方程与不等式专题测试试卷.docx
(专题精选)初中数学方程与不等式之不等式与不等式组经典测试题及答案解析

(专题精选)初中数学方程与不等式之不等式与不等式组经典测试题及答案解析一、选择题1.不等式组30213xx+⎧⎨->⎩…的解集为()A.x>1 B.x≥3C.x≥﹣3 D.x>2【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:30213xx+>⎧⎨->⎩①②,由①得,x≥﹣3,由②得,x>2,故此不等式组的解集为:x>2.故选:D.【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.2.关于 x 的不等式组21231xx a-⎧<⎪⎨⎪-+>⎩恰好只有 4 个整数解,则 a 的取值范围为()A.-2≤a<-1 B.-2<a≤-1 C.-3≤a<-2 D.-3<a≤-2【答案】A【解析】【分析】首先确定不等式组的解集,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解:21231xx a-⎧<⎪⎨⎪-+>⎩①②解不等式组①,得x<72,解不等式组②,得x>a+1,则不等式组的解集是a+1<x<72, 因为不等式组只有4个整数解,则这4个解是0,1,2,3.所以可以得到-1⩽ a+1<0,解得−2≤a <−1.故选A .【点睛】本题主要考查了一元一次不等组的整数解.正确解出不等式组的解集,确定a+1的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->【答案】A【解析】设至少要跑x 分钟,根据“18分钟走的路程≥2100米”可得不等式:210x+90(18–x )≥2100,故选A .4.已知方程组31331x y m x y m+=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( ) A .m >1B .m <-1C .m >-1D .m <1【答案】C【解析】【分析】 直接把两个方程相加,得到12m x y ++=,然后结合0x y +>,即可求出m 的取值范围. 【详解】 解:31331x y m x y m +=+⎧⎨+=-⎩, 直接把两个方程相加,得:4422x y m +=+, ∴12m x y ++=, ∵0x y +>, ∴102m +>,∴1m >-;故选:C.【点睛】 本题考查了加减消元法解方程组,解题的关键是掌握解方程组的方法,正确得到12mx y ++=,然后进行解题.5.不等式组360420x x +≥⎧⎨->⎩的所有整数解的和为( )A .1B .1-C .2D .2-【答案】D【解析】【分析】求出不等式组的解集,再把所有整数解相加即可.【详解】360420x x +≥⎧⎨->⎩360x +≥解得2x ≥-420x ->解得2x >∴不等式组的解集为22x -≤<∴不等式组的所有整数解为2,1,0,1--∴不等式组的所有整数解之和为21012--++=-故答案为:D .【点睛】本题考查了解不等式组的问题,掌握解不等式组的方法是解题的关键.6.已知关于x 的不等式组的解集在数轴上表示如图,则b a 的值为()A .﹣16B .C .﹣8D .【答案】B【解析】【分析】求出x 的取值范围,再求出a 、b 的值,即可求出答案.【详解】由不等式组, 解得. 故原不等式组的解集为1-b x -a ,由图形可知-3x 2, 故, 解得,则b a =. 故答案选B .【点睛】本题考查的知识点是在数轴上表示不等式的解集,解题的关键是熟练的掌握在数轴上表示不等式的解集.7.下列不等式的变形正确的是( )A .若,am bm >则a b >B .若22am bm >,则a b >C .若,a b >则22am bm >D .若a b >且0,ab >则11a b > 【答案】B【解析】【分析】根据不等式的性质,对每个选项进行判断,即可得到答案.【详解】解:当0m <时,若am bm >,则a b <,故A 错误;若22am bm >,则a b >,故B 正确;当=0m 时,22=am bm ,故C 错误;若0a b >>,则11a b<,故D 错误; 故选:B .【点睛】本题考查了不等式的性质,解题的关键是熟练掌握不等式的性质进行判断.8.从4-,1-,0,2,5,8这六个数中,随机抽一个数,记为a ,若数a 使关于x 的不等式组0331016x a x -⎧<⎪⎨⎪+≥⎩无解,且关于y 的分式方程2233y a y y -+=--有非负数解,则符合条件的a 的值的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由不等式组无解确定出a 的一个取值范围、由分式方程其解为非负数确定a 的一个取值范围,综上可确定a 的最终取值范围,根据其取值范围即可判定出满足题意的值.【详解】 解:0331016x a x -⎧<⎪⎨⎪+≥⎩①②解①得,x a <解②得,2x ≥∵不等式组无解∴2a ≤ ∵2233y a y y-+=-- ∴83a y -= ∵关于y 的分式方程2233y a y y -+=--有非负数解 ∴803a y -=≥且833a -≠ ∴8a ≤且a≠-1∴综上所述,2a ≤且1a ≠-∴符合条件的a 的值有4-、0、2共三个.故选:C【点睛】本题考查了不等式(组)的解法、分式方程的解法,能根据已知条件确定a 的取值范围是解决问题的关键.9.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ). A .17B .18C .22D .25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.解不等式组3422133xx x-≥⎧⎪⎨+>-⎪⎩①②时,不等式①②的解集在同一条数轴上表示正确的是( )A.B.C.D.