2021年重庆年中考二次函数综合专题练习
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)
2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。
2021年重庆年中考23题一元二次方程实际应用综合专题(重庆育才试题集)
2021年重庆年中考23题一元二次方程实际应用综合专题(重庆育才试题集)1(育才2021级初三上定时训练二)十九大以来,为全面推进新农村建设,积极改革农村产业结构,增加农民收入,致富村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量将上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大α%,并改良蔬菜种植结构,蔬菜每亩利润将增加a%这样,明年纽橙和蔬菜的总利润将比今年的总利润增加a%.求a的值.2(育才2020级初三下中考模拟5月份)为了准备科技节创意销售,宏帆初2018级某同学到批发市场购买了一些甲、乙两种型号的小元件,甲型小元件的单价是6元,乙型小元件的单价是3元,该同学的创意作品每件需要的乙型小元件的个数是甲型小元件的个数的2倍,同时,为了控制成本,该同学购买小元件的总费用不超过480元.(1)该同学最多可购买多少个甲型小元件?(2)在该同学购买甲型小元件最多的前提下,用所购买的甲、乙两种型号的小元件全部制作成创意作品,在制作中其他费用共花520元,销售当天,该同学在成本价(购买小元件的费用+其他费用)的基础上每件提高2a%(10<a<50)标价,但无人问津,于是该同学在标价的基础上降低a%出售,最终,在活动结束时作品全部卖完,这样,该同学在本次活动中赚了a%,求a的值.3(育才2020级初三下中考模拟二)为满足社区居民健身的需要,区政府准备采购若干套健身器材免费提供给社区,经考察,康乐公司有甲,乙两种型号的健身器材可供选择.(1)康乐公司2017年每套甲型健身器材的售价为2万元,经过连续两年降价,2019年每套售价为1.28万元,求每套甲型健身器材售价的年平均下降率n;(2)2019年市政府经过招标,决定年内采购并安装康乐公司甲,乙两种型号的健身器材共80套,采购专项经费总计不超过95万元,采购合同规定:每套甲型健身器材售价为1.28万元,每套乙型健身器材售价为1.4(1﹣n)万元.①甲型健身器材最多可购买多少套?②按照甲型健身器材购买最多的情况下,安装完成后,若每套甲型和乙型健身器材一年的养护费分别是购买价的8%和10%,区政府计划支出9万元进行养护,问该计划支出能否满足一年的养护需要?4(育才2020级初三下中考模拟三)随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24元/千克,芒果的售价为20元/千克,总销售额为4320元.(1)求水果店第一次售出苹果和芒果各多少千克;(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1元,销量就增加20千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980元,求第二次芒果的售价.5(育才2019级初三下中考模拟一)某水果店以每千克6元的价格购进一批水果,由于销售状况良好,该店又购进一些同一种水果,第二次进货价格比第一次每千克便宜了1元,已知两次一共进货600千克.(1)若该水果店两次进货的总价格不超过3200元,求第一次至多购进水果多少千克?(2)在(1)的条件下,以第一次购进最大重量时的数量进货,在销售过程中,第一次购进的水果有3%的损耗,其售价比其进价多2a元,第二次购进的水果有5%的损耗,其售价比其进价多a元,该水果店希望售完两批水果后获利31.75%,求a的值.6(育才2020级初三下中考模拟二练习)每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%后,这样一天的利润达到了20000元,求m的值7(双福育才2020级初三下中考模拟一)2020年初,武汉爆发了新型冠状病毒引起的肺炎,并迅速在全国蔓延。
2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练
2021年中考数学复习《二次函数的综合计算与证明》能力提升必刷经典题型专练一. 选择题.1.对于任意实数m,下列函数一定是二次函数的是( )A.y=mx2+3x-1B.y=(m-1)x2C.y=(m-1)2x2D.y=(-m2-1)x22.二次函数y=x2-3x+2的图象不经过第象限.A.一B.二C.三D.四3.已知二次函数y=1-11x-6x2,其二次项系数为a,一次项系数为b,常数项为c,则a+b+c= ( )A.+16B.6C.-6D.-164.二次函数2=-的图象是一条抛物线,下列关于该抛物线的说法,正确的23y x是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线1x=D.抛物线与x轴有两个交点5.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是( )6.如图,二次函数y=ax2+bx+c的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b27.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax 2+bx+c(a ≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为 ( )A.10 mB.15 mC.20 mD.22.5 m8.如图,二次函数y=ax 2+bx+c 的图象过点(-1,0)和点(3,0),则下列说法正确的是( )A.bc<0B.a+b+c>0C.2a+b=0D.4ac>b 29.一位运动员在距篮下4 m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m 时,达到最大高度3.5 m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05 m,该运动员身高1.9 m,在这次跳投中,球在头顶上方0.25 m 处出手时,他跳离地面的高度是( )A.0.1 mB.0.2 mC.0.3 mD.0.4 m10.已知二次函数2y ax bx c =++满足:(1)a b c <<;(2)0a b c ++=;(3)图象与x 轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有( ) ①0a <;②0a b c -+<;③0c >;④20a b ->;⑤124b a -<. A .1个 B .2个 C .3个 D .4个二.填空题.11.抛物线y=4(x-2)2+1的顶点坐标是 .12.已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则y1,y2,y3的大小关系为.13.如图,抛物线y=ax2+bx+4(a≠0)经过点A(-3,0),点B在抛物线上,CB∥x轴,且AB平分∠CAO,则此抛物线的解析式是 .14.如图是某个二次函数的图象,根据图象可知,该二次函数的解析式是 .15.如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为米.16.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB 向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过s,四边形APQC的面积最小.17.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元.18. 如图为函数y=ax2+bx+c与y=x的图象,下列结论:①b2-4ac>0;②3b+c+6=0;③当1<x<3时,x2+(b-1)x+c<0;④=3. 其中正确的有 .三.解答题.19. 在平面直角坐标系中,二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示.(1)求这个二次函数的解析式;(2)当-2≤x≤2时,求y的取值范围.20. 如图所示,甲、乙两船分别从A地和C地同时开出,各沿箭头所指方向航行,已知AC=10海里,甲、乙两船的速度分别是每小时16海里和每小时12海里,同时出发多长时间后,两船相距最近?最近距离是多少?21. 某公司从年初以来累计利润S(万元)与时间t(月)之间的关系(即前t个月的利润总和S和t之间的关系)为二次函数关系.试根据图象提供的信息,解答下列问题:(1)求累计利润S(万元)与时间t(月)之间的函数解析式;(2)截至几月末该公司累计利润可达16万元?(3)第10个月该公司所获利润是多少万元?。
2021年中考复习《二次函数》综合测试题及答案 (3)
中考复习《二次函数》综合测试题及答案 一、与线段、周长有关的问题1. 如图,抛物线y =x 2+bx +c 过点A (3,0),B (1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与点A 重合),过点P 作PD ∥y 轴交直线AC 于点D . (1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)在抛物线对称轴上是否存在点M ,使|MA-MC |的值最大?若存在,请求出点M 的坐标;若不存在,请说明理由.第1题图 备用图2. (202X 珠海)如图,折叠矩形OABC 的一边BC ,使点C 落在OA边的点D 处,已知折痕BE =55,且OE OD =34.以O 为原点,OA 所在的直线为x 轴建立如图所示的平面直角坐标系,抛物线l :y = -161x 2+21x +c经过点E ,且与AB 边相交于点F . (1)求证:△ABD ∽△ODE ;(2)若M 是BE 的中点,连接MF ,求证:MF ⊥BD ;(3)P 是线段BC 上一动点,点Q 在抛物线l 上,且始终满足PD ⊥DQ ,在点P 运动过程中,能否使得PD =DQ ?若能,求出所有符合条件的Q 点坐标;若不能,请说明理由.第2题图1x2+bx+c3. (202X孝感改编)在平面直角坐标系中,抛物线y= -2与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P.①如图①,过点P作y轴的平行线交AC于点D,当线段PD 取得最大值时,求出点P的坐标;②如图②,过点O,P的直线y=kx交AC于点E,若PE∶OE=3∶8,求k的值.图①图②第3题图1x2+bx+c(b、4. (202X天水)在平面直角坐标系中,已知抛物线y=-2c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式;(2)平移(1)中的抛物线,使顶点P在AC上并沿AC方向滑动距离为2时,试证明:平移后的抛物线与直线AC交于x轴上的同一点;(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.第4题图1x2+bx+c与x轴交于A、B两点,与y轴交于5. 如图,抛物线y= -2点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)在抛物线的对称轴上,是否存在一点Q,使得△BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.第5题图6. 如图,已知在平面直角坐标系xOy中,四边形OABC的边OA在y 轴的正半轴上,OC在x轴的正半轴上,AB∥OC,OA=AB=2,OC=3,过点B 作BD ⊥BC ,交OA 于点D ,将∠DBC 绕点B 顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于点E 、F . (1)求经过A 、B 、C 三点的抛物线的解析式; (2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)在抛物线的对称轴上取两点P 、Q (点Q 在点P 的上方),且PQ =1,要使四边形BCPQ 的周长最小,求出P 、Q 两点的坐标.第6题图 【答案】1.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴⎩⎨⎧=++=++01039c b c b , 解得⎩⎨⎧==3-4c b , ∴抛物线的解析式为y =x 2-4x +3. (2)令x =0,则y =3, ∴点C (0,3), 又∵点A (3,0),∴直线AC 的解析式为y = -x +3, 设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上, ∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-23)2+49, ∵a =-1<0,∴当x =23时,线段PD 的长度有最大值,最大值为49. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB , 可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度, 设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则⎩⎨⎧==+3b b k ,解得⎩⎨⎧==3-3b k ,∴直线BC 的解析式为y = -3x +3, ∵抛物线y =x 2-4x +3的对称轴为直线x =2, ∴当x =2时,y=-3×2+3=-3, ∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大. 2.(1)证明:由折叠知∠ADB =90°-∠ODE =∠OED , ∵∠EOD =∠DAB =90°, ∴Rt △ABD ∽Rt △ODE .(2)证明:设OE =3k ,则OD =4k ,CE =DE =5k ,AB =OC =8k , 由Rt △ABD ∽Rt △ODE 可得AD =6k ,则OA =BC =BD =10k , 于是BE =22)(10)(5k k +=55,解得k =1, ∵抛物线y =-161x 2+21x +c 经过点E (0,3), ∴c =3,将点A 的横坐标x =10代入y =-161x 2+21x +3, 得到点F 的坐标为(10,47),∴DF =22AF AD +=22476)(+=425, ∵BF =AB -F A =8-47=425, ∴DF =BF ,又∵∠BDE =90°,M 是BE 的中点, 第2题解图 ∴MB =MD ,∴MF 是线段BD 的中垂线,∴MF ⊥BD . (3)解:能.如解图,令y =0,求得抛物线与x 轴交点坐标为H (-4,0),G (12,0),①当PD ⊥x 轴时,由于PD =8,DG =DH =8,故点Q 的坐标为(-4,0)或(12,0)时,△PDQ 是以D 为直角顶点的等腰直角三角形;②当PD 不垂直x 轴时,分别过P ,Q 作x 轴的垂线,垂足分别为N ,I ,则Q 不与G 重合,从而I 不与G 重合,即DI ≠8,∵PD ⊥DQ ,∴∠QDI =90°-∠PDN =∠DPN , ∴Rt △PDN ∽Rt △DQI , ∵PN =8, ∴PN ≠DI ,∴Rt △PDN 与Rt △DQI 不全等, ∴PD ≠DQ ,另一侧同理可得PD ≠DQ .综上①,②所有满足题设的点Q 的坐标为(-4,0)和(12,0). 3.解:(1)对于直线y =x +4,令x =0,得y =4,令y =0,得x =-4,则A (-4,0),C (0,4),代入抛物线解析式得⎩⎨⎧==+404-8-c c b ,解得⎩⎨⎧==4-1c b , ∴抛物线的解析式为y = -21x 2-x +4.(2)①∵抛物线的解析式为y = -21x 2-x +4, ∴点P (x , -21x 2-x +4),∵PD ∥y 轴,直线AC 的解析式为y =x +4, ∴D (x ,x +4), ∵P 点在AC 的上方,∴PD = -21x 2-x +4-(x +4)= -21(x +2)2+2, ∵-2>-4,∴当x =-2时,线段PD 取得最大值, 将x =-2代入y = -21x 2-x +4中得y =4,∴线段PD 取得最大值时,点P 的坐标为(-2,4). ②过点P 作PF ∥OC 交AC 于点F ,如解图. ∵PF ∥OC ,∴△PEF ∽△OEC ,∴OCPFOE PE. 又∵OE PE =83,OC =4,∴PF =23.∴由 ①得PF =(-21x 2-x +4)-(x +4)= 23.化简得:x 2+4x +3=0,解得x 1= -1,x 2= -3. 