一次函数方案设计专题练习

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

一次函数方案题.doc

一次函数方案题.doc

(3课题学习选择方案类型一:利用函数值的大小选择方案题型1选择销售方案例1、某商场计划投入一笔资金采购一批紧俏商品,经过市场调査发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。

题型2选择购买方案例2甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。

今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。

某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用刃元,在乙商店购买需要用y2元。

(1)请分别写出y】、丫2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。

例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法: ⑴买一只茶壶送一只茶杯;(2)按总价的92制寸款。

某顾客需购茶壶4只,茶杯若干只(不少于4只), 若设购买茶杯数为x (只),付款数为『(元),试分别写出两种优惠办法中y(元)与x (只)之间的函数解析式,并讨论两种办法中哪种更省钱。

题型4选择生产方案问题例5、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0. 55万元, 同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理, 现有两种方案可供选择: 方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0・05万元,并且每月设备维护及损耗费为20万元。

一次函数方案设计专题练习

一次函数方案设计专题练习

25.本题12分某汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A 、B 两地的旅游公司,其中20辆派往A 地,10辆派往B 地,两地旅游公司(1)设派往A 地的乙型汽车x 辆,租赁公司这30辆汽车一天共获得的租金为y (元),求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案. 25.解:(1)y =1000(20-x )+900x +800x +600(10-x )=26000+100x (0≤x ≤10)………………………………………4分(2)依题意得:2680010026000≥+x ,又因为100≤≤x ………………6分 ∴108≤≤x ,因为x 是整数 ∴x =8,9,10,方案有3种…………7分方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆; 方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆; 方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆。

......8分 (3)∵x y 10026000+=是一次函数,且100=k ﹥0,..................9分 ∴y 随x 的增大而增大,∴当x =10时,这30辆车每天获得的租金最多...11分 ∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆 (12)1、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%. (1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用解:(1)设购买甲种树苗x 株,乙种树苗y 株,则列方程组⎩⎨⎧x +y =80024x +30y =21000解得:⎩⎨⎧x =500y =300,答:购买甲种树苗500株,乙种树苗300株.(2)设购买甲种树苗z 株,乙种树苗(800-z )株,则列不等式85%+90%(800-z )≥88%×800 解得:z ≤320(3)设甲种树苗m 株,购买树苗的费用为W 元,则W =24m +30(800-m )=-6m +2400 ∵-6<0∴W 随m 的增大而减小, ∵0<m ≤320∴当m =320时,W 有最小值 W 最小值=24000-6×320=22080元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低为22080元.2、(2011山东日照,22,9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?【答案】 (1)根据题意知,调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱(x -10)台, 则y =200x +170(70-x )+160(40-x )+150(x -10),即y =20x +16800.∵ ⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥,010,040,070,0x x x x∴10≤x ≤40. ∴y =20x +168009 (10≤x ≤40);(2)按题意知:y =(200-a )x +170(70-x )+160(40-x )+150(x -10), 即y =(20-a )x +16800. ∵200-a >170,∴a <30.当0<a <20时,x =40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;3、9. (2011福建泉州,24,9分)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。

一次函数(方案选取)练习题与解答

一次函数(方案选取)练习题与解答

一次函数(方案选取)练习题与解答1.某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生。

为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元。

方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费。

(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为元;用方案二处理废渣时,每月利润为元(利润=总收人-总支出)。

(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算2.汛期来临,水库水位不断上涨,经勘测发现,水库现在超过警戒线水量640万米3,设水流入水库的速度是固定的,每个泄洪闸速度也是固定的,泄洪时,每小时流入水库的水量16万米3,每小时每个泄洪闸泄洪14万米3,已知泄洪的前a小时只打开了两个泄洪闸,水库超过警戒线的水量y(万米3)与泄洪时间s(小时)的关系如图所示,根据图象解答问题:(1)求a的值;(2)求泄洪20小时,水库现超过警戒线水量;(3)若在开始泄洪后15小时内将水库降到警戒线水量,问泄洪一开始至少需要同时打开几个泄洪闸3.水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元。

(1)问小李分别购买精品盒与普通盒多少盒(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配最大的总利润是多少4.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现要调往A县10辆,调往B 县8辆,已知调运一辆农用车的费用如表:(1)设从乙仓库调往A县农用车x辆,求总运费y关于x的函数关系式。

培优专题20一次函数与方案的设计与选择

培优专题20一次函数与方案的设计与选择



数表达式为 y =- x +30.

(3)10:00时,甲容器中的水面高度为多少?当甲容器中的水面高度为20cm时

几点钟?
◉答案 解:(3)10:00时, x =60, y =-
器中的水面高度为27cm.当 y =20时,20=-

×60+30=27,∴10:00时,甲容


x +30,解得 x =200.∵9:00经过
(2)假设你是决策者,你认为应该选择哪种方案?请说明理由.
◉答案 解:(2) y2- y1=2.4 x +16 000-4 x =16 000-1.6 x .由 y1= y2得16
000-
1.6 x =0,解得 x =10 000,∴当 x <10 000时, y1< y2,选择方案一,从纸箱厂定
2.4元.
(1)若需要这种规格的纸箱 x 个,请分别写出从纸箱厂定制购买纸箱的费用 y1
(元)和蔬菜加工厂自己加工制作纸箱的费用 y2(元)关于 x (个)的函数关系式.
◉答案 解:(1)从纸箱厂定制购买纸箱费用 y1关于 x 的函数关系式为 y1=4 x .蔬菜
加工厂自己加工制作纸箱费用 y2关于 x 的函数关系式为 y2=2.4 x +16 000.
制购买纸箱所需的费用低;当 x >10 000时, y1> y2,选择方案二,蔬菜加工厂自己
加工制作纸箱所需的费用低;当 x =10 000时, y1= y2,选择两个方案的费用相同.
5. [应用意识]某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的
羽毛球拍,每副球拍配 x ( x ≥2)个羽毛球,供社区居民免费借用.该社区附近
第六章 一次函数
培优专题20:一次函数与方案的设计与选择

专题23利用一次函数解决实际问题(原卷版)

专题23利用一次函数解决实际问题(原卷版)

专题23 利用一次函数解决实际问题(原卷版)类型一最大利润问题1.(2021•福建)某公司经营某种农产品,零售一箱该农产品的利润是70元,批发一箱该农产品的利润是40元.(1)已知该公司某月卖出100箱这种农产品共获利润4600元,问:该公司当月零售、批发这种农产品的箱数分别是多少?(2)经营性质规定,该公司零售的数量不能多于总数量的30%.现该公司要经营1000箱这种农产品,问:应如何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?类型二方案设计问题2.(2022•新田县一模)某商场准备购进A,B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定用不超过35000元同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式并求此时的最大利润.(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,问有多少种捐赠方案?最多捐赠多少台电脑?类型三运费最少问题3.(2021•巴东县模拟)学校计划组织七年级学生到金果坪乡红色教育基地参加“追寻红色足迹传承革命精神”的活动.在此活动中,若每位老师带队14名学生,则还有10名学生没有老师带;若每位老师带队15名学生,就有一位老师少带6名学生.甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320(1)参加此次活动的老师和学生各多少名?(2)现有甲乙两种大型客车,其载客量和租金如表所示.①若所有师生都有车坐,且每辆车上不少于2名老师,则租车的总数应为多少?②学校计划此次活动的租金总费用不超过3000元,学校共有几种租车方案?最少租车费用是多少?类型四运用图像信息解决行程问题4.(2022•竞秀区二模)A,B,C三地在同一条公路上,C地在A,B两地之间,且到A,B两地的路程相等.甲、乙两车分别从A,B两地同时出发,匀速行驶.甲车到达C地并停留1小时后以原速继续前往B地,到达B地后立即调头(调头时间忽略不计),并按原路原速返回,到达C地停止行驶;乙车经C 地到达A地停止行驶.在两车行驶的过程中,甲、乙两车距C地的路程y(单位:千米)与甲车所用时间x(单位:小时)之间的函数图象如图所示,请结合图象信息解答下列问题:(1)乙车的速度为千米/时;(2)求乙车从C地到A地的过程中,y与x的函数关系式(不用写自变量的取值范围);(3)请直接写出x为何值时两车距C地的路程之和为120千米?第二部分专题提优训练1.(2021春•广安期末)为积极响应垃圾分类的号召,某街道决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱.已知购买3个垃圾箱和2个温馨提示牌需要280元,购买2个垃圾箱和3个温馨提示牌需要270元.(1)每个垃圾箱和每个温馨提示牌各多少元?(2)若购买垃圾箱和温馨提示牌共100个(两种都买),且垃圾箱的个数不少于温馨提示牌个数的3倍,请写出总费用w(元)与垃圾箱个数m(个)之间的函数关系式,并说明当购买垃圾箱和温馨提示牌各多少个时,总费用最低,最低费用为多少元?2.(2021•德阳)今年,“广汉三星堆”又有新的文物出土,景区游客大幅度增长.为了应对暑期旅游旺季,方便更多的游客在园区内休息,景区管理委员会决定向某公司采购一批户外休闲椅.经了解,该公司出售弧形椅和条形椅两种类型的休闲椅,已知条形椅的单价是弧形椅单价的0.75倍,用8000元购买弧形椅的数量比用4800元购买条形椅的数量多10张.(1)弧形椅和条形椅的单价分别是多少元?(2)已知一张弧形椅可坐5人,一张条形椅可坐3人,景区计划共购进300张休闲椅,并保证至少增加1200个座位.请问:应如何安排购买方案最节省费用?最低费用是多少元?3.(2022春•枣阳市期末)某公司现有一批270吨物资需要运送到A地和B地,公司决定安排大、小货车共20辆,运送这批物资,每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资,已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车8001000小货车500600现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.4.一辆快车和一辆慢车分别从甲、乙两地同时出发匀速相向而行,快车到达乙地后,原路原速返回甲地.图1表示两车行驶过程中离甲地的路程y(km)与行驶时间x(h)的函数图象.(1)直接写出快慢两车的速度;(2)在行驶过程中,慢车出发多长时间,两车相遇?(3)若两车之间的距离为skm,在图2的直角坐标系中画出s(km)与x(h)的函数图象.。

