x 在[)1,+∞上单调递减,则()()10g x g <=,对于任意1x >恒成立,不合题意;当2140Δa =->时,102a -<<,设()2t x ax x a =++的两个零点为12,x x ,设12x x <,12121,1x x x x a+=-=,则1201x x <<<,当[)21,x x ∈,()()0,0t x g x '>>,()g x 单调递增; 当()2,x x ∈+∞时,()0t x <,0g x,()g x 单调递减,又∵当x →+∞时,对数函数ln x 的增长速度远不如aax x-的减小速度, ∴()g x →-∞,所以不合题意,综上所述,实数a 的取值范围是[)0,+∞. 【变式6.1】函数()()ln 1,f x a x a =+∈R .(1)当1a =时,求曲线()y f x =在3x =处的切线方程; (2)若对任意的[)0,x ∈+∞,都有()212f x x x ≥-恒成立,求实数a 的取值范围. 附:()1[ln 1]1x x '+=+. 【答案】(1)48ln230x y -+-=;(2)[)1,+∞.【解析】(1)当1a =时,()ln(1)f x x =+,得出切点(3,ln 4), 因为1()1f x x '=+,所以切线的斜率为()143k f ='=,所以曲线()y f x =在3x =处的切线方程为1ln 4(3)4y x -=-,化简得48ln 230x y -+-=.(2)对任意的[)0,x ∈+∞,都有()212f x x x ≥-恒成立, 即()21ln 102a x x x -+≥+恒成立,令()()()21ln 102h x a x x x x =+-+≥,()()211011a x a h x x x x x +-=-+=+'≥+.①当1a ≥时,()0h x '≥恒成立,∴函数()h x 在[)0,x ∈+∞上单调递增,()()00h x h ∴≥=,1a ∴≥时符合条件.②当1a <时,由()0h x '=,及0x ≥,解得x =.当(x ∈时,()0h x '<;当)x ∞∈+时,()0h x '>,()()min 00h x hh =<=,这与()0h x ≥相矛盾,应舍去.综上可知,1a ≥,所以a 的取值范围为[)1,+∞.【例7】已知函数()1xf x e ax --=.(1)当1a =时,求证:()0f x ≥;(2)当0x ≥时,()2f x x ≥,求实数a 的取值范围.【答案】(1)证明见解析;(2)(,2]e -∞-.【解析】(1)证明:当1a =时,()1x f x e x =--,定义域为R ,则()1x f x e '=-,由()0f x '>,得0x >;由()0f x '<,得0x <, 所以()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增,所以0x =是()f x 的极小值点,也是()f x 的最小值点,且min ()(0)0f x f ==, 所以()0f x ≥.(2)解:由()2f x x ≥(0x ≥),得21x ax e x ≤--(0x ≥),当0x =时,上述不等式恒成立,当0x >时,21x e x a x--≤,令21()x e x g x x--=(0x >),则222(2)(1)(1)(1)()x x x e x x e x x e x g x x x-------'==, 由(1)可知,当0x >时,10x e x -->,所以由()0g x '<,得01x <<;由()0g x '>,得1x >, 所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以1x =是()g x 的极小值点,也是()g x 的最小值点,且min ()(1)2g x g e ==-, 所以2a e ≤-,所以实数a 的取值范围为(,2]e -∞-.【变式7.1】已知函数2()2ln ,()f x x ax x a =+++∈R . (1)讨论()f x 的单调性;(2)若()x f x e ≤恒成立,求a 的最大值. 【答案】(1)答案见解析;(2)3e -.【解析】(1)2121()2,(0,)x ax f x x a x x x∞'++=++=∈+,当a -≤≤()0f x '≥恒成立,()f x 在(0,)+∞上单调递增;当a <-时,在0,,,,()0,()44a a f x f x ∞⎛⎛⎫--+> ⎪ ⎪ ⎪⎝⎭⎝'⎭单调递增;在,()0,()f x f x <'⎝⎭单调递减;当a >(0,),()0,()f x f x ∞+>'单调递增,综上所述:当a ≥-时,()f x 在(0,)+∞上单调递增;当a <-时,()f x 在0,,44a a ∞⎛⎫⎛⎫--++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭单调递增,在⎝⎭单调递减. (2)2()2ln xf x x ax x e =+++≤在(0,)+∞恒成立,可得2ln 2x e x x a x---≤恒成立;设2ln 2()x e x x g x x ---=,则22(1)ln 1()x e x x x g x x-'+-+=, 令2()(1)ln 1x h x e x x x =-+-+,则1()2xh x xe x x+'=-, 令()1x x e x μ=--,则()1x x e μ=-',因为0x >,所以()0x μ>,()x μ∴在(0,)+∞上单调递增,2211122x xe x x x x x x x x x ∴+->++-=+-,211()2x h x xe x x x x x∴=+->-'+,令21()j x x x x =-+,则3222121()21x x j x x x x-='-=--, 易知在(0,1),()0,()j x j x <'单调递减;在(1,),()0,()j x j x ∞+>'单调递增,()(1)1j x j ∴≥=,可得()0h x '>,所以()h x 在(0,)+∞上单调递增,又因为(1)0h =,所以在(0,1)上,()0h x <;在(1,)+∞上,()0h x >,所以在(0,1)上,()0,()g x g x '<单调递减;在(1,)+∞上,()0,()g x g x '>单调递增, 所以在(0,)+∞上,()(1)3g x g e ≥=-,所以3a e ≤-, 所以a 的最大值为3e -.(1)解决“已知不等式恒成立或能成立求参数”问题常用方法之一是“分离参数法”,即将参数k 与含有变量的式子分离,转化成()k h x <或()k h x >的形式,利用“()k h x <恒成立()min k h x ⇔<,()k h x >恒成立()max k h x ⇔>,()k h x <能成立()max k h x ⇔<,()k h x >能成立()min k h x ⇔>”把不等式恒成立或能成立问题转化成利用导数求函数值问题. (2)在恒成立或能成立问题中,若参数无法分离,可以尝试带着参数对原函数求导,然后令导数得零,得出极值点,根据极值点与区间端点的大小对参数进行分类讨论,然后再从正面证明或者从反面找反例来说明每一类是否符合条件,最后取并集.【例8】已知函数2()ln (0,1)x f x a x x a a a =+->≠. (1)当1a >时,求()f x 的单调区间;(2)若对任意的[]12,1,1x x ∈-,使得12()()1f x f x e -≤-,求实数a 的取值范围(e 为自然对数的底数).【答案】(1)()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞;(2)1[,1)(1,]e e.【解析】(1)()ln 2ln (1)ln 2x x f x a a x a a a x '=+-=-+(x ∈R ), 由于1a >,则ln 0a >,当0x >时,10x a ->,则()0f x '>; 当0x <时,10x a -<,则()0f x '<,所以()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞. (2)对任意的[]12,1,1x x ∈-,都有12()()1f x f x e -≤-, 则12max ()()1f x f x e -≤-,即max min ()()1f x f x e -≤-, 当01a <<时,ln 0a <,当0x >时,10x a -<,则()0f x '>,当0x <时,10x a ->,则()0f x '<,所以此时()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞,结合第(1)问知,当0,1a a >≠时,()f x 的单调减区间为(,0)-∞,增区间为(0,)+∞, 所以min ()(0)1f x f ==,{}max ()max (1),(1)f x f f =-, 由1(1)1ln f a a-=++,(1)1ln f a a =+-,则1(1)(1)2ln f f a a a --=--,令1()2ln g x x x x =--,则22212(1)()10x g x x x x -'=+-=≥, 所以()g x 在(0,)+∞上是增函数, 又(1)0g =,故当1x >时,()0g x >;当01x <<时,()0g x <, 即当1a >时,(1)(1)f f >-;当01a <<时,(1)(1)f f <-, ①当1a >时,max min ()()(1)(0)ln 1f x f x f f a a e -=-=-≤-, 令()ln (1)h x x x x =->,则()()h a h e ≤,又11()10x h x x x-'=-=>,即()h x 在(1,)+∞上是增函数,所以1a e <≤; ②当01a <<时,有1(1)(0)ln 1f f a e a --=+≤-,则11ln 1e a a -≤-,即1()()h h e a≤,所以1e a≤,即11a e ≤<,综上可知,实数a 的取值范围是1[,1)(1,]e e.【变式8.1】设a ∈R ,已知函数()()()6x f x e x x a +-=-,函数()ln 1xx g x e x x=--.(注:e 为自然对数的底数)(1)若5a =-,求函数()f x 的最小值;(2)若对任意实数1x 和正数2x ,均有()()1248f x g x a +≥-,求a 的取值范围.【答案】(1)29-;(2)35,e ⎡⎤-⎣⎦.【解析】(1)当5a =-时,()21xf x e x '=+-为增函数,且()00f '=,所以()f x 在,0递减,在0,递增,所以()()min 01629f x f a ==+=-.(2)因为()2ln 111ln ln x x xx g x e e e x x x x ⎛⎫'=+=- ⎪⎝⎭, 由于函数2ln xy x e x =+在0,上单增,且1210e g e e e ⎛⎫'=-< ⎪⎝⎭,()10g e '=>, 所以存在唯一的01,1x e ⎛⎫∈ ⎪⎝⎭使得()00g x '=,且()()0min g x g x =.再令()ln u x x x =,()1ln u x x '=+,可知()u x 在1,单增,而由()00g x '=可知()001xu e u x ⎛⎫= ⎪⎝⎭,01x e >,011x >,所以001x e x =.于是()000001ln 11x x g x e x x ⎛⎫ ⎪⎛⎫⎝⎭=-+= ⎪⎝⎭,所以()min 1g x =.又()26xf x e x a '=+--为增函数,当0a ≥时,()050f a '=--<,当0a <时,2602aa f e ⎛⎫'=-< ⎪⎝⎭;又当6a ≥时,2602aa f e ⎛⎫'=-> ⎪⎝⎭, 当6a <时,()330f e a '=->,所以对任意a ∈R ,存在唯一实数3x , 使得()30f x '=,即3326xa e x =+-,且()()3min f x f x =.由题意,即使得()()min min 48f x g x a ≥+-,也即()()3333333626148248x x xe x x e x e x +---++≥+--, 即()()333310xx e x -+-≤,又由于()1xv x e x =+-单调递增且()00v =,所以3x 的值范围为[]0,3,代入3326xa e x =+-求得a 的取值范围为35,e ⎡⎤-⎣⎦.【例9】已知函数()1ln a a x xf x ++=,(),0a a ∈≠R . (1)求函数()f x 的单调区间;(2)设函数()()()()223,0g x x f x xf x a a '=--<,存在实数212,1,x x e ⎡⎤∈⎣⎦,使得不等式()()122g x g x <成立,求a 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)3,026a e ⎛⎫∈⎪-⎝⎭. 【解析】(1)∵()()1ln ,0a f x a x x x +=+>,∴()()21ax a f x x -+'=, ①当0a >时,∵10a a +>,∴10,a x a +⎛⎫∈ ⎪⎝⎭,()0f x '<,∴()f x 单减,∴减区间是10,a a +⎛⎫⎪⎝⎭;1,a x a +⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,∴()f x 单增,∴增区间是1,a a +⎛⎫+∞ ⎪⎝⎭. ②当10a -<<时,∵10a a+<,∴()0f x '<,∴()f x 的减区间是()0,∞+. ③当1a =-时,∵()10f x x'=-<,∴()f x 的减区间是()0,∞+. ④当1a <-时,10,a x a +⎛⎫∈ ⎪⎝⎭,∴()0f x '>,∴()f x 的增区间是10,a a +⎛⎫ ⎪⎝⎭; 1,a x a +⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,∴()f x 的减区间是1,a a +⎛⎫+∞ ⎪⎝⎭. (2)()()()2ln 63,0g x ax ax x a a =--+<,因为存在实数212,1,x x e ⎡⎤∈⎣⎦,使得不等式()()122g x g x <成立,∴()()min max 2g x g x <,()()1ln g x a x '=-,∵0a <,[)1,x e ∈,()0g x '<,()g x 单减;(2,x e e ⎤∈⎦,()0g x '>,∴()g x 单增, ∴()()min 63g x g e ae a =--=,()()(){}2max max 1,63g x g g e a ==--.∴212663ae a a --<--,∴326a e >-, ∵0a <,∴3,026a e ⎛⎫∈⎪-⎝⎭. 【变式9.1】已知函数()x f x xe =,()||g x a x e =-.(1)若0x ≥,求证:当2a e =时,函数()||g x a x e =-与()x f x xe =的图象相切; (2)若1[2,1]x ∃∈-,对2[2,1]x ∀∈-,都有()()12f x g x ≥,求a 的取值范围. 【答案】(1)证明见解析;(2)(,]e -∞.【解析】(1)证明:∵()x f x xe =,∴()(1)x x x f x e xe e x ='=++, 当0x ≥时,()2g x ax e ex e =-=-,设点()000,xP x x e 为函数()f x 图象上的一点,令()()000()12xg x f x e x k e '=+==,设()(1)x h x e x =+,∴()(2)0x h x e x '=+>,所以()h x 单调递增, 又(1)2h e =,∴01x =,此时()0(1)f x f e ==,()0(1)g x g e ==, 即当2a e =时,结论成立,切点为()1,e . (2)解:由已知得max max ()()f x g x ≥, ∵()x f x xe =,∴()(1)x x x f x e xe e x ='=++, 可知,当[2,1)x ∈--时,()0f x '<,()f x 单调递减; 当[1,1]x ∈-时,()0f x '>,()f x 单调递增,又∵22(2)f e-=-;(1)f e =, ∴当[2,1]x ∈-时,max ()f x e =,又∵当0a ≤时,||a x e e -≤-,∴max ()g x e =-, ∴max max ()()g x f x ≤,∴0a ≤①;若0a >,当[2,1]x ∈-时,max ()(2)2g x g a e e a e -=-≤⇒≤=, 又∵0a >,∴0a e <≤②;由①②可得a e ≤,∴a 的取值范围为(,]e -∞. 【例10】已知函数()ln 2f x a x x =-+,其中0a ≠. (1)求()f x 的单调区间;(2)若对任意的[]11,x e ∈,总存在[]21,x e ∈,使得12()()4f x f x +=,求实数a 的值. 【答案】(1)见解析;(2)1e +. 【解析】(1)∵()1a a xf x x x-'=-=,0x >, 当0a <时,对()0,x ∀∈+∞,()0f x '<, 所以()f x 的单调递减区间为()0,∞+. 当0a >时,令()0f x '=,得x a =,∵()0,x a ∈时,()0f x '>;(),x a ∈+∞时,()0f x '<, 所以()f x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.综上所述,0a <时,()f x 的单调递减区间为()0,∞+;0a >时,()f x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.(2)讨论:①当1a ≤且0a ≠时,由(1)知,()f x 在[]1,e 上单调递减, 则()()max 11f x f ==,因为对任意的[]11,x e ∈,总存在[]21,x e ∈,使得()()()122124f x f x f +≤=<, 所以对任意的[]11,x e ∈,不存在[]21,x e ∈,使得()()124f x f x +=;②当1a e <<时,由(1)知,在[]1,a 上()f x 是增函数,在[],a e 上()f x 是减函数, 则()()max ln 2f x f a a a a ==-+, 因为对11x =,对[]21,x e ∀∈,()()()()()1211ln 2ln 133f x f x f f a a a a a a +≤+=+-+=-+<, 所以对[]111,x e =∈,不存在[]21,x e ∈,使得()()124f x f x +=; ③当a e ≥时,令()()()4[1,]g x f x x e =-∈,由(1)知,()f x 在[]1,e 是增函数,进而知()g x 是减函数, 所以()()min 11f x f ==,()()max 2f x f e a e ==-+,()()()max 141g x g f ==-,()()()min 4g x g e f e ==-,因为对任意的[]11,x e ∈,总存在[]21,x e ∈,使得()()124f x f x +=,即()()12f x g x =,故有()()()()11f g e f e g ⎧≥⎪⎨≤⎪⎩,即()()()()1414f f e f e f ⎧+≥⎪⎨+≤⎪⎩,所以()()134f f e a e +=-+=,解得1a e =+, 综上,a 的值为1e +.【变式10.1】已知函数()()3222f x x x m x =-+-+,223()x m g x x m+=-,m ∈R .(1)当2m =时,求曲线()y f x =在1x =处的切线方程; (2)求()g x 的单调区间;(3)设0m <,若对于任意[]00,1x ∈,总存在[]10,1x ∈,使得()()10f x g x =成立,求m 的取值范围.【答案】(1)1y x =+;(2)见解析;(3)[]2,1--.【解析】(1)当2m =时,()322f x x x =-+,所以()232f x x x '=-,所以()()12,11f f '==,所以曲线()y f x =在1x =处的切线方程为21y x -=-,即1y x =+.(2)()223x m g x x m+=-的定义域是{}|x x m ≠,()()()()23x m x m g x x m +-'=-, 令()0g x '=,得12,3x m x m =-=,①当0m =时,()(),0g x x x =≠,所以函数()g x 的单调增区间是(,0),(0,)-∞+∞; ②当0m <时,()(),,x g x g x '变化如下:所以函数()g x 的单调增区间是()(),3,,m m -∞-+∞,单调减区间是()()3,,,m m m m -; ③当0m >时,()(),,x g x g x '变化如下:所以函数()g x 的单调增区间是()(),,3,m m -∞-+∞,单调减区间是()(),,,3m m m m -.(3)因为()()3222f x x x m x =-+-+,所以()()2322f x x x m '=-+-,当0m <时,()412212200Δm m =--=-<,所以()0f x '>在()0,1上恒成立,所以()f x 在()0,1上单调递增, 所以()f x 在[]0,1上的最小值是()02f =,最大值是()14f m =-,即当[]0,1x ∈时,()f x 的取值范围为[]2,4m -,由(2)知,当10m -<<时,01m <-<,()g x 在()0,m -上单调递减,在(),1m -上单调递增,因为()22g m m -=-<,所以不合题意; 当1m ≤-时,1m ->,()g x 在[]0,1上单调递减,所以()g x 在[]0,1上的最大值为()03g m =-,最小值为()21311m g m+=-,所以当[]0,1x ∈时,()g x 的取值范围为213,31m m m ⎡⎤+-⎢⎥-⎣⎦, “对于任意[]00,1x ∈,总存在[]10,1x ∈,使得()()10f x g x =成立”等价于213,3[2,4]1m m m m ⎡⎤+-⊆-⎢⎥-⎣⎦,即2132134m m m m⎧+≥⎪-⎨⎪-≤-⎩,解得21m -≤≤-, 所以m 的取值范围为[]2,1--.不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.一、解答题.1.已知函数()()2ln 21f x x ax a x =+-+,(0a ≥).(1)当0a =时,求函数()f x 的极值;(2)函数()f x 在区间()1,+∞上存在最小值,记为()g a ,求证:()124g a a<-. 【答案】(1)极大值为1-,无极小值;(2)证明见解析. 【解析】(1)当0a =时,()ln f x x x =-,0x >,则()11f x x'=-, 当()0,1x ∈,()0f x '>;当[)1,x ∈+∞,所以()0f x '≤. 所以当1x =时,()f x 取得极大值为()11f =-,无极小值.(2)由题可知()()()()()222112111221ax a x ax x f x ax a x x x-++--'=+-+==. ①当0a =时,由(1)知,函数()f x 在区间()1,+∞上单调递减,所以函数()f x 无最小值,此时不符合题意; ②当12a ≥时,因为()1,x ∈+∞,所以210ax ->,此时函数()f x 在区间()1,+∞上单调递增,所以函数()f x 无最小值,此时亦不符合题意; ③当102a <<时,此时112a<, 函数()f x 在区间11,2a ⎛⎫ ⎪⎝⎭上单调递减,在区间1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()min 111ln1224f x f a a a ⎛⎫==-- ⎪⎝⎭,即()11ln 124g a a a =--, 要证()111ln 12244a a a g a =--<-,只需证当102a <<时,11ln 1022a a-+<成立, 设12t a=,()()ln 11h t t t t =-+>, 由(1)知()()10h t h <=,所以()124g a a<-. 2.已知函数()2ln ()f x a x a x =-∈R .(1)讨论函数()f x 的单调性;(2)若()1f x ≥恒成立,求a 的取值范围. 【答案】(1)答案见解析;(2){}2.【解析】(1)()()2220a x a f x x x x x-=-=>',当0a ≤时,()0f x '>,所以函数()f x 在区间(0,)+∞上单调递增;当0a >时,由()0f x '>,得x >()0f x '<,得0x <≤,所以函数()f x 在区间⎛ ⎝上单调递减,在区间⎫+∞⎪⎪⎭上单调递增, 综上所述,当0a ≤时,函数()f x 在区间(0,)+∞上单调递增;当0a >时,函数()f x 在区间⎛ ⎝上单调递减﹐在区间⎫+∞⎪⎪⎭上单调递增. (2)由(1)可得:当0a ≤时,()f x 在区间(0,)+∞上单调递增; 又()11f =,所以当01x <<时,()1f x <,不满足题意;当0a >时,函数()f x 在区间⎛ ⎝上单调递减﹐在区间⎫+∞⎪⎪⎭上单调递增;所以()min ln 2222a a a af x f a ==-=-, 为使()1f x ≥恒成立,只需()min ln 1222a a af x =-≥, 令2at =,()ln g t t t t =-,则只需()1g t ≥恒成立, 又()1ln 1ln g t t t '=--=-,由()0g t '>,得01t <<;由()0g t '<,得1t >, 所以()g t 在()0,1上单调递增,在()1,+∞上单调递减, 则()()max 11g t g ==; 又()1g t ≥,所以只有1t =,即12a=,则2a =, 综上,a 的取值范围为{}2.3.设3x =是函数23()()()x f x x ax b e x -=++∈R 的一个极值点. (1)求a 与b 之间的关系式,并求当2a =时,函数()f x 的单调区间;(2)设0a >,225()()4xg x a e =+.若存在12,[0,4]x x ∈使得12()()1f x g x -<成立,求实数a 的取值范围.【答案】(1)由23b a =--,()f x 在()3,3-上单调递增,在(),3-∞-和()3,+∞单调递减;(2)3(0,)2a ∈.【解析】(1)()()()232x f x x a x b a e -=-+-+-',由题意知()30f '=,解得23b a =--.当2a =,则7b =-,故令()()2390xf x x e -=-->',得33x -<<,于是()f x 在()3,3-上单调递增,在(),3-∞-和()3,+∞单调递减.(2)由(1)得()()()23233xf x x a x a e -=-+---',令()0f x '>,得13a x --<<(0a >),所以()f x 在()0,3上单调递增,在(]3,4单调递减,于是()()max 36f x f a ==+,()()(){}()3min min 0,423f x f f a e ==-+;另一方面()g x 在[]0,4上单调递增,()2242525,44g x a a e ⎡⎤⎛⎫∈++ ⎪⎢⎥⎝⎭⎣⎦.根据题意,只要()225614a a ⎛⎫+-+< ⎪⎝⎭,解得1322a -<<,所以30,2a ⎛⎫∈ ⎪⎝⎭.4.已知函数()2ln f x x ax x =+-,()3ln 12xx g x x e =-++.(1)讨论函数()f x 的单调性;(2)若()()f x g x ≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析;(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭. 【解析】(1)函数()2ln f x x ax x =+-的定义域为()0,∞+,且()212121ax x f x ax x x-+=+='-.①当0a =时,()1xf x x-'=,若01x <<,则()0f x '>;若1x >,则()0f x '<, 此时,函数()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞;②当0a <时,180Δa =->,令()0f x '=,可得14x a =(舍)或14x a=.若104x a <<,则()0f x '>;若14x a>,则()0f x '<, 此时,函数()f x的单调递增区间为0⎛ ⎝⎭,单调递减区间为+⎫⎪∞⎪⎝⎭; ③当0a >时,18Δa =-.(i )若180Δa =-≤,即当18a ≥时,对任意的0x >,()0f x '≥,。