当x = -1时,y =29;当x = -3时,y =25. 即满足条件的P 点坐标是(-1,29)或(-3,25). 又∵点P 在直线y =kx 上,∴k = -29或k = -65. 第3题解图4.(1)解:设AC 与x 轴的交点为M ,∵等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3), ∴直线AC 的解析式为y=x-1, ∴直线AC 与x 轴的交点M (1,0). ∴OM =OA ,∠CAO =45°. ∵△CAB 是等腰直角三角形, ∴∠ACB =45°, ∴BC ∥y 轴, 又∵∠OMA =45°,∴∠OAB =90°, ∴AB ∥x 轴,∴点B 的坐标为(4,-1).∵抛物线过A (0,-1),B (4,-1)两点,将两点代入抛物线的解析式中,得⎪⎩⎪⎨⎧=++⨯=-141621--1c b c ,解得⎩⎨⎧==-12c b ,∴抛物线的解析式为y =-21x 2+2x -1.(2)证明:抛物线y = -21x 2+2x -1= -21(x 2-4x )-1=-21 (x -2)2+1, ∴顶点P 的坐标为(2,1),∵抛物线y = -21(x -2)2+1顶点P 平移到直线AC 上并沿AC 方向移动的距离为2,∴其实是先向右平移1个单位长度,再向上平移1个单位长度, ∴平移后的二次函数的解析式为y = -21(x -3)2+2, ∵当y =0时,有0= -21(x -3)2+2, 解得x 1=1,x 2=5,∴y =-21(x -3)2+2过点(1,0)和(5,0), ∵直线AC 的解析式为y=x-1, ∴直线AC 与x 轴的交点坐标为(1,0),∴平移后的抛物线与直线AC 交于x 轴上的同一点.(3)解:如解图,NP +BQ 存在最小值,最小值为25.理由:取AB 的中点F ,连接FN ,FQ ,作B 点关于直线AC 的对称点B ′,设平移后的抛物线的顶点为P ′.连接BB′,B′Q,BQ,则BQ=B′Q,1(x-2)2+1的顶点P(2,1),A(0,-1),∵抛物线y= -2∴P A=221)(2++=22,-0)(1∴抛物线沿AC方向任意滑动时,P′Q=22,∵A(0,-1),B(4,-1),∴AB中点F(2,-1),∵B(4,-1),C(4,3),∴N(4,1),∴FN=22BNBF+=22,∴FN=P′Q,∵在△ABC中,F、N分别为AB、BC的中点,第4题解图∴FN∥P′Q,∴四边形P′NFQ是平行四边形,∴NP′=FQ,∴NP′+BQ=FQ+B′Q≥FB′=2242+=25.∴当B′、Q、F三点共线时,NP+BQ最小,最小值为25.5.解:(1)∵OA=2,∴点A的坐标为(-2,0).∵OC=3,∴点C的坐标为(0,3).1x2+bx+c,把A(-2,0),C(0,3)分别代入抛物线y= -2得⎩⎨⎧=+=c cb 32--20,解得⎩⎨⎧==312c b , ∴抛物线的解析式为y =-21x 2+21x +3. (2)把y =0代入y = -21x 2+21x +3, 解得x 1=3,x 2=-2,∴点B 的坐标为(3,0), ∴OB =OC =3, ∵OD ⊥BC ,∴OE 所在的直线为y =x .解方程组⎪⎩⎪⎨⎧++==32121-2x x y xy , 解得⎩⎨⎧==2,211y x ⎩⎨⎧=-3=-322y x , ∵点E 在第一象限内, 第5题解图∴点E 的坐标为(2,2). (3)存在,如解图,设Q 是抛物线对称轴上的一点,连接QA 、QB 、QE 、BE , ∵QA =QB ,∴△BEQ 的周长=BE +QA +QE , ∵BE 为定值,且QA +QE ≥AE ,∴当A 、Q 、E 三点在同一直线上时,△BEQ 的周长最小,由A (-2,0)、E (2,2)可得直线AE 的解析式为y =21x +1, 由(2)易得抛物线的对称轴为x =21, ∴点Q 的坐标为(21,45),∴在抛物线的对称轴上,存在点Q (21,45),使得△BEQ 的周长最小.6.解:(1)由题意得A (0,2)、B (2,2)、C (3,0).设经过A ,B,C 三点的抛物线的解析式为y =ax 2+bx +2(a ≠0), 将点B 、C 分别代入得⎩⎨⎧=++=++02392224b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==3432-b a ,∴抛物线的解析式为y = -32x 2+ 34x +2. (2)∵y= -32x 2+ 34x +2= -()2132-x +38,设抛物线的顶点为G , 则顶点G 的坐标为(1,38),过G 作GH ⊥AB ,垂足为H ,如解图①, 则AH =BH =1,GH =38-2=32, ∵EA ⊥AB ,GH ⊥AB , ∴EA ∥GH ,∴GH 是△BEA 的中位线, ∴EA =2GH =34.过B 作BM ⊥O C,垂足为M,如解图①,则MB =OA =AB .第6题解图① 第6题解图② ∵∠EBF =∠ABM =90°, ∴∠EBA =∠FBM =90°-∠ABF . ∴Rt △EBA ≌Rt △FBM . ∴FM =EA =34. ∵CM =OC -OM =3-2=1, ∴CF =FM +CM =37.(3)如解图②,要使四边形BCPQ 的周长最小,将B 点向下平移一个单位至点K ,取C 点关于对称轴对称的点M ,连接KM 交对称轴于P ,将P 向上平移1个单位至Q ,此时M 、P 、K 三点共线可使KP +PM 最短,则QPKB 为平行四边形,QB =PK ,连接CP ,根据轴对称求出CP =MP ,则CP +BQ 最小,∵CB ,QP 为定值,∴四边形BCPQ 周长最短.∵将点C 向上平移一个单位,坐标为(3,1),再作其关于对称轴对称的对称点C 1,∴得点C 1的坐标为(-1,1). 可求出直线BC 1的解析式为y =31x +34.直线y =31x +34与对称轴x =1的交点即为点Q ,坐标为(1,35).∴点P 的坐标为(1,32).综上所述,满足条件的P 、Q 两点的坐标分别为(1,32)、(1,35). 二、与面积有关的问题1. (202X 桂林)如图,已知抛物线y = -21x 2+bx +c 与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)求抛物线的解析式;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式:当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,若存在,求出P 点的坐标;若不存在,请说明理由.第1题图2. (202X 海南)如图①,二次函数y =ax 2+bx +3的图象与x 轴相交于点A (-3,0)、B (1,0),与y 轴相交于点C ,点G 是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D. (1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图②,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;21,请求出此时①中S的值.②若△CMN的面积等于4图①图②第2题图3. (202X深圳)如图①,关于x的二次函数y= -x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在,求出点P;若不存在,请说明理由;(3)如图②,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在,求出点F的坐标;若不存在,请说明理由.图①图②第3题图4. (202X武威)如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC 的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.第4题图【答案】1x2+bx+c,1.解:(1)将点A(0,8)、B(8,0)代入抛物线y= -2得⎪⎩⎪⎨⎧=++⨯=086421-8c b c ,解得⎩⎨⎧==83c b ,∴抛物线的解析式为y = -21x 2+3x +8. (2)∵点A (0,8)、B (8,0),∴OA =8,OB =8, 令y =0,得 -21x 2+3x +8=0, 解得:x 1=8,x 2=-2,∵点E 在x 轴的负半轴上, ∴点E (-2,0),∴OE =2,根据题意得:当D 点运动t 秒时,BD =t,OC =t , ∴OD =8-t ,∴DE =OE +OD =10-t ,∴S △CED =21DE ·OC =21 (10-t )·t = -21t 2+5t ,即S = -21t 2+5t =-21 (t -5)2+225, ∴当t =5时,S △CED 最大=225(3)存在.由(2)知:当t =5时,S △CED 最大=225 ∴当t =5时,OC =5,OD =3, ∴C (0,5),D (3,0), 由勾股定理得CD =34,设直线CD 的解析式为:y =kx +b (k ≠0), 将C (0,5),D (3,0),代入上式得:⎩⎨⎧=+=0,35b k b 解得⎪⎩⎪⎨⎧==535-b k ,∴直线CD 的解析式为y = -35x +5, 过E 点作EF ∥CD ,交抛物线于点P 1,则S △CED =S DCP 1∆, 第1题解图如解图,设直线EF 的解析式为y = -35x +m ,将E (-2,0)代入得:m = -310, ∴直线EF 的解析式为y = -35x -310,将y = -35x -310与y = -21x 2+3x +8联立成方程组得:⎪⎪⎩⎪⎪⎨⎧8+3+21 -=310 - 35-=2x x y x y , 解得⎩⎨⎧==0-211y x (与E 点重合,舍去),⎪⎪⎩⎪⎪⎨⎧==9200-33422y x ,∴P 1(334,- 9200); 过点E 作EG ⊥CD ,垂足为G , ∵当t =5时,S △ECD =21CD ·EG =225,CD =34, ∴EG =343425, 过点D 作DN ⊥CD ,垂足为N ,且使DN =343425,过点N 作NM ⊥x 轴,垂足为M ,可得△EGD ∽△DMN ,∴DM EG =DNED ,即DM 343425=3434255,解得:DM =34125,∴OM =34227, 由勾股定理得: MN =22-DM DN =)234125(-)3434(252=3475,∴N (34227,3475), 过点N 作NP 2∥CD ,与抛物线交于点P 2,P 3(与B 点重合),则S △CED =SDCP 2∆,S △CED =SDCP 3∆,设直线NP 2的解析式为y = -35x +n ,将N (34227,3475),代入上式得n =340, ∴直线NP 2的解析式为y = -35x +340,将y = -35x +340与y = -21x 2+3x +8联立成方程组得:⎪⎪⎩⎪⎪⎨⎧++=+=8321-34035-2x x y x y ,解得⎩⎨⎧==0811y x ,⎪⎪⎩⎪⎪⎨⎧==91003422y x , ∴P 2(34,9100)或P 3(8,0), 综上所述,当△CED 的面积最大时,在抛物线上存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积,点P 的坐标为:(334,-9200)或(34,9100)或(8,0).2.(1)解:∵二次函数y =ax 2+bx +3过点A (-3,0)、 B (1,0),∴⎩⎨⎧=++=+03033-9b a b a ,,解得⎩⎨⎧==-2-1b a ,∴二次函数的表达式为y =-x 2-2x +3.(2)证明:由(1)知二次函数的表达式为y =-x 2-2x +3,令x =0,则y =3,∴点C 的坐标为(0,3), ∴OC =3,又点A 、H 的坐标分别为(-3,0)、(3,0), ∴ OA =OH =OC =3, ∴ ∠OCH =∠OHC , ∵AD ∥GC ,∴∠OCH =∠ODA ,∠OHC =∠OAD , ∴∠OAD =∠ODA , ∴ OA =OD =OC =OH =3, 又AH ⊥CD ,∴四边形ACHD 为正方形.(3)解:①S 四边形ADCM =S 四边形A OCM +S △AOD , 第2题解图由(2)知OA =OD =3, ∴S △AOD =21×3×3=29,∵点M (t ,p )是直线y =kx 与抛物线y = -x 2-2x +3在第二象限内的交点, ∴点M 的坐标为(t ,-t 2-2t +3),如解图,作MK ⊥x 轴于点K ,ME ⊥y 轴于点E ,则MK =-t 2-2t +3,ME =︱t ︱=-t ,∴S 四边形AOCM =S △AOM +S △MOC =21×3(-t 2-2t +3)+21×3(-t ),即S 四边形AOC M = -23t 2-29t +29,S 四边形ADCM =S 四边形AOCM +S △AOD =-23t 2-29t+29+29= -23t 2-29t+9, ∴S = -23t 2-29t +9,-3<t <0.②设点N 的坐标为(t 1,p 1),过点N 作NF ⊥y 轴于点F , ∴NF =︱t 1︱,又由①知ME =︱t ︱,则S △CMN =S △COM +S △CON =21OC ·(︱t ︱+︱t 1︱), 又∵点M (t ,p )、N(t 1,p 1)分别在第二、四象限内,∴t <0, t 1>0, ∴S △CMN =23(t 1-t ),即23 (t 1-t )= 421,∴t 1-t =27.由直线y =kx 交二次函数的图象于点M 、N 得:⎩⎨⎧+==32--y y 2x x kx,则x 2+(2+k )x -3=0, ∴x =2(-3)14-)(2)(2-2⨯⨯+±+k k ,即t =2(-3)14-)(2-)(2-2⨯⨯++k k ,t 1=2(-3)14-)(2)(2-2⨯⨯+++k k ,∴t 1-t =12k)(22++=27, ∴27是(2+k )2+12的算术平方根, ∴(2+k )2+12=449,解得k 1=-23,k 2=-25, 又(k +2)2+12恒大于0,且k <0, ∴k 1=-23,k 2=-25都符合条件. (i)若k = -23,有x 2+(2-23)x -3=0,解得x 1=-2,x 2=23 (不符合题意,舍去);(ii)若k = -25,有x 2+(2-25)x -3=0,解得x 3=-23,x 4=2(不符合题意,舍去),∴t = -2或-23,当t = -2时,S =12;当t =-23时,S =899,∴S 的值是12或899.3.解:(1)将A (-3,0),C (0,3)代入y =-x 2+bx +c , 得⎩⎨⎧=+=03-9-3c b c ,解得⎩⎨⎧==3-2c b .∴抛物线的解析式为y = -x 2-2x +3.(2存在,由(1)知抛物线的解析式可化为顶点式y =-(x +1)2+4,则D (-1,4),当P 在∠DAB 的平分线上时,如解图①,作PM ⊥AD ,设P (-1,y 0), ∵sin ∠ADE =AD AE=522=55,PE =y 0,则PM =PD ·sin ∠ADE =55(4-y 0), ∵PM =PE , 第3题解图① ∴55(4-y 0)=y 0, 解得y 0=5-1.当P 在∠DAB 的外角平分线上时, 如解图②,作PN ⊥AD ,设P (-1,y 0), PE =-y 0,则PN =PD ·sin ∠ADE =55(4-y 0), ∵PN =PE , ∴55(4-y 0)=-y 0,解得y 0=-5-1. 第3题解图②∴存在满足条件的点P ,且点P 的坐标为(-1,5-1)或(-1,-5-1). (3)存在.∵S △EBC =3,2S △FBC =3S △EBC , ∴S △FBC =23S △EBC =23×3=29,过点F 作FH ⊥x 轴,交BC 的延长线于点Q ,如解图③, 连接BF ,设BF 交y 轴于点M ,易得△BMC ∽△BFQ , ∴OHOB OB+=QF CM , 即CM =OH OB QFOB +⋅,∴S △FBC =21CM ·OB +21C M ·OH =21OB ·QF .∵S △FBC =21FQ ·OB =21FQ =29,∴FQ =9.∵BC 的解析式为y =-3x +3,设F (x 0,-x 20-2x 0+3),则Q 点的坐标为(x 0,-3x 0+3),∴QF =-3x 0+3+x 02+2x 0-3=9, 解得x 0=237-1或2371+ (舍去), ∴满足条件的点F 的坐标是(237-1,215-373). 第3题解图③4.