一次函数的方案设计问题

一次函数的方案设计问题

一次函数与方案设计问题一、生产方案的设计例1(河北)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A,B两种产品,共50件.已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元.(1)要求安排A,B两种产品的生产件数,有哪几种方案?请你设计出来;(2)生产A,B两种产品获总利润是y (元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?练习:(2012.攀枝花)煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A、B两厂,通过了解获得A、B两厂的有关信息如下表(表中运费栏“元/t?km”表示:每吨煤炭运送一千米所需的费用):厂别运费(元/t?km)路程(km)需求量(t)A 0.45 200 不超过600B a(a为常数)150 不超过800(1)写出总运费y(元)与运往A厂的煤炭量x(t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费(可用含a的代数式表示)例2(湖北)一报刊销售亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以0.20元的价格退回报社.在一个月内(以30天计算),有20天每天可卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同.若以报亭每天从报社订购的份数为自变量x,每月所获得的利润为函数y.(1)写出y与x之间的函数关系式,并指出自变量x的取值范围;(2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?练习:(2012鸡西)为了迎接“五·一”小长假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,甲种服装每件进价180 元,售价320 元;乙种服装每件进价150 元,售价280元.⑴若该专卖店同时购进甲、乙两种服装共200 件,恰好用去32400 元,求购进甲、乙两种服装各多少件?⑵该专卖店为使甲、乙两种服装共200 件的总利润(利润= 售价- 进价)不少于26700 元,且不超过26800 元,则该专卖店有几种进货方案?⑶在⑵的条件下,专卖店准备在 5 月 1 日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠 a (0 <a <20 )元出售,乙种服装价格不变. 那么该专卖店要获得最大利润应如何进货?例3(2012?郴州)某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算练习:某校校长暑假将带领该校市级“三好生”去北京旅游.甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待.”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠.”若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样;(3)就学生数x讨论哪家旅行社更优惠.四.调运方案的设计例4(2012?温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C 三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.(1)当n=200时,①根据信息填表:A地B地C地合计产品件数x 2x 200(件)运费(元)30x②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n 的最小值.练习:(深圳)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A 、B两馆,其中运往A 馆18台、运往B 馆14台;运往A 、B 两馆的运费如表1:(1)设甲地运往A 馆的设备有x 台,请填写表2,并求出总运费元y (元)与x (台)的函数关系式;表2(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x 为多少时,总运费最小,最小值是多少?出发地目的地甲地乙地A 馆800元/台700元/台B 馆500元/台600元/台出发地目的地甲地乙地A 馆B 馆。

一次函数专题训练题

一次函数专题训练题

一次函数专题训练题以下是一些关于一次函数的专题训练题,希望能帮助学生更加深入地理解和掌握一次函数的知识。

1.已知函数f(x) = ax + b中,a为正数,b为负数。

当x = 2时,f(x) = 5,求a和b的值。

解:根据已知条件,我们有f(2)=5,代入函数表达式,得到5=a(2)+b。

我们可以进一步整理方程,得到2a+b=52.已知函数g(x)=3x-1,求函数g(x)的自变量x为多少时,函数值等于10。

解:根据已知条件,我们要求g(x)=10,代入函数表达式,得到10=3x-1、我们可以进一步整理方程,得到3x=11,解得x=11/33.已知函数h(x)=-4x+7,求函数h(x)的自变量x为多少时,函数值等于0。

解:根据已知条件,我们要求h(x)=0,代入函数表达式,得到0=-4x+7、我们可以进一步整理方程,得到4x=7,解得x=7/44.已知函数p(x)=2x+3,求函数p(x)的自变量x为多少时,函数值等于-1解:根据已知条件,我们要求p(x)=-1,代入函数表达式,得到-1=2x+3、我们可以进一步整理方程,得到2x=-4,解得x=-25.已知函数q(x)=5-6x,求函数q(x)的自变量x为多少时,函数值等于-8解:根据已知条件,我们要求q(x)=-8,代入函数表达式,得到-8=5-6x。

我们可以进一步整理方程,得到6x=13,解得x=13/66.已知函数r(x)=-3x+2,求函数r(x)的自变量x为多少时,函数值等于-5解:根据已知条件,我们要求r(x)=-5,代入函数表达式,得到-5=-3x+2、我们可以进一步整理方程,得到-3x=-7,解得x=-7/-3=7/37.已知函数s(x) = kx + 4,当x = 7时,函数值为15,求k的值。

解:根据已知条件,我们有s(7)=15,代入函数表达式,得到15=k(7)+4、我们可以进一步整理方程,得到7k=11,解得k=11/78.已知函数t(x)=6x-5,当函数t(x)的自变量x为多少时,函数值为0?解:根据已知条件,我们要求t(x)=0,代入函数表达式,得到0=6x-5、我们可以进一步整理方程,得到6x=5,解得x=5/69.已知函数u(x)=-2x+k,当函数u(x)的自变量x为多少时,函数值等于k?解:根据已知条件,我们要求u(x)=k,代入函数表达式,得到k=-2x+k。