恒成立与存在性问题方法总结

恒成立与存在性问题方法总结

三一文库()/总结〔恒成立与存在性问题方法总结〕高三数学复习中的恒成立与存在性问题,涉及一次函数、二次函数等函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养学生思维的灵活性、创造性等方面起到了积极的作用,因此也成为历年高考的一个热点,恒成立与存在性问题的处理途径有多种,下面是小编整理的恒成立与存在性问题方法总结,欢迎来参考!▲一、构建函数构建适当的函数,将恒成立问题转化为能利用函数的性质来解决的问题。

1、构建一次函数众所周知,一次函数的图像是一条直线,要使一次函数在某一区间内恒大于(或小于)零,只需一次函数在某区间内的两个端点处恒大于(或小于)零即可。

例1:若x∈(-2,2),不等式kx+3k+1>0恒成立,求实数k的取值范围。

第1页共5页解:构建函数f(x)= kx+3k+1,则原问题转化为f(x)在x∈(-2,2)内恒为正。

若k=0,则f(x)=1>0恒成立;若k≠0,则f(x)为一次函数,问题等价于f(-2)>0,f(2)>0,解之得k∈(- ,+∞)。

例2:对≤2的一切实数,求使不等式2x-1>(x -1)都成立的x的取值范围。

解:原问题等价于不等式:(x -1)-(2x-1)<0,设f()=(x -1)-(2x-1),则原问题转化为求一次函数f()或常数函数在[-2,2]内恒为负值时x的取值范围。

(1)当x -1=0时,x=±1。

当x=1时,f()<0恒成立;当x=-1时,f()<0不成立。

(2)当x -1≠0时,由一次函数的单调性知:f()<0等价于f(-2)<0,且f(2)<0,即<x<;综上,所求的x∈()。

2、构建二次函数二次函数的图像和性质是中学数学中的重点内容,利用二次函数的图像特征及相关性质来解决恒成立问题,使原本复杂的问题变得容易解决。

例3:若x≥0,lg(ax +2x+1)∈R恒成立,求实数a的取值范围。

高一函数恒成立与存在性问题

高一函数恒成立与存在性问题

高一函数恒成立与存在性问题本文主要介绍了数学中恒成立与存在性问题的基础知识和解决方法。

其中恒成立问题包括六种情况,分别是当a大于所有f(x)时,a也大于f(x)的最大值;当a小于所有f(x)时,a也小于f(x)的最小值;当g(x)大于f(x)时,g(x)-f(x)大于0;当g(x)小于f(x)时,g(x)-f(x)小于0;当f(x1)大于g(x2)时,f(x1)也大于g(x2)的最大值;当f(x1)小于g(x2)时,f(x1)也小于g(x2)的最小值。

存在性问题同样包括六种情况,与恒成立问题类似。

此外,还介绍了恒成立与存在性混合不等式问题和恒成立与存在性混合等式问题,以及解决这些问题的方法。

对于恒成立问题,可以采用反证法或数学归纳法;对于存在性问题,可以采用构造法或反证法。

在解决问题时,需要注意精确表述和符号运用。

例四:1) 当$x\in(1,2)$时,不等式$(x-1)^2<\log_a{x}$恒成立,求实数$a$的取值范围。

改写后:对于$x\in(1,2)$,使得$(x-1)^2<\log_a{x}$恒成立,求实数$a$的取值范围。

2) 当$x\in(0,\infty)$时,不等式$4x<\log_a{x}$恒成立,求实数$a$的取值范围。

改写后:对于$x\in(0,\infty)$,使得$4x<\log_a{x}$恒成立,求实数$a$的取值范围。

3) 已知$f(x)=m(x-2m)(x+m+3)$,$g(x)=2x-2$。

若对于所有$x\in\mathbb{R}$,都有$f(x)g(x)$,则$m$的取值范围是什么?改写后:已知$f(x)=m(x-2m)(x+m+3)$,$g(x)=2x-2$。

若对于所有$x\in\mathbb{R}$,都有$f(x)g(x)$,求$m$的取值范围。

题:1.当$x\in(-\infty,-1]$时,不等式$(m^2-m)4x-2x<0$恒成立,求实数$m$的取值范围。

高中数学x恒成立、存在性问题解决办法

高中数学x恒成立、存在性问题解决办法

恒成立、存在性问题解决办法总结1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m i n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m ax ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、简单型1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、更换主元法1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

高考数学复习专题19 恒成立与存在性问题(解析版)

高考数学复习专题19  恒成立与存在性问题(解析版)