解:(1)∵抛物线过点A (0,4)、B (1,0)、C (5,0), ∴设过A 、B 、C 三点的抛物线的解析式为y =a (x -1)·(x -5)(a ≠0), ∴将点A (0,4)代入y=a (x -1)(x -5),得a =54, ∴此抛物线的解析式为y =54x 2-524x +4, ∵抛物线过点B (1,0)、C (5,0), ∴抛物线的对称轴为直线x =251+=3. (2)存在,如解图①,连接AC 交对称轴于点P ,连接B P 、BA ,∵点B 与点C 关于对称轴对称, ∴PB =PC ,∴AB +AP +PB =AB +AP +PC =AB +AC , ∵AB 为定值,且AP +P C≥AC ,∴当A 、P 、C 三点共线时△P AB 的周长最小, ∵ A (0,4)、C (5,0), 设直线A C的解析式为y =ax +b (a ≠0),第4题解图①将A 、C 两点坐标代入解析式得⎩⎨⎧=+=054b a b ,解得⎪⎩⎪⎨⎧==454-b a ,∴直线AC 的解析式为y = -54x +4. ∵在y = -54x +4中,当x =3时,y =58, ∴P 点的坐标为(3,58),即当对称轴上的点P 的坐标为(3,58)时,△ABP 的周长最小. (3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大. 如解图②,设N 点的横坐标为t , 此时点N (t ,54t 2-524t +4)(0<t <5), 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作 AD ⊥NG ,垂足为点D ,由(2)可知直线AC 的解析式为y = -54x+4, 把x =t 代入y = -54x +4得y =-54t +4, 则G 点的坐标为(t ,-54t +4 ), 此时,NG =-54t +4-(54t 2-524t +4)=-54t 2+4t . ∵AD +CF =OC =5, ∴S △NAC =S △ANG +S △CGN =21NG ·AD +21NG ·CF = 21NG ·OC =21×(-54t 2+4t )×5=-2t 2+10t = -2(t -25)2+225.∵-2<0,即在对称轴处取得最大值.∴当t =25时,△NAC 面积有最大值为225, 第4题解图② 由t =25,得y =54t 2524t +4=-3, ∴N (25,-3).∴存在满足条件的点N ,使△NAC 的面积最大,N 点的坐标为(25,-3). 三、与特殊三角形有关的问题1.(202X 岳阳)如图,抛物线y=ax 2+bx +c 经过A (1,0)、B (4,0)、C (0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形P AOC 的周长最小?若存在,求出四边形P AOC 周长的最小值;若不存在,请说明理由;(3)如图②,点Q 是线段OB 上一动点,连接BC ,在线段BC 上是否存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形?若存在,求点M 的坐标;若不存在,请说明理由.图① 图② 第1题图2. 如图,直线y =-21x +2与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (-1,0).(1)求B 、C 两点坐标; (2)求该二次函数的关系式;(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.第2题图 【答案】 针对演练1.解:(1)∵点A (1,0),B (4,0)在抛物线上, ∴设抛物线解析式为y =a (x -1)(x -4), 将点C (0,3)代入得a (0-1)(0-4)=3, 解得a =43,∴抛物线解析式为y =43(x -1)(x -4), 即y =43x 2-415x+3. (2)存在.连接BC 交对称轴于点P ,连接P A ,如解图①, ∵点A 与点B 关于对称轴x =25对称,∴BC ≤PB +PC =P A +PC ,即当点P 在直线BC 上时,四边形P AOC 的周长最小,在Rt △BOC 中,OB =4,OC =3,∠BOC =90°, ∴BC =22OC OB + =5,∴四边形P AOC 的周长的最小值为OA +O C+BC =1+3+5=9. (3)存在.设直线BC 的解析式为y =kx +t ,第1题解图①将点B (4,0),点C (0,3)代入得⎩⎨⎧==+304t t k ,解得⎪⎩⎪⎨⎧==343-t k , ∴直线BC 的解析式为y = -43x +3. 点M 在BC 上,设点M 的坐标为(m ,-43m +3)(0<m <4), 要使△CQM 是等腰三角形,且△BQM 是直角三角形,则只有以下两种情况,(Ⅰ)当MQ ⊥OB ,CM =MQ 时,如解图②所示,则CM =MQ =-43m +3, MB =BC -CM =5-(- 43m +3)=2+43m ,由sin ∠CBO =BC OC =BM MQ=53,即m m 432343-++=53,解得m =23,则点M 的坐标为(23,815);(Ⅱ)当CM =MQ ,MQ ⊥BC 时,如解图③, 第1题解图②过M 作MN ⊥OB 于N , 则ON =m ,MN =-43m +3, 在Rt △BMN中,易得BM =MBNMN∠sin=35×(-43m +3) =-45m +5, ∴CM =BC -BM =45m ,在Rt △BMQ 中,QM =BM ·tan ∠MBQ =43 (-45m +5), 由CM =MQ 得43(-45m +5)= 45m , 第1题解图③ 解得m =712,此时点M 的坐标为(712,712). 综上所述,存在满足条件的点M ,点M 的坐标为(23,815)或(712,712). 2. 解:(1)令x =0,可得y =2, 令y =0,可得x =4, 即点B (4,0),C (0,2).(2)设二次函数的解析式为y =ax 2+bx +c , 将点A 、B 、C 的坐标代入解析式得,⎪⎩⎪⎨⎧==++=+204160-c c b a c b a ,解得b c b a ⎪⎪⎪⎩⎪⎪⎪⎨⎧===22321- , 即该二次函数的关系式为y=-21x 2+23x +2.(3)存在.满足条件的点P 的坐标分别为P 1(23,4),P 2(23,25),P 3(23,-25). 【解法提示】∵y = -21x 2+23x +2, ∴y =-21(x -23)2+825, ∴抛物线的对称轴是x =23, ∴OD =23. ∵C (0,2), ∴OC =2.在Rt △OCD 中,由勾股定理得CD =25. ∵△CDP 是以CD 为腰的等腰三角形, ∴CP 1=DP 2=DP 3=CD .如解图①所示,作CE ⊥对称轴于点E , ∴EP 1=ED =2,∴DP 1=4.∴P 1(23,4),P 2(23,25),P 3(23,-25). 第2题解图①(4)如解图②,过点C 作CM ⊥EF 于点M , 设E (a ,-21a +2),F (a ,-21a 2+23a +2), ∴EF =-21a 2+23a +2-(-21a +2) =-21a 2+2a (0≤a ≤4). ∵S四边形CDBF =S △BCD +S △CEF +S △BEF第2题解图②=21BD ·OC +21E F ·CM +21EF ·BN=25+21a (-21a 2+2a )+21(4-a )·(-21a 2+2a )5=-a2+4a+213(0≤a≤4),=-(a-2)2+213,∴a=2时,S四边形CDBF最大=2∴E(2,1).四、与特殊四边形有关的问题1. (202X重庆模拟)已知正方形OABC中,O为坐标原点,点A 在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函1x2+bx+c的图象经过点A、B.点P(t,0)是x轴上一动点,数y= -6连接AP.(1)求此二次函数的解析式;(2)如图①,过点P作AP的垂线与线段BC交于点G,当点P在线段OC(点P不与点C、O重合)上运动至何处时,线段GC的长有最大值,求出这个最大值;(3)如图②,过点O作AP的垂线与直线BC交于点D,二次函数1x2+bx+c的图象上是否存在点Q,使得以P、C、Q、D为顶点y= -6的四边形是以PC为边的平行四边形?若存在,求出t的值;若不存在,请说明理由.图①图②备用图第1题图2. 如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C(0,-4)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.第2题图【答案】1.解:(1)∵B(4,4),∴AB=BC=4,∵四边形ABCO是正方形,∴OA=4,∴A(0,4),1x2+bx+c,将点A(0,4),B(4,4)代入y= -6得⎪⎩⎪⎨⎧=++⨯=441661-4c b c , 解得⎪⎩⎪⎨⎧==432c b ,∴二次函数解析式为y =-61x 2+32x +4.(2)∵P (t ,0),∴OP =t ,PC =4-t ,∵AP ⊥PG ,∴∠APO +∠CPG =180°-90°=90°,∵∠OAP +∠APO =90°,∴∠OAP =∠CPG ,又∵∠AOP =∠PCG =90°,∴△AOP ∽△PCG ,∴PC AO =GCOP , 即t -44=GC t , 整理得,GC =-41(t -2)2+1,∴当t =2时,GC 有最大值是1,即P (2,0)时,GC 的最大值是1.(3)存在点Q ,使得以P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形.理由如下:如解图①、②,易得∠OAP =∠COD ,在△AOP 和△OCD 中,⎪⎩⎪⎨⎧︒=∠=∠=∠=∠90OCD AOP OCOA COD OAP , ∴△AOP ≌△OCD (ASA ),∴OP =CD,第1题解图①由P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形得,PC ∥DQ且PC =DQ , ∵P (t ,0),D (4,t ),∴PC =DQ =|t-4|,∴点Q 的坐标为(t ,t )或(8-t ,t ),①当Q (t ,t )时,-61t 2+32t +4=t ,整理得,t 2+2t-24=0,解得t 1=4(舍去),t 2=-6,②当Q (8-t ,t )时,-61(8-t )2+32(8-t )+4=t , 第1题解图②整理得,t 2-6t +8=0,解得t 1=2,t 2=4(舍去),综上所述,存在点Q (-6,-6)或(6,2),使得以P 、C 、Q 、D 为顶点的四边形是以PC 为边的平行四边形.2.解:(1)将B 、C 两点的坐标代入得:⎩⎨⎧==++-40416c c b ,解得⎩⎨⎧==-4-3c b , ∴二次函数的表达式为y =x 2-3x -4.(2)存在点P ,使四边形POP ′C 为菱形;设P 点坐标为(x ,x 2-3x -4),PP ′交CO 于点E ,若四边形POP′C 是菱形,则有PC =PO ;如解图①,连接PP ′,则PE ⊥CO 于点E ,∵C (0,-4),∴CO =4,又∵OE =EC ,∴OE =EC =2,∴y =-2,∴x 2-3x -4=-2, 第2题解图①解得x 1=2173+,x 2=217-3(不合题意,舍去), ∴P 点的坐标为(2173+,-2). (3)如解图②,过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,x 2-3x -4),设直线BC 的解析式为y =kx +d ,则⎩⎨⎧=+=04-4d k d ,解得⎩⎨⎧==-41d k , ∴直线BC 的解析式为y =x -4,则Q 点的坐标为(x ,x -4);当0=x 2-3x -4,解得:x 1= -1,x 2=4,∴AO =1,AB =5,第2题解图②S 四边形ABPC =S △ABC +S △BPQ +S △CPQ =21AB ·OC +21QP ·BF +21QP ·OF=21×5×4+21(4-x )[x -4-(x 2-3x -4)]+21x [x -4-(x 2-3x -4)] =-2x 2+8x +10=-2(x -2)2+18,当x =2时,四边形ABPC 的面积最大,此时P 点的坐标为(2,-6),四边形ABPC 的面积的最大值为18.五、与三角形相似有关的问题1. (202X 广元)如图,已知抛物线y =-m1(x +2)(x -m )(m >0)与x 轴相交于点A 、B ,与y 轴相交于点C ,且点A 在点B 的左侧.(1)若抛物线过点G (2,2),求实数m 的值.(2)在(1)的条件下,解答下列问题:①求△ABC 的面积.②在抛物线的对称轴上找一点H ,使AH +CH 最小,并求出点H 的坐标.(3)在第四象限内,抛物线上是否存在点M ,使得以点A 、B 、M 为顶点的三角形与△ABC 相似?若存在,求m 的值;若不存在,请说明理由.第1题图2. 如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作P M ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA 的面积最大,求出点D 的坐标.第2题图【答案】1.解:(1)∵抛物线过点G (2,2),∴2=-m 1 (2+2)(2-m ), ∴m =4.(2)①y =0,- m1 (x +2)(x -m )=0, 解得x 1=-2,x 2=m ,∵m >0,∴A (-2,0)、B (m ,0),又∵m =4,∴AB =6.令x =0,得y =2,∴C (0,2),∴OC =2,∴S △ABC =21×AB ×OC =21×6×2=6. 第1题解图①②∵m =4,∴抛物线y = -41 (x +2)(x -4)的对称轴为x =1,如解图①,连接BC 交对称轴于点H ,由轴对称的性质和两点之间线段最短的性质可知,此时AH +CH =BH +CH =BC 最小.设直线BC 的解析式为y =kx +b (k ≠0).则⎩⎨⎧==+204b b k ,解得⎪⎩⎪⎨⎧==221-b k , ∴直线BC 的解析式为y=-21x +2.当x =1时,y =23,∴H (1, 23). (3)存在.如解图②,分两种情况讨论:(Ⅰ)当△ACB ∽△ABM 时,AB AC =AMAB , 第1题解图②即AB 2=AC ·AM .∵A (-2,0),C (0,2),即OA =OC =2,∴∠CAB =45°,∴∠BAM =45°.过点M 作MN ⊥x 轴于点N ,则AN =MN ,∴OA +ON =2+ON =M N ,∴令M (x ,-x-2)(x >0),又∵点M 在抛物线上, ∴-x -2=-m1 (x +2)(x-m ), ∵x >0,∴x +2>0,又∵m >0,∴x =2m ,即M (2m ,-2m -2).∴AM =222)-(-22)(2m m ++=22 (m +1),又∵AB 2=AC ·AM ,AC =22,AB =m +2,∴(m +2)2=22×22 (m +1),解得m =2±22.∵m >0,∴m =22+2.(Ⅱ)当△ACB ∽△MBA 时, 则MA AB =BACB , ∴AB 2=CB ·MA ,又∵∠CBA =∠BAM ,∠ANM =∠BOC =90°,∴△ANM ∽△BOC , ∴AN NM =BOOC , ∵OB =m ,令ON =x, ∴x NM +2=m2, ∴NM =m2 (x +2), ∴令M (x ,- m 2 (x +2))(x >0), 又∵点M 在抛物线上,∴-m 2 (x +2)=- m 1 (x +2)(x -m ), ∵x >0,∴x +2>0,∵m >0,∴x =m +2,∴M (m +2,- m2 (m +4)), 又∵AB 2=CB ·MA ,CB =42+m ,AN =m +4,MN =m 2 (m +4), ∴(m +2)2=42+m ·,4)4(4)(222m m m +++ 整理得16=0,显然不成立.综上(Ⅰ)(Ⅱ)得,在第四象限内,当m =22+2时,抛物线上存在点M ,使得以点A 、B 、M 为顶点的三角形与△ACB 相似.2. 解:(1)∵该抛物线过点C (0,-2),∴可设该抛物线的解析式为y =ax 2+bx-2.将A (4,0),B (1,0)代入,得⎩⎨⎧=+=+02-02-416b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==2521-b a , ∴此抛物线的解析式为y = - 21x 2+ 25x -2. (2)存在.如解图①,设P 点的横坐标为m , 则P 点的纵坐标为-21m 2+25m -2,当1<m <4时,AM =4-m ,PM =-21m 2+25m -2. 又∵∠COA =∠PMA =90°,∴①当PM AM =OC AO 时, ∴PM AM =OC AO =24=12,第2题解图①∴△APM ∽△ACO ,即4-m =2(-21m 2+25m -2).解得m 1=2,m 2=4(舍去),∴P (2,1). ②当PM AM =OA OC =21时,△APM ∽△CAO , 即2(4-m )= -21m 2+25m -2. 解得m 1=4,m 2=5(均不合题意,舍去),∴当1<m <4时,P (2,1).当m >4时,AM =m -4,PM =21m 2-25m +2, ①PM AM =OA OC =21或②PM AM =OC AO =2,2(21m 2-25m +2)=m -4, 2(m -4)=21m 2-25m +2, 解得:第一个方程的解是m =2<4(舍去),m =4(舍去),第二个方程的解是m =5,m =4(舍去),求出m =5,-21m 2+25m -2=-2,则P (5,-2),当m <1时,AM =4-m ,PM =21m 2-25m +2. ①PM AM =OA OC =21或PM AM =OCAO =2, 则:2(21m 2-25m +2)=4-m , 2(4-m )=21m 2-25m +2, 解得:第一个方程的解是m =0(舍去),m =4(舍去),第二个方程的解是m =4(舍去),m =-3,m =-3时,-21m 2+25m -2=-14, 则P (-3,-14),综上所述,符合条件的点P 的坐标为(2,1)或(5,-2)或(-3,-14)(解图中未画出来).(3)如解图②,设D 点的横坐标为t (0<t <4),则D 点的纵坐标为-21t 2+25t-2.过点D 作y 轴的平行线交AC 于点E . 第2题解图② 由题意可求得直线AC 的解析式为y =21x -2.∴E 点的坐标为(t , 21t -2).∴DE =-21t 2+25t-2-(21t -2)=-21t 2+2t ,∴S △DAC =S △DCE +S △DEA =21DE ·t +21DE ·(4-t )=21DE ·4,∴S △DAC =21×(-21t 2+2t )×4=-t 2+4t =-(t-2)2+4,∴当t =2时,△DAC 面积最大,∴D (2,1).。