初二数学一次函数选择方案提高练习及常考题及培优题含解析

初二数学一次函数选择方案提高练习及常考题及培优题含解析

初二数学一次函数选择方案提高练习与常考题和培优题(含解析)一.选择题(共 3 小题)1.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金以下:生产的零件不高出 a 件,则每件 3 元,高出 a 件,高出部分每件 b 元,如图是一名工人一天获取薪金 y(元)与其生产的件数 x (件)之间的函数关系式,则以下结论错误的选项是()A. a=20B.b=4C.若工人甲一天获取薪金180 元,则他共生产50 件D.若工人乙一天生产m(件),则他获取薪金4m 元2.在一次自行车越野赛中,甲乙两名选手行驶的行程y(千米)随时间x(分)变化的图象(全程)如图,依照图象判断以下结论不正确的选项是()A.前 30 分钟,甲在乙的前面B.此次比赛的全程是28 千米C.第 48 分钟时,两人第一次相遇D.甲先到达终点3.一家游泳馆的游泳收费标准为30 元/次,若购买会员年卡,可享受以下优惠:会员年卡种类办卡开销(元)每次游泳收费(元)A 类5025B 类20020C 类40015比方,购买 A 类会员年卡,一年内游泳20 次,开销 50+25×20=550 元,若一年内在该游泳馆游泳的次数介于45~55 次之间,则最省钱的方式为()A.购买 A 类会员年卡B.购买 B 类会员年卡C.购买 C 类会员年卡D.不购买会员年卡二.解答题(共9 小题)4.某酒厂生产 A 、 B 两种品牌的酒,每天两种酒共生产成本和利润以下表所示.设每天共盈利y 元,每天生产600 瓶,每种酒每瓶的 A 种品牌的酒 x 瓶.A B成本(元)5035利润(元)2015(1)请写出 y 关于 x 的函数关系式;(2)若是该厂每天最少投入成本 25000元,且生产 B 种品牌的酒很多于全天产量的 55%,那么共有几种生产方案并求出每天最少盈利多少元5.某市在城中村改造中,需要种植A 、B 两种不相同的树苗共3000 棵,经招标,承包商以 15 万元的报价中标承包了这项工程,依照检查及相关资料表示, A 、B 两种树苗的成本价及成活率如表:品种购买价(元 /棵)成活率A2890%B4095%设种植 A 种树苗 x 棵,承包商获取的利润为y 元.(1)求 y 与 x 之间的函数关系式;(2)政府要求种植这批树苗的成活率不低于 93%,承包商应怎样选种树苗才能获取最大利润最大利润是多少6.某中学准备组织该校八年级400 名学生租车出门进行综合实践活动,并安排10位教师同行,要求保证每人都有座位.经学校与汽车出租企业协商,有两种型号的客车可供选择,其座位数(不含司机座位)与租金如右表所示.学校决定租用两种型号的客车共10 辆,其中大客车x 辆.大客车中客车座位数(个 /辆)4530租金(元 /辆)600450(1)请问有哪几种租车方案(2)设学校租车的总开销为 y 元,请写出 y 与 x 之间的函数关系式,并说明怎样租车可使租金最少最少租金为多少元7.某中学企业组织初三505 名学生出门社会综合实践活动,现打算租用A 、B 两种型号的汽车,而且每辆车上都安排1 名导游,若是租用这两种型号的汽车各5 辆,则恰好坐满;若是全部租用 B 型汽车,则需 13 辆汽车,且其中一辆会有 2 个空位,其他汽车都坐满.(注:同种型号的汽车乘客座位数相同)( 1) A、 B 两种型号的汽车分别有多少个乘客座位( 2)综合考虑多种因素,最后该企业决定租用9 辆汽车,问最多安排几辆 B 型汽车8.A 校和 B 校分别库存有电脑 12 台和6 台,现决定支援给 C 校 10 台和 D 校 8 台.已知从 A 校调运一台电脑到 C 校和 D 校的运费分别为 40 元和 10 元;从 B 校调运一台电脑到 C 校和 D 校的运费分别为 30 元和 20 元.(1)设 A 校运往 C 校的电脑为 x 台,请模拟以下列图,求总运费 W(元)关于 x的函数关系式;(2)求出总运费最低的调运方案,最低运费是多少9.为了贯彻落实市委政府提出的“精准扶贫”精神,某校特拟定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送 152 箱鱼苗到 A、 B 两村养殖,若用大小货车共 15 辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为 12箱/辆和 8 箱/辆,其运往 A 、B 两村的运费如表:车型目的地A 村(元 /辆)B 村(元 /辆)大货车800900小货车400600(1)求这 15 辆车中大小货车各多少辆(2)现安排其中 10 辆货车前往 A 村,其他货车前往 B 村,设前往 A 村的大货车为 x 辆,前往 A 、B 两村总开销为 y 元,试求出 y 与 x 的函数分析式.(3)在( 2)的条件下,若运往 A 村的鱼苗很多于 100 箱,请你写出使总开销最少的货车分派方案,并求出最少开销.10.为了节约资源,科学指导居民改进居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住所面积(平方米)单价(万元 /平方米)不高出 30(平方米)高出 30 平方米不高出 m(平方米)部分( 45≤m≤60)高出 m 平方米部分依照这个购房方案:( 1)若某三口之家欲购买120 平方米的商品房,求其应缴纳的房款;( 2)设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,央求出关于 x 的函数关系式;( 3)若该家庭购买商品房的人均面积为50 平方米,缴纳房款为y 万元,且< y≤ 60 时,求 m 的取值范围.y 5711.甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的 2 倍.两组各自加工零件的数量y(件)与时间x (时)的函数图象以下列图.( 1)直接写出甲组加工零件的数量y 与时间 x 之间的函数关系式;(2)求乙组加工零件总量 a 的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300 件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第 1 箱12.某土特产企业组织20 辆汽车装运甲、乙、丙三种土特产共120 吨去外处销售.按计划 20 辆车都要装运,每辆汽车只能装运同一种土特产,且必定装满,依照下表供应的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨)865每吨土特产盈利(百元) 121610( 1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求 y 与 x之间的函数关系式.( 2)若是装运每种土特产的车辆都很多于 3 辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售盈利最大,应采用( 2)中哪一种安排方案并求出最大利润的值.一.解答题(共40 小题)1.在一条笔直的公路上有 A 、B 两地,甲骑自行车从 A 地到 B 地,乙骑摩托车从 B 地到 A 地,到达 A 地后马上按原路返回,是甲、乙两人离 B 地的距离 y(km)与行驶时间 x(h)之间的函数图象,依照图象解答以下问题:( 1) A、 B 两地之间的距离为km;(2)直接写出 y 甲, y 乙与 x 之间的函数关系式(不写过程),求出点 M 的坐标,并讲解该点坐标所表示的本质意义;(3)若两人之间的距离不高出 3km 时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时 x 的取值范围.2.如图,某个体户购进一批季节水果,20 天销售达成.他将本次销售情况进行了追踪记录,依照所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x (天)之间的函数关系如图乙所示.(1)直接写出 y 与 x 之间的函数关系式;(2)分别求出第 10 天和第 15 天的销售金额;(3)若日销售量不低于 24 千克的时间段为“最正确销售期”,则此次销售过程中“最正确销售期”共有多少天在此时期销售单价最高为多少元3.为增强公民的节约意识,合理利用天然气资源,某市自 1 月 1 日起对市里民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每个月用襟怀单价(元 /m3)不高出75m3的部分高出75m3不高出125m3的a部分高出125m3的部分a+( 1)若甲用户 3 月份的用襟怀为60m3,则应缴费元;(2)若调价后每个月支出的燃气费为 y(元),每个月的用襟怀为 x( m3),y 与x 之间的关系以下列图,求 a 的值及 y 与 x 之间的函数关系式;(3)在( 2)的条件下,若乙用户 2、3 月份共用气 175m3( 3 月份用襟怀低于 2月份用襟怀),共缴费 455 元,乙用户 2、3 月份的用襟怀各是多少4.为了迎接“十一”小长假的购物巅峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价以下表:运动鞋甲乙价格进价(元 /双)m m﹣20售价(元 /双)240160已知:用 3000 元购进甲种运动鞋的数量与用2400 元购进乙种运动鞋的数量相同.(1)求 m 的值;(2)要使购进的甲、乙两种运动鞋共 200 双的总利润(利润 =售价﹣进价)很多于 21700 元,且不高出 22300 元,问该专卖店有几种进货方案(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元销售,乙种运动鞋价格不变.那么该专卖店要获取最大利润应怎样进货5.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23 层,销售价格以下:第八层楼房售价为 4000 元/米2,从第八层起每上涨一层,每平方米的售价提高 50 元;反之,楼层每下降一层,每平方米的售价降低30 元,已知该楼盘每套楼房面积均为120 米2.若购买者一次性付清全部房款,开发商有两种优惠方案:方案一:降价 8%,别的每套楼房赠予 a 元装修基金;方案二:降价 10%,没有其他赠予.(1)请写销售价 y(元 /米2)与楼层 x( 1≤ x≤ 23,x 取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪一种优惠方案更加合算.6.山地自行车越来越碰到中学生的喜爱,各种品牌接踵投放市场,某车行经营的 A 型车昨年销售总数为 5 万元,今年每辆销售价比昨年降低 400 元,若卖出的数量相同,销售总数将比昨年减少 20%.( 1)今年 A 型车每辆售价多少元(用列方程的方法解答)( 2)该车行计划新进一批 A 型车和新款 B 型车共 60 辆,且 B 型车的进货数量不高出 A 型车数量的两倍,应怎样进货才能使这批车盈利最多A, B 两种型号车的进货和销售价格以下表:A 型车B 型车进货价格(元)11001400销售价格(元)今年的销售价格20007.兰新铁路的通车,圆了全国人民的一个梦,坐上火车去赏析青海门源百里油菜花海,感觉大美青海独到的高原风光,暑期某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必定乘坐在同一列高铁上,依照报名人数,若都买一等座单程火车票需2340 元,若都买二等座单程火车票开销最少,则需 1650元:西宁到门源的火车票价格以下表运行区间票价上车站西宁下车站门源一等座36 元二等座30 元( 1)参加社会实践的学生、老师各有多少人( 2)由于各种原因,二等座火车票单程只能买x 张(参加社会实践的学生人数<x<参加社会实践的总人数),其他的须买一等座火车票,在保证每位参加人员都有座位坐而且总开销最低的前提下,请你写出购买火车票的总开销(单程)y与 x 之间的函数关系式.8.周末,小芳骑自行车从家出发到野外郊游,从家出发小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家 1 小时 20 分钟后,妈妈驾车沿相同路线前往乙地,行驶10 分钟时,恰好经过甲地,如图是她们距乙地的行程y(km)与小芳离家时间 x(h)的函数图象.( 1)小芳骑车的速度为km/h, H 点坐标.(2)小芳从家出发多少小时后被妈妈追上此时距家的行程多远(3)相遇后,妈妈载上小芳和自行车同时到达乙地(互相交流时间忽略不计),求小芳比预计时间早几分钟到达乙地9.