专题19恒成立与存在性问题专题知识梳理恒成立问题①∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A;③∀x∈D,均有f(x)>g(x)恒成立,则F(x)=f(x)-g(x)>0,∴F(x)min>0;④∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)<0,∴F(x)ma x<0;⑤∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)ma x;⑥∀x1∈D,∀x2∈E,均有f(x1)<g(x2)恒成立,则f(x)ma x<g(x)min.存在性问题①∃x0∈D,使得f(x0)>A成立,则f(x)ma x>A;②∃x0∈D,使得f(x0)﹤A成立,则f(x)min<A;③∃x0∈D,使得f(x0)>g(x0)成立,设F(x)=f(x)-g(x),∴F(x)ma x>0;④∃x0∈D,使得f(x0)<g(x0)成立,设F(x)=f(x)-g(x),∴F(x)min<0;⑤∃x1∈D,∃x2∈E,使得f(x1)>g(x2)成立,则f(x)ma x>g(x)min;⑥∃x1∈D,∃x2∈E,均使得f(x1)<g(x2)成立,则f(x)min<g(x)ma x.考点探究【例1】(2018·徐州模拟)若关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,则实数a的取值范围是.【解析】关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,可得x3﹣3x2+ax<﹣b的最小值,即为x3﹣3x2+ax<﹣4,可得a<3x﹣x2﹣的最小值,设f (x )=3x ﹣x 2﹣,x ∈[1,3],导数为f′(x )=3﹣2x+,可得1<x <2时,f′(x )>0,f (x )递增;2<x <3时,f′(x )<0,f (x )递减,又f (1)=﹣2,f (3)=﹣,可得f (x )在[1,3]的最小值为﹣2,可得a <﹣2.即有a 的范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【例2】已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==.若对任意x R ∈,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;【解析】由条件知2222(2)22(22)2(())2x x x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=,所以4m ≤,故实数m 的最大值为4.【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .(2)若存在21,x x 使得)()(21x g x f =,则A B ≠∅ ,∴4a -≤且ln 30a -≥,∴实数a 的取值围是[]4,ln 3-.题组训练1.已知函数()()32ln 3,a f x x x g x x x x =++=-,若()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦,则实数a 的取值范围为_________________.【解析】由题意()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦得()()min max f x g x ≥()32g x x x =-,()´232g x x x =-所以()g x 在1233⎡⎤⎢⎥⎣⎦,单调递减,在223⎡⎤⎢⎥⎣⎦单调递增,所以()()()12243max g x max g g g ⎧⎫⎛⎫===⎨⎬ ⎪⎝⎭⎩⎭,,则()ln 34a f x x x x =++>得2a x x lnx ≥-令()2h x x x lnx =-,()´12h x xlnx x =--,()¨23h x lnx =--,在1,23⎡⎤⎢⎥⎣⎦上()¨0h x <,则()´h x 单调递减,又()10h =,所以()h x 在113⎡⎤⎢⎥⎣⎦,单调递增,在[]12,单调递减,()()max 11h x h ==,所以1a ≥,故填[)1,+∞.2.已知函数f(x)=22e 1+x x ,g(x)=2e ex x ,对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立,则正数k的取值范围是.【解析】因为k 为正数,所以对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立⇒max()⎡⎤⎢⎥⎣⎦g x k ≤min ()1⎡⎤⎢⎥+⎣⎦f x k .令g'(x)=0,即2e (1-)e xx =0,得x=1,当x∈(0,1)时,g'(x)>0,当x∈(1,+∞)时,g'(x)<0,所以max ()⎡⎤⎢⎥⎣⎦g x k =(1)g k =e k .同理,令f'(x)=0,即222e -1x x =0,得x=1e ,当x∈10,e ⎛⎫ ⎪⎝⎭时,f'(x)<0,当x∈1,e ∞⎛⎫+ ⎪⎝⎭时,f'(x)>0,所以min ()1⎡⎤⎢⎥+⎣⎦f x k =1e 1⎛⎫ ⎪⎝⎭+f k =2e 1+k ,所以e k ≤2e 1+k ,又k>0,所以k≥1.3.已知()1()2,11f x x x x =-->-+,若2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,求实数t 的取值范围.【解析】2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,即()f x 的最大值都小于等于221t at -+;即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,即可解出实数t 的取值范围.容易得出11()23132111f x x x x x ⎛⎫=--=-++≤-= ⎪++⎝⎭,即()f x 的最大值为1,则2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立⇔2121t at ≤-+对于所有的[]1,1a ∈-恒成立,即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,∴2t ≤-或2t ≥或0t =.4.已知函数()()1522>+-=a ax x x f .若()x f 在区间(]2,∞-上是减函数,且对任意的[]1,1,21+∈a x x ,总有()()421≤-x f x f ,求实数a 的取值范围;【解析】条件12()()4f x f x -≤表示的含义是函数f (x )在[1,1]a +上的最大值与最小值的差小于或等于4.若2a ≥.又[1,1]x a a =∈+,且(1)1a a a +-≤-.所以max ()(1)62f x f a ==-.2min ()()5f x f a a ==-.因为对任意的12,[1,1]x x a ∈+.总有12()()4f x f x -≤.所以max min ()()4f x f x -≤.即2(62)(5)4a a ---≤.解得13a -≤≤.又2a ≥.所以23a ≤≤.若12a <<.2max ()(1)6f x f a a =+=-.2min ()()5f x f a a ==-.max min ()()4f x f x -≤显然成立.综上13a <≤.5.函数()()m mx x g x x x f 25,342-+=+-=,若对任意的[]4,11∈x ,总存在[]4,12∈x ,使()()21x g x f =成立,求实数m 的取值范围.【解析】由题可知函数()f x 的值域为函数()g x 的值域的子集[][]2()43,1,4,()1,3f x x x x f x =-+∈∴∈-,以下求函数()52g x mx m =+-的值域:①0m =时,()52g x m =-为常函数,不符合题意;②0m >,[]()52,52g x m m ∈-+,∴521,523,m m -≤-⎧⎨+≥⎩解得6m ≥;③0m <,[]()52,52g x m m ∈+-,∴521,523,m m +≤-⎧⎨-≥⎩解得3m ≤-.综上所述,m 的取值范围为(][),36,-∞-+∞ .6.已知函数()()1ln f x x x ax a =+-+(a 为正常数).(1)若()f x 在()0,+∞上单调递增,求a 的取值范围;(2)若不等式()()10≥-x f x 恒成立,求a 的取值范围.【解析】(1)()()1ln f x x x ax a =+-+,1()ln 0x f x x a x +'=+-≥,1ln 1≤++a x x 恒成立令1()ln 1g x x x =++,21()x g x x-'=列表略min ()(1)2g x g ==,02a <≤.(2)当0a <≤2时,由(1)知,若()f x 在()0,+∞上单调递增,又()10f =,当(0,1),()0x f x ∈<;当(1,),()0x f x ∈+∞>,故不等式()()10x f x -≥恒成立当2a >,ln (1)1()x x a x f x x+-+'=,令()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则21a x e -=>,当2(1,)a x e -∈时,()0p x '<,则()(1)20p x p a <=-<,当2(1,)a x e -∈,()0f x '<,则()f x 单调递减,()(1)0f x f <=,矛盾,因此02≤<a .法二:1()()ln 1g x f x x a x '==++-,22111()x g x x x x-'=-=,讨论单调性可得min ()(1)2g x g a ==-.当02a <<时,()()0g x f x '=>,()f x 在(0,)+∞单调递增,又(1)0f =,符合题意;当2a >时,(1)20g a =-<,1()10a a g e e=+>,因为()g x 在(0,)+∞不间断,所以()g x 在(1,)a e 上存在零点1x ,1(1,),()∈x x f x 单调减,1(,),()∈a x x e f x 单调增,所以当11<<x x 时,()(1)0<=f x f 不合题意;当2a =时,符合题意;综上02≤<a .。

高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。

2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。

3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。

浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题高中数学的学习中,恒成立与存在性是两个基本概念,也是学习和教学中一个重要的问题。

在高中数学课堂上,恒成立与存在性是非常重要的知识点,其研究内容也是极其庞大的,学生们需要正确理解这两个重要的概念,在实际应用中有效地利用。

本文将从概念界定、定义、历史背景等方面,对高中数学中“恒成立”和“存在性”问题进行浅谈。

首先,了解恒成立和存在性的定义和概念界定,以及它们之间的关系。

高中数学中,所谓的“恒成立”是指在某些条件下,某个数学定理或结论的正确性可以永远保持不变,不会因为任何环境的改变而改变,只要条件满足,定理的正确性就不会改变。

同时,“存在性”指的是某种数学定理或公式的真实存在,无论它到底是否正确,它都可以被实际检验,也就是说它是真实存在的。

其次,要正确理解恒成立与存在性的历史背景。

这两个概念在数学史上有着悠久的历史,早在古希腊和罗马时期,“恒成立”就成为了数学的基本理念,是一种对数学理论的基本信念。

而到了中世纪,数学家们发现存在性也是一种非常重要的概念,为了避免科学谬误,数学家们逐渐发现存在性也很重要。

此外,可以在高中数学学习和教学中更好地引申和应用这两个概念。

在高中数学教学中,要让学生更深刻地理解恒成立与存在性的区别,并且熟练掌握关于他们的基本概念,以便在实际的学习和应用中准确地使用这两个概念。

此外,教师还应当采取适当的方法引导学生在学习中不断检验和深入思考,以便他们能够更好地应用这两个概念,而不是单纯的熟记而已。

最后,再次强调,“恒成立”与“存在性”是高中数学学习和教学中一个重要的问题,非常值得我们重视。

正确理解这两个概念,正确掌握如何在数学研究中应用,不仅可以提高学生高中数学学习的素质,也为他们研究更深入的数学问题打下基础。

专题 恒成立和存在性问题

专题  恒成立和存在性问题

恒成立和存在性问题函数中经常出现恒成立和存在性问题,它能够很好地考察函数、不等式等知识以及转化与化归等数学思想,因此备受命题者青睐,在高考中频频出现,也是高考中的一个难点问题.例1已知函数f (x )=ax 2-ln x (a 为常数).(1) 当a =12时,求f (x )的单调减区间; (2) 若a <0,且对任意的x ∈[1,e],f (x )≥(a -2)x 恒成立,求实数a 的取值范围.例2已知函数f (x )=mx -a ln x -m ,g (x )=e x e x ,其中m ,a 均为实数. (1) 求g (x )的极值;(2) 设m =1,a <0,若对任意的x 1,x 2∈[3,4](x 1≠x 2),|f (x 2)-f (x 1)|<⎪⎪⎪⎪⎪⎪1g (x 2)-1g (x 1)恒成立,求a 的最小值.例3已知函数f (x )=m ln x -12x (m ∈R),g (x )=2cos 2x +sin x +a . (1) 求函数f (x )的单调区间;(2) 当m =12时,对于任意x 1∈⎣⎢⎡⎦⎥⎤1e ,e ,总存在x 2∈⎣⎢⎡⎦⎥⎤0,π2,使得f (x 1)≤g (x 2)成立,求实数a 的取值范围.思维变式题组训练1. 已知函数(x +1)ln x -ax +a ≥0在x ∈[1,+∞)恒成立,求a 的取值范围.2. 已知e 为自然对数的底数,函数f (x )=e x -ax 2的图象恒在直线y =32ax 上方,求实数a 的取值范围.3. 已知函数f (x )=(a +1)ln x +ax 2+1.(1) 试讨论函数f (x )的单调性;(2) 设a <-1,如果对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求实数a 的取值范围.强化训练一、 填空题1. 若当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则实数m 的取值范围是________.2. 已知函数f (x )=⎩⎨⎧ -x 2+2x , x ≤0,ln (x +1), x >0,若|f (x )|≥ax -1恒成立,则a的取值范围________.3. 设实数m ≥1,不等式x |x -m |≥m -2对∀x ∈[1,3]恒成立,则实数m 的取值范围是________.4. 已知函数f (x )=ln x +(e -a )x -b ,其中e 为自然对数的底数.若不等式f (x )≤0恒成立,则b a的最小值为________.二、 解答题5. 已知函数f (x )=(x +1)ln x -ax +a (a 为常数,且为正实数).(1) 若f(x)在(0,+∞)上单调递增,求a的取值范围;(2) 若不等式(x-1)f(x)≥0恒成立,求a的取值范围.6. 设函数f(x)=x3+ax2+bx(a,b∈R)的导函数为f(x).已知x1,x2是f′(x)的2个不同的零点.(1) 证明:a2>3b;(2) 当b=0时,若对任意x>0,不等式f(x)≥x ln x恒成立,求a的取值范围.7. 已知函数f(x)=x3+bx2+2x-1, 若对任意x∈[1,2],均存在t∈(1,2],使得e t-ln t-4≤f(x)-2x,试求实数b的取值范围.8. 已知函数f(x)=ax2+2ln x.记函数g(x)=f(x)+(a-1)ln x+1,当a≤-2时,若对任意x1,x2∈(0,+∞),总有|g(x1)-g(x2)|≥k|x1-x2|成立,试求k 的最大值.9. 已知函数f(x)=x-ln x-2.(1) 求曲线y=f(x)在x=1处的切线方程;(2) 若函数f(x)在区间(k,k+1)(k∈N)上有零点,求k的值;(3) 若不等式(x-m)(x-1)x>f(x)对任意正实数x恒成立,求正整数m的取值集合.10. 若对任意实数k,b都有函数y=f(x)+kx+b的图象与直线y=kx+b相切,则称函数f(x)为“恒切函数”.设函数g(x)=a e x-x-pa,a,p∈R.(1) 试讨论函数g(x)的单调性;(2) 已知函数g(x)为“恒切函数”.①求实数p的取值范围;②当p取最大值时,若函数h(x)=g(x)e x-m也为“恒切函数”,求证:0≤m<3 16.(参考数据:e3≈20)。