2021年重庆年中考26题三角形四边形几何综合专题(3)
2021重庆年中考25题二次函数综合专题(3)1(巴蜀2021级初三上定时训练二)如图,在等腰直角△ABC 中,AB=AC ,∠BAC=90,点E 为AC 的中点,EF=EC ,讲线段EF 绕点E 顺时针旋转90,连接FG ,FC ;点D 为BC 的中点,连接GD ,直线GD 与直线CF 交于点N 。
(1)如图1,若30FCA ∠=,求CF 的长; (2)连接BG 并延长至点M ,使BG=MG ,连接CM ;①如图2,若NG ⊥MB ,求证AB =; ②如图3,当点G 、F 、B 共线时 ,=90BCH ∠。
连接CH ,45CH BC =,请直接写出FGFH的值。
2(重庆一外2021级九上第四次周考)已知:在Rt△ABC中,∠ACB=90,过点C作CD⊥AB与点D,点E 是BC上一点,连接AE交CD于点F.(1)如图1,若AE平分脚CAB,CP平分∠BCD,求证:FP=EP;(2)如图2,若CE=CA,过点E作EG⊥CD与点G,点H为AE的中点,连接DH,GH,判断△GDH的形状,并证明;(3)如图3,在(2)的条件下,点K为AE上一点,连接GK,点M为GK的中点,连接MH,过点D作DN⊥-∠,若NH:HM=8:5,△GHK的面积为10,求△GDH的面积。
MH,交MH得延长线于点N,∠GHA=90GHM3(重庆育才成功学校2021级九上第一次周考)早ABCD 中,连接对角线BD ,AB=BD ,AB ⊥BD ,点E 在线段AD 上,点F 在线段DC 上,且∠BEF=∠BDC ,连接BF 。
(1)当BC=6,∠FBC=15时,求CF 的长度;(2)求证:222BC ED DF -=;(3)若点P 为BD 边上一点,且624BC -=,求12BP PC +的最小值。
4(重庆育才2021级九上第一次月考复习)在矩形ABCD 中 ,点E 是BC 边上一点,连接AE ,点F 是CB 延长线上一点,点G 是矩形ABCD 外一点,连接GC ,GE ,GB ,GF ,GF ⊥GC ,CE 平分∠BGC ,∠GEF=45. (1)如图1,当∠EGC=15,BG=2时,求△CGF 的面积;(2)如图2,当矩形ABCD 是正方形,FB=CE 时,求证:AE=2FG ;(3)如图3,若线段PQ 在GE 上运动,22PA =,2BE =,3FB BE =,请直接写出线段FP+PQ+QC 的和的最小值以及此时△PBE 的面积。
2021年中考复习数学 专题训练:二次函数的图象及性质(含答案)
2021中考数学专题训练:二次函数的图象及性质一、选择题1. 在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法中错误的是()A.y的最小值为1B.图象顶点坐标为(2,1),对称轴为直线x=2C.当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D.它的图象可以由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到2. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)3. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x=2;③当0<x<4时,y>0;④抛物线与x轴的两个交点间的距离是4;⑤若A(x1,2),B(x2,3)是抛物线上的两点,则x1<x2.其中正确的个数是()A.2 B.3 C.4 D.54. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.25. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a +b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④6. (2019•嘉兴)小飞研究二次函数y=–(x–m)2–m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=–x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当–1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是A.①B.②C.③D.④7. (2020·常德)二次函数的图象如图所示,下列结论:240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .18. (2020·湖北孝感)将抛物线:y =-2x +3向左平移1个单位长度,得到抛物线,抛物线与抛物线关于x 轴对称,则抛物线的解析式为( ) A.y =--2 B.y =-+2 C.y =-2 D.y =+2二、填空题9. 经过A (4,0),B (-2,0),C (0,3)三点的抛物线解析式是_____________.10. 如图所示,抛物线y =ax 2-3x +a 2-1经过原点,那么a 的值是________.11. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.12. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,=-.则M、N的大小关系为M__________N.(填“>”、“=”或“<”)N a b13. 如图,抛物线y=-x2+x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.14. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题15. 已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.16. 把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT -4所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.17. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.18. 如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2021中考数学专题训练:二次函数的图象及性质-答案一、选择题1. 【答案】C[解析]根据二次函数的性质进行判断,由二次函数y=(x-2)2+1,得它的顶点坐标是(2,1),对称轴为直线x=2,当x=2时,函数的最小值是1,图象开口向上,当x≥2时,y的值随x值的增大而增大,当x<2时,y的值随x值的增大而减小,可由y=x2的图象向右平移2个单位长度,再向上平移1个单位长度得到,所以选项C是错误的,故选C.2. 【答案】A【解析】∵抛物线y=a(x-h)2+k的顶点坐标是(h,k),∴y=2(x -3)2+1的顶点坐标是(3,1).3. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.4. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.5. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a +b -c<0,故③错误.④当x =1时,y =a +b +c ,由图可得,当x =-3时,y<0.因为抛物线的对称轴为直线x =-1,所以由对称性可知,当x =1时,y<0,即a +b +c<0,故④正确.综上所述,①④正确,故选A.6. 【答案】C【解析】把(m ,–m+1)代入y=–x+1,–m+1=–m+1,左=右,故①正确; 当–(x –m)2–m+1=0时,x1=1m m -x2=1m m - 若顶点与x 轴的两个交点构成等腰直角三角形, 则1–m+(1–m)2+1–m+(1–m)2=4(1–m),即m2–m=0,∴m=0或1时,∴存在一个m 的值,使得函数图象的顶点与x 轴的两个交点构成等腰直角三角形;故②正确; 当x1<x2,且x1、x2在对称轴右侧时,∵–1<0,∴在对称轴右侧y 随x 的增大而减小,即y1>y2,故③错误; ∵–1<0,∴在对称轴左侧y 随x 的增大而增大, ∴m≥2,故④正确, 故选C .7. 【答案】B 【解析】本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =,22ba∴-=,40a b ∴+=,故③正确,由图象知,抛物线开口方向向下,0a ∴<.∵40a b +=,0b ∴>.∵抛物线与y 轴的交点在y 轴的正半轴上,0c ∴>.0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.综上所述,正确的结论有3个,因此本题选B .8. 【答案】A【解析】利用平移得性质“上加下减,左加右减”得抛物线得解析式:y =-2(x +1)+3,整理得y =+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y =--2.故选A. 二、填空题9. 【答案】y=-(x -4)(x +2)[解析]设抛物线解析式为y=a (x -4)(x +2),把C (0,3)代入上式得3=a (0-4)(0+2),解得a=-,故y=-(x -4)(x +2).10. 【答案】-1 [解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.11. 【答案】3212. 【答案】<【解析】当1x =-时,0y a b c =-+>, 当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<, 即M N <, 故答案为:<.13. 【答案】2[解析]当y=0时,-x 2+x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-x 2+x +2=2,∴点C 的坐标为(0,2). 当y=2时,-x 2+x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0),将A (-2,0),D (2,2)代入y=kx +b ,得解得∴直线AD 的解析式为y=x +1.当x=0时,y=x +1=1,∴点E 的坐标为(0,1). 当y=1时,-x 2+x +2=1,解得x 1=1-,x 2=1+, ∴点P 的坐标为(1-,1),点Q 的坐标为(1+,1),∴PQ=1+-(1-)=2.14. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题15. 【答案】解:∵抛物线的对称轴是直线x =2且经过点A(1,0),∴由抛物线的对称性可知,抛物线还经过点(3,0).设抛物线的解析式为y =a(x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3),即该抛物线的解析式为y =x2-4x +3.16. 【答案】解:(1)此二次函数的解析式为y =(x +1)2-4,即y =x2+2x -3.(2)∵当y =0时,x2+2x -3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB =4. 设点M 的坐标为(m ,n).∵△ABM 的面积为20,∴12AB·|n|=20,解得n =±10. 当n =10时,m2+2m -3=10,解得m =-1+14或m =-1-14,∴点M 的坐标为(-1+14,10)或(-1-14,10);当n =-10时,m2+2m -3=-10,此方程无解.故点M 的坐标为(-1+14,10)或(-1-14,10).17. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.18. 【答案】(1)将A(1,2)、O(0,0)、C(2,1)分别代入y=ax2+bx+c,得2,0,42 1.a b cca b c++=⎧⎪=⎨⎪++=⎩解得32a=-,72b=,0c=.所以23722y x x=-+.(2)如图2,过点P、M分别作梯形ABPM的高PP′、MM′,如果梯形ABPM是等腰梯形,那么AM′=BP′,因此yA-y M′=yP′-yB.直线OC的解析式为12y x=,设点P的坐标为1(,)2x x,那么237(,)22M x x x-+.解方程23712()222x x x--+=,得123x=,22x=.x=2的几何意义是P与C重合,此时梯形不存在.所以21(,)33P.图2 图3(3)如图3,△AOB 与△COD 重叠部分的形状是四边形EFGH ,作EK ⊥OD 于K .设点A ′移动的水平距离为m ,那么OG =1+m ,GB ′=m .在Rt △OFG 中,11(1)22FG OG m ==+.所以21(1)4OFG S m ∆=+. 在Rt △A ′HG 中,A ′G =2-m ,所以111'(2)1222HG A G m m ==-=-. 所以13(1)(1)22OH OG HG m m m =-=+--=. 在Rt △OEK 中,OK =2 EK ;在Rt △EHK 中,EK =2HK ;所以OK =4HK . 因此4432332OK OH m m ==⨯=.所以12EK OK m ==. 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是22213111(1)44224OFG OEH S S S m m m m ∆∆=-=+-=-++2113()228m =--+. 因为0<m <1,所以当12m =时,S 取得最大值,最大值为38.。
2021中考数学专题复习:二次函数综合专项训练题1(培优 附答案详解)
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.(1)求这个抛物 Nhomakorabea的表达式;
(2)已知点D在抛物线上,且横坐标为2,求出△BCD的面积;
(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
12.如图,抛物线 与 轴交于点 、 ,与 轴交于点 , , 、 两点间的距离为 ,抛物线的对称轴为 .
6.如图,在平面直角坐标系xOy中,直线y=mx+k,与x轴,y轴分别交于点A,B,经过点A的抛物线y=ax2+bx﹣3a与x轴另一个交点为点D,AD=4,将点B向右平移5个单位长度,得到点C.
(1)求点C的坐标(用k表示);
(2)求抛物线的对称轴;
(3)若抛物线的对称轴在y轴右侧,连接BD,BD比BO长1,抛物线与线段BC恰有一个公共点,求直线y=mx+k的解析式和a的取值范围.
(1)求抛物线的解析式;
(2)如图1,对称轴上是否存在点 ,使 ,若存在,求出点 的坐标;若不存在,请说明理由.