【答案】D【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解不等式①得:1x≤-,解不等式②得:5x<,将两不等式解集表示在数轴上如下:故选:D .【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.11.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4, 由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.13.下列四个不等式:(1)ac bc >;(2)-ma mb <;22 (3) ac bc >;(4)1a b>,一定能推出a b >的有() A .1个B .2个C .3个D .4个【答案】A【解析】【分析】 根据不等式的性质逐个判断即可求得答案.【详解】解:在(1)中,当c <0时,则有a <b ,故不能推出a >b ,在(2)中,当m >0时,则有-a <b ,即a >-b ,故不能推出a >b ,在(3)中,由于c 2>0,则有a >b ,故能推出a >b ,在(4)中,当b <0时,则有a <b ,故不能推出a >b ,综上可知一定能推出a >b 的只有(3),故选:A .【点睛】本题考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.14.若关于x 的分式方程11144ax x x -+=--有整数解,其中a 为整数,且关于x 的不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩有且只有3个整数解,则满足条件的所有a 的和为( ) A .8B .9C .10D .12 【答案】C【解析】【分析】分别解分式方程和不等式组,根据题目要求分别求出a 的取值范围,再综合分析即可得出a 的值,最后求和即可.【详解】 解:解分式方程11144ax x x -+=--, 得4x 1a=-. 又∵4x ≠,解得0a ≠.又∵方程有整数解,∴11a -=±,2±,4±,解得:2,3a =,1-,5,3-.解不等式组2(1)43,50x x x a +≤+⎧⎨-<⎩,得,25a x -<…. 又不等式组有且只有3个整数解,可求得:05a <≤.综上所述,a 的值为2,3,5,其和为10.故选:C .【点睛】本题主要考查分式方程与不等式组的综合运用,掌握解分式方程的方法,会求不等式组的整数解是解此题的关键.15.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 【答案】B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.16.若关于x 的不等式组24x x a <⎧⎨-≤⎩的解集是2x <,则a 的取值范围是( ) A .2a ≥-B .2a >-C .2a ≤-D .2a <- 【答案】A【解析】【分析】求出不等式的解集,根据已知不等式组的解集x<2,推出a 42+≥求解即可.【详解】因为不等式组24x x a<⎧⎨-≤⎩的解集是x<2所以不等式组2+4<⎧⎨≤⎩x x a 的解集是x<2 根据同小取较小原则可知,a 42+≥ ,故2a ≥-故选:A【点睛】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集和已知得到a 42+≥是解此题的关键.17.若整数a 使关于x 的分式方程111a x a x x ++=-+的解为负数,且使关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10 【答案】C【解析】【分析】解分式方程和不等式得出关于x 的值及x 的范围,根据分式方程的解不是增根且为负数和不等式组无解得出a 的范围,继而可得整数a 的所有取值,然后相加.【详解】解:解关于x 的分式方程111a x a x x ++=-+,得x =−2a+1, ∵x ≠±1,∴a ≠0,a≠1,∵关于x 的分式方程111a x a x x ++=-+的解为负数, ∴−2a+1<0, ∴12a >, 解不等式1()02x a -->,得:x <a , 解不等式2113x x +-≥,得:x≥4, ∵关于x 的不等式组1()022113x a x x ⎧-->⎪⎪⎨+⎪-≥⎪⎩无解,∴a ≤4,∴则所有满足条件的整数a 的值是:2、3、4,和为9,故选:C .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,熟练掌握解分式方程和不等式组的方法,并根据题意得到a 的范围是解题的关键.18.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.19.已知实数(0)a a >,b ,c 满足0a b c ++<,20a b +=,则下列判断正确的是( ).A .c a <,24b ac >B .c a <,24b ac <C .c a >,24b ac >D .c a >,24b ac <【答案】A【解析】【分析】由20a b +=,可得2,b a =- 代入0a b c ++<可得答案,再由2b a =-得到224,b a =利用已证明的基本不等式c a <,利用不等式的基本性质可得答案.【详解】解:20,a b +=Q2,b a ∴=- 224,b a =0,a b c ++Q <20,a a c ∴-+<,c a ∴<0,a Q > 40,a ∴>244,a ac ∴>24.b ac ∴>故选A .【点睛】本题考查的是不等式的基本性质,掌握不等式的基本性质是解题关键.20.若关于x 的不等式0521x m x -<⎧⎨-≤⎩,整数解共有2个,则m 的取值范围是( ) A .3m 4<<B .3m 4<≤C .3m 4≤≤D .3m 4≤< 【答案】B【解析】【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有2个整数解,即可确定整数解,进而求得m 的范围.【详解】解:0521x m x -<⎧⎨-≤⎩L L ①②, 解①得x m <,解②得2x ≥.则不等式组的解集是2x m ≤<.Q 不等式组有2个整数解,∴整数解是2,3.则34m <≤.故选B .【点睛】本题考查了不等式组的整数解,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