高考数学《不等式的恒成立与存在性问题》

高考数学《不等式的恒成立与存在性问题》

恒成立与存在性问题【基础知识整合】1、恒成立问题①.x D ∀∈,()a f x >恒成立,则max ()a f x >②.x D ∀∈,()a f x <恒成立,则min()a f x <③.x D ∀∈,()()f x g x >恒成立,记()() (0)F x f x g x =->,则min 0() F x >④.x D ∀∈,()()f x g x <恒成立,记()() (0)F x f x g x =-<,则max 0() F x <⑤.1122,x D x D ∀∈∈,12()()f x g x >恒成立,则min max ()()f x g x >⑥.1122,x D x D ∀∈∈,12()()f x g x <恒成立,则max min ()()f x g x <2、存在性问题①.x D ∃∈,()a f x >成立,则min ()a f x >②.x D ∃∈,()a f x <成立,则max()a f x <③.x D ∃∈,()()f x g x >成立,记()() (0)F x f x g x =->,则max 0() F x >④.x D ∃∈,()()f x g x <成立,记()() (0)F x f x g x =-<,则min 0() F x <⑤.1122,x D x D ∃∈∈,12()()f x g x >成立,则max min ()()f x g x >⑥.1122,x D x D ∃∈∈,12()()f x g x <成立,则min max ()()f x g x <3、恒成立与存在性混合不等问题①.1122,x D x D ∀∈∃∈,12()()f x g x >成立,则min min ()()f x g x >②.1122,x D x D ∀∈∃∈,12()()f x g x <成立,则max max ()()f x g x <4、恒成立与存在性混合相等问题若()f x ,()g x 的值域分别为,A B ,则①.1122,x D x D ∀∈∃∈,12()()f x g x =成立,则A B ⊆②.1122,x D x D ∃∈∃∈,12()()f x g x =成立,则A B ≠∅ 5、解决高中数学函数的存在性与恒成立问题常用以下几种方法①函数性质法;②分离参数法;③主参换位法;④数形结合法等.6、一次函数)0()(≠+=k b kx x f 若[]n m x f y ,)(在=内恒有0)(>x f ,则根据函数的图像可得⎩⎨⎧><⎩⎨⎧>>0)(00)(0n f a m f a 或可合并成⎩⎨⎧>>0)(0)(n f m f ,同理若[]n m x f y ,)(在=内恒有0)(<x f 则有⎩⎨⎧<<0)(0)(n f m f 例1:对于满足||2p ≤的所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围.例2:若不等式)1(122->-x m x 的所有22≤≤-m 都成立,则x 的取值范围__________7、二次函数——利用判别式、韦达定理及根的分布求解有以下几种基本类型:类型1:设2()(0).f x ax bx c a =++≠R x x f ∈>在0)(上恒成立00<∆>⇔且a ;R x x f ∈<在0)(上恒成立00<∆<⇔且a 类型2:设2()(0).f x ax bx c a =++≠(用函数图象解决,不太适用)(1)当0>a 时,],[0)(βα∈>x x f 在上恒成立,222()00()0.bb b a aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在上恒成立()0,()0.f f αβ<⎧⇔⎨<⎩(2)当0<a 时,],[0)(βα∈>x x f 在上恒成立()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在上恒成立,222()00()0.b b b a a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或【基础典例分析】例1:已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈.(Ⅰ)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值;(Ⅱ)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围.例2:已知=)(x f x x +221,=)(x g a x -+)1ln(,(Ⅰ)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(Ⅱ)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.例3:设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0.若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围.例4:已知函数()133x x af x b+-+=+(Ⅰ)当1a b ==时,求满足()3x f x =的x 的取值;(Ⅱ)若函数()f x 是定义在R 上的奇函数;①存在R t ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若()g x 满足()()()12333x x f x g x -⋅+=-⎡⎤⎣⎦,若对任意x R ∈,不等式(2)()11g x m g x ⋅-≥恒成立,求实数m 的最大值.例5:已知=)(x f x x +221,=)(x g a x -+)1ln(,⑴若存在]2,0[∈x ,使得)()(x g x f =,求实数a 的取值范围;⑵若存在]2,0[∈x ,使得)()(x g x f >,求实数a 的取值范围;⑶若对任意]2,0[∈x ,恒有)()(x g x f >,求实数a 的取值范围;⑷若对任意]2,0[,21∈x x ,恒有)()(21x g x f >,求实数a 的取值范围;⑸若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f >,求实数a 的取值范围;⑹若对任意]2,0[2∈x ,存在]2,0[1∈x ,使得)()(21x g x f =,求实数a 的取值范围;⑺若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;⑻若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【高考真题研究】(2017天津卷理8)已知函数()23,12,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()2xf x a + 在R 上恒成立,则a 的取值范围是()(A)47,216⎡⎤-⎢⎥⎣⎦(B)4739,1616⎡⎤-⎢⎥⎣⎦(C)23,2⎡⎤-⎣⎦(D)3923,16⎡⎤-⎢⎥⎣⎦(2015全国卷Ⅰ理12)设函数()f x =(21)xe x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是()(A)[32e-,1)(B)[32e -,34)(C)[32e ,34)(D)[32e,1)(2014全国卷Ⅰ理11)已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为()(A)(2,)+∞(B)(,2)-∞-(C)(1,)+∞(D)(,1)-∞-(2015全国卷Ⅱ理21(2))设函数()2emxf x x mx =+-.若对于任意[]12,1,1x x ∈-,都有()()121e f x f x -- ,求m 的取值范围.(2015山东卷理21(2))设函数()()()2ln 1f x x a x x =++-,其中a R ∈,若0x ∀>,()0f x 成立,求a 的取值范围.【名题精选,提升能力】1、函数2()3f x x ax =++,当[]2,2x ∈-时,()f x a ≥恒成立,则a 的取值范围是2、已知函数()f x =(,1]-∞上有意义,则a 的取值范围是3、若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,则x 的取值范围是4、若=)(x f x x +221,=)(x g a x -+)1ln(,对∀123,,[0,2]x x x ∈,恒有()()()123f x f x g x +>,则实数a 的取值范围是5、已知数列{}n a 是各项均不为零的等差数列,n S 为其前n项和,且n a =(n *∈Ν).若不等式8nn a n λ+≤对任意n *∈Ν恒成立,则实数λ的最大值为5、设函数x x e x f 1)(22+=,x ex e x g 2)(=,对),0(,21+∞∈∀x x ,不等式1)()(21+≤k x f k x g 恒成立,则正数k 的取值范围为7、已知函数213,1()log , 1x x x f x x x ⎧-+≤⎪=⎨>⎪⎩,()|||1|g x x k x =-+-,若对任意的12,x x R ∈,都有12()()f x g x ≤成立,则实数k 的取值范围为8、当210≤<x 时,x a x log 4<,则a 的取值范围是()(A)(0,22)(B)(22,1)(C)(1,2)(D)(2,2)9、已知函数()931x x f x m m =-⋅++对()0 x ∈+∞,的图象恒在x 轴上方,则m 的取值范围是()(A)22m -<<+(B)2m<(C)2m<+(D)2m ≥+10、设函数3()f x x x =+,x R ∈.若当02πθ<<时,不等式0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是()(A)1(,1]2(B)1(,1)2(C)[1,)+∞(D)(,1]-∞11、定义在R 上的偶函数()f x 在[)0,+∞上递减,若()()()ln 1ln 121f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为()(A)()2,e (B)1,e⎡⎫+∞⎪⎢⎣⎭(C)1,e e ⎡⎤⎢⎥⎣⎦(D)12ln3,3e+⎡⎤⎢⎥⎣⎦12、不等式2220x axy y -+≥对于任意]2,1[∈x 及]3,1[∈y 恒成立,则实数a 的取值范围是()(A)a ≤22(B)a ≥22(C)a ≤311(D)a ≤2913、已知函数()()2ln 1f x a x x =+-,若对(),0,1p q ∀∈,且p q ≠,有()()112f p f q p q+-+>-恒成立,则实数a 的取值范围为()(A)(),18-∞(B)(],18-∞(C)[)18,+∞(D)()18,+∞14、若对[),0,x y ∀∈+∞,不等式2242x y x y ax ee +---≤++,恒成立,则实数a 的最大值是()(A)14(B)1(C)2(D)1215、已知函数2ln ()()()x x b f x b R x+-=∈,若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则实数b的取值范围是()(A)(-∞(B)3(,2-∞(C)9(,)4-∞(D)(,3)-∞16、设曲线()e x f x x =--上任意一点处的切线为1l ,总存在曲线()32cos g x ax x =+上某点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为()(A)[]1,2-(B)()3,+∞(C)21,33⎡⎤-⎢⎥⎣⎦(D)12,33⎡⎤-⎢⎥⎣⎦17、若曲线21:C y x =与曲线2:x C y ae =(0)a >存在公共切线,则a 的取值范围为()(A)28[,)e+∞(B)28(0,e(C)24[,)e+∞(D)24(0,]e18、若存在两个正实数,x y ,使得等式()()324ln ln 0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是()(A)(),0-∞(B)30,2e ⎛⎤ ⎥⎝⎦(C)3,2e⎡⎫+∞⎪⎢⎣⎭(D)()3,0,2e⎡⎫-∞+∞⎪⎢⎣⎭ 19、已知函数321()3f x x x ax =++.若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f x g x ≤成立,则实数a 的取值范围是()(A)(,8]e-∞-(B)[8,)e-+∞(C))e (D)3(,]32e -20、设函数()3269f x x x x =-+,()32111(1)323a g x x x ax a +=-+->,若对任意的[]20,4x ∈,总存在[]10,4x ∈,使得()()12f x g x =,则实数a 的取值范围为()(A)91,4⎛⎤ ⎥⎝⎦(B)[)9,+∞(C)][91,9,4⎛⎫⋃+∞ ⎪⎝⎭(D)][39,9,24⎡⎫⋃+∞⎪⎢⎣⎭21、设函数()()()21ln 31f x g x ax x =-=-+,若对任意[)10,x ∈+∞,都存在2x R ∈,使得()()12f x g x =,则实数a 的最大值为()(A)94(B)2(C)92(D)422、已知()()2cos ,43f x x x g x x x =+=-+-,对于[],1a m m ∀∈+,若,03b π⎡⎤∃∈-⎢⎥⎣⎦,满足()()g a f b =,则m 的取值范围是()(A)22⎡-+⎣(B)1⎡+⎣(C)2⎡+⎣(D)12⎡+⎣23、已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为()(A)[)1,0-(B)[]1,0-(C)3,2⎡⎫-+∞⎪⎢⎣⎭(D)3,2⎛⎤-∞- ⎥⎝⎦。

高考数学恒成立问题和存在性问题的类型及方法处理

高考数学恒成立问题和存在性问题的类型及方法处理

高考数学恒成立问题和存在性问题的类型及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点 问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

一、函数法1. 构造一次函数利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式221x mx m ->-对满足22m -≤≤的所有m 都成立,求x 的范围。

解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g 原命题等价于对满足22m -≤≤的m ,使0)(<m g 恒成立。

由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得1122x -+<<x的范围是11(22x -+∈。

小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。

(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。

(答案:或)2. 构造二次函数利用二次函数的图像与性质及二次方程根的分布来解决。

导数背景下的恒成立与存在性问题

导数背景下的恒成立与存在性问题

导数背景下的恒成立与存在性问题“恒成立”问题与“存在性”问题是高中数学中的常见问题,它不仅考查了函数、不等式等传统知识和方法,而且导数的加入更是极大的丰富了该类问题的表现形式,充分体现了能力立意的原则,越来越受到命题者的青睐,成为高中数学的一个热点问题。

本文仅从以下九方面总结一下有关这类问题的不同的表现形式及解决方法,希望能对大家高考复习起到一定的帮助作用。

一、 若对∀x I ∈,)(x f a >恒成立,则只需max )(x f a >即可;若对∀x I ∈,)(x f a <恒成立,则只需min )(x f a <即可;例1. 已知函数)30(ln )(≤<+=x x a x x f ,若以其图象上任意一点),(00y x P 为切点的切线的斜率21≤k 恒成立,求实数a 的取值范围.二、 若I ∈∃x ,满足不等式)(x f a >,则只需min )(x f a >即可; 若I ∈∃x ,满足不等式)(x f a <,则只需max )(x f a >即可;例2:已知函数ax ax x f 2)(2+=,x e x g =)(,若在),0(+∞上至少存在一个实数0x ,使得)()(00x g x f >成立,求实数a 的取值范围.三、若对I ∈∀21,x x ,使得不等式a x f x f <-)()(21(a 为常数)恒成立,则只需a x f x f <-min max )()(即可例3:已知函数)1()1(21ln )(2e a x a x x a x f ≤<+-+=.证明:对于(]a x x ,1,21∈∀,恒有1)()(21<-x f x f 成立.四、若I x x ∈∃21,,满足方程)()(21x g x f =,则只需两函数值域交集不空即可.例4:已知函数⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈+⎥⎦⎤⎢⎣⎡∈+-=)1,21(12)21,0(6131)(3x x x x x x f ,函数)0(226sin )(>+-=a a x a x g π,若[]1,0,21∈∃x x ,使得)()(21x g x f =成立,试求实数a 的取值范围.五、若对∀1x 1I ∈总∃2x 2I ∈使得)()(21x g x f =成立,则只需)(x f 值域⊆)(x g 值域即可例5:已知函数)1(23)(,274)(232≥--=--=a a x a x x g xx x f 对∀1x []1,0∈总∃2x []1,0∈使得)()(21x g x f =成立,试求实数a 的取值范围.六、若对∀1x 1I ∈,2x 2I ∈使得不等式)()(21x g x f <恒成立,则只需min max )()(x g x f <即可 例6:已知两个函数x x x x g c x x x f 4042)(,287)(232-+=--=,若对∀1x []3,3-∈,2x []3,3-∈,都有不等式)()(21x g x f ≤恒成立,求实数c 的取值范围.七、若对∃1x 1I ∈,2x 2I ∈满足不等式)()(21x g x f <,则只需max min )()(x g x f <即可 例7:已知两个函数12)(,93)(223++=+--=x x x g c x x x x f ,若对∃1x []6,2-∈,2x []6,2-∈,使得不等式)()(21x g x f <成立,求实数c 的取值范围.八、若对∀1x 1I ∈,总∃2x 2I ∈,使得)()(21x g x f >成立,则只需min min )()(x g x f >即可 例8:已知两个函数k e e e e x g x xx x f x x x x ++++=++=--22)(,ln 28)(,若对∀1x []4,1∈,总∃2x R ∈,使得)()(21x g x f >成立,求实数k 的取值范围.九、若对∀1x 1I ∈,总∃2x 2I ∈,使得)()(21x g x f <成立,则只需max max )()(x g x f <即可 例9:已知两个函数b x x x g R x xx x x f ++-=∈--+-=2)(),(14341ln )(2,若对∀1x )2,0(∈,总∃2x []2,1∈,使得)()(21x g x f <成立,求实数b 的取值范围.答案:1.⎪⎭⎫⎢⎣⎡+∞,21 2. ),212(2+∞-e 3. 3.略4. ⎥⎦⎤⎢⎣⎡34,21 5. ⎥⎦⎤⎢⎣⎡23,1 6. [)+∞,195 7.)76,(-∞ 8.)2ln 22,(+-∞ 9. ),25(+∞-。

高考数学冲刺专题3.12 恒成立、存在性问题(新高考)(解析版)

高考数学冲刺专题3.12 恒成立、存在性问题(新高考)(解析版)