(3)如图2,抛物线的顶点为 ,对称轴交 轴于点 ,点 为抛物线上一点,点 不与点 重合.当 时,过点 分别作 轴的垂线和平行线,与 轴交于点 、与对称轴交于点 ,得到矩形 ,求矩形 周长的最大值;
重庆中考数学第25题二次函数综合专题训练2
2021级重庆中考数学第25题二次函数综合专题训练21.如图,直线y=−x+3与x轴、y轴分别交于点B、C,对称轴为x=1的抛物线经过B、C 两点,与x轴的另一个交点为A,顶点为D、点P是该抛物线上的一个动点,过点P作PE⊥x 轴于点E,分别交线段BD、BC于点F、G,设点P的横坐标为t(1<t<3).(1)求该抛物线所对应的函数关系式及顶点D的坐标;(2)求证:①FG=GE;②∠BDC=∠CAO;(3)当△FCG为等腰三角形时,求t的值.2.如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.3.如图,在平面直角坐标系中,二次函数的图像交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点C使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.4.如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(2,1),将此矩形绕点O逆时针旋转90°得矩形DEFO,抛物线y=-x2+bx+c过B、E两点.(1)求此抛物线的函数解析式.(2)将矩形DEFO向右平移,当点E的对应点E’在抛物线上时,求线段DF扫过的面积.(3)若将矩形ABCO向上平移d个单位长度后,能使此抛物线的顶点在此矩形的边上,求d 的值.5.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.6.如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+34x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)3.在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.7.如图,抛物线y=﹣x2+bx+c经过点A,B,C,已知点A(﹣1,0),点C(0,3).(1)求抛物线的表达式;(2)P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)设E是抛物线上的一点,在x轴上是否存在点F,使得A,C,E,F为顶点的四边形是平行四边形?若存在,求点F的坐标;若不存在,请说明理由.8.如图,已知二次函数y=ax2+bx+c 的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3).(1)求此二次函数的解析式(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线1 的对称点为M,点M 关于y 轴的对称点为N,若四边形OAPN 的面积为20,求m,n 的值;(3)在对称轴直线l 上是否存在一点D,使△ADC 的周长最短,如果存在,求出点D 的坐标;如果不存在,请说明理由.9.已知抛物线y=a(x﹣1)2过点(3,4),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,1),且∠BDC=90°,求点C的坐标:(3)如图,直线y=kx+1﹣k与抛物线交于P、Q两点,∠PDQ=90°,求△PDQ面积的最小值.10.如图,在平面直角坐标系xoy中,把抛物线y=x2先向右平移1个单位,再向下平移4个单位,得到抛物线y=(x−ℎ)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为M;(1)写出h、k的值以及点A、B的坐标;(2)判断三角形BCM的形状,并计算其面积;(3)点P是抛物线上一动点,在y轴上找点Q.使点A,B,P,Q组成的四边形是平行四边形,直接写出对应的点P的坐标.(不用写过程)(4)点P是抛物线上一动点,连接AP,以AP为一边作正方形APFG,随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,请直接写出对应的点P的坐标.(不写过程)11.如图,抛物线y =ax 2+bx +c 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,且当x =0和x =2时,y 的值相等,直线y =3x -7与这条抛物线交于两点,其中一点横坐标为4,另一点是这条抛物线的顶点M.(1)求顶点M 的坐标.(2)求这条抛物线对应的函数解析式.(3)P 为线段BM 上一点(P 不与点B ,M 重合),作PQ ⊥x 轴于点Q ,连接PC ,设OQ =t ,四边形PQAC 的面积为S ,求S 与t 的函数解析式,并直接写出t 的取值范围.(4)在线段BM 上是否存在点N ,使△NMC 为等腰三角形?若存在,求出点N 的坐标,若不存在,说明理由.12.已知顶点为A 的抛物线y =a(x −12)2−2 经经经B(−32经2)经经C(52经2).(1)经经经经经经经经经(2)经经1经经经AB经x经经经经经M经经y经经经经经E经经经经经y经经经经经F经经经经AB经经经经P经经经OPM经经MAF经经经POE经经经经(3)经经2经经Q经经经A经B经C经经经经经经Q经QN经y经经经经E经EN经x经经经经QN经经经EN经经经经N 经经经QE经经经QEN经QE经经经经经QEN′经经经N′经经x经经经经经经经经Q经经经经.13.经经经经经y =−x −2经经经经经经经经经A经经B经经经A经y经经经经经经经经经C经经经经(3,1).(1)经经经经经经经经经(2)经P经经经AB经经经经经经经PM//x经经经经经BC经经经经经经经经经M经N经经经P经PE⊥x经经经E经经PE经PM经经经经经经经经y经经经经经Q经经|PQ−CQ|经经经经经经|PQ−CQ|经经经经经经经Q经经经经(3)经经经经经经经经D经经△ABD经经经经经经经经D经经经经.x+3经y经经经经C经14. .经经经经经经y经经x2+bx+c经x经经经A经经1经0经经B经5经0经经经经经经y经经34经x经经经经D.经P经经经CD经经经经经经经经经经经经经P经PF经x经经经F经经经经CD经经E经经经P经经经经经m.(1)经经经经经经经经经(2)经PE经经经经经m经经.(3)Q经经经经经经经经经经经经经2.经经经经经经PQCD经经经经经经经经经经经经经经经经经经经经经经经经经经经Q经经经经经经经经经经经经经经.15.如图,已知抛物线经过点A(-1,0),B(4,0)C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,1),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边2形?16. 如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.。
2021年重庆中考25题:二次函数专题练习(12月月考考试试题集)
2021年重庆年中考25题二次函数专题练习(12月月考考试试题集)1(八中2021级初三上定时训练12)如图,二次函数21(0)2y x bx c a =++≠的图象与x 轴相交于点A 、B (A 在B 左侧),点A 的坐标为(-2,0),与y 轴正半轴交于点C ,点D 在抛物线上,CD//x 轴,且CD=6, (1)求抛物线的解析式;(2)如图①,点P 为线段CD 上方抛物线上一点,连接OP 交CD 于点E ,点Q 是线段AB 上一点,求四边形PEQD 面积的最大值,并求出此时点P 的坐标;(3)如图②,抛物线上一点F 的横坐标为2,直线CF 交x 轴于点G ,点M 为y 轴右侧上一点,过点M 作直线CF 的垂线,垂足为Q ,若∠MCN=∠BGC ,直接写出点N 的坐标.2(八中2021级初三定时训练11)如图1,抛物线2y ax bx c =++与x 轴交于点A 、B 两点,与y 轴交于点C ,点D 为抛物线的顶点,对称轴为直线x=2,已知经过点B 、C 两点的直线解析式为5y x =-+ (1)求此抛物线的解析式;(2)如图1,点E 为直线BC 上方抛物线上一点,过点E 作EF ⊥x 轴于F ,交BC 于点M ,作EG ⊥BC 于G ,求△EGM 周长的最大值,以及此时点E 的坐标;(3)如图2,连接BD ,将抛物线向右平移,使得新抛物线过原点,点P 为直线BD 上一点,在新抛物线上是否存在点Q ,使得以点A 、C 、P 、Q 为顶点的四边形为平行四边形?若存在,请直接写出点Q 坐标,若不存在,请说明理由.3(八中2020级初三第三次月考)如图在平面直角坐标系中,已知抛物线2(0)y ax bx c a =++≠交x 轴于A (-4,0),B (1,0),交y 轴于C (0,3) (1)求此抛物线解析式;(2)如图1,点P 为直线AC 上方抛物线上一点,过点P 作PQ ⊥x 轴于点Q ,再过点Q 作QR//AC 交y 轴于点R ,求PQ+QR 的最大值及此时点P 的坐标;(3)如图2,点E 在抛物线上,横坐标为-3,连接AE ,将线段AE 沿直线AC 平移,得到线段''A E ,连接'CE ,当△''A E C 为等腰三角形时,只写写出点'A 的坐标。
2021年重庆中考数学二次函数25题专题训练解析版
2021重庆中考数学二次函数25题专题训练1.如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.2.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.3. 二次函数2y -与x 轴分别交于A 、B 两点,与y 轴交于点C ,点D 为抛物线的顶点,连接BD .(1)如图1,点P 为抛物线上的一点,且在线段BD 的下方(包括线段的端点),连接PA ,PC ,AC .求PAC ∆的最大面积;(2)如图2,直线1l 过点B 、D .过点A 作直线21//l l 交y 轴于点E ,连接点A 、E ,得到OAE ∆,将OAE ∆绕着原点O 顺时针旋转(0180)αα︒<<得到△11OA E ,旋转过程中直线1OE 与直线1l 交于点M ,直线11A E 与直线1l 交于点N .当△1E MN 为等腰三角形时,直接写出点1E 的坐标并写出相应的α值.4.已知二次函数3332332--=x x y 与x 轴交于B A 、两点(点A 在点B 左侧),与y 轴交于点C ,抛物线的对称轴与抛物线交于点D ,连接BD AD 、.(1)如图1,求ABD ∆的周长;(2)如图2,点P 是线段CB 下方抛物线上一点,过点P 作y 轴的平行线交BC 于点M ,交BD 于点N ,BC PH ⊥,点Q 是以P 为圆心PN 为半径的圆周上的动点,点R 是直线AD 上的动点,当PHM ∆周长最大时,求RQ BR +的最小值;(3)将抛物关于y 轴对称,对称后的抛物线与x 轴分别交于11B A 、点(点1A 在点1B 的左侧),连接D A 1,将D B A 11∆绕点1A 顺时针旋转α(0180α<≤),记旋转后的图形为121D B A ∆,旋转过程中直线12D B 分别与直线D A 1和x 轴交于点E 、点F ,当EF A 1∆是等腰三角形时,请直接写出F B 2的长度.5.已知抛物线y=﹣x2+x+9与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)如图1,点P为线段BC上方抛物线上的任意一点,当四边形PCAB面积最大时,连接OP并延长至点Q,使PQ=OP,在对称轴上有一动点E,将△ACE沿边CE翻折得到△A′CE,取BA′的中点N,求BQ+QN的最大值;(2)如图2,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为A1,C1,且点A1落在线段AC上,再将△A1OC1沿y轴平移得△A2O1C2,其中直线O1C2与x轴交于点K,点T是抛物线对称轴上的动点,连接KT,O1T,△O1KT能否成为以O1K为直角边的等腰直角三角形?若能,请直接写出所有符合条件的点T的坐标;若不能,请说明理由.(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物1.解:(1)在直线解析式y=x+2中,令x=0,得y=2,∴C(0,2).∵点C(0,2)、D(3,)在抛物线y=﹣x2+bx+c上,∴,解得b=,c=2,∴抛物线的解析式为:y=﹣x2+x+2.(2)∵PF∥OC,且以O、C、P、F为顶点的四边形是平行四边形,∴PF=OC=2,∴将直线y=x+2沿y轴向上、下平移2个单位之后得到的直线,与抛物线y轴右侧的交点,即为所求之交点.由答图1可以直观地看出,这样的交点有3个.将直线y=x+2沿y轴向上平移2个单位,得到直线y=x+4,联立,解得x1=1,x2=2,∴m1=1,m2=2;将直线y=x+2沿y轴向下平移2个单位,得到直线y=x,联立,解得x3=,x4=(不合题意,舍去),∴m3=.∴当m为值为1,2或时,以O、C、P、F为顶点的四边形是平行四边形.(3)存在.理由:设点P的横坐标为m,则P(m,﹣m2+m+2),F(m,m+2).如答图2所示,过点C作CM⊥PE于点M,则CM=m,EM=2,∴FM=y F﹣EM=m,∴tan∠CFM=2.在Rt△CFM中,由勾股定理得:CF=m.过点P作PN⊥CD于点N,则PN=FN•tan∠PFN=FN•tan∠CFM=2FN.∵∠PCF=45°,∴PN=CN,而PN=2FN,∴FN=CF=m,PN=2FN=m,在Rt△PFN中,由勾股定理得:PF==m.∵PF=y P﹣y F=(﹣m2+m+2)﹣(m+2)=﹣m2+3m,∴﹣m2+3m=m,整理得:m2﹣m=0,解得m=0(舍去)或m=,∴P(,);同理求得,另一点为P(,).∴符合条件的点P的坐标为(,)或(,).2.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).(2)∵y=﹣x2+x+3=﹣(x﹣1)2+,∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)=﹣m2+m+15=﹣(m﹣)2+,∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD ∼△MQN , ∴==,∴MQ =MN =,NQ =MN =, ∴NQ ﹣RM =,OR +MQ =,∴N (﹣,).综上所述,满足要标的N 点坐标有:(,)、(3,3)、(﹣,).3. (1)222333333(23)(1)232222y x x x x x =--=--=--, ∴顶点D 的坐标为(1,23)-,令0y =,则23(23)02x x --=, 1x ∴=-或3x =,(1,0)A ∴-,(3,0)B ,令0x =,则332y =-, 33(0,)2C ∴-, AC ∴是定值,要ACP ∆的面积最大,则点P 到AC 的距离最大,即当点P 在点B 位置时,点P 到AC 的距离最大, ()33113133222ABC ACP S S AB OC ∆∆∴==⋅=+⋅=最大; (2)由(1)知,(3,0)B ,(1,23)D -,∴直线1l 的解析式为333y x =-,12//l l ,且1l 过点A ,∴直线2l 的解析式为33y x =+,(0,3)E ∴, 3OE ∴=,在Rt AOE ∆中,1OA =, 3tan 3OA AEO OE ∴∠==,30AEO ∴∠=︒, 12//l l ,60DBO ∴∠=︒,由旋转知,1OE OE ==,1130A E O AEO ∠=∠=︒, 130ME N ∴∠=︒如图,△1E MN 为等腰三角形,∴①当1111E N M N =时,1111130E M N A E O ∴∠=∠=︒,603060BOM α∴=∠=︒-︒=︒,过点1E 作1E F x ⊥轴于F ,1112E F OE ∴==,132OF F ∴=,13(2E ∴,②当2222E M E N =时,2222221(18030)752E N M E M N ∠=∠=︒-︒=︒,2756015BOM ∴∠=︒-︒=︒,105α∴=︒,过点2E 作2E H x ⊥轴,在OH 上取一点Q ,使2OQ E Q =, 230E QH ∴∠=︒,设2E H a =,则22E Q a =,HQ =,22OQ E Q a ∴==,(2OH a =+,在2Rt OHE ∆中,根据勾股定理得,22[(2]3a a ++=,a ∴(舍去负值),2E ∴.③当3333E M M N =时,33333330E N M M E N ∠=∠=, 333120E M N ∴∠=︒,360BOM ∴∠=︒,150α∴=︒, 360OBM ∠=︒,33330E N M ∠=︒, 390N GB ∴∠=︒,32OG ∴=,332E G =, 33(2E ∴,3)2-. 4. 解:(1)⎪⎪⎭⎫⎝⎛-∴334,1D当0=y 时,03332332=--x x 1,321-==∴x x ())0,1(,0,3-∴A B 4=∴AB2213AD BD ∴==42143ABD C AB AD BD ∆=++=+(2)PMN ∆ ∽BOC ∆PM HM PH PM C PMH 233+=++=∴∆ ∴当PM 最大时,PHM C ∆最大设⎪⎪⎭⎫ ⎝⎛---333233,),333,(2m m m P m m M ∴m m PM 3332+-= 23=∴m 时,⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-3,23,435,23N P43=∴PN B 点关于直线AD 的对称点)7316,711(1--BRQ BR +∴最小=432899191-=-PN P B(3)283843433B F =±或或5. 