某工厂生产一种产品,当产量最少为10 吨,但不高出55 吨时,每吨的成本y(万元)与产量x(吨)之间是一次函数关系,函数y 与自变量 x 的部分对应值如表:x(吨)102030 y(万元 /吨)454035( 1)求 y 与 x 的函数关系式,并写出自变量x 的取值范围;(2)当投入生产这种产品的总成本为 1200 万元时,求该产品的总产量;(注:总成本 =每吨成本×总产量)(3)市场检查发现,这种产品每个月销售量 m(吨)与销售单价 n(万元 /吨)之间满足以下列图的函数关系,该厂第一个月按同一销售单价卖出这种产品25吨.央求出该厂第一个月销售这种产品获取的利润.(注:利润 =售价﹣成本)10.为保障我国外国维和队伍官兵的生活,现需经过100 吨和 50 吨生活物质.已知该物质在甲库房存有A 港口、B 港口分别运送80 吨,乙库房存有 70 吨,若从甲、乙两库房运送物质到港口的开销(元/吨)如表所示:港口运费(元 /吨)甲库乙库A 港1420B 港108(1)设从甲库房运送到 A 港口的物质为 x 吨,求总运费 y(元)与 x(吨)之间的函数关系式,并写出 x 的取值范围;(2)求出最低开销,并说明开销最低时的分派方案.11.快、慢两车分别从相距 480 千米行程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1 小时,此后以原速连续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,马上按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的行程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答以下问题:(1)直接写出慢车的行驶速度和 a 的值;(2)快车与慢车第一次相遇时,距离甲地的行程是多少千米(3)两车出发后几小时相距的行程为 200 千米请直接写出答案.12.由于连续高平易连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量 y1(万 m3)与干旱连续时间 x(天)的关系如图中线段 l1所示,针对这种干旱情况,从第 20 天开始向水库注水,注水量 y2(万 m3)与时间 x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量 y1(万 m3)与时间 x(天)的函数关系式,并求当 x=20 时的水库总蓄水量.(2)求当0≤x ≤60 时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明 x 的范围),若总蓄水量不多于 900 万 m3为严重干旱,直接写出发生严重干旱时 x 的范围.13.某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70 元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年终按以下方式(见表一)报销所治病的医疗开销:居民个人当年治病所开销的医疗医疗费的报销方法费高出不高出 n 元的部分n 元但不高出 6000 元的部分高出 6000 元的部分全部由医保基金肩负(即全部报销)个人肩负 k%,其他部分由医保基金肩负个人肩负 20%,其他部分由医保基金承担若是设一位居民当年治病开销的医疗费为x 元,他个人本质肩负的医疗开销(包括医疗费中个人肩负部分和年初缴纳的医保基金)记为y 元.( 1)当 0≤x≤n 时, y=70;当 n<x≤6000 时,y=(用含n、k、x的式子表示).(2)表二是该地 A、 B、C 三位居民 2013 年治病所开销的医疗费和个人本质肩负的医疗开销,依照表中的数据,求出 n、k 的值.表二:居民A B C某次治病所开销的治疗开销x(元)4008001500个人本质肩负的医疗开销y(元)70190470(3)该地居民周大爷 2013 年治病所开销的医疗费共 32000元,那么这一年他个人本质肩负的医疗开销是多少元14.小慧和小聪沿图 1 中的景区公路旅游.小慧乘坐车速为 30km/h 的电动汽车,清早 7:00 从旅店出发,游玩后中午12:00 回到旅店.小聪骑车从飞瀑出发前往旅店,速度为20km/h,途中碰到小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10: 00 小聪到达旅店.图 2 中的图象分别表示两人离旅店的行程s(km)与时间 t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发(2)试求线段 AB 、GH 的交点 B 的坐标,并说明它的本质意义.(3)若是小聪到达旅店后,马上以 30km/h 的速度按原路返回,那么返回途中他几点钟碰到小慧15.某工厂投入生产一种机器的总成本为2000 万元.当该机器生产数量最少为10 台,但不高出 70 台时,每台成本 y 与生产数量 x 之间是一次函数关系,函数 y 与自变量 x 的部分对应值以下表:x(单位:台)102030y(单位:万元∕台)605550( 1)求 y 与 x 之间的函数关系式,并写出自变量x 的取值范围;(2)求该机器的生产数量;(3)市场检查发现,这种机器每个月销售量 z(台)与售价 a(万元∕台)之间满足以下列图的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25 台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)16.某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264 户村民,政府补助村里34万元,不足部分由村民集资.修建 A 型、 B 型沼气池共 20 个.两种型号沼气池每个修建开销、可供使用户数、修建用地情况以下表:沼气修建费(万元 /个)可供用户数(户 /个)占地面积( m2/池个)A 型32048B 型236政府相关部门批给该村沼气池修建用地708m2.设修建 A 型沼气池 x 个,修建两种型号沼气池共需开销y 万元.(1)求 y 与 x 之间的函数关系式;(2)不高出政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资 700 元,可否满足所需开销最少的修建方案.17.某 84 消毒液工厂,昨年五月份以前,每天的产量与销售量均为500 箱,进入五月份后,每天的产量保持不变,市场需求量不断增加.如图是五月前后一段时期库存量 y(箱)与生产时间t(月份)之间的函数图象.(五月份以 30 天计算)( 1)该厂月份开始出现供不应求的现象.五月份的平均日销售量为箱;( 2)为满足市场需求,该厂打算在投资不高出220 万元的情况下,购买8 台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量.现有A、B 两种型号的设备可供选择,其价格与两种设备的日产量以下表:型号A B价格(万元 /台)2825日产量(箱 /台)5040请设计一种购买设备的方案,使得日产量最大;( 3)在( 2)的条件下(市场日平均需求量与 5 月相同),若安装设备需5 天( 6月 6 日新设备开始生产),指出何时开始该厂有库存18.随着信息技术的快速发展,“互联网+”浸透到我们平常生活的各个领域,网上在线学习交流已不再是梦,现有某授课网站策划了 A ,B 两种上网学习的月收费方式:收费方式月使用费 /元包时上网时间/h超时费 /(元 /min )A725B m n设每个月上网学习时间为x 小时,方案 A, B 的收费金额分别为( 1)如图是 y B与 x 之间函数关系的图象,请依照图象填空:y A,y B.m=;n=(2)写出 y A与 x 之间的函数关系式.(3)选择哪一种方式上网学习合算,为什么19.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇 30 分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图 2,依照图象信息解答以下问题:( 1)甲、乙两地之间的距离为千米.( 2)求图 1 中线段 CD 所表示的 y 与 x 之间的函数关系式,并写出自变量x 的取值范围.( 3)请直接在图 2 中的()内填上正确的数.20.国庆时期,为了满足百姓的开销需求,某商店计划用170000 元购进一批家电,这批家电的进价和售价如表:种类彩电冰箱洗衣机进价(元 /台)200016001000售价(元 /台)230018001100若在现有资本赞同的范围内,购买表中三类家电共100 台,其中彩电台数是冰箱台数的 2 倍,设该商店购买冰箱x 台.(1)商店至多能够购买冰箱多少台(2)购买冰箱多少台时,能使商店销售完这批家电后获取的利润最大最大利润为多少元21.我省某苹果基地销售优秀苹果,该基地对需要送货且购买量在 2000kg﹣5000kg (含 2000kg 和 5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案 A :每千克元,由基地免费送货.方案 B:每千克 5 元,客户需支付运费2000 元.( 1)请分别写出按方案A,方案 B 购买这种苹果的应付款y(元)与购买量x (kg)之间的函数表达式;(2)求购买量 x 在什么范围时,采用方案 A 比方案 B 付款少;(3)某水果批发商计划用 20000 元,采用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪一种方案.22.某商场销售甲、乙两种品牌的智妙手机,这两种手机的进价和售价以下表所示:甲乙进价(元 /部)40002500售价(元 /部)43003000该商场计划购进两种手机若干部,共需万元,预计全部销售后获毛利润共万元(毛利润 =(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部(2)经过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的 3倍,而且用于购进这两种手机的总资本不高出万元,该商场怎样进货,使全部销售后获取的毛利润最大并求出最大毛利润.23.因长远干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水, 20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万 m3)与时间 t( h)之间的函数关系.求:( 1)线段 BC 的函数表达式;( 2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;( 3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值24.甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的行程,若途中球掉下时须捡起并回到掉球处连续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用 y 表示,单位是米;比赛时间用 x 表示,单位是秒.两组同学比赛过程用图象表示以下.( 1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段 AB 的本质意义;(3)求出 C 点坐标并说明点 C 的本质意义.25.如图,甲丙两地相距500km,一列快车从甲地驶往丙地,且途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发同向而行,设慢车行驶的时间为x(h),两车之间的距离为 y(km),图中的折线表示 y 与 x 之间的函数关系.依照图象进行以下研究:( 1)甲乙两地之间的距离为km;( 2)求慢车和快车的速度.( 3)求线段 CD 所表示的 y 与 x 之间的函数关系式,并写出自变量x 的取值范围;( 4)若这列快车从甲地驶往丙地,慢车从丙地驶往甲地,两车同时出发相向而行,且两车的车速各自不变.设慢车行驶的时间为x(h),两车之间的距离为y ( km),则以下四个图象中,哪一图象中的折线能表示此时 y(千米)和时间 x(小时)之间的函数关系,请写出你认为可能合理的代号,并直接写出折线中拐点A、B、C 或 A、B、C、D 的坐标.26.某工厂现有甲种原料360 千克,乙种原料290 千克,计划用这两种原料全部生产 A 、B 两种产品共 50 件,生产 A 、B 两种产品与所需原料情况以下表所示:原料甲种原料(千克)乙种原料(千克)型号A 产品(每件)93B 产品(每件)410(1)该工厂生产 A 、 B 两种产品有哪几种方案(2)若生成一件 A 产品可盈利 80 元,生产一件 B 产品可盈利 120 元,怎样安排生产可获取最大利润27.荆州素有“鱼米之乡”的美称,某渔业企业组织20 辆汽车装运鲢鱼、草鱼、青鱼共 120 吨去外处销售,按计划20 辆汽车都要装运,每辆汽车只能装运同一种鱼,且必定装满,依照下表供应的信息,解答以下问题:。