专题3.12 恒成立、存在性问题1.恒成立、存在性问题的求解思路:(1)转化为基本函数(曲线)问题:数形结合,利用函数图象或曲线性质求解,如一次函数端点法,二次函数判别式、指对函数切线法、根式平方联想圆等等; (2)分离参数法:转化为函数最值问题求解;(3)变换主元法:参数与变量角色转化,以参数为自变量,构建函数再求解. 2.不等式恒成立问题的求解策略:(1)分离参数()a f x ≥恒成立(()max a f x ≥)或()a f x ≤恒成立(()min a f x ≤); (2)数形结合(()y f x = 图象在()y g x = 上方即可); (3)讨论最值()min 0f x ≥或()max 0f x ≤恒成立. 3.不等式能恒成立求参数值(取值范围)的求解策略: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 4.对于已知函数()y f x =的单调性求参数问题:(1)已知可导函数()f x 在区间D 上单调递增,转化为区间D 上()0f x '≥恒成立; (2)已知可导函数()f x 在区间D 上单调递减,转化为区间D 上()0f x '≤恒成立; (3)已知可导函数()f x 在区间D 上存在增区间,转化为()0f x '>在区间D 上有解; (4)已知可导函数()f x 在区间D 上存在减区间,转化为()0f x '<在区间D 上有解.【预测题1】已知函数()ln xf x x-=.(1)设()()1x g x f x f x ⎛⎫=+⎪-⎝⎭,求函数()g x 的最小值; (2)设()1h x f x ⎛⎫=⎪⎝⎭,对任意1x ,()20,x ∈+∞,()()()()121212h x h x h x x k x x ++++≥恒成立,求k 的最大值.【答案】(1)ln 2-;(2)ln 2-. 【解析】(1)因为()11ln x f x x =,()()1111ln 1ln 11x g x f x f x x x x x ⎛⎫⎛⎫⎛⎫=+=+-- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 令1t x=,则()()()ln 1ln 1F t t t t t =+--,()0,1t ∈. ()()ln 1ln 11ln1tF t t t t'=+--+=⎡⎤⎣⎦-, 当10,2t ⎛⎫∈ ⎪⎝⎭,()0F t '<,()F t 单调递减;当1,12t ⎛⎫∈ ⎪⎝⎭,()0F t '>,()F t 单调递增. 所以()F t )的最小值为1ln 22F ⎛⎫=-⎪⎝⎭.即函数()g x 的最小值是ln 2-. (2)()ln h x x x =,()()()1212h x h x h x x +-+()()11221212ln ln ln x x x x x x x x =+-++12121212lnln x x x x x x x x =+++=()11221212121212ln ln x x x x x x x x x x x x x x ⎡⎤++⎢⎥++++⎣⎦()12121212x x x x h h x x x x ⎡⎤⎛⎫⎛⎫=++⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦.由(1)知121121212ln 2x x x h h F x x x x x x ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭≥, 所以()()()()121212ln 2h x h x h x x x x +-+-+⋅≥. 所以ln 2k -≤,k 的最大值是ln 2-. 【名师点睛】本题关键是将函数转化为()11ln x f xx =,利用换元法而得解.【预测题2】已知函数22()ln (1)1x f x x x =+-+.(1)求()f x 的单调区间;(2)若不等式1(1)e n an++≤对任意*n N ∈恒成立,求a 的取值范围.【答案】(1)单调递增区间为(10)-,,单调递减区间为(0)+∞,;(2)1(1]ln 2-∞-,. 【解析】(1)()f x 的定义域(1)-+∞,,22222ln(1)22(1)ln(1)2()1(1)(1)x x x x x x x f x x x x ++++--'=-=+++,令2()2(1)ln(1)2g x x x x x =++--,(1)x ∈-+∞,,()2ln(1)2g x x x '=+-,令()2ln(1)2h x x x =+-,(1)x ∈-+∞,,2()21h x x '=-+,当10x -<<时,()0h x '>,当0x >时,()0h x '<, 所以()h x 在(10)-,单调递增,在(0)+∞,单调递减, 又(0)0h =,故()0≤h x ,即当1x >-时,()0g x '≤,所以()g x 在(1)-+∞,单调递减,于是当10x -<<时,()(0)0g x g >=,当0x >时,()(0)0g x g <=, 所以当10x -<<时,()0f x '>,当0x >时,()0f x '<, 所以()f x 的单调递增区间为(10)-,,单调递减区间为(0)+∞,.(2)不等式1(1)n ae n++≤*()n N ∈等价于1()ln(1)1n a n++≤,又111n+>,故11ln(1)a nn≤-+, 设11()ln(1)x x x ϕ=-+,(01]x ∈,,222222(1)ln (1)()()(1)ln (1)ln (1)x x x f x x x x x x x ϕ++-'==+++,又()(0)0f x f ,故当(01]x ∈,时,()0x ϕ'<,所以()ϕx 在(01],单调递减,于是1()(1)1ln 2x ϕϕ≥=-,故11ln 2a ≤-,所以a 的取值范围为1(1]ln 2-∞-,. 【预测题3】已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程; (2)讨论()f x 的单调性;(3)证明:当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【答案】(1)()21y x =-;(2)见解析;(3)证明见解析. 【解析】当2a =时,()()2212ln f x x x =--,0x >,()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x >当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得x a >,令()0f x '<,解得0x a<<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭, 综上可知0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. (3)要证明不等式当1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立, 即证明()()2112ln 1a x x ax a x--≥+-+在区间(1,)+∞上恒成立, 即证212ln 10ax x ax x ---+≥恒成立,令()212ln 1g x ax x ax x=---+,()3222212212ax ax x g x ax a x x x --+'=--+=()()()()22222112121x ax ax x x x x-----==,1,1a x ≥>,2210,10x ax ∴->->,即()0g x '>,()g x ∴在区间()1,+∞单调递增,即()()1g x g >,而()()2110g ax ax ax x =-=->,()0g x ∴>,∴ 1a ≥时,1()(1)f x ax a x≥+-+在区间(1,)+∞上恒成立. 【预测题4】已知函数1()x f x e -=.(1)设函数()()h x xf x =,求()h x 的单调区间;(2)判断函数()y f x =与()ln g x x =的图象是否存在公切线,若存在,这样的切线有几条,为什么?若不存在,请说明理由.【答案】(1)单调减区间为(),1-∞-,单调增区间为()1,-+∞;(2)两曲线有两条公切线,理由见解析.【解析】(1)1()()x h x xf x xe-==,()()1111x x x h x xee x e ---=+=+',当1x <-时,()0h x '<,当1x >-时,()0h x '>,所以()h x 的单调减区间为(),1-∞-,单调增区间为()1,-+∞.(2)设两曲线的公切线为l ,与曲线1()x f x e -=切于点()1,a a e-,则切线方程为()11a a y e e x a ---=-,即111a a a y e x e ae ---=+-,又与曲线()ln g x x =切于点(),ln b b ,则切线方程为()1ln y b x b b-=-, 即1ln 1y x b b =+-.所以有1111ln 1a a a e be ae b ---⎧=⎪⎨⎪-=-⎩. 消元整理得110a a e ae a ---+=,所以方程根的个数即为两曲线的公切线条数.设11()x x x exe x ϕ--=-+,()11x x xeϕ-=-'.当0x <时,()0x ϕ'>,当01x <<时,由(1)知,()x ϕ'单调递减,()()10x ϕϕ''>=,当1x >时,由(1)知,()x ϕ'单调递减,()0x ϕ'<,当且仅当1x =时,()0x ϕ'=;所以()ϕx 在(),1-∞单调递增,在()1,+∞单调递减. 而()110ϕ=>,()220e ϕ=-<,22(1)10e ϕ-=-<,1(0)0eϕ=>, 又函数()ϕx 在R 上连续,所以函数11()x x x e xe x ϕ--=-+有两个零点,分别位于区间()1,0-和区间()1,2内.所以方程110a a e ae a ---+=有两个不同的根,即两曲线有两条公切线.【名师点睛】公切线问题需分别求得函数的切线方程,使斜率,截距分别相等,从而得到切线方程参数之间的关系,转化为函数问题,借助导数解决方程根的问题.【预测题5】已知函数()()1ln 22f x x x x =+-+,()()2ln 0g x x ax x a =-+>.(1)当1x >时,求函数()f x 的值域;(2)若函数()g x 有两个零点1x ,()212x x x <,当102λ≤≤时,不等式()()12110g x x a λλ'+-+-<恒成立,求实数a 的取值范围.【答案】(1)()0,∞+;(2)()0,1.【解析】(1)()()1ln 22f x x x x =+-+,定义域为()0,∞+,()1ln 2x f x x x+'=+-,所以()22111x f x x x x -''=-=,所以当1x >时,()0f x ''>,所以函数()y f x '=在[)1,+∞单调递增,又()10f '=,所以当1x >时,()0f x '>,所以函数()y f x =在[)1,+∞单调递增, 又()10f =,所以当1x >时,()0f x >,x →+∞时,()f x →+∞, 即所求的值域是()0,∞+.(2)因为()g x 有两个零点1x ,()212x x x <,所以由()0g x =得2ln x xa x+=,记2ln x x y+=,则312ln x xy --'=,令0y '=得1x =,列表得 分析得max 1y =,且当0x →时,y →-∞;当x →+∞时,0y +→; 因为()g x 有两个零点1x ,()212x x x <,即2ln x xa x +=有两个零点, 所以必有01a <<.又由(1)知当1x >时,()()1ln 220f x x x x =+-+>,即()22ln 11x x x x ->>+ (*) 又()()1210g x ax a x '=-+>,()2120g x a x''=--<,所以()g x '在()0,∞+单调递减.又令211x x x =>代入(*)式得,()2212121211222ln 1x x x x x x x x x x -->=++,即121212ln ln 2x x x x x x -+<-,又由题意函数()g x 有两个零点1x ,()212x x x <,得()()2111122222ln 0ln 0g x x ax x g x x ax x ⎧=-+=⎪⎨=-+=⎪⎩, 两式相减得()1212121210ln ln 12x x x x x x a x x -+<=<-+-,所以()1212210a x x x x -++<+,因为120x x <<,102λ≤≤, 所以()()121212121122122x x x x x x x x λλλλ++--=+---⎡⎤⎡⎤⎣⎦⎣⎦ ()()1212102x x λ=--≥,所以()121212x x x x λλ++-≥, 所以()()()1212121221102x x g x x g a x x x x λλ+⎛⎫''+-≤=-++<⎪+⎝⎭, 又()1211g x x a λλ'+-<-⎡⎤⎣⎦,所以只要10a -≥, 因为0a >,所以01a <≤.综上所述,实数a 的取值范围是()0,1.【预测题6】已知函数21()(ln )2f x a x x x x=++-. (1)若02a <<,求函数()f x 的单调区间;(2)若存在实数[1,)a ∈+∞,使得()()2f x f x '+≤对于任意的x m ≥恒成立,求实数m 的取值范围.【答案】(1)增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞;(2)m 1≥. 【解析】(1)()f x 定义域为(0,)x ∈+∞,()222(1)211()22x x a f x a x x x x --⎛⎫'=-+-=-⎪⎝⎭22(1)x x x x ⎛- ⎝⎭⎝⎭=-,当02a <<时,令()0f x '>1x <, 所以()f x的增区间为⎫⎪⎪⎭,减区间为⎛ ⎝,(1,)+∞ (2)()()2f x f x '+≤,即222ln 0a aa x x x x+--≤ 即存在[1,)a ∈+∞,使得221211ln x x x x a⎛⎫+-≤ ⎪⎝⎭, 故22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤, 令2221()ln g x x x x x=+--,即()0g x ≤对于任意的x m ≥恒成立,244233222222()x x x x x x g x x x -+--+-'==-, 设42()222h x x x x =-+-,3()82(1)h x x x '=--,当01x <<时,()0h x '>,42()222h x x x x =-+-在(0,1)单调递增,又(0)0h <,(1)0h >,所以存在唯一的0(0,1)x ∈,使得()00h x =, 当()0,1x x ∈时,()0h x >,则()0g x '<,()g x 是减函数, 所以()(1)0g x g >=,不符合题意,所以1m ≥, 下证当1≥x 时,()0g x ≤恒成立,()4222222212(1)0x x x x x x -+-=-+->, 所以423222()0x x x g x x-+-'=-<, 即()g x 在[1,)+∞上单调递减,()g(1)0g x ≤=, 综上,m 1≥.【名师点睛】此题考查导数的应用,考查利用导数求函数的单调区间,利用导数解决不等式恒成立问题,解题的关键是将问题转化为22121ln 1x x x x ⎛⎫+-≤ ⎪⎝⎭对于任意的x m ≥恒成立,即2221ln 0x x x x+--≤,然后构造函数,利用导数解决,考查数学转化思想和计算能力,属于中档题【预测题7】已知()ln f x x x =,()()212xg x x e e=--(1)求函数()g x 的单调区间;(2)已知1≥x 时,不等式()()2245ax x x f x -≤-+恒成立,求实数a 的取值范围.【答案】(1)在(),0-∞递增,在()0,2递减,在()2,+∞递增;(2)(],1ln 2-∞+. 【解析】(1)()g x 的定义域是R ,又()()2xg x x x e '=-,令()0g x '=,解得0x =或2x =,x ,()g x ',()g x 的变化如下:故()g x 在(),0-∞递增,在()0,2递减,在()2,+∞递增; (2)()y f x =的定义域是()0,∞+,当1≥x 时,由()()2245ax x x f x -≤-+可知()2245ln a x x x x≤-++, 令()()2245ln h x x x x x=-++,(1≥x ), 则()()2245222ln x x h x x x x x-+'=-+-()()222222ln x x x x x x -+-=-+()()22222ln 1x x x x x⎡⎤-+-⎣⎦=, 令()0h x '=,则1x =或2x =,故()h x 在()1,2递减,在()2,+∞递增, 故()h x 在[)1,+∞上的最小值是()21ln 2h =+, 故1ln2a ≤+,即a 的取值范围是(],1ln 2-∞+.【名师点睛】对于不等式恒成立可以采用常变量分离法构造函数,利用导数的性质进行求解. 【预测题8】已知函数()22ln kx f x x x +-=(1)当1k =时,求在1x =处的切线方程;(2)若()f x 在定义域上存在极大值,求实数k 的取值范围. 【答案】(1)3y x =;(2)1,02⎛⎫-⎪⎝⎭. 【解析】(1)1k =时,()22ln f x x x x =+-定义域是()0,∞+,()122f x x x'=+-(0x >) 所以()13f =,()13f '=,切线方程为()331y x -=-即3y x =(2)()f x 的定义域是()0,∞+,求导得()2122122kx x f x kx x x+-'=+-=(0x >) 记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()()00g x f x f x >⇒'>⇒单调递增;()f x 有极小值没有极大值.②当0k >时,480k ∆=+>,()21042g x x k k-=⇒==(负根舍去),当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x <⇒'<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x >⇒'<⇒单调递增;()f x 有极小值没有极大值.③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减,没有极大值. 令480k ∆=+>得1,02k ⎛⎫∈-⎪⎝⎭,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减.所以()f x在2x =综上所述,()f x 在定义域上存在极大值时,实数k 的取值范围是1,02⎛⎫-⎪⎝⎭. 【名师点睛】本题考查导数的几何意义,考查用导数研究函数的最值.解题关键是掌握导数与单调性的关系,掌握极值的定义.解题方法是利用分类讨论思想讨论()0f x '=的根的分布,()'f x 0>或()0f x '<的解的情况,确定单调性得极值情况.【预测题9】已知函数()f x x =,()sin cos g x x x =+.(1)当4x π≥-时,求证:()()f x g x ≥;(2)若不等式()()2f x g x ax +≤+在[0,)+∞上恒成立,求实数a 的取值范围. 【答案】(1)证明见解析;(2)[2,)+∞. 【解析】(1)令()()()sin cos h x f x g x x x x =-=--,4x π≥-,①当44x ππ-≤<时,则()1cos sin h x x x '=+-+,设1()()h x h x =',)1321()04h x x π⎛⎫'=++> ⎪⎝⎭, ()h x '∴在,44ππ⎡⎫-⎪⎢⎣⎭上单调递增,且()00h '=,当04x π-≤<时,()0h x '<;当04x π≤<时,()0h x '≥,()h x ∴在,04π⎡⎫-⎪⎢⎣⎭上递减,在0,4π⎡⎫⎪⎢⎣⎭上递增, ()()00h x h ∴≥=,()()f x g x ∴≥;②当4x π≥时,则()4h x x x x π⎛⎫=+≥- ⎪⎝⎭1044ππ≥>+->,()()f x g x ∴≥;综上所述,当4x π≥-时,()()f x g x ≥;(2)令()()()2sin cos 2t x f x g x ax x x x ax =+--=++--,0x ≥,则()1cos sin t x x x a '=+--,由题意得()0t x ≤在[0,)+∞上恒成立,()00t =,()020t a '∴=-≤,2a ∴≥;下证当2a ≥时,()0t x ≤在[0,)+∞上成立,()sin cos 2sin cos 22t x x x x x ax x xx x =++--≤++--,令()sin cos 2x x x x ϕ++-,只需证明()0xϕ≤在[0,)+∞上成立, (1)当04x π≤≤时,()1cos sin x x x ϕ'=-+-,设1()()x x ϕϕ=',1321()4x x πϕ⎛⎫'=-+ ⎪⎝⎭, ()1x ϕ'在0,4⎡⎤⎢⎥⎣⎦π上单调递减,11()(0)0x ϕϕ∴'≤'=,()x ϕ'∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00x ϕϕ''∴≤=,()x ϕ∴在0,4⎡⎤⎢⎥⎣⎦π上单调递减,()()00xϕϕ∴≤=;(2)当4x π>时,()24x xx πϕ⎛⎫=++- ⎪⎝⎭2x ≤-+204π≤+<;综上所述,实数a 的取值范围是[2,)+∞.【名师点睛】本题考查了利用导数证明不等式,利用导数研究不等式恒成立,解题的关键是由题意确定2a ≥,将不等式恒成立转化为()sin cos 22t x x x x x ≤++--,进而证明()sin cos 220x x x x x ϕ=++--≤,考查了转化思想以及运算能力.【预测题10】已知函数()()ln 10f x m x kx m =++> (1)讨论()f x 的单调性;(2)若存在实数k ,使得()mxxf x e '≤恒成立的m 值有且只有一个,求k m +的值.【答案】(1)答案见解析;(2)2e k m +=. 【解析】(1)函数()f x 的定义域为()0,∞+,()m m kxf x k x x+'=+=. 当0k ≥时,()0f x '>,()f x 在(0,)+∞上单调递增; 当0k <时,令()0f x '=,解得mx k=-, 当0,m x k ∈-⎛⎫ ⎪⎝⎭时,()0f x '>,当,m x k ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<.()f x ∴在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减. 综上所述,当0k ≥,()f x 在(0,)+∞上单调递增; 当0k <时,()f x 在0,m k ⎛-⎫ ⎪⎝⎭上单调递增,在,m k ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)()mxxf x e '≤恒成立,即0mx e kx m --≥恒成立 令()mxg x ekx m =--,则()mx g x me k '=-.①当0k ≤时,()0g x '>,()g x 单调递增,要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;②当0k m <≤时,令()0g x '=,解得ln ln 0k mx m-=≤,()g x 在()0,∞+上单调递增. 要使()0g x ≥在()0,∞+上恒成立,只需()010g m =-≥,01m ∴<≤,此时m 不唯一,不合题意;③当k m >时,令()0g x '=,解得ln ln 0k mx m-=>,当ln ln 0,k m x m -⎛⎫∈ ⎪⎝⎭时,()0g x '<,()g x 单调递减, 当ln ln ,k m x m -⎛⎫∈+∞⎪⎝⎭时,()0g x '>,()g x 单调递增, ()()ln ln min ln ln ln ln k m k m kg x g ek m m m m --⎛⎫∴==--- ⎪⎝⎭, 要使()0g x ≥在()0,∞+上恒成立,且m 值唯一,只需ln ln 0k m g m -⎛⎫=⎪⎝⎭, 整理得2ln ln 10m m k k-+-=,令()2ln ln 1m h m m k k =-+-,则()22k m h m mk-'=,令()0h m '=,解得m =.当m ⎛∈ ⎝时,0h m,()h m 单调递增,当m ⎫∈+∞⎪⎪⎭时,0h m,()h m 单调递减.()max 1ln 2h m h ∴==,要使m 值唯一,只需()max 102h m ==,解得2e k =,m =,k m ∴+= 【名师点睛】本题考查利用函数不等式恒成立,关键就是将问题转化为()min 0g x ≥,并利用导数分析函数的单调性,进而求解.