解:(1)针对于抛物线y =﹣x 2+x +9,令x =0,则y =9, ∴C (0,9), 令y =0, ∴0=﹣x 2+x +9,∴x =﹣3,或x =9,∴A (﹣3,0),B (9,0), ∵S 四边形ABPC =S △ABC +S △BPC =×(9+3)×9+S △BPC =45+S △BPC ,要四边形ABPC 的面积最大,只要△BPC 的面积最大, ∵B (9,0),C (0,9)∴直线BC 的解析式为y =﹣x +9,如图1,过点P 作PD '∥y 轴交BC 于D ', 设点P (m ,﹣ m 2+m +9)(0<m <9),∴D (m ,﹣ m +9), ∴PD '=﹣m 2+m +9﹣(﹣m +9)=﹣m 2+m =﹣(m ﹣)2+,∴S △BPC = [﹣(m ﹣)2+]×9=﹣(m ﹣)2+∴当m=时,△BPC的面积最大,即:四边形ABPC的面积最大,∴P(,),∵点Q在OP的延长线上,且PQ=OP,∴Q(9,),∵B(9,0)∴BQ⊥x轴,BQ=,如图2,延长BQ至F,使QF=BQ,连接A'F,∴BF=45,∴F(9,45),∵点N是A'B的中点,∴QN是△A'BF的中位线,∴A'F=2QN,∵BQ+QN=9+QN,最大,∴QN最大,即:A'F最大,由折叠知,点A'在以点C为圆心,AC=6为半径的圆上,∴FA'过点C时,A'F最大,∵C(0,9),F(9,45),∴直线CF的解析式为y=x+9,令y=0,∴x=﹣>3,∴点A'在x轴下方,如图3,过点C作CD⊥BF于D,在Rt△CDF中,CF==9,=CF+A'C=9+6,∴A'F最大=,∴QN最大∴(QN+QB)=+=;最大(2)在Rt△AOC中,OA=3,OC=9,∴tan∠OAC==,∴∠OAC=60°,由旋转知,OA=OA1,∴△AOA1是等边三角形,∠A1OA=60°=∠OA1C1,∴A1C1∥x轴,∴∠OC1A1=30°,C1(9,3)∴直线OC1的解析式为y=x,∵OC1∥O1C2,∴设直线O1C2的解析式为y=x+b,∴O1(0,b),K(﹣b,0),∴OO1=|b|,OK=|b|,∵抛物线的解析式为y=﹣x2+x+9,∴此抛物线的对称轴为x=3,①当∠O1KT=90°时,b<0,OO1=﹣b,OK=﹣b,如图4,易证,△O1OK≌△KHT(AAS),∴OO1=KT,OK=HT,∴|b|+|b|=3,∴b=.∴HT=OK=,∴T(3,);②当∠KO1T=90°时,当b>0时,如图5,OO1=b,OK=b,易证,△O1OK≌△O1HT(AAS),∴OO 1=HT ,OK =O 1H , ∴b =3,∴OH =O 1H ﹣OO 1=OK ﹣OO 1=9﹣3,∴T (3,9﹣3);当∠KO 1T =90°时,当b <0时,如图6, OO 1=﹣b ,OK =﹣b ,易证,△O 1OK ≌△O 1HT (AAS ), ∴OO 1=HT ,OK =O 1H , ∴b =﹣3,∴OH =O 1H +OO 1=OK +OO 1=9+3,∴T (3,﹣9﹣3); 即:(3,)或(3,9﹣3)或(3,﹣9﹣3).6.(1)∵3332332--=x x y , ∴()()3133-+=x x y . ∴A (-1,0),B (3,0). 当x =4时,335=y . ∴E (4,335), 设直线AE 的解析式为y=kx+b ,将点A 和点E 的坐标代入得:⎪⎩⎪⎨⎧=+=+-33540b k b k , 计算得出:33,33==b k , ∴直线AE 的解析式为3333+=x y (2)设直线CE 的解析式为3-=mx y ,将点E 的坐标代入得33534==m ,计算出332=m . ∴直线CE 的解析式为3332-=x y . 过点P 作PF ∥y 轴,交CE 与点F.设点P 的坐标为⎪⎪⎭⎫ ⎝⎛--333233,2x x x ,则点F ⎪⎪⎭⎫ ⎝⎛-3332,x x , 则FP=x x x x x 33433333233333222+-=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-, ∴△EPC 的面积=x x x x 3383324334332122+-=⨯⎪⎪⎭⎫ ⎝⎛+-⨯ ∴当x =2时,△EPC 的面积最大.∴P (2,3-).如图2所示:作点K 关于CD 和CP 的对称点G 、H,连接G 、H 交CD 和CP 与N 、M.∵K 是CB 的中点. ∴k (23,23-).∵点H 与点K 关于CP 对称,∴点H 的坐标为(23,23-).∵点G 与点K 关于CD 对称, ∴点G (0,0),∴KM+MH+NK=MH+MN+GN.当点O 、N 、M 、H 在条直线上时,KM+MH+NK 有最小值,最小值=GH.∴GH=32322322=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛. ∴KM+MH+NK 的最小值为3. (3)如图3所示:∵y′经过点D ,y′的顶点为点F , ∴点F (3,334-). ∵点G 为CE 的中点, ∴G (2,33). ∴FG=3212335122=⎪⎪⎭⎫ ⎝⎛+ ∴当PG=PQ 时,点Q (3,321234+-),Q′(3,321234--).当GF=GQ 时,点F 与点Q″关于33=y 对称, ∴点Q″(3,32). 当QG=QF 时,设点Q 1的的坐标为(3,a ).由两点间的距离公式可以知道:22331334⎪⎪⎭⎫ ⎝⎛-+=+a a ,计算得出:532-=a . ∴点Q 1的坐标为(3,532-). 综上所述,点Q 的坐标为(3,321234+-)或(3,321234--)或(3,32)或(3,532-).。
2021年重庆年中考12题几何中长度的计算或二次函数图像分析综合专题(重庆育才试题集)
2021年重庆年中考12题几何中长度的计算或二次函数图像分析综合专题(重庆育才试题集)1(育才2021级初三上定时训练二)如图,ACB ∆和ECD ∆都是等腰直角三角形,CB CA =,CD CE =,ACB ∆的顶点A 在ECD ∆的斜边DE 上,AB 、CD 交于F ,若6=AE ,8=AD ,则AF 的长为( )A. 5B. 740C. 528 D. 62(育才2020级初三下中考模拟5月份)如图,抛物线y =ax 2+bx +c (a ≠0)过点(3,0),且对称轴为直线x =1.下列说法,其中正确的是( )①abc <0②b 2﹣4ac >0;③a ﹣b +c <0;④b ﹣c >2aA .①②B .①③④C .②④D .①②④3(育才2020级初三下中考模拟二)如图,在四边形ABCD中,90ABC BCD∠=∠=,,3,3AB BC==,把Rt△ABC沿着AC翻折得到Rt△AEC,若23tan CED∠=,则线段DE的长度A.63B.73C.32D.2754(育才2020级初三下中考模拟三))如图,将矩形ABCD沿EF对折,点A1恰好落在CD边上的中点处,线段A1B1交BC于点G,若AB=6,AD=9,则CG的长度为.5(育才2019级初三下中考模拟一如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点F、E,若CD=,BC=4,则CE的长度为.6(育才2020级初三下中考模拟二练习)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.7(双福育才2020级初三下中考模拟一)如图,矩形ABCD 中,E 是AD 的中点,将ABE 沿BE 折叠后得到GBE ,延长BG 交CD 于F 点,若CF =1,FD =2,则BC 的长为( )A.32B.26C.25D. 238(育才2020级初三下入学测试)如图,△ABC 中,∠ABC =45°,∠ACB =30°,BC =13+,点D 是线段BC 上一动点,连接AD ,把△ADC 沿AD 翻折得到△ADE ,点F 为AE 的中点,连接BF ,则线段BF 的最小值为( ).A .22-B .12-C .13-D .213-9(育才2020级初三上第二次月考)如图所示,抛物线c bx ax y 2的对称轴为23 x ,与x 轴的一个交点⎪⎭⎫ ⎝⎛-0,21A ,抛物线的顶点B 纵坐标21<<B y ,则以下结论: ①0 abc ;②04-2 ac b ;③0-3 b a ;④04<+c a ;⑤8121-<<-a .其中正确结论的个数是( ) A .2B .3C .4D .510(双福育才2020级初三下第二次诊断性测试)在正方形ABCD 中,AB =252+,E 是边BC 的中点,F 是AB 上一点,线段AE 、CF 交于点G ,且CE =EG ,将∆ABF 沿CF 翻折,使得点B 落在点M ,连接GM 并延长交AD 于点N ,则∆AGN 的面积为 .11(育才2020级初三下开学试卷已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论错误的是()A.4a+2b+c>0 B.abc<0 C.b<a﹣c D.3b>2c12(育才2020级初三上期末试卷)如图,正方形ABCD中,AD=4,E在AB上且AB=4BE,连接CE,作BF⊥CE于F,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为.13(育才2020级初三上开学测试)如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.14(育才2020级初三上期中试卷)如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD 交BC 的延长线于点E ,则△ABE 的面积为( )A .B .C .3D .15(育才2020级初三下入学测试)如图,已知二次函数()02≠++=a c bx ax y 的图象与x 轴交于点A (-1,0),与y 轴的交点在B (0,-2)和(0,-1)之间(不包括这两点),对称轴为直线1=x ,下列结论不正确的是( )A. 039=++c b aB. 034>-c bC. a b ac 442-<-D.6531<<a16(育才2019级初三是哪个期末测试)如图,在矩形ABCD 中,8AB =,12BC =,点E 为BC 的中点,将ABE △沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( ).A .165B .185C .245D .365答案:1.故选:B .2解:∵抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(3,0),其对称轴为直线x =1,∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0)和(﹣1,0),且b=﹣2a,由图象知:a<0,c>0,b>0,b2﹣4ac>0,∴abc<0故结论①②正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0),∴a﹣b+c=0,故结论③错误;∵a﹣b+c=0,a<0,∴2a﹣b+c<0,∴b﹣c>2a,故结论④正确;故结论正确的有①②④,故选:D.3.解:B4.(解:∵四边形ABCD是矩形,∴AB=CD=6,∠D=∠C=90°∵将矩形ABCD沿EF对折,点A1恰好落在CD边上的中点处,∴AE=A1E,A1D=3=A1C,∠EA1G=90°∵A1E2=DE2+A1D2,∴(9﹣DE)2=DE2+9,∴DE=4,∵∠DEA1+∠DA1E=90°,∠EA1D+∠GA1C=90°,∴∠DEA1=∠GA1C,∠D=∠C=90°∴△A1DE∽△CGA1,∴∴∴GC=故答案为:5.解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD=AD=AB,∵CD=,BC=4∴AB=2,∴由勾股定理得AC==2,∵CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAF+∠ACF=90°,又∠ACB=90°,∴∠BCD+∠ACF=90°,∴∠CAF=∠BCD=∠B,即∠B=∠CAF,∴△ACE∽△BCA,∴=,∴CE==1.故答案为:1.6.∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.7.答案B8.答案B9.答案B10.答案:551611.解:(A)由于对称轴为x=1,∴(0,y)与(2,y)关于x=1对称,∵x=0,y>0,∴x=2,y>0,∴y=4a+2b+c>0,故A正确;(B)由图象可知a<0,c>0,∵x=>0,∴b>0,∴abc<0,故B正确;(C)∵=﹣1,∴2a=b,∵b﹣a+c=2a﹣a+c=a+c,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a>c,∴a+c>2c>0,∴b>a﹣c,故C错误;(D)∵3b﹣2c=6a﹣2c>2a﹣2c=2(a﹣c)>0,∴3b>2c,故D正确;故选:C.12.解:如图,连接BG,过B作BH⊥GF于H,由题可得,BE=1,BC=4,AE=3,OC=2,∴Rt△BCE中,CE=,∵BF⊥CE,∠CBE=90°,∴BF==,∵Rt△BCE中,BF⊥CE;Rt△ABC中,BO⊥AC,∴BC2=CF×CE,BC2=CO×CA,∴CF×CE=CO×CA,即,又∵∠OCF=∠ECA,∴△COF∽△CEA,∴∠CFO=∠CAB=45°,由折叠可得,∠CFG=∠CFO=45°,∴∠BFH=90°﹣45°=45°,∴△BFH是等腰直角三角形,∴FH=BH=BF=,∵△COF∽△CEA,∴,即,∴OF==GF,∴HG=FG﹣FH=,∴Rt△BHG中,BG==.故答案为:..13解:连接BF,∵BC=12,点E为BC的中点,∴BE=6,又∵AB=8,∴AE===10,由折叠知,BF⊥AE(对应点的连线必垂直于对称轴)∴BH==,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF===,故选:D.14.解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B..15.答案:D.16.答案:D。
2021年重庆中考数学第25题二次函数综合专题训练1
2021级重庆中考数学第25题二次函数综合专题训练11.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.2.如图,抛物线y =−x 2−2x +3的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N.若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ.过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=DQ ,求点F 的坐标.3.已知:如图,二次函数y =﹣12x 2+32x +2的图象交x 轴于A 点和B 点(A 点在B 点左则),交y 轴于E 点,作直线EB ,D 是直线EB 上方抛物线上的一个动点,过D 点作直线l 平行于直线EB.M 是直线EB 上的任意点,N 是直线l 上的任意点,连接MO ,NO 始终保持∠MON 为90°,以MO 和ON 为边,做矩形MONC.(1)在D 点移动过程中,求出当△DEB 的面积最大时点D 的坐标:在△DEB 的面积最大时,求矩形MONC 的面积的最小值;(2)在△DEB 的面积最大时,线段ON 交直线EB 于点G ,当点D ,N ,G ,B 四个点组成平行四边形时,求此时线段ON 与抛物线的交点坐标.4.如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在2.的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.5.如图1,抛物线y=﹣x2+2x+3与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).(1)写出D的坐标和直线l的解析式;(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,抛物线y=﹣√33x 2+2√33x+√3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D.(1)求直线BC 的解析式;(2)如图2,点P 为直线BC 上方抛物线上一点,连接PB 、PC.当△PBC 的面积最大时,在线段BC 上找一点E (不与B 、C 重合),使PE+12BE 的值最小,求点P 的坐标和PE+12BE 的最小值;(3)如图3,点G 是线段CB 的中点,将抛物线y=﹣√33x 2+2√33x+√3沿x 轴正方向平移得到新抛物线y′,y′经过点D ,y′的顶点为F.在抛物线y′的对称轴上,是否存在一点Q ,使得△FGQ 为直角三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.7.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.8.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y 轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.9.如图,已知抛物线y=ax2+bx+c的图象经过点A(3,3)、B(4,0)和原点O,P为直线OA上方抛物线上的一个动点.(1)求直线OA及抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,并与直线OA交于点C,当△PCO为等腰三角形时,求D的坐标;(3)设P关于对称轴的点为Q,抛物线的顶点为M,探索是否存在一点P,使得△PQM的面积为1,8如果存在,求出P的坐标;如果不存在,请说明理由.x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10.如图,已知抛物线y=1310),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.m的顶点为A,与y轴交于点11.如图①,在平面直角坐标系中,抛物线y=x2﹣2mx+m2+43B.当抛物线不经过坐标原点时,分别作点A、B关于原点的对称点C、D,连结AB、BC、CD、DA.(1)分别用含有m的代数式表示点A、B的坐标.(2)判断点B能否落在y轴负半轴上,并说明理由.(3)连结AC,设l=AC+BD,求l与m之间的函数关系式.(4)过点A作y轴的垂线,交y轴于点P,以AP为边作正方形APMN,MN在AP上方,如图②,当正方形APMN与四边形ABCD重叠部分图形为四边形时,直接写出m的取值范围.12.如图,已知抛物线y=ax2+bx+c(a<0)分别交x轴、y轴于点A(2,0)、B(0,4),点P 是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若a+b=0.①求抛物线的解析式;②当线段PD的长度最大时,求点P的坐标;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B,P,D为顶点的三角形与ΔAOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.x2 bxc经过△ABC 的三个顶点,其中点A(0,1),点B(9,10),13.如图,已知抛物线y13AC∥x 轴,点P 是直线AC 下方抛物线上的动点,过点P 且与y 轴平行的直线l 与直线AB、AC 分别交于点E、F.(1)求抛物线的函数表达式;(2)如图1,当四边形AECP 的面积最大时,求点P 的坐标和四边形AECP 的最大面积;(3)如图2,当点P 为抛物线的顶点时,在直线AC 上是否存在点Q,使得以C,P,Q 为顶点的三角形与△ABC 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.14.如图1,已知二次函数y=mx 2+3mx ﹣274m 的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点D 和点B 关于过点A 的直线l :y=﹣√33x ﹣3√32对称.(1)求A 、B 两点的坐标及二次函数解析式;(2)如图2,作直线AD ,过点B 作AD 的平行线交直线1于点E ,若点P 是直线AD 上的一动点,点Q 是直线AE 上的一动点.连接DQ 、QP 、PE ,试求DQ+QP+PE 的最小值;若不存在,请说明理由:(3)将二次函数图象向右平移32个单位,再向上平移3√3个单位,平移后的二次函数图象上存在一点M ,其横坐标为3,在y 轴上是否存在点F ,使得∠MAF=45°?若存在,请求出点F 坐标;若不存在,请说明理由.15.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.16.抛物线y=ax2+bx的顶点M(√3,3)关于x轴的对称点为B,点A为抛物线与x轴的一个交点,点A关于原点O的对称点为A′;已知C为A′B的中点,P为抛物线上一动点,作CD⊥x轴,PE⊥x轴,垂足分别为D,E.(1)求点A的坐标及抛物线的解析式;(2)当0<x<2√3时,是否存在点P使以点C,D,P,E为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.。