一次函数的应用(方案设计)

一次函数的应用(方案设计)

(3)求出总运费最低的调运方案,最低总运费是多少元?
试一试
我市某化工厂现有甲 乙两种原料290千克和212千克. 计划利用这两种原料 生产A B两种产品80件,生产一件A产品需要甲种原 料5千克,乙种原料1.5千克,生产成本是120元;生产 一件B产品,需要甲种原料2.5千克,乙种原料3.5千 克,生产成本是200元. (1) 该化工厂现有的原料是否保证生产?若能的话,有 几种生产方案,请你设计出来. (2) 设生产A B两种产品的成本为Y元,其中一种的生 产件数为X,试写出Y与X之间的函数关系式,并利 用函数的性质说明(1)中哪种生产方案总成本最低? 最低生产总成本是多少?
问题1:3名教师带领若干名学生去旅游, 联系了标价相同的两家旅游公司.经恰谈, 甲公司给出的优惠条件是:教师全额收费, 学生按7折收费;乙公司给出的优惠条件是: 全部师生8折收费.选哪家公司师生付费的 总额较少?
பைடு நூலகம்
拓展提高
问 题 2 : 等 腰 直 角 △ ABC 的 直 角 边 长 与 正 方 形
MNPQ的边长均为10 cm,AC与MN在同一直线上,
开始时 A 点与M点重合,让△ ABC向右运动,最后A
点与N点重合.试写出△ABC运动过程中,重叠部分
面积ycm2与MA长度x cm之间的函数关系式.
例2:某家电信公司提供两种方案的移动通讯服务的收
费标准如下表: A方案 每月基本服务费 每月免费通话时间 超出后每分收费 30元 120分 0.4元 B方案 50元 200分 0.4元
例1:北京某厂和上海某厂同时制成电子计算机若干台, 北京厂可支援外地10台,上海厂可支援外地4台,现在决 定给重庆8台,汉口6台。假定每台计算机的运费(单位:

人教版数学七年级一次函数选择方案专题练习题含答案

人教版数学七年级一次函数选择方案专题练习题含答案

人教版数学七年级一次函数选择方案专题练习题含答案题目一(20分)已知一次函数y = ax + b的图象通过点(2,4)和(3,7),求a和b的值,并写出该函数的函数式。

解答:设点(2,4)带入函数得到方程式:4 = 2a + b(1)同理,设点(3,7)带入函数得到方程式:7 = 3a + b(2)将方程(1)和(2)联立求解:2a + b = 4(3)3a + b = 7(4)将方程(3)从方程(4)中消去b,得到:2a - 3a = 4 - 7-a = -3a = 3将a的值代入方程(3)得到b的值:2(3) + b = 46 + b = 4b = -2因此,a = 3,b = -2。

所以,该函数的函数式为y = 3x - 2。

题目二(15分)已知函数y = kx + m图象的斜率为2,截距为-5,求k和m的值,并写出该函数的函数式。

解答:已知斜率k = 2,截距m = -5。

因此函数的函数式为y = 2x - 5。

题目三(25分)小明对函数y = 3x + 4和函数y = -2x - 1的图象做了以下观察:- 对于函数y = 3x + 4的图象,当x增加1个单位时,y增加3个单位;- 对于函数y = -2x - 1的图象,当x增加1个单位时,y减少2个单位。

请回答以下问题:1. 函数y = 3x + 4的斜率是多少?2. 函数y = -2x - 1的斜率是多少?解答:1. 函数y = 3x + 4的斜率是3。

2. 函数y = -2x - 1的斜率是-2。

题目四(40分)已知函数y = kx + m的图象通过点(-1,3),(2,5),(4,9)。

请根据已知信息求出k和m的值,并写出该函数的函数式。

解答:设点(-1,3)带入函数得到方程式:3 = -k + m(1)设点(2,5)带入函数得到方程式:5 = 2k + m(2)设点(4,9)带入函数得到方程式:9 = 4k + m(3)将方程(1)和(2)联立求解:-k + m = 3(4)2k + m = 5(5)将方程(4)从方程(5)中消去m,得到:-k + 2k = 3 - 5k = -2将k的值代入方程(4)得到m的值:-(-2) + m = 32 + m = 3m = 1因此,k = -2,m = 1。

一次函数应用及方案选择问题(含阶梯计费问题)

一次函数应用及方案选择问题(含阶梯计费问题)

(升)(小时)6014504540302010876543210y t 一次函数应用题与方案选择问题一次函数图像及应用1.某企业有甲、乙两个长方体的蓄水池,两个蓄水池中水的深度y (m )与注水时间x (h )之间的函数图像如图所示,结合图像回答下列问题:(1)未注水前甲池水高____m ,乙池水高_____m(2)分别求出甲,乙两个蓄水池中水的深度y 与注水时间x 之间的函数关系式,并说明斜率表示的实际意义(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)若甲池中的水以6立方米/小时的速度注入乙池,求注水多长时间甲,乙两个蓄水池水的体积相同.2.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示. 请根据图象回答下列问题: (1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.3.小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。

(1)根据图象提供的数据,求比赛开始后,两人第一次相遇所用的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答4.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min后沿原路以原速返回.设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间函数关系的图象。