【预测题11】已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性.(2)若对任意的[]1,2a ∈,总存在1x ,2x ,使得()()120f x f x +=,证明:124x x +≥.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)2222'()2x ax f x x a x x-+=-+=.当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得216a a x ±-=.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+-⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在2160,4a a ⎛⎫-- ⎪ ⎪⎝⎭,2164a a ⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在22161644a a a a ⎛-+- ⎪⎝⎭,上单调递减.(2)因为()()120f x f x +=,所以221112222ln 32ln 30x ax x x ax x -+-+-+-=,整理得()221212122ln 2ln 60x x a x x x x +-+++-=,即()()()212121212622ln x x a x x x x x x +-+-=-. 令()22ln g x x x =-,则22(1)'()2x g x x x-=-=, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()12g x g ≥=,即()121222ln 2x x x x -≥.因为()()2121262x x a x x +-+-≥,所以()()2121280x x a x x +-+-≥. 因为()()21212()8h a x x a x x =+-+-在[]1,2a ∈上单调递减, 所以()()21212(2)280h x x x x =+-+-≥,即()()1212420x x x x +-++≥. 因为12,0x x >,所以124x x +≥. 【预测题12】已知函数3231()3(0)2f x x a x x a a ⎛⎫=-++> ⎪⎝⎭. (1)讨论()f x 的单调性. (2)若1a >,且1,x a ⎛⎫∀∈+∞⎪⎝⎭,31()2f x a >,求a 的取值范围.(3)是否存在正数a ,使得()21f x x >-对()2,3x ∈恒成立?若存在,求a 的取值范围;若不存在,请说明理由.【答案】(1)答案见解析;(2)1,2⎛ ⎝⎭;(3)不存在,理由见解析. 【解析】(1)21'()333f x x a a ⎛⎫=-++ ⎪⎝⎭,令'()0f x =,解得x a =或1x a=, 当1a =时,'()0f x ≥,()f x 在R 单调递增, 当01a <<时,1a a>, 由'()0f x <,得1,x a a ⎛⎫∈ ⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增, 当1a >时,1a a<, 由'()0f x <,得1,x a a ⎛⎫∈⎪⎝⎭,由'()0f x >,得()1,,x a a ⎛⎫∈-∞+∞ ⎪⎝⎭,故()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增,综上:当1a =时,()f x 在R 单调递增, 当01a <<时,()f x 在1,a a ⎛⎫ ⎪⎝⎭上单调递减,在(),a -∞,1,a ⎛⎫+∞ ⎪⎝⎭单调递增,当1a >时,()f x 在1,a a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫-∞ ⎪⎝⎭,(),a +∞单调递增;(2)因为1a >,所以()f x 在1,a a ⎛⎫⎪⎝⎭单调递减,在(),a +∞单调递增,故()3min 1()2f x f a a =>,整理得332a a <,又1a >,故12a <<,故a 的取值范围是⎛ ⎝⎭; (3)()21f x x >-,323112x x a a x ++⎛⎫+< ⎪⎝⎭在()2,3x ∈上恒成立,设211()g x x x x =++,3233122'()1x x g x x x x--=--=, 设3()2k x x x =--,则2'()31k x x =-,当()2,3x ∈时,'()0k x >,故()k x 在()2,3上单调递增,()()240k x k >=>, 故'()0g x >在()2,3恒成立,()g x 在()2,3单调递增,则11()(2)4g x g >=,又12a a +≥=,(当且仅当1a =时“=”成立), 故3111324a a ⎛⎫+≥> ⎪⎝⎭,故不存在正数a ,使得()21f x x >-对()2,3x ∈恒成立. 【名师点睛】本题的关键是由()21f x x >-变形为323112x x a a x++⎛⎫+< ⎪⎝⎭,构造新函数,利用导数的性质和基本不等式进行求解.【预测题13】已知函数()()ln 11f x x kx =+--. (1)讨论函数()f x 的单调性;(2)若关于x 的不等式()01xef x x ++≥对任意0x ≥恒成立,求实数k 的取值范围.【答案】(1)答案见解析;(2)1k ≤.【解析】(1)()()ln 11f x x kx =+--,0x ≥,()1111k kxf x k x x --'=-=++. ①若0k ≤,则()0f x >′恒成立,故()f x 在[)0,+∞上单调递增. ②若01k <<,令()0f x '=,得110x=->.③若1k,则()0f x '≤恒成立,故()f x 在[)0,+∞上单调递减.综上所述,若0k ≤,()f x 在[)0,+∞上单调递增;若01k <<,()f x 在10,1k ⎛⎫- ⎪⎝⎭上单调递增,在11,k ⎛⎫-+∞⎪⎝⎭上单调递减;若1k ,()f x 在[)0,+∞上单调递减.(2)令()()1x e g x f x x =++,故()()ln 111xe g x x kx x =+-+-+,0x ≥所以()()2111x x g x k x x '=-+++,令()()()2111xxe h x g x k x x ='=-+++, ()()()()()()()222331111111xx x e x e x h x x x x ++-+'=-+=+++,下面证明1x e x ≥+,其中0x ≥. 令()1xx e x ϕ=--,0x ≥,则()10x x eϕ-'=≥.所以()x ϕ在[)0,+∞上单调递增,故()()00x ϕϕ≥=, 所以当0x ≥时,1x e x ≥+. 所以()()()()()()()()()222333111110111x x e x x x x x h x x x x +-+++-+'==+++≥≥,所以()g x '在[)0,+∞上单调递增,故()()01g x g k ''=-≥.①若10k -≥,即1k ≤,则()()010g x g k ''=-≥≥,所以()g x 在[)0,+∞上单调递增, 所以()()00g x g ≥=对0x ∀>恒成立,所以1k ≤符合题意. ②若10k -<,即1k >,此时()010g k '=-<,()()()4442222214441411414122k k kke ke e g k k k k k k k k k ⎡⎤⎢⎥⎢⎥'=-+>-=⋅-=⎢⎥+⎛⎫+++⎢⎥⎪⎝⎭⎣⎦221122k e k ⎡⎤⎛⎫⎢⎥ ⎪⎢⎥- ⎪⎢⎥ ⎪+⎢⎥⎝⎭⎣⎦,且据1k >及1xe x ≥+可得212122k e k k +>+≥,故221122ke k ⎛⎫⎪> ⎪ ⎪+⎝⎭,所以()40g k '>. 又()g x '的图象在[)0,+∞上不间断,所以存在()00,4x k ∈,使得()0g x '=, 且当()00,x x ∈时,()0g x '<,()g x 在()00,x 上单调递减, 所以()()000g x g <=,其中()00,4x k ∈,与题意矛盾, 所以1k >不符题意,舍去.综上所述,实数k 的取值范围是1k ≤.【名师点睛】利用导数研究含参函数的单调性,注意讨论的不重不漏;根据不等式恒成立求参数的取值范围,注意先猜后证、反证法的综合应用. 【预测题14】已知函数()2(23)xf x e m x x =+-.(1)若曲线()y f x =在点0(1,)P y 处的切线为:(1)0l e x y n +-+=,求,m n ; (2)当1m =时,若关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立,试求实数a 的取值范围.【答案】(1)1,2m n ==-;(2)32a e ≤-. 【解析】(1)因为函数()2(23)x f x e m x x =+-的导数()(43)xf x e m x '=+-,所以由题意可得(1)1f e m e '=+=+,即1m =.则2()23xf x e x x =+-,点P 坐标为()1,1e -,因为点P 在直线:(1)0l e x y n +-+=上,所以2n =-, 故1,2m n ==-;(2)当1m =时,2()23x f x e x x =+-因为关于x 的不等式()()25312f x x a x ≥+-+在[)1,+∞上恒成立, 所以12x e x a x x≤--,在[)1,+∞上恒成立,设()12x e x g x x x =--,则()()()22211111122x x e x e x g x x x x --+'=-+=-, 由1xy e x =--的导数为1xy e '=-,当0x >时,0y '>,函数1xy e x =--递增,当0x <时,函数1xy e x =--递减,则10x e x --≥,即10x e x ≥+>,所以当1≥x 时,()()()22111111110222x e x x x x x -++-+-≥-=>, 则()12x e x g x x x=--在[)1,+∞递增,所以()()min 312g x g e ==-,则32a e ≤-. 【名师点睛】若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<. 【预测题15】已知函数()()xf x e ax a R =+∈.(1)讨论()f x 在()0,∞+上的单调性; (2)若对任意()0,x ∈+∞,()22ln 0x xe ax x a ++-≥恒成立,求a 的取值范围.【答案】(1)答案见解析;(2)[)(),00,e -+∞.【解析】(1)()x f x e a '=+,当1a ≥-时,因为0x >,所以e 1x >,所以()0xf x e a '=+>,所以()f x 在()0,∞+上的单调递增当1a <-时,()ln 0a ->,所以()ln x a >-时,()0f x '>;()ln x a <-时,()0f x '< 所以()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 综上可得当1a ≥-时,()f x 在()0,∞+上的单调递增,当1a <-时,()f x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增; (2)当1a ≥-且0a ≠时,由(1)可知()f x 在()0,∞+上的单调递增, 所以()()01f x f >=,所以0x >时,()22ln 0x xe ax x a++-≥恒成立,2ln 2ln 0xa e ax x a x ⇔+++-≥恒成立,当1a <-时,令()2ln 2ln xau x e ax x a x=+++-,因为2ln 2ln a y x a x=+-,由22ln 10a y x'=->得()ln x a >-,由22ln 10a y x'=-<得()0ln x a <<-,所以在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增, 由(1)可知()xf x e ax =+,在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()u x 在()()0,ln a -上的单调递减,在()()ln ,a -+∞上的单调递增,所以()()()()()()()()()2ln min ln ln ln ln 2ln ln a a u x u a ea a a a a --=-=+-+-+---()()()()()ln ln ln ln 1a ea a a a a a a -=+-=-+-=--,所以()()ln 10a a --≥,解得1e a -≤<-, 综上可得a 的取值范围是[)(),00,e -+∞.【预测题16】已知函数2()2xf x e ax =--.(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积;(2)若()0xf x e -+≥恒成立,求实数a 的取值范围.【答案】(1)222e e+-;(2)(,1]-∞. 【解析】(1)因为2()2x f x e ex =--,所以)'(2xf x e ex =-,故'(1)k f e ==-.又(1)2f =-,所以切点坐标为(1,2)-,故函数()f x 在点(1,(1))f 处的切线方程为2(1)y e x +=--,即2y ex e =-+-,所以切线与坐标轴交点坐标分别为(0,2)e -,2,0e e -⎛⎫⎪⎝⎭, 故所求三角形面积为2212(2)442(2)22222e e e e e e e e e e ---+⎛⎫⨯-⨯===+- ⎪⎝⎭. (2)由()0xf x e -+≥,得220x x e e ax -+--≥恒成立,令2()2xxg x e eax -=+--,则()()g x g x -=,所以()g x 为偶函数.故只要求当0x ≥时,()0g x ≥恒成立即可.'()2x x g x e e ax -=--,设()2(0)xxh x e eax x -=--≥,故 '()2(0)x x h x e e a x -=+-≥, 设()2(0)xx H x e ea x -=+-≥,则'()(0)x x H x e e x -=-≥,显然'()H x 为(0,)+∞的増函数,故'()'(0)0H x H ≥=,即()H x 在(0,)+∞上单调递增,(0)22H a =-.当1a ≤时,(0)220H a =-≥,则有()h x 在(0,)+∞上单调递增,故()(0)0h x h ≥=, 则()g x 在(0,)+∞上单调递增,故()(0)0g x g ≥=,符合题意; 当1a >时,(0)220H a =-<,又1(ln 2)02H a a=>,故存在0(0,ln 2)x a ∈,使得()00H x =, 故()h x 在()00,x 上单调递减,在()0,x +∞上单调递增.当()00,x x ∈时,()(0)0h x h <=,故()g x 在()00,x 上单调递减, 故()(0)0g x g <=,与()0g x ≥矛盾. 综上,实数a 的取值范围为(,1]-∞.【名师点睛】解题的关键第一是构造函数,利用函数的奇偶性进行转化问题求解;第二是三次求导,利用导数的性质进行求解. 【预测题17】已知函数()()1ln f x a x a R x =+∈,()21g x x x x=--. (1)讨论()f x 的单调性;(2)若函数()()()F x f x g x =+存在两个极值点1x ,2x ,且曲线()y F x =在x 处的切线方程为()y G x =,求使不等式()()F x G x <成立的x 的取值范围.【答案】(1)答案见解析;(2)⎛ ⎝. 【解析】(1)()21-='ax f x x , 当0a ≤时,()0f x '<恒成立,函数()f x 在()0,∞+上单调递减, 当0a >时,易得当1x a >时,()0f x '>,当10x a<<时,()0f x '<, 故()f x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减, (2)()()()2ln F x f x g x a x x x =+=+-,所以()2221a x x aF x x x x-+'=+-=,0x >,因为()()()F x f x g x =+存在两个极值点1x ,2x ,所以()220x x aF x x-+'==有两个不等正实数解,即220x x a -+=有两个不等式正根,所以18002a a∆=->⎧⎪⎨>⎪⎩,解得108a <<, 因为122a x x =,x ==所以1F '=-,ln 222a a a F =+所以曲线()y F x =在x =()ln 1222a a a y x ⎛⎛-+=- ⎝⎝, 即()()31ln 222a a a G x y x ==-+-, 令()()()23ln ln 222a a a h x F x G x x a x =-=+-+-, ()2220x ah x xx-+'==>,故()h x 在()0,∞+上单调递增,且0h =,故当0x <<时,()0h x <,即()()F x G x <,故x的范围⎛ ⎝. 【名师点睛】解不等式比较常用的方法是构造新函数,研究函数的单调性,明确函数的零点,即可明确不等式何时成立.【预测题18】已知函数()cos 2xf x e a x =+-,()f x '为()f x 的导函数.(1)讨论()f x '在区间π0,2⎛⎫⎪⎝⎭内极值点的个数;(2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,求实数a 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)[)1,+∞.【解析】(1)由()cos 2xf x e a x =+-,得()sin xf x e a x '=-.令()sin xg x e a x =-()cos xg x e a x '=-.因为π0,2x ⎛⎫∈ ⎪⎝⎭,所以e 1x>,0cos 1x <<. 当1a ≤时,()0g x '>,()g x 单调递增,即()f x '在区间π0,2⎛⎫⎪⎝⎭内无极值点;当1a >时,()sin xg x e a x ''=+,π0,2x ⎛⎫∈ ⎪⎝⎭, 所以()0g x ''>,所以()cos xg x e a x '=-在π0,2⎛⎫ ⎪⎝⎭单调递增.又()00cos010g e a a '=-=-<,ππ22ππcos 022g e a e ⎛⎫'=-=> ⎪⎝⎭,故存在0π0,2x ⎛⎫∈ ⎪⎝⎭,使()00g x '=且()00,x x ∈时,()0g x '<,()g x 单调递减; 0π,2x x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增,所以0x x =为()g x 的极小值点,此时()f x '在区间π0,2⎛⎫⎪⎝⎭内存在一个极小值点,无极大值点.综上所述,当1a ≤时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内无极值点;当1a >时,()f x '在区间π0,2⎛⎫ ⎪⎝⎭内存在一个极小值点,无极大值点. (2)若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则()0120f a =+-≥,所以1a ≥.下面证明当1a ≥时,()0f x ≥在π,02x ⎡⎤∈-⎢⎥⎣⎦恒成立. 因为π,02x ⎡⎤∈-⎢⎥⎣⎦时,0cos 1x ≤≤,所以1a ≥时,()cos 2cos 2xxf x e a x e x =+-≥+-.令()cos 2xh x e x =+-,π,02x ⎡⎤∈-⎢⎥⎣⎦,所以()sin xh x e x '=-令()sin xx e x ϕ=-()cos xx e x ϕ'=-.()sin x x e x ϕ''=+在区间π,02⎡⎤-⎢⎥⎣⎦单调递增.又ππ331ππsin 03322e e e ϕ---⎛⎫⎛⎫''-=+-=-<-< ⎪ ⎪⎝⎭⎝⎭, 所以()cos xx e x ϕ'=-在区间ππ,23⎡⎤--⎢⎥⎣⎦上单调递减.又ππ22ππcos 022e e ϕ--⎛⎫⎛⎫'-=--=> ⎪ ⎪⎝⎭⎝⎭, ππ331ππ11cos 03322e e e ϕ---⎛⎫⎛⎫'-=--=-<-< ⎪ ⎪⎝⎭⎝⎭,所以存在1ππ,23x ⎛⎫∈-- ⎪⎝⎭,使()10x ϕ'=,且1π,2x x ⎛⎫∈-⎪⎝⎭时,()0x ϕ'>,()h x '单调递增; ()1,0x x ∈时,()0x ϕ'<,()h x '单调递减,所以1x x =时,()h x '取得最大值,且()()1max h x h x ''=. 因为()10x ϕ'=,所以11cos xe x =,所以()h x 单调递减,所以π,02x ⎡⎤∈-⎢⎥⎣⎦时,()()00h x h ≥=,即()0f x ≥成立. 综上,若π,02x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ≥恒成立,则a 的取值范围为[)1,+∞.【名师点睛】含参数分类讨论函数的单调性、极值,需要根据导函数的结构,对参数进行分类讨论.【预测题19】函数()sin (1cos )f x x x =⋅+,()(1)xg x a e =-(1)当0a <时,函数()()()F x f x g x =+在(0,)2x π∈有极值点,求实数a 的取值范围;(2)对任意实数[0,)x ∈+∞,都有()()f x g x ≤恒成立,求实数a 的取值范围. 【答案】(1)20a -<<;(2)2a ≥.【解析】(1)()sin (1cos )(1)xF x x x a e =++-,2()cos (1cos )sin (sin )2cos cos 1x x F x x x x x ae x x ae =++=-'-+++, ()4cos sin )sin sin (4cos 1)x x F x x x x ae x x ae =-'-+'+=-+(,因为(0,)2x π∈,所以sin 0,cos 0x x >>,又0a <,所以()F x ''<0,所以'()F x 在(0,)2π上递减,(0)20F a =+>',2()102F ae ππ'=-+<,所以20a -<<,(2)()()()G x g x f x =-=(1)sin (1cos )0xa e x x --+≥.因为()02F π≥,所以2(1)10a e π--≥,所以0a >,当[0,]2x π∈时,()()()G x g x f x '''=-=2(2cos cos 1)x ae x x -+-,()()()G x g x f x ''''''=-sin (4cos 1)x ae x x =++>0,所以'()G x 在[0,]2π上递增,(0)2G a '=-,2()102G ae ππ'=+>,①当(0)20G a =-<'即2a <时,0(0,)2x π∃∈使得0()0G x '=,所以当0(0,)x x ∈时'()0G x <,函数()G x 在区间0(0,)x 递减, 因为(0)0G =,所以当0(0,)x x ∈时,()0<G x 与条件()0G x ≥矛盾,②(0)20G a =-≥'时,即2a ≥时,22()(2cos cos 1)2(2cos cos 1)x x G x ae x x e x x =-+-≥-+-',因为22cos cos 1x x +-=2192[cos ]48x +-,cos [1,1]x ∈-, 所以22cos cos 1x x +-9[,2]8∈-, 而0x ,≥时22x e ≥,所以()G x '0≥,所以函数()G x 在区间[0,)+∞单调递增,因为(0)0G =,所以()0G x ≥, 综上:2a ≥.【预测题20】已知函数()x f x e ax =+,()()()()g x f x f x a R =--∈. (1)若直线y kx =与曲线()f x 相切,求k a -的值; (2)若()g x 存在两个极值点1x ,2x ,且()()12122g x g x x x e->--,求a 的取值范围.【答案】(1)k a e -=; (2)1,12e e -⎛⎫+-- ⎪⎝⎭.【解析】(1)设切点为()00,x y ,()xf x e a '=+,因为直线y kx =与曲线()f x 相切,所以0x e a k +=,000xe ax kx +=,所以()()010x a k --=,解得01x =,a k =(不成立,舍去), 所以k a e -=;(2)()2x x g x e e ax -=-+,()2x xg x e e a -'=++,①当1a ≥-时,()220g x a '≥+≥,所以()g x 在R 上单调递增,函数()g x 无极值,不符合题意,舍去. ②当1a <-时,()20xxg x e ea -'=++=,不妨设12x x <,解得(1ln x a =-,(2ln x a =-,可得函数()g x 在()1,x -∞单调递增,在()12,x x 单调递减,在()2,x +∞单调递增,符合题意.。