2021年重庆年中考25题二次函数综合专题(3)
2021重庆年中考25题二次函数综合专题(3)1(巴蜀2021级初三上定时训练二)如图,已知二次函数2y ax bx c =++的图像与x 轴交于A 、B ,与y 轴交于点C , ∠ACB=90,且OC=2OA 。
(1)求此二次函数的关系式;(2)若点P 为直线BC 上方抛物线上的一动点,PM ⊥BC 与M ,PN//y 轴交BC 于N ,求△PMN 的周长的最大值及此时P 的坐标;(3)过点A 作BC 的平行线交抛物线与D 、E 为直线AD 上一动点,F 为平面内一动点,当以B 、C 、E 、F 为顶点的四边形为菱形是,请直接写出点E 的坐标。
2(重庆一外2021级九上第四次周考)如图1,3y x =+与x 轴交于点B ,作点A 关于y 轴的对称点C ,连接BC ,作∠ABD 的平分线交x 轴于点D. (1)求线段CD 的长;(2)如图2,点E 为直线AB 位于y 轴右侧部分图像的一点,连接CE ,当32BCEABCSS =时,点F 为直线BC 上的一动点,当EF DF -的值最大时,求EF DF -的最大值及此时点F 的坐标;(3)将△BOD 沿水平方向平移个单位得到'''B O D △绕点'D 逆时针防线旋转,旋转角毒α满足0180α<<,在旋转的过程中直线''O B 分别于直线AB 、直线AC 交于点M 、点N ,是否存在某一时刻是的△AMN 是以∠MAN 为底角的等腰三三角形?若存在请直接写出AN 的长;若不存在请说明理由。
3(重庆育才成功学校2021级九上第一次周考)如图,抛物线23233y x x =-++与x 轴相交于点A 、B 两点,交y 轴于点C (A 点在B 点左侧),连接AC 、BC 。
(1)若点M 为线段BC 上方的抛物线上的一动点,过点M 作MN//y 轴交BC 于点N 当23MN 长度最大时,求点M 的坐标;(2)点P 为直线BC 上一动点,点Q 为抛物线上一动点,是否存在这样的点P 、Q 使得以O 、C 、P 、Q 为顶点的四边形时平行四边形?若存在。
2021年重庆中考25题二次函数综合专题(八中试题集) (无答案)
2021年重庆年中考25题二次函数综合专题(八中试题集)1(八中2020级初三下定时训练九)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=﹣2+bx+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC为什么取值范围时,对应的点F有且只有两个?2(八中2020级初三下定时训练五))如图,在平⾯直⻆坐标系中,⾯次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,﹣)、B(﹣2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.(1)求⾯次函数解析式;(2)如图1,点P是第四象限抛物线上⾯动点,若∠PBA=∠BAD,抛物线交x轴于点C.求△BPC的⾯积;(3)如图2,点Q是抛物线第三象限上⾯点(不与点B、D重合),连接BQ,以BQ为边作正⾯形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.3(八中2020级初三下定时训练八)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y 轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.4(八中2021级初三上第一次月考模拟)己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.5(八中2020级初三上定时练习十四)已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB<OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线2-=x .(1)求此抛物线的表达式;(2)若点E 是线段AB 上的一个动点(与点A 、B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 的最大值;(3)若点M 在抛物线的对称轴上,P 是平面坐标系上一点,在抛物线上是否存在一点N ,使以P 、C 、M 、N 为顶点的四边形是正方形?如果存在,请写出满足条件的点N 的坐标;如果不存在,请说明理由。
重庆中考数学2021年应用题和二次函数专题训练及答案(1)
重庆中考数学2021年应用题和二次函数专题训练及答案(1)重庆中考数学2021年应用题和二次函数专题训练及答案(1)1.超市首次从生产基地以3000元的价格购买了某种水果,并很快售罄。
该公司第二次以2400元购买了同一品种的水果。
第二次购买每公斤水果的购买价格是第一次的1.2倍,重量比第一次少20公斤(1)求两次购进水果每千克的进价分别是多少元?(2)在两个购买水果的运输过程中,总重量减少了10%。
如果两种水果的售价相同,超市必须在所有水果售完后获得至少20%的总利润,那么每公斤水果的最低售价应该是多少?(结果保持整数)解:(1)设第一次购进水果单价x元,则第二次购进水果单价1.2x元由题意得3000x-24001.2x=20,解决方案是:x=50,经检验的x=50是原方程的解,而1.2x=60,因此,两次购买的水果每公斤售价分别为50元和60元。
(2)最低应为每公斤y元,购买的水果总质量为:(300050+240060)=100公斤,由题意得:100×90%y-3000-2400≥5400×20%,解得:y≥72,A:水果的最低价格应该是每公斤72元2.一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)水果主人买了两次多少盒这种水果?(2)该水果店主计划第一批水果每箱售价定为40元,第二批水果每箱售价定为50元,每天销售水果30箱.实际销售时按计划售完第一批后发现第二批水果品质不如第一批,必须打折销售才能保证每天销售水果30箱.在销售过程中,该店主每天还需要支出其他费用60元,为了使这两批水果销售完后总利润率不低于30%,那么该店主销售第二批水果时最低可打几折?解决方案:(1)方法1:如果第一次购买x盒,那么第二次购买x盒(1-25%)=0.75x盒。
2021重庆中考复习数学第12题专题训练三(含答案)
2021年重庆中考复习二次函数专题训练三1、已知二次函数2y ax bx c =++(a ≠0)的图象如图,则下列结论错误的是( C ) A .4a +2b +c >0B .abc <0C .b <a ﹣cD .3b >2 c2、如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=OC ,对称轴为直线x =1,则下列结论:①abc <0;②11024a b c ++=;③ac+b+1=0;④2+c是关于x 的一元二次方程ax 2+bx +c =0的一个根.其中正确的有( B )A .1个B .2个C .3个D .4个3、二次函数2y ax bx c =++(a≠0)的图象如图所示,对称轴为x =1.给出下列结论:①ac >0;②24b ac >;③4a+2b+c >0;④3a+c >0.其中,正确的结论有( B )A .1个B .2个C .3个D .4个4、二次函数2y ax bx c =++的图象如图所示,对称轴是直线x =1.下列结论:①abc <0;②3a+c >0;③(a+c )2﹣b 2<0;④a+b≤m (am+b )(m 为实数).其中结论正确的个数为( C ) A .1个 B .2个 C .3个 D .4个5、如图,已知二次函数2y ax bx c =++的图象与x 轴分别交于A 、B 两点,与y 轴交于C 点,OA =OC .则由抛物线的特征写出如下结论:①abc >0;②240ac b ->;③a ﹣b+c >0;④ac+b+1=0.其中正确的个数是( B )A .4个 B .3个 C .2个 D .1个6、如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc <0;②9a+3b+c >0;③若点M (,y 1),点N (,y 2)是函数图象上的两点,则y 1<y 2;④﹣<a <﹣.其中正确结论有( ) A .1个 B .2个C .3个D .4个解:①由开口可知:a <0,∴对称轴x =>0,∴b >0, 第1题图第2题图第3题图第4题图第5题图由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a <﹣,故④正确,故选:D.7、如图,已知二次函数y=ax2+bx+c的图象与x轴交于点A(﹣2,0),与y轴的交点B在(0,2)和(0,3)之间(不包括这两点),对称轴为直线x=2,下列结论:①abc>0,②9a+3b+c>0,③<a <,④4ac﹣b2<﹣14a,⑤b>c,其中正确的个数是()A.2个B.3个C.4个D.5个解:①∵抛物线开口向下,与y轴交于正半轴,对称轴为直线x=2,∴a<0,c>0,﹣=2,∴b=﹣4a>0,∴abc<0,结论①错误;②∵抛物线与x轴交于点A(﹣2,0),对称轴为直线x=2,∴抛物线与x轴另一交点坐标为(6,0),∴当x=3时,y>0,∴9a+3b+c>0,结论②正确;③∵抛物线与x轴交于点A(﹣2,0),对称轴为直线x=2,∴,∴12a=﹣c.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2<c<3,∴﹣3<12a<﹣2,∴﹣<a <﹣,结论③正确;④∵抛物线顶点的纵坐标大于3,∴>3.∵a<0,∴4ac﹣b2<12a<﹣14a,结论④正确;⑤∵12a=﹣c,b=﹣4a,∴﹣3b=﹣c,∴c=3b.∵c>0,∴b<c,结论⑤错误.故选:B.8、如图,已知二次函数y=ax2+bx+c(a≠0)图象过点(﹣1,0),顶点为(1,2),则结论:①abc<0;②x=1时,函数的最大值是2;③a+2b+4c>0;④2a=﹣b;⑤2c>3b.其中正确的结论有()A.4个B.3个C.2个D.1个解:①对称轴在y轴的右侧,则a、b异号,所以ab<0;由抛物线与y轴的交点位于y轴的正半轴则c>0,所以abc<0,故①正确;②∵抛物线的开口方向向下,顶点为(1,2),∴x=1时,函数的最大值是2,故②正确;③x =时,y>0,即a +b+c>0,∴a+2b+4c>0,故③正确;④∵抛物线的对称轴为直线x =﹣=1,∴2a=﹣b,故④正确;⑤∵抛物线过点(﹣1,0),∴a﹣b+c=0,而a =﹣b,∴﹣b﹣b+c=0,∴2c=3b,故⑤错误.综上所述,正确的结论有4个.故选:A.9、如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②8a+c<0;③abc>0;④当y<0时,x<﹣1或x>2,⑤对任意实数m,m(am+b)≤a+b.其中正确的结论有()个.A.2 B.3 C.4 D.5解:①对称轴﹣=1,∴2a+b=0,①正确;②x=﹣2时,y<0,∴4a﹣2b+c<0,由b=﹣2a,∴8a+c<0,②正确;③开口向下,a<0,对称轴在y轴右侧,b>0,与y轴交于正半轴,c>0,∴abc<0,③错误;④当x<﹣1或x>3时,y<0,④错误;⑤当x=1时,函数有最大值,∴am2+bm+c≤a+b+c,∴m(am+b)≤a+b,⑤正确.故选:B.10、(2018秋•西湖区校级期中)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣2,0),与y轴的交点在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.有下列结论:①abc>0;②4a+2b+c>0;③;④b<c.其中正确的()A.①②B.①③C.①④D.③④解:①∵抛物线开口向上,对称轴为直线x=1,与y轴的交点在(0,﹣2)和(0,﹣1)之间,∴a>0,﹣=1,﹣2<c<﹣1,∴b<0,abc>0,结论①正确;②∵抛物线与x轴交于点A(﹣2,0),对称轴为直线x=1,∴抛物线与x轴的另一交点坐标为(4,0),∴当x=2时,y=4a+2b+c<0,结论②错误;③当x=﹣2时,y=4a﹣2b+c=0,∴4a﹣2b=﹣c.∵b=﹣2a,∴8a=﹣c.又∵﹣2<c<﹣1,∴<a <,结论③正确;④∵当x=﹣1时,y=a﹣b+c<0,a>0,∴﹣b+c<0,∴b>c,结论④错误.综上所述:正确的结论有①③.故选:B.11、(2019•惠城区校级一模)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②8a+c <0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4 个B.3 个C.2 个D.1 个解:①函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故原答案错误,不符合题意;②函数的对称轴为:x =﹣=1,故b=﹣2a,对称轴为x=1,点B坐标为(﹣1,0),则点A(3,0),故9a+3b+c=0,而b=﹣2a,即3a+c=0,a<0,故8a+c<0,正确,符合题意;③抛物线和x轴有两个交点,故b2﹣4ac>0正确,符合题意;④点B坐标为(﹣1,0),点A(3,0),则当y<0时,x<﹣1或x>3.故错误,不符合题意.故选:C.12、(2019秋•开福区校级月考)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②16a+4b+c<0;③4ac﹣b2<8a;④;⑤b<c.其中正确结论有①③④.解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y 轴负半轴,∴c<0,∴abc>0,故①正确;②当x=4时,y=16a+4b+c>0,故②错误;③∵二次函数y=ax2+bx+c的图象与y轴的交点在(0,﹣1)的下方,对称轴在y轴右侧,a>0,∴最小值:<﹣2,∵a>0,∴4ac﹣b2<﹣8a,∴4ac﹣b2<8a∴③正确;④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1,∴﹣2<﹣3a<﹣1,∴;故④正确;⑤∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),∴a﹣b+c=0,∴a=b﹣c,∵a>0,∴b﹣c>0,即b>c;故⑤错误;综上所述,正确的有①③④,13、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0,②4a+2b+c>0,③4ac﹣b2<8a ,④<a <,⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1,∴﹣2<﹣3a<﹣1,∴>a >;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.14、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c >0;③4ac﹣b2<16a;④;⑤b>c.其中正确结论个数()A.2个B.3个C.4个D.5个解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧,∴a、b异号,b<0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③解法一:由图象知:抛物线与x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∵16a>0,∴4ac﹣b2<16a;解法二:∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1,∴﹣=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0,∵16a>0,∴4ac﹣b2<16a,故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴<a <;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;正确结论为:①③④⑤,有4个,故选:C.15、如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当x>3时,y <0;②a﹣b+c=0;③﹣1≤a≤﹣;④4a+2b+c<2;其中正确的结论是()A.