(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?阶梯定价问题OA BCED F t(min) 24001012s(m)1.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2012年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时 a超过150千瓦时但不超过300千瓦时的部分 b超过300千瓦时的部分a+0.32012年5月份,该市居民甲用电100千瓦时,交电费60元;居民乙用电200千瓦时,交电费122.5元.该市一户居民在2012年5月以后,某月用电x千瓦时,当月交电费y元.(1)上表中,a=;b=;(2)请直接写出y与x之间的函数关系式;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?2.为鼓励居民节约用水,某市决定对居民用水收费实行“阶梯价”,即当每月用水量不超过15吨时(包括15吨),采用基本价收费;当每月用水量超过15吨时,超过部分每吨采用市场价收费.小兰家4、5月份的用水量及收费(2)设每月用水量为n吨,应缴水费为m元,请写出m与n之间的函数关系式.(3)小兰家6月份的用水量为26吨,则她家要缴水费多少元?3.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?4.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45≤m≤60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.生产方案的设计1.某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并(2)如果加工每种配件的人数均不少于3人,那么加工配件的人数安排方案有几种?并写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.2.某高科技公司根据市场需求,计划生产A.B两种型号的医疗器械,其部分信息如下:信息一:A.B两种型号的医疔器械共生产80台.信息二:该公司所筹生产医疗器械资金不少于1800万元,但不超过1810万元.且把所筹资金全部用于生产此两种医疗器械.根据上述信息.解答下列问题:(1)该公司对此两种医疗器械有哪几种生产方案?哪种生产方案能获得最大利润?(2)根据市场调查,每台A型医疗器械的售价将会提高a万元(a>0).每台B型医疗器械的售价不会改变.该公司应该如何生产可以获得最大利润?(注:利润=售价﹣成本)营销方案的设计1.某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台,三种家电的进价和售其中购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半.国家规定:农民购买家电后,可根据商场售价的13%领取补贴.设购进电视机的台数为x台,三种家电国家财政共需补贴农民y元.(1)求出y与x之间的函数关系;(2)在不超出现有资金的前提下,商场有哪几种进货方案?(3)在(2)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?2.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.优惠方案的设计1.实验学校计划组织共青团员372人到某爱国主义基地接受教育,并安排8们老师同行,经学校与汽车出租公司协商,有两种型号客车可供选择,它们的载客量和租金如下表,为保证每人都有座位,学校决定租8辆车。

与一次函数相关的方案设计题

与一次函数相关的方案设计题

与一次函数相关的方案设计题
1. 某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
x x≥个乒乓2. 某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配(3)
,两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都球,已知A B
为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:
(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?
x 时,请设计最省钱的购买方案.
(2)当12。

中考数学专题训练:方案设计型(含答案)

中考数学专题训练:方案设计型(含答案)

中考数学专题训练:方案设计型附参考答案考点:一次方程、方程组、分式方程、不等式组、一次函数、二次函数、1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件? (2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?解:(1)设购进甲种商品x 件,购进乙种商品y 件, 根据题意,得⎩⎪⎨⎪⎧ x +y =100,15x +35y =2 700,解得:⎩⎪⎨⎪⎧x =40,y =60. 答:商店购进甲种商品40件,购进乙种商品60件. (2)设商店购进甲种商品a 件,则购进乙种商品(100-a )件, 根据题意列,得⎩⎪⎨⎪⎧15a +35(100-a )≤3 100,5a +10(100-a )≥890,解得20≤a ≤22. ∵总利润W =5a +10(100-a )=-5a +1 000,W 是关于x 的一次函数,W 随x 的增大而减小, ∴当x =20时,W 有最大值,此时W =900,且100-20=80,答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.2.今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环保意识,节约用水,某校数学教师编造了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:(1)(2)记该用户六月份的用水量为x 吨,缴纳水费y 元,试列出y 关于x 的函数式;(3)若该用户六月份的用水量为40吨,缴纳水费y 元的取值范围为70≤y ≤90,试求m 的取值范围. 解:(1)应缴纳水费:10×1.5+(18-10)×2=31(元). (2)当0≤x ≤10时,y =1.5x ;当10<x ≤m 时,y =10×1.5+2(x -10)=2x -5; 当x >m 时,y =15+2(m -10)+3(x -m )=3x -m -5.∴y =⎩⎪⎨⎪⎧1.5x (0≤x ≤10),2x -5 (10<x ≤m ),3x -m -5 (x >m ).(3)当40≤m ≤50时,y =2×40-5=75(元),满足. 当20≤m <40时,y =3×40-m -5=115-m , 则70≤115-m ≤90,∴25≤m ≤45,即25≤m ≤40.综上得,25≤m ≤50.3.潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A ,B 两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:(1)求A ,B 两类蔬菜每亩的平均收入各是多少元;(2)某种植户准备租20亩地用来种植A ,B 两类蔬菜,为了使总收入不低于63 000元,且种植A 类蔬菜的面积多于种植B 类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有的租地方案.解:(1)设A ,B 两类蔬菜每亩平均收入分别是x 元,y 元.由题意,得⎩⎪⎨⎪⎧ 3x +y =12 500,2x +3y =16 500.解得⎩⎪⎨⎪⎧x =3 000,y =3 500.答:A ,B 两类蔬菜每亩平均收入分别是3 000元,3 500元.(2)设用来种植A 类蔬菜的面积为a 亩,则用来种植B 类蔬菜的面积为(20-a )亩.由题意,得⎩⎪⎨⎪⎧3 000a +3 500(20-a )≥63 000,a >20-a .解得10<a ≤14.∵a 取整数,为:11,12,13,14. ∴租地方案为:4.某学校计划将校园内形状为锐角△ABC 的空地(如图)进行改造,将它分割成△AHG 、△BHE 、△CGF 和矩形EFGH 四部分,且矩形EFGH 作为停车场,经测量BC=120m ,高AD=80m ,(1)若学校计划在△AHG 上种草,在△BHE 、△CGF 上都种花,如何设计矩形的长、宽,使得种草的面积与种花的面积相等?(2)若种草的投资是每平方米6元,种花的投资是每平方米10元,停车场铺地砖投资是每平方米4元,又如何设计矩形的长、宽,使得△ABC 空地改造投资最小?最小为多少? 解、(1)设FG=x 米,则AK=(80-x)米由△AHG ∽△ABCBC=120,AD=80可得:8080120x HG -=∴ x HG 23120-= BE+FC=120-)(x 23120-=x 23 ∴xx x x ·232180·23120 · 21⨯=--)()(解得x=40 ∴当FG 的长为40米时,种草的面积和种花的面积相等。

初二数学_一次函数的方案设计问题试题精选及解析

初二数学_一次函数的方案设计问题试题精选及解析

利用一次函数选择最佳方案(1)根据自变量的取值范围选择最佳方案:A 、列出所有方案,写出每种方案的函数关系式;B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳。

(2)根据一次函数的增减性来确定最佳方案:A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式。

B 、根据条件列出不等式组,求出自变量的取值范围。

C 、根据一次函数的增减性,确定最佳方案。

根据自变量的取值范围选择最佳方案:例1、某校实行学案式教学,需印制若干份数学学案。

印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。

两种印刷方式的费用y (元)与印刷份数x (份)之间的函数关系如图所示:(1)填空:甲种收费方式的函数关系式是_______ ____。

乙种收费方式的函数关系式是_______ ____。

(2)该校某年级每次需印制100∽450(含100和450)份学案, 选择哪种印刷方式较合算。

例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x ,甲旅行社的收费为甲y (元),乙旅行社的收费为乙y (元)。

(1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式; (2)就学生人数讨论哪家旅行社更优惠;(2)根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润甲种图书乙种图书进价(元/本)16 28售价(元/本)26 40(1)有哪几种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(3)博雅书店计划用(2)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?请你直接写出答案。