恒成立和存在性问题

恒成立和存在性问题

恒成⽴和存在性问题⾼⼀函数专题同步拔⾼,难度4颗星!模块导图知识剖析恒成⽴和存在性问题类型(1) 单变量的恒成⽴问题①∀x ∈D ,f (x )<a 恒成⽴,则f (x )max <a②∀x ∈D ,f (x )>a 恒成⽴,则f (x )min >a③∀x ∈D ,f (x )<g (x )恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )max <0④∀x ∈D ,f (x )>g (x )恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )min >0(2) 单变量的存在性问题①∃x 0∈D ,使得f (x 0)<a 成⽴,则f (x )min <a②∃x 0∈D ,使得f (x 0)>a 成⽴,则f (x )max >a③∃x 0∈D ,使得f (x 0)<g (x 0)恒成⽴,则F (x )=f (x )−g (x )<0,∴f (x )min <0④∃x 0∈D ,使得f (x 0)>g (x 0)恒成⽴,则F (x )=f (x )−g (x )>0,∴f (x )max >0(3) 双变量的恒成⽴与存在性问题①∀x 1∈D ,∃x 2∈E ,使得f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )max ;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)>g (x 2)恒成⽴,则f (x )min >g (x )min ;③∀x 1∈D ,∀x 2∈E ,f (x 1)<g (x 2)恒成⽴,则f (x )max <g (x )min ;④∃x 1∈D ,∃x 2∈E , 使得f (x 1)<g (x 2)恒成⽴,则f (x )min <g (x )max ;(4) 相等问题①∃x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则两个函数的值域的交集不为空集;②∀x 1∈D ,∃x 2∈E ,使得f (x 1)=g (x 2),则f (x )的值域⊆g (x )的值域解题⽅法恒成⽴和存在性问题最终可转化为最值问题,具体的⽅法有直接最值法分类参数法变换主元法数形结合法经典例题【题型⼀】恒成⽴和存在性问题的解题⽅法直接构造函数最值法【典题1】 设函数f (x )=3|x |x 2+9的最⼤值是a ,若对于任意的x ∈[0,2),a >x 2−x +b 恒成⽴,则b 的取值范围是_.【解析】 当x =0时,f (x )=0;当x ≠0时,f (x )=3|x |x 2+9=3|x |+9|x |≤32√9=12,则f (x )max=12,即a =12.由题意知x 2−x+b <12在x ∈[0,2)上恒成⽴,即x 2−x +b −12<0在x ∈[0,2)上恒成⽴(∗),(把不等式中移到右边,使得右边为,从⽽构造函数y =g (x )求最值)令g (x )=x 2−x +b −12,则问题(∗)等价于在x ∈[0,2)上g (x )<0恒成⽴,在x ∈[0,2)上,g (x )<g (2)=4−2+b −12=32+b∴32+b ≤0即b ≤−32.【点拨】① 直接构造函数最值法:遇到类似不等式f (x )<g (x )恒成⽴问题,可把不等式变形为f (x )−g (x )<0,从⽽构造函数h (x )=f (x )−g (x )求其最值解决恒成⽴问题;② 在求函数的最值时,⼀定要优先考虑函数的定义域;③ 题⽬中y =g (x )在x ∈[0,2)上是取不到最⼤值,g (x )<g (2)=32+b ,⽽要使得g (x )<0恒成⽴,32+b 可等于0,即32+b ≤0,⽽不是32+b <0分离参数法【典题1】 已知函数f (x )=3x +8x +a 关于点(0,−12)对称,若对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,则实数k 的取值范围为_.【解析】 由y =3x +8x 为奇函数,可得其图象关于(0,0)对称,可得f (x )的图象关于(0,a )对称,函数f (x )=3x +8x +a 关于点(0,−12)对称,可得a =−12,对任意的x ∈[−1,1],k ⋅2x −f (2x )≥0恒成⽴,⇔∀x ∈[−1,1],k ⋅2x −3⋅2x +82x −12≥0恒成⽴,【思考:此时若利⽤直接构造函数最值法,求函数f (x )=k ⋅2x −3⋅2x +82x −12,x ∈[−1,1]的最⼩值,第⼀函数较复杂,第⼆函数含参要分即k ⋅2x ≥3⋅2x +82x −12在x ∈[−1,1]恒成⽴,所以k ≥82x 2−122x +3,(使得不等式⼀边是参数k ,另⼀边不含k 关于x 的式⼦,达到分离参数的⽬的)令t =12x ,由x ∈[−1,1],可得t ∈12,2,设h (t )=8t 2−12t +3=8t −342−32,当t =2时,h (t )取得最⼤值11,则k 的取值范围是k ≥11.【点拨】①分离参数法:遇到类似k ⋅f (x )≥g (x )或k +f (x )≥g (x )等不等式恒成⽴问题,可把不等式化简为k >h (x )或k <h (x )的形式,达到分离参数的⽬的,再求解y =h (x )的最值处理恒成⽴问题;② 恒成⽴问题最终转化为最值问题,⽽分离参数法,最好之处就是转化后的函数不含参,避免了⿇烦的分离讨论.【典题2】 已知f (x )=log 21−a ⋅2x +4x ,其中a 为常数(1)当f (1)−f (0)=2时,求a 的值;(2)当x ∈[1,+∞)时,关于x 的不等式f (x )≥x −1恒成⽴,试求a 的取值范围;【解析】 (1)f (1)−f (0)=2⇒log 2(1−2a +4)−log 2(1−a +1)=log 24⇒log 2(5−2a )=log 24(2−a )⇒5−2a =8−4a ⇒a =32;(2)log 21−a ⋅2x +4x ≥x −1=log 22x −1⇒1−a ⋅2x +4x ≥2x −1⇒a ≤2x +12x −12,令t =2x ,∵x ∈[1,+∞)∴t ∈[2,+∞),设h (t )=t +1t −12,则a ≤h (t )min ,∵h (t )在[2,+∞)上为增函数⇒t =2时,h (t )=t +1t −12有最⼩值为2,∴a ≤2.【点拨】 在整个解题的过程中不断的利⽤等价转化,把问题慢慢变得更简单些.变换主元法【典题1】 对任意a ∈[−1,1],不等式x 2+(a −4)x −2a >0恒成⽴,求x 的取值范围.思考痕迹 见到本题中“x 2+(a −4)x −2a >0恒成⽴”潜意识中认为x 是变量,a 是参数,这样会构造函数f (x )=x 2+(a −4)x −2a ,⽽已知条件是a ∈[−1,1],觉得怪怪的做不下去;此时若把a 看成变量,x 看成参数呢?【解析】因为不等式x 2+(a −4)x −2a >0恒成⽴⇔不等式(x −2)a +x 2−4x >0恒成⽴...①,令f (a )=(x −2)a +x 2−4x ,若要使得①成⽴,只需要f (−1)>0f (1)>0⇔x 2−5x +2>0x 2−3x −2>0解得x >5+√172或x <3−√172,故x 的取值范围x ∣x >5+√172 或 x <3−√172.【点拨】 变换主元法,就是要分辨好谁做函数的⾃变量,谁做参数,⽅法是以已知范围的字母为⾃变量.数形结合法【典题1】 已知a >0,f (x )=x 2−a x , 当x∈(−1,1)时,有f (x )<12恒成⽴,求a 的取值范围.思考痕迹本题若⽤直接最值法,求函数f (x )=x 2−a x ,x ∈(−1,1)的最⼤值,就算⽤⾼⼆学到的导数求解也是难度很⼤的事情;⽤分离参数法呢?试试也觉得⼀个硬⾻头.看看简单些的想法吧!【解析】 不等式x 2−a x <12(x ∈(−1,1))恒成⽴等价于x 2−12<a x (x ∈(−1,1))恒成⽴...①,令f (x )=x 2−12,g (x )=a x ,若①成⽴,则当x ∈(−1,1)时,f (x )=x 2−12的图像恒在g (x )=a x 图像的下⽅,则需要g (1)>f (1)g (−1)>f (−1)⇔a >121a >12或a =1(不要漏了a =1,因为a >0,g (x )=a x 不⼀定是指数函数)⼜a >0,所以12<a <2,即实数a 的取值范围为12,2.【点拨】① 数形结合法:∀x ∈D ,f (x )<g (x )恒成⽴⇒在x ∈D 上,函数y =f (x )的图像在函数y =g (x )图像的下⽅.② 遇到h (x )<0不等式恒成⽴,可以把不等式化为f (x )<g (x )⽤数形结合法,⽽函数y =f (x )与y =g (x )最好是熟悉的函数类型,⽐如本题中构造出f (x )=x 2−12,g (x )=a x 两个常见的基本初级函数.【题型⼆】 恒成⽴与存在性问题混合题型【典题1】 已知函数f (x )=x 3+1,g (x )=2−x −m +1.(1)若对任意x 1∈[−1,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,求实数m 的取值范围.()[]()()(){{{}{{[](2)若对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,求实数m的取值范围.【解析】(1)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_1∈[-1 ,3],任意x_2∈[0 ,2]都有f(x_1)≥g(x_2)成⽴,知:f\left(x_{1}\right)_{\min } \geq g\left(x_{2}\right)_{\max },∵f(x)在[-1 ,3]上递增,\therefore f\left(x_{1}\right)_{\min }=f(-1)=0⼜∵g(x)在[0 ,2]上递减,\therefore g\left(x_{2}\right)_{\max }=g(0)=2-m∴有0≥2-m,∴m的范围为[2 ,+∞)(2)由题设函数f(x)=x^3+1,g(x)=2^{-x}-m+1.对任意x_2∈[0 ,2],总存在x_1∈[-1 ,3]使得f(x_1)≥g(x_2)成⽴,知f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },∴有f(3)≥g(0),即28≥2-m,∴M的范围为[-26 ,+∞).【点拨】对于双变量的恒成⽴--存在性问题,⽐如第⼆问中怎么确定f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max },即到底是函数最⼤值还是最⼩值呢?具体如下思考如下,⼀先把g\left(x_{2}\right)看成定值m,那\exists x_{1} \in[-1,3],都有f\left(x_{1}\right) \geq m,当然是要f(x)_{\max } \geq m;⼆再把f\left(x_{1}\right)看成定值n,那\forall x_{2} \in[0,2],都有n \geq g\left(x_{2}\right),当然是n \geq g(x)_{\max };故问题转化为f\left(x_{1}\right)_{\max } \geq g\left(x_{2}\right)_{\max }.其他形式的双变量成⽴问题同理,要理解切记不要死背.【典题2】设f(x)=\dfrac{x^{2}}{x+1},g(x)=ax+3-2a(a>0),若对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,则a的取值范围是\underline{\quad \quad }.【解析】\because f(x)=\dfrac{x^{2}}{x+1},当x=0时,f(x)=0,当x≠0时,f(x)=\dfrac{1}{\dfrac{1}{x^{2}}+\dfrac{1}{x}}=\dfrac{1}{\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4}},由0<x≤1,即\dfrac{1}{x} \geq 1,\left(\dfrac{1}{x}+\dfrac{1}{2}\right)^{2}-\dfrac{1}{4} \geq 2,\therefore 0<f(x) \leq \dfrac{1}{2},故0 \leq f(x) \leq \dfrac{1}{2},⼜因为g(x)=ax+3-2a(a>0),且g(0)=3-2a,g(1)=3-a.由g(x)递增,可得3-2a≤g(x)≤3-a,对于任意x_1∈[0 ,1],总存在x_0∈[0 ,1],使得g(x_0)=f(x_1)成⽴,可得\left[0, \dfrac{1}{2}\right] \subseteq[3-2 a, 3-a],可得\left\{\begin{array}{l} 3-2 a \leq 0 \\ 3-a \geq \dfrac{1}{2} \end{array}\right.,\therefore \dfrac{3}{2} \leq a \leq \dfrac{5}{2}.巩固练习1(★★) 已知1+2^x+a\cdot 4^x>0对⼀切x∈(-∞ ,1]上恒成⽴,则实数a的取值范围是\underline{\quad \quad }.2 (★★) 若不等式2x-1>m(x^2-1)对满⾜|m|≤2的所有m都成⽴,求x的取值范围.3 (★★) 若不等式3x^2-\log_a x<0在x\in\left(0, \dfrac{1}{3}\right)内恒成⽴,实数a的取值范围.4 (★★★) 已知函数f(x)=x^2-3x,g(x)=x^2-2mx+m,若对任意x_1∈[-1 ,1],总存在x_2∈[-1 ,1]使得f(x_1)≥g(x_2 ),则实数m的取值范围.5 (★★★) 已知a>0且a≠1,函数f(x)=a^x+a^{-x}(x∈[-1 ,1]),g(x)=ax^2-2ax+4-a(x∈[-1 ,1]).(1)求f(x)的单调区间和值域;(2)若对于任意x_1∈[-1 ,1],总存在x_0∈[-1 ,1],使得g(x_0)=f(x_1)成⽴,求a的取值范围;(3)若对于任意x_0∈[-1 ,1],任意x_1∈[-1 ,1],都有g(x_0)≥f(x_1)恒成⽴,求a的取值范围.答案1.\left(-\dfrac{3}{4},+\infty\right)2.\dfrac{\sqrt{7}-1}{2}<x<\dfrac{\sqrt{3}+1}{2}3.\dfrac{1}{27} \leq a<14.m≤-1或m≥3Processing math: 64%5.(1) \left[2, a+\dfrac{1}{a}\right](2) a>1(3) \left[\dfrac{1}{3}, 1\right)。