①③④B.①②③C.①②④D.①②③④解:①由抛物线的对称性可求得抛物线与x轴令一个交点的坐标为(3,0),当x>3时,y<0,故①正确;②∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=a﹣b+c=0,故②正确;③设抛物线的解析式为y=a(x+1)(x﹣3),则y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2≤﹣3a≤3.解得:﹣1≤a≤﹣,故③正确;④∵抛物线与x轴的交点为(﹣1,0)和(3,0),且开口向下,∴当x=2时,y=4a+2b+c>0,故④错误.故选:B.16、(2019•随县一模)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有()A.1个B.2个C.3个D.4个解:由图知:抛物线的开口向下,则a<0;抛物线的对称轴x =﹣>﹣1,且c>0;①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;②已知x =﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;③抛物线对称轴位于y轴的左侧,则a、b同号,又c>0,故abc>0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④错误;因此正确的结论是①②.故选:B.17、(2014•河东区一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列结论:①abc>0;②2a﹣b>0;③20a<(4a+b)2;④0<a <.正确的个数为()A.1 B.2 C.3 D.4解:①由图象开口向上得到a>0,<0所以a和b同号,b>0,又因为图象和y轴交与负半轴,故c<0,所以abc<0,①不正确.②根据图象得﹣=﹣1,所以b=2a,即2a﹣b=0错误.③把(2,4)代入整理得,4a+2b+c=4,∴c=4﹣4a﹣2b ,由图象得,∴4ac﹣b2<﹣4a,即4a(4﹣4a﹣2b)﹣b2+4a<0,∴16a﹣16a2﹣8ab﹣b2+4a<0∴20a<16a2+8ab+b2,即20a<(4a+b)2,故正确.④c=4﹣4a﹣2b=4﹣8a,由图象得到﹣1<c<0,∴4﹣4a﹣2b>﹣1∴4a+2b<5,即2a+b <,又∵b=2ª,∴4a <即a又∵﹣1<4﹣8a<0,∴<a <.故错误.故选:A.。
2021年重庆中考数学三轮冲刺第25题二次函数综合专题专训一
2021年重庆中考数学三轮冲刺第25题二次函数综合专题专训一1.综合与探究如图,抛物线y=ax2+bx−4与x轴交于A(−3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式:(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH−CH|值最大时,求点H坐标:(3)若抛物线上存在一点P(m,n),mn>0,当S ABC=S ABP时,求点P坐标:(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.2.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.3.如图,二次函数y=−x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标(直接写出答案);4.如图,抛物线y=ax2−2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE//AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.6.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.7.如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.8.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.9.如图,抛物线y=−x2+bx+c交X轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3 .图①图②(1)求抛物线的函数表达式及其顶点C的坐标;(2)如图①,点P(m,0)是线段AO上的一个动点,其中−3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥X轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形.若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线上的一个动点,求使△BPC为直角三角形的点P的坐标.(直接写出)12.综合与探究如图,已知抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.其顶点为D,对称轴是直线l,且与x轴交于点H.(1)求点A,B,C,D的坐标;(2)若点P是该抛物线对称轴l上的﹣个动点,求△PBC周长的最小值;(3)若点E是线段AC上的一个动点(E与A.C不重合),过点E作x轴的垂线,与抛物线交于点F,与x轴交于点G.则在点E运动的过程中,是否存在EF=2EG?若存在,求出此时点E的坐标;若不存在,请说明理由.x+π与x轴、y轴分别交于点A和点B(0,﹣1),抛13.如图1,在平面直角坐标系xOy中,直线l:y=34x2+bx+c经过点B,且与直线l的另一个交点为C(4,n).物线y=12(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,且点D 的横坐标为t (0<t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标.14.如图,抛物线y=14x 2+ 14x+c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D.(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).15.如图,抛物线y=x 2﹣4x ﹣5与x 轴交于A ,B 两点(电B 在点A 的右侧),与y 轴交于点C ,抛物线的对称轴与x 轴交于点D.(1)求A ,B ,C 三点的坐标及抛物线的对称轴.(2)如图1,点E (m ,n )为抛物线上一点,且2<m <5,过点E 作EF ∥x 轴,交抛物线的对称轴于点F ,作EH ⊥x 轴于点H ,求四边形EHDF 周长的最大值.(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,B,C为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.16.如图,抛物线y=13x2−13x−4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年重庆年中考25题二次函数综合专题练习(11月中旬期中集合)1(一外2021级初三上期中测试)如果,直线3y x =-与x 轴,y 轴分别交于B 、C 两点,点A 为x 轴上一点,抛物线2y x bx c =++恰好经过A 、B 、C 三点,对称轴分别与抛物线交于点D ,与x 轴交于点E ,连接AC 、EC , (1)求抛物线的解析式(2)点P 是抛物线上异于点D 的一动点,若PBCAECSS=求此时点P 的坐标;(3)在(2)的条件下,若P 在BC 下方,Q 是直线PO 上一点,M 是射线PC 上一点,请问对称轴上是否存在一点N ,使得P 、Q 、M 、N 构成以PN 为对角线的菱形,若存在,请直接写出点N 的坐标;若不存在,请说明.2(南开2021级初三上期中测试)抛物线21+4y x bx c =-+与x 轴交于A 、B 两点,与y 轴交于点C ,且A (2,0),B (-6,0).(1)求抛物线以及直线BC 的解析式;(2)如图1,点P 是直线BC 上方抛物线的一动点,谷点P 作PQ//y 轴交直线BC 于点Q ,点T 在直线QB 上,连接PT ,若△PQT 是以PQ 为底的等腰三角形,则△PQT 的周长是否存在最大值?若存在,求出周长的最大值以及此时点P 的坐标;若不存在,请说明理由;(3)如图2,过点A 作AF//y 轴交直线BC 于点F ,点D 是抛物线的顶点,连接BD 、CD 、OF,△OAF 沿射线AB 防线以每秒1个单位长度运动,运动时间为t (t>0),当点F 与点D 重合时立即停止运动,设运动过程中△OAF 与四边形OCDB 重叠部分面积为S ,请直接写出S 与t 的函数关系式.3(育才2020级初三上期中考试)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C.(1)求直线BC 的解析式;(2)若点P 为抛物线上一动点,当点P 运动到某一位置时,43ABPABC SS =,求此时点P 的左边.(3)若将△AOC 沿射线CB 方向平移,平移后的三角形记为111A O C △,连接1A A 交抛物线于M 点,是否存在点1C ,使得1AMC △为等腰三角形?若存在,直接写出1C 点横坐标;若不存在,请说明理由.4(一中共同体2021级初三上期中测试)如图,在平面直角坐标系xOy中,已知抛物线223=-++与x轴交y x x=+恰好经过于A、B两点,与y轴交于点D,抛物线顶点为E,C、D两点关于抛物线的对称轴对称,直线y kx bA、C两点.(1)求直线AC的解析式;(2)设点P是直线AC上方抛物线上的一动点,求当△PAC的面积取得最大值时,求此时点P的坐标;(3)若点M在此抛物线上,点N在对称轴上,则以A、C、M、N为顶点的四边形能否成为以AC为边的平行四边形?若能,请直接写出所有满足要求的点M的坐标;若不能,请说明理由.5(巴蜀2021级初三上期中测试)如图,点A 在抛物线26y x x =-+上,且横坐标为1,点B 与点A 关于抛物线的对称轴对称,直线AB 与y 轴交于点C ,点D 为抛物线的顶点,点E 的坐标为(2,2). (1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当△PBE 的面积最大时,求PH HF +的最小值;(3)在(2)中,2PH HF ++取得最小值时,将△CFH 绕点C 顺时针旋转60后得到''CF H △,过点'F 作'CF 的垂直与直线AB 交于点Q ,点R 为y 轴上一动点,M 为平面直角坐标系中的一动点,是否存在使以点D 、Q 、R 、M 为顶点的四边形为矩形?若存在,请直接写出点R 的坐标;若不存在,请说明理由.6(八中2021级初三上期中测试)如图1,抛物线)0(32≠++=a bx ax y 与x 轴交于点A (-3,0)和B(1,0)两点,与y 轴交于点C (1)求该抛物线的函数表达式;(2)P 是抛物线上位于直线AC 上方的一个动点,过点P 作PD ∥y 轴交AC 于点D ,过点P 作PE ⊥AC 于点E ,过点E 作EF ⊥y 轴于点F ,求出PD +EF 的最大值及此时点P 的坐标;M ,点N 为,N ,H 为顶点的四边7(南开2021级初三上阶段测试二)如图,抛物线21322y x x =-++与坐标轴分别交于A ,B ,C 三点,D 是抛物线的顶点,连接BC ,BD ,(1)求点D 的坐标及直线BC 的解析式;(2)点P 是直线BC 上方抛物线上的一点,E 为BD 上一动点,当PBC 面积为2716时,求点P 的坐标,并求出此时2PE BE +的最小值; (3)在(2)的条件下,延长PE 交x 轴于点F ,在抛物线的对称轴上是否存在一点Q ,使得PFQ △为直角三角形?若存在请直接写出点Q 的坐标,若不存在请说明理由.8(十八中2021级初三上周测五)如图1,抛物线21333y x x =--+与x 轴交于点A 、B 两点,与y 轴交于点C,连接AC 、BC. (1)求线段AC 的长;(2)如图2,E 为抛物线的顶点,F 为AC 上方的抛物线上一动点,M 、N 为直线AC 上的两动点(M 在N 的左侧),且MN=4,作FP ⊥AC 于点P ,FQ//y 轴交AC 于点Q ,当△FPQ 的面积最大时,连接EF 、EN 、FM,求四边形ENMF 周长的最小值.(3)如图3,将△BCO 沿x '''B C O △,再将'''B C O △绕点'O 顺时针旋转α度,得到'''''B C O △(其中0180α<<),旋转过程中直线''''B C 与直线AC 交于点G ,与x 轴交于点H ,当△AGH 时等腰三角形时,求α的度数.9(八中2021级九上周测六)如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),与y轴交于C点,D是抛物线的顶点且纵坐标为2.(1)求点D的坐标及直线BC的解析式;(2)如图2,连接BD,P点为BD上方抛物线一点,过点P作PH⊥BD于H,过P点作y轴平行线交BC于E,有最大值时的P点坐标及最大值为多少?PE(3)在抛物线对称上有一点M ,在平面直角坐标系中有一点N ,使以B 、C 、M 、N 为顶点的四边形为矩形,求出N 点坐标.10(八中2021级九上定时训练八)如图1,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于点A (-1,0),B (6,0)两点,与y 轴交于点C (0,3),顶点为D. (1)求该抛物线的解析式;(2)P 是抛物线上且位于直线BC 上方的一个动点,过点P 作PQ//y 轴交BC 于点Q ,求5PQ CQ +的最大值及此时点P 的坐标;(3)如图2,将原抛物线向右下方平移得到抛物线'y ,使得'y 的顶点在直线BC 上且过点F (2,-1),'y 与原抛物线相交于点E ,点G 我射线BC 上的一动点,是否存在点G ,使得180DBE BEG ∠+∠=,若存在,请直接写出点G 的坐标;若不存在,请说明理由.11(一中2021级初三上国庆作业一)如图,已知抛物线y=﹣x2+x﹣4与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C.(1)连接BC,P是线段BC上方抛物线上的一动点,过点P作PH⊥BC于点H,当PH长度最大时,在△APB 内部有一点M,连接AM、BM、PM,求AM+BM+PM的最小值.(2)若点D是OC的中点,将抛物线y=﹣x2+x﹣4沿射线AD方向平移个单位得到新抛物线y′,C′是抛物线y′上与C对应的点,抛物线y'的对称轴上有一动点N,在平面直角坐标系中是否存在一点S,使得C′、N、B、S为顶点的四边形是矩形?若存在,请直接写出点S的坐标;若不存在,请说明理由.12(巴蜀2021级初三上第一次月考)如图1,在平面直角坐标系中,抛物线6332612++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。
(1)点P 为线段BC 上方抛物线上(不与B 、C 重合)的一动点,连接OP 交BC 于点D ,当OD PD 取得最大值时,将P 点沿着射线CB 方向平移6个单位长度,设点P 平移后的对应点记为'P ,在线段BC 上取一点E ,当CE E P 3'32+值最小时,求此时E 点的坐标;(2)如图2,抛物线对称轴与x 轴交于点K ,与线段BC 交于点M ,在对称轴上取一点R ,使得KR =12(点R 在第一象限),连接BR 。
已知点N 为线段BR 上一动点,连接MN ,将△BMN 沿MN 翻折到△MN B '。
若'B 罗在直线BR 的右侧或直线BR 上,当△MN B '与△BMR 重叠部分(如图中的△MNQ )为直角三角形时,将此Rt △MNQ 绕点Q 顺时针旋转α(︒<≤︒1800α)得到Rt △Q N M '',直线''N M 分别与直线BR 、直线BM 交于点G 、H 。
当△BGH 是以∠GBH 为底角的等腰三角形时,请直接写出BG 的长。
答案:1.(1)抛物线解析式:223y x x =--,点D (1,-4)(2)1233131(((2,3)2222P P P +-(3)12N N2.(1)直线BC 解析式:132y x =-+,抛物线解析式:2134y x x =--+ (2)P 15(3,)4-,△PQT(3)2223(0)211293(2)55521216(24)2055t t S t t t t t t ⎧<<⎪⎪⎪=+-≤≤⎨⎪⎪-++≤≤⎪⎩3.(1)B(3,0),C(0,-3)BC 解析式为:3y x =-(2)123(1,4),(1(1P P P -+-(3)123471662x x x x ====4.(1)直线AC 解析式1y x =+(2)315(,)24P(3)121212(2,(2,33N N -+-5.(1)AB=4,(2)P 535(,)24,PH=5(3)1234(0,15),(0,7(0,15),(0,7R R R R6.(1)223y x x =++(2)PD +EF 为及此时点P 11(3,)4;(3)1234533(4,2),(2,),(2,(2,244H H H H -+--7.(1)D (1,2),BC 解析式:1322y x =-+(2)P (755432,),最大值为:2516(3)1234533(4,2),(2,),(2,(2,)244N N N N --8.(1)6AC =(2)周长最小值:4+(3)=1560105150α或或或9.(1)21322y x x =-++(4)755(,)432P 最大值:2516(5)1234533(4,2),(2,),(2,(2,)244N N N N --10.(1)215322y x x =-++(2)1113(,)28P PQ 最大值为:1218(3)445(,)99G11.(1)AM PM ++=(2)存在,点S 的坐标1234251(,3),(,3)(),()22222424S S S S -+----,12.(1)9()22(2)3BG =或4或或。