一次函数实际应用题方案设计-含答案

一次函数实际应用题方案设计-含答案

应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了 h . 开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?4、解:⑴2,10;⑵设甲队在06x ≤≤的时段内y 与x 之间的函数关系式为1y k x =,由图可知,函数图象过点(660),,1660k ∴=,解得110k =,10y x ∴=.设乙队在26x ≤≤的时段内y 与x 之间的函数关系式为2y k x b =+,由图可知,函数图象过点(230)(650),,,,22230650k b k b +=⎧∴⎨+=⎩,.解得2520.k b =⎧⎨=⎩,520y x ∴=+.⑶由题意,得10520x x =+,解得4x =(h ).∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:49cm30cm36cm3个球有水溢出(第23题)图2请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出? 5、解:(1)2. (2)设y kx b =+,把()030,,()336,代入得:30336b k b =⎧⎨+=⎩,.解得230k b =⎧⎨=⎩,.即230y x =+.(3)由23049x +>,得9.5x >,即至少放入10个小球时有水溢出.6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?6、解:设西施舌的投放量为x 吨,则对虾的投放量为(50-x )吨,根据题意,得:94(50)360,310(50)290.x x x x +-≤⎧⎨+-≤⎩ 解之,得:32,30.x x ≤⎧⎨≥⎩ ∴30≤x ≤32;(2)y =30x +20(50-x )=10x +1000.∵30≤x ≤32,100>0,∴1300≤x ≤1320,∴ y 的最大值是1320, 因此当x =32时,y 有最大值,且最大值是1320千元.7、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表: 图2(1)把上表中x y ,的各组对应值作为点的坐标,在如图3的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?7、解:(1)在所给的坐标系中准确描点,如图.由图象猜想到y 与x 之间满足一次函数关系.设经过(119),,(236),两点的直线为y kx b =+,则可得19236.k b k b +=⎧⎨+=⎩,解得17k =,2b =.即172y x =+. 当3x =时,173253y =⨯+=;当4x =时,174270y =⨯+=.即点(353)(470),,,都在一次函数172y x =+的图象上.所以彩纸链的长度y (cm )与纸环数x (个)之间满足一次函数关系172y x =+. (2)10m 1000cm =,根据题意,得1721000x +≥. 解得125817x ≥. 答:每根彩纸链至少要用59个纸环.8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。

人教版语文八年级一次函数选择方案专题练习题含答案

人教版语文八年级一次函数选择方案专题练习题含答案

人教版语文八年级一次函数选择方案专题练习题含答案选择方案一:范围法1.在区间[1,10]内,函数y=3x-2的最大值和最小值分别为多少?【答案】最大值为28,最小值为-1。

2.若一条直线的斜率为2,截距为4,则该直线的方程为______。

【答案】y=2x+4。

3.经过点(3,5)、(6,y)的直线斜率为3,求y的值。

【答案】y=12。

4.已知y=kx-1是一条过点(2,-1)的直线,求k的值。

【答案】k=1。

5.七年级甲班460元去旅游,七年级乙班算得要比甲班少10元,八年级甲班数学平均分为第60名,八年级乙班为第62名,七年级甲、乙班数学平均分一样,为第56名。

则现有七年级乙班多少人?【答案】144人。

选择方案二:求导法1.求f(x)=3x^2+6x+1在(1,10)内最大值的函数值。

【答案】f(10) = 331.2.求f(x) = 4x-3的反函数。

【答案】f(x)= (x+3)/4。

3.求f(x)=ln(2x^2-3)的导函数。

【答案】f'(x) = 4x / (2x^2-3)。

4.已知f(x) = x*cos(x),则f'(x) = ?【答案】f'(x) = cos(x) - x*sin(x)。

5.已知f(x)=x^2+1,则f''(x)=?【答案】f''(x) = 2。

选择方案三:拐点法1.设函数y=x^3-3x,则拐点A的坐标为___,拐点B的坐标为___。

【答案】坐标A为(-1,-2),坐标B为(1,2)。

2.在函数y=x^3-3x+1的图象上,与x轴切线平行的切线方程是y=3x-2,则该切线与y轴的交点坐标为___。

【答案】(-2,7)。

3.设f(x)=x^3-3x^2-9x,则f''(x)>0的区间为___,f''(x)<0的区间为___。

【答案】f''(x)>0的区间为(-∞,-1)∪(3,+∞),f''(x)<0的区间为(-1,3)。

一次函数课题学习选择方案基础训练30题

一次函数课题学习选择方案基础训练30题

一次函数课题学习选择方案基础训练30题一.选择题(共12小题)1.(2016春•丰台区校级月考)弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是()A.9cm B.10cm C.10.5cm D.11cm2.(2014秋•通辽期末)平行四边形的周长为50,设它的长为x,宽为y,则y与x的函数关系为()A.y=25﹣x B.y=25+x C.y=50﹣x D.y=50+x3.(2014春•启东市校级月考)一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图象可以表示为图中的()A.B.C.D.4.(2014春•常宁市校级月考)拖拉机开始工作时,油箱中有油24L,若每小时耗油4L.则油箱中的剩油量y (L)与工作时间x(小时)之间的函数关系式的图象是()A.B.C.D.5.(2013•潍坊模拟)油箱中有油300L,油从管道中匀速流出,1小时流完.油箱中剩余的油量Q(L)与油流出的时间t(s)之间的函数解析式和自变量t取值范围正确的是()A.B.C.D.6.(2013秋•罗湖区校级期中)等腰三角形周长为20cm,那么腰长y与底边长x的函数关系式是()A.y=﹣2x+20 B.C.y=﹣2x+10 D.7.(2012•哈尔滨)李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=﹣2x+24(0<x<12)B.y=﹣x+12(0<x<24)C.y=2x﹣24(0<x<12) D.y=x﹣12(0<x<24)8.(2012•黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=39.(2012•蕲春县模拟)直线y=和x轴、y轴分别相交于点A,B.在平面直角坐标系内,A、B两点到直线a的距离均为2,则满足条件的直线a的条数有()A.1条B.2条C.3条D.4条10.(2012秋•天元区期末)已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t(小时)之间的函数关系式为()A.P=25+5t B.P=25﹣5t C.P=D.P=5t﹣2511.(2012春•雁塔区校级期末)汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系式应为()A.y=40t+5 B.y=5t+40 C.y=5t﹣40 D.y=40﹣5t12.(2012秋•武冈市校级期末)一根蜡烛长20cm,点燃后每小时燃5cm,则剩下长度y(cm)与燃烧时间t(小时)之间的函数关系可用下列哪个图象表示()A.B.C.D.二.填空题(共13小题)13.(2016春•高邮市月考)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离y(千米)与慢车行驶的时间x(小时)之间的函数关系如图所示,则快车的速度为.14.(2015•黄石模拟)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.根据图象可知:当x为时,两车之间的距离为300千米.15.(2015•鞍山一模)小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则x=h时,小敏、小聪两人相距7km.16.(2015秋•南京期末)从A地到B地的距离为60千米,一辆摩托车以平均每小时30千米的速度从A地出发到B地,则摩托车距B地的距离s(千米)与行驶时间t(时)的函数表达式为.17.(2015春•乐平市期中)汽车以60千米/时速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为s=.18.(2014•鄂城区校级模拟)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.汽车到达乙地时油箱中还余油升.19.(2014•武汉模拟)学校组织学生外出踏青,学生队伍从学校先步行出发,一段时间后王老师从学校骑车追赶学生,追上学生时接到电话要求王老师返回,因此王老师又立即按原速返回,当王老师回到学校时,学生还在继续前行,直到目的地.设王老师和学生队伍间的距离为y米,从王老师出发开始计时,设时间为x分钟,图中折线表示y与x的函数关系,则王老师比学生队伍的速度快米/分钟.20.(2014•武汉模拟)全民健身是指不分男女老少,全面提高国民体质和健康水平,以青少年和儿童为重点,每年进行一次体质测定.小明和爷爷二人同时从家到健身馆,小明跑步,爷爷步行,小明到达健身馆后休息了5分钟,然后以练习竞走的方式迎接爷爷,速度为原来的一半,在途中与爷爷相遇,二人之间的距离y(m)与时间x(分)之间的关系如图,则小明家到健身馆的距离为m.21.(2014•齐齐哈尔一模)大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究,一般情况下他的指距应是.22.(2014秋•萧县校级期末)汽车工作时油箱中的燃油量y(升)与汽车工作时间t(小时)之间的函数图象如下中图所示,汽车开始工作时油箱中有燃油升,经过小时耗尽燃油,y与t之间的函数关系式是.23.(2013秋•綦江县校级期末)三角形的三条边长分别为3cm、5cm、x cm,则此三角形的周长y(cm)与x(cm)的函数关系式是.24.(2013秋•普陀区校级期末)等腰三角形的周长为4,一腰长为x,底边长为y,那么y 关于x的函数解析式是(不必写出定义域).25.(2014秋•章丘市校级期末)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg.三.解答题(共5小题)26.(2016•丹东一模)某商场欲购进一种商品,当购进这种商品至少为10kg,但不超过30kg 时,成本y(元/kg)与进货量x(kg)的函数关系如图所示.(1)求y关于x的函数解析式,并写出x的取值范围.(2)若该商场购进这种商品的成本为9.6元/kg,则购进此商品多少千克?27.(2016•安徽模拟)某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?28.(2015秋•泰山区期末)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)甲先出发小时后,乙才出发;大约在甲出发小时后,两人相遇,这时他们离A地千米;(2)两人的行驶速度分别是多少?(3)分别写出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).29.(2014秋•双流县期末)一支原长为20cm的蜡烛,点燃后,其剩余长度y(cm)是其燃烧时间x(分钟)的一次函数.当蜡烛燃烧了20分钟时,其剩余长度是17cm.(1)请写出y与x之间的函数关系式;(2)当这支一直燃烧着的蜡烛的长度为8cm时,它已经燃烧了多少分钟?30.(2013秋•高港区校级月考)已知等腰三角形的周长为20cm,试求出底边长y(cm)表示成腰长x(cm)的函数关系式,并求其自变量x的取值范围.一次函数课题学习选择方案基础训练30题参考答案一.选择题(共12小题)1.B;2.A;3.B;4.D;5.A;6.B;7.B;8.B;9.D;10.B;11.D; 12.B;二.填空题(共13小题)13.150km/h;14.1.2或4.2;15.或;16.s=60-30t(0≤t≤2)(没有t范围不给分);17.60t;18.6;19.200;20.5000;21.24cm;22.50;5;y=-10t+50(0≤t≤5);23.y=x+8(2<x<8);24.y=4-2x;25.20;三.解答题(共5小题)26.;27.;28.3;4;40;29.;30.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.本题12分某汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A 、B 两地的旅游公司,其中20辆派往A 地,10辆派往B 地,两地旅游公司(1)设派往A 地的乙型汽车x 辆,租赁公司这30辆汽车一天共获得的租金为y (元),求y 与x 之间的函数解析式,并写出自变量x 的取值范围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案. 25.解:(1)y =1000(20-x )+900x +800x +600(10-x )=26000+100x (0≤x ≤10)………………………………………4分(2)依题意得:2680010026000≥+x ,又因为100≤≤x ………………6分 ∴108≤≤x ,因为x 是整数 ∴x =8,9,10,方案有3种…………7分方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆; 方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆; 方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆。