高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题

高三复习专题——恒成立与存在性问题知识点总结:(1)恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)=f(x)- g(x) >0,∴F(x)min >04. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)- g(x) ﹤0,∴F(x) ma x﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min(2)存在性问题1. ∃x0∈D,使得f(x0)>A成立,则f(x) ma x >A;2. ∃x0∈D,使得f(x0)﹤A成立,则f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)=f(x)- g(x),∴F(x) ma x >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)=f(x)- g(x),∴F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x(3)相等问题1. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则{ f(x)}{g(x)}(4)恒成立与存在性的综合性问题1. ∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in>g(x)m in2. ∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max <g(x)max(5)恰成立问题1. 若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.► 探究点一 ∀x ∈D ,f (x )>g (x )的研究例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;【思路分析】等价转化为函数0)()(>-x g x f 恒成立,通过分离变量,创设新函数求最值解决.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x xx x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .► 探究点二 ∃x ∈D ,f (x )>g (x )的研究对于∃x ∈D ,f (x )>g (x )的研究,先设h (x )=f (x )-g (x ),再等价为∃x ∈D ,h (x )max >0,其中若g (x )=c ,则等价为∃x ∈D ,f (x )max >c . 例 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8, 所以曲线y =f (x )在点(2,f (x ))处的切线方程为 8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数, 故f (x )m in =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾. 当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0, 所以x =23a 时,f (x )取最小值,因此有f ⎝⎛⎭⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾;当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )m in =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3. 综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x 2, 设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数. g (x )m in =g (2),所以a >92.【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论.► 探究点三 ∀x 1∈D ,∀x 2∈D ,f (x 1)>g (x 2)的研究 例、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.思路分析:解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x x ab +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(xa x a x x a x h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .► 探究点四 ∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究,第一步先转化为∃x 2∈D ,f (x 1)m in >g (x 2),再将该问题按照探究点一转化为f (x 1)m in >g (x 2)m in .例、已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8.(1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围; (2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞), 使得f (x 1)>g (x 2)成立,求实数m 的取值范围.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解, 得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解. 当x -m =m 时,得x =2m ,则2m =0或2m <-4, 即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎪⎨⎪⎧2x -m x ≥m ,2m -xx <m ,原命题等价为f (x 1)m in >g (x 2)m in .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6. 所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎡⎦⎤4,m 2单调递增,⎣⎡⎦⎤m 2,m上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8, 解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增, 故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎫72,5∪(6,+∞). 【点评】 因为对于∀x ∈D ,f (x )>c ,可以转化为f (x )m in >c ;∃x ∈D ,c >g (x ),可以转化为c >g (x )m in ,所以本问题类型可以分两步处理,转化为f (x )m in >g (x )m in .► 探究点五 ∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究,若函数f (x )的值域为C 1,函数g (x )的值域为C 2,则该问题等价为C 1⊆C 2.例、设函数f (x )=-13x 3-13x 2+53x -4.(1)求f (x )的单调区间; (2)设a ≥1,函数g (x )=x 3-3a 2x -2a .若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝⎛⎭⎫-53,1;单调减区间为⎝⎛⎭⎫-∞,-53和(1,+∞).(2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a ,解得1≤a ≤32.恒成立与存在有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。

浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题

浅谈高中数学中的“恒成立”与“存在性”的综合问题高中数学中的“恒成立”与“存在性”是高中数学中重要的概念。

它们都涉及到数学中的思维技巧,也是指导学生使用抽象来解决数学问题的重要原则。

两者有着非常重要的关系,本文将着重分析这两个概念的内涵,以及它们之间的关系,为学生未来学习数学打下基础。

“恒成立”是数学概念的重要组成部分,它表明数学定理是恒定不变的,不会随时间和空间的改变而改变。

例如,二次方程的根的求解,根据拉格朗日的二次方程定理,我们可以得出根的公式,这个公式在不同的时空中都是恒成立的。

此外,还有欧几里得定理、勾股定理、费马定理等,都是恒成立的定理。

“存在性”指的是某一定理能够被证明,可以提供证明定理存在的方式。

这一概念的基础是对定理的规则推理,通过推理这些规则,可以得出一些数学定理的存在性。

最常用的证明定理存在性的方式是证明反证法,即先假定定理的假设是错误的,考虑假设的反面,如果计算的结果恰好矛盾,则说明定理是存在的。

从数学概念的定义来看,“恒成立”与“存在性”之间存在有机结合关系。

首先,“存在性”先于“恒成立”,因为“存在性”是定理能够被证明的基础,是定理恒定的前提,而“恒成立”则是“存在性”的结果。

而“恒成立”则是证明“存在性”的重要工具,根据“恒成立”,通过运用既定的数学公式,可以将定理(或者命题)转化为更简单的推理,来证明定理的存在性。

另外,“恒成立”与“存在性”也是高中数学知识中最重要的两大原则。

从数学思维的角度上讲,“存在性”鼓励学生考虑问题的反面,用反证法思考,并有手段地证明或证伪定理,从而运用更多的数学工具来解决问题;而“恒成立”则鼓励学生把固有的数学思维方式发挥出来,从而帮助他们加深对定理的理解,提高数学思维的能力。

综上所述,“恒成立”与“存在性”的综合问题在数学思维中都起着重要的作用。

它们是数学概念的组成部分,也是证明、推理、解决数学问题的重要原则,对学生学习数学有着重要的作用。

2020 年高中数学恒成立、存在性问题解决办法

2020 年高中数学恒成立、存在性问题解决办法

2020 年恒成立、存在性问题解决办法1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、简单型1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m 题型二、更换主元法1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于高考数学中的恒成立问题与存在性问题集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]
“恒成立问题”的解法
常用方法:①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。

一、函数性质法
1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根据函
数的图象(直线)可得上述结论等价于⎩
⎨⎧
>)(0
)(n f m f ;同理,若在[m,n]内恒有()
0f x <,则有
⎩⎨
⎧((n f m f 例1.p ,求使不等式2x x 的取值范围。

略解:不等式即为2(1)210x p x x -+-+>,设2
()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上恒大于
0,故有:⎩⎨⎧>>-)2(0)2(f f ,即⎪⎩⎪
⎨⎧>->+-0
103422x x x 3111x x x x ><⎧⇒⎨><-⎩或或13x x ⇒<->或.
2.二次函数:
①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00
a >⎧⎨∆<⎩(或00
a <⎧⎨
∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。

例2.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少
有一个为正数,则实数m 的取值范围是( )
A .(0,2)
B .(0,8)
C .(2,8)
D .(-∞,0)
选B 。

例3.设2
()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。

解:设2
()()22F x f x a x ax a =-=-+-,
(1)当4(1)(2)0a a ∆=-+≤时,即21a -≤≤时,对一切[1,)x ∈-+∞,()0F x ≥恒成立; (2)当4(1)(2)0a a ∆=-+>时,由图可得以下充要条件:0(1)021,
2
f a
⎧⎪∆>⎪-≥⎨⎪-⎪-≤-⎩ 即(1)(2)0
30
1,a a a a -+>⎧⎪
+≥⎨⎪≤-⎩ 32a ⇒-≤<-; 。

例4.关于x 的方程9(4)340x x
a +++=恒有解,求a 的范围。

解法:设3x t =,则0t >.则原方程有解即方程2(4)40t a t +++=有正根。

1212
(4)040
x x a x x ∆≥⎧⎪
∴+=-+>⎨⎪=>⎩2(4)1604a a ⎧+-≥⇒⎨<-⎩8a ⇒≤-.
3.其它函数:
()0f x >恒成立⇔min ()0f x >(若()f x 的最小值不存在,则()0f x >恒成立⇔()f x 的下界
≥0);
()0f x <恒成立⇔max ()0f x <(若()f x 的最大值不存在,则()0f x <恒成立⇔()f x 的上界≤0).
例5.设函数321
()(1)4243f x x a x ax a =-+++,其中常数1a >,
(1)讨论()f x 的单调性;
(2)若当0x ≥时,()0f x >恒成立,求a 的取值范围。

解:(2)由(I )知,当0≥x 时,)(x f 在a x 2=或0=x 处取得最小值。

a a a a a a a f 2424)2)(1()2(3
1)2(23+⋅++-=a a a 24434
23++-=;a f 24)0(=
则由题意得⎪⎩

⎨⎧>>>,0)0(,0)2(1
f a f a 即1,4(3)(6)03240.
a a a a a >⎧⎪⎪-+->⎨⎪>⎪⎩16a ⇒<< ∴(1,6)a ∈。

二、主参换位法:某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分
离出参数与变量,但函数的最值却难以求出时,可考虑把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果。

例6.已知函数323
()(1)132a f x x x a x =-+++,其中a 为实数.
(1)已知函数()f x 在1x =处取得极值,求a 的值;
(2)已知不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.
解:由题设知“223(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,
都成立,即22(2)20a x x x +-->对∀(0)a ∈+∞,
都成立。

设22()(2)2g a x a x x =+--(a R ∈),则()g a 是一个以a 为自变量的一次函数。

220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数。

所以对
∀(0)a ∈+∞,
,()0g a >恒成立的充分必要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤。

三、分离参数法:利用分离参数法来确定不等式(),0f x λ≥(D x ∈,λ为实参数)恒成立时参数
λ的取值范围的基本步骤:
(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;
(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,求得λ的取值范围。

适用题型:(1)参数与变量能分离;(2)函数的最值易求出。

例7.当(1,2)x ∈时,240x mx ++<恒成立,则m 的取值范围是 .
解: 当(1,2)x ∈时,由2
40x mx ++<得24x m x +<-.令244
()x f x x x x
+=
=+,则易知()f x 在(1,2) 上是减函数,所以4()5f x <<,所以24
5x x
+->-,∴5m ≤-. 例8.已知x R ∈
时,不等式cos 254sin a x x +<-a 的取值范围。

解:原不等式即为:214sin 2sin 5x x a +-<-45-a -a+5
大于214sin 2sin x x +-的最大值,因为214sin 2sin 3x x +-≤,
∴53a ->
2a >+2
20
54054(2)a a a a ⎧-≥⎪
⇔-≥⎨⎪->-⎩
或⎩⎨⎧≥-<-04502a a ,解得≤54a<8.
四、数形结合(对于()()f x g x ≥型问题,利用数形结合思想转化为函数图象的关系再处理):若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。

尤其对于选择题、填空题这种方法更显方便、快捷。

例9.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a
(A) 1a <- (B) ||1a ≤ (C) ||1a < (D )1a ≥

B 。

例10.当|(1,2)x ∈)时, 2(1)log a x x -<恒成立,求a 答案:12a <≤.
例11.已知关于x 的方程2lg(20)lg(863)0x x x a +---=有唯一解,
求实数a 的取值范围。

解:原问题即为:方程2
208630x x x a +=-->有唯一解。

令2120y x x =+,2863y x a =--,则如图所示,要使1y 和2y 在x 轴上有
唯一交点,则直线必须位于1l 和2l 之间。

(包括1l 但不包括2l )。

当直线为1l 时,1636a =-
;当直线为2l 时,1
2a =-, ∴a 的范围为1631
[,)62
--。

另解:方程21263x x a +=--在方程(,20)(0,)x ∈-∞-+∞上有唯一解有唯一解。

五。

根据函数的奇偶性、周期性等性质:函数是奇偶性、单调性、周期性都在给定区间上恒成立。

例12.若()sin()cos()f x x x αα=++-为偶函数,求α的值。

解:由题得:()()f x f x -=对一切x R ∈恒成立,
对一切x ∈R 恒成立...
,∴只需也必须cos sin 0αα+= ∴4
k π
απ=-.(k Z ∈)。

相关文档
最新文档