......8分 (3)∵x y 10026000+=是一次函数,且100=k ﹥0,..................9分 ∴y 随x 的增大而增大,∴当x =10时,这30辆车每天获得的租金最多...11分 ∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆 (12)1、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%. (1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用解:(1)设购买甲种树苗x 株,乙种树苗y 株,则列方程组⎩⎨⎧x +y =80024x +30y =21000解得:⎩⎨⎧x =500y =300,答:购买甲种树苗500株,乙种树苗300株.(2)设购买甲种树苗z 株,乙种树苗(800-z )株,则列不等式85%+90%(800-z )≥88%×800 解得:z ≤320(3)设甲种树苗m 株,购买树苗的费用为W 元,则W =24m +30(800-m )=-6m +2400 ∵-6<0∴W 随m 的增大而减小, ∵0<m ≤320∴当m =320时,W 有最小值 W 最小值=24000-6×320=22080元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低为22080元.2、(2011山东日照,22,9分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?【答案】 (1)根据题意知,调配给甲连锁店电冰箱(70-x )台,调配给乙连锁店空调机(40-x )台,电冰箱(x -10)台, 则y =200x +170(70-x )+160(40-x )+150(x -10),即y =20x +16800.∵ ⎪⎪⎩⎪⎪⎨⎧≥-≥-≥-≥,010,040,070,0x x x x∴10≤x ≤40. ∴y =20x +168009 (10≤x ≤40);(2)按题意知:y =(200-a )x +170(70-x )+160(40-x )+150(x -10), 即y =(20-a )x +16800. ∵200-a >170,∴a <30.当0<a <20时,x =40,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a =20时,x 的取值在10≤x ≤40内的所有方案利润相同;当20<a <30时,x =10,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台;3、9. (2011福建泉州,24,9分)某电器商城“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:(1)按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。

农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的补贴?(2)为满足农民需求,商场决定用不超过85000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的56. 若使商场获利最大,请你帮助商场计算应该购进冰箱、彩电各多少台?最大获利是多少?【答案】解:(1)(2420+1980)×13℅=572,...... .....................(3分) (2)①设冰箱采购x 台,则彩电采购(40-x )台,根据题意得⎪⎩⎪⎨⎧-≥≤-+)40(6585000)40(19002320x x x x 解不等式组得231821117x ≤≤,...... .................................(5分) 因为x 为整数,所以x = 19、20、21, 方案一:冰箱购买19台,彩电购买21台, 方案二:冰箱购买20台,彩电购买20台, 方案一:冰箱购买21台,彩电购买19台, 设商场获得总利润为y 元,则y =(2420-2320)x +(1980-1900)(40- x )...... .................(7分) =20 x + 3200 ∵20>0,∴y 随x 的增大而增大,∴当x =21时,y 最大 = 20×21+3200 = 3620. ...... .......................(9分)15. (2011山东潍坊,21,10分)2011年秋冬北方严重干旱,凤凰社区人畜饮用水紧张,每天需从社区外调运饮用水120吨.有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水? (2)设从甲厂调运饮用水x 吨,总运费为W 元,试写出W 关于与x 的函数关系式,怎样安排调运方案才能是每天的总运费最省?【解】(1)设从甲厂调运饮用水x 吨,从乙厂调运饮用水y 吨,根据题意得2012141526700,120.x y x y ⨯+⨯=⎧⎨+=⎩ 解得50,70.x y =⎧⎨=⎩∵50<80,70<90,∴符合条件.故从甲、乙两水厂各调用了50吨、70吨饮用水.(2)设从甲厂调运饮用水x 吨,则需从乙厂调运水(120-x )吨,根据题意可得80,12090.x x ⎧⎨-⎩≤≤解得3080x ≤≤. 总运费()201214151203025200W x x x =⨯+⨯-=+,(3080x ≤≤) ∵W 随x 的增大而增大,故当30x =时,26100W =最小元. ∴每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省.23. (2010湖北孝感,24,10分)健身运动已成为时尚,某公司计划组装A 、B 两种型号的健身器材共40套,捐赠给社区健身中心.组装一套A 型健身器材需甲种部件7个和乙种部件4个,组装一套B 型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A 、B 两种型号的健身器材时,共有多少种组装方案;(5分)(2)组装一套A 型健身器材需费用20元,组装一套B 型健身器材需费用18元.求总组装费用最少的组装方案,最少组装费用是多少?(5分)【答案】解:(1)设该公司组装A 型器材x 套,则组装B 型器材(40-x)套,依题意,得73(40)24046(40)196x x x x +-≤⎧⎨+-≤⎩解得22≤x ≤30.由于x 为整数,∴x 取22,23,24,25,26,27,28,29,30. ∴组装A 、B 两种型号的健身器材共有9种组装方案. (2)总的组装费用y=20x+18(40-x )=2x+720. ∵k=2>0,∴y 随x 的增大而增大.∴当x=22时,总的组装费用最少,最少组装费用是2×22+720=764元. 总组装费用最少的组装方案:组装A 型器材22套,组装B 型器材18套.25、已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M ,N 两种型号的时装共80套。

已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45元;做一套N 种型号的时装需要A 种布料1.1米,B 种布料0.4米,可获利润50元。

若设生产N 种型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。

(1)求y 与x 的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品 种A B C 每辆汽车运载量(吨) 8 6 5 每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为x ,装运乙种土特产的车辆数为y ,求y 与x 之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值. 3. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元? (收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩. 由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益. 答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a-=,解得4000()a kg =.答:王大爷原定的运输车辆每次可装载饲料4000kg.7. (2011四川内江,加试6,12分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【答案】(1)设每台电脑机箱的进价是x 元,液晶显示器的进价是y 元,得1087000254120x y x y +=⎧⎨+=⎩,解得60800x y =⎧⎨=⎩ 答:每台电脑机箱的进价是60元,液晶显示器的进价是800元 (2)设购进电脑机箱z 台,得60800(50)2224010160(50)4100x x x x +-≤⎧⎨+-≥⎩,解得24≤x ≤26 因x 是整数,所以x=24,25,26利润10x+160(50-x)=8000-150x ,可见x 越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。

相关文档
最新文档