人教版初中数学方程与不等式之不等式与不等式组经典测试题

人教版初中数学方程与不等式之不等式与不等式组经典测试题一、选择题1.根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由–12a>2得a<2 D.由2x+1>x得x<–1【答案】B【解析】【分析】根据不等式的性质,逐一判定即可得出答案.【详解】解:A、a>b,c=0时,ac2=bc2,故A错误;B、不等式两边同时乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式两边同时乘以或除以同一个负数,不等号的方向改变,而且式子右边没乘以﹣2,故C错误;D、不等式两边同时加或减同一个整式,不等号的方向不变,故D错误.故选:B.【点睛】本题主要考查了不等式的性质,熟练应用不等式的性质进行推断是解题的关键.2.若不等式组0,122x ax x-≥⎧⎨->-⎩有解,则a的取值范围是()A.a>-1 B.a≥-1 C.a≤1D.a<1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a的取值范围是a<1.【详解】解:122x ax x-≥⎧⎨->-⎩①②,由①得:x≥a,由②得:x<1,∵不等式组有解,∴a<1,故选:D.【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.3.不等式组30213x x +⎧⎨->⎩…的解集为( ) A .x >1B .x≥3C .x≥﹣3D .x >2 【答案】D【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:30213x x +>⎧⎨->⎩①②, 由①得,x ≥﹣3,由②得,x >2,故此不等式组的解集为:x>2.故选:D .【点睛】本题考查了解一元一次不等式组,解题的关键是分别解出各不等式的解集,利用数轴求出不等式组的解集,难度适中.4.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.5.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a >D .3a ≥ 【答案】D【解析】【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a ≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.不等式组32110x x -<⎧⎨+≥⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】 32110 x x -<⎧⎨+≥⎩①② 解不等式①得,1x <,解不等式②得,1x ≥-所以,不等式组的解集为:-11x ≤<,在数轴上表示为:故选D.【点睛】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.下列命题中逆命题是真命题的是( )A .若a > 0,b > 0,则a·b > 0B .对顶角相等C .内错角相等,两直线平行D .所有的直角都相等 【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.8.下列不等式变形中,一定正确的是( )A .若ac bc >,则a b >B .若a b >,则22ac bc >C .若22a b c c>,则a b > D .若0a >,0b >,且11a b >,则a b > 【答案】C【解析】【分析】 根据不等式的基本性质分别进行判定即可得出答案.【详解】 A .当c <0,不等号的方向改变.故此选项错误;B .当c=0时,符号为等号,故此选项错误;C .不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D .分母越大,分数值越小,故此选项错误.故选:C .【点睛】此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.已知a >b ,则下列不等式中,正确的是( )A .-3a >-3bB .3a ->3b -C .3-a >3-bD .a-3>b-3【答案】D【解析】【分析】由题意可知,根据不等式的性质,看各不等式是加(减)什么数或乘(除)以哪个数得到的,用不用变号即可求解.【详解】A.a >b ,-3a <-3b ,故A 错误;B.a >b ,3a -<3b - ,故B 错误; C.a >b ,3-a <3-b ,故C 错误; D. a >b ,a -3>b -3,故D 正确;故答案为:D.【点睛】本题考查了不等式的性质,熟练掌握该知识点是本题解题的关键.10.已知不等式组122x a x b +>⎧⎨+<⎩的解集为23x -<<,则2019()a b +的值为( ) A .-1 B .2019 C .1 D .-2019【答案】A【解析】根据不等式组的解集即可得出关于a 、b 的方程组,解方程组即可得出a 、b 值,将其代入计算可得.【详解】解不等式x +a >1,得:x >1﹣a ,解不等式2x +b <2,得:x <22b -, 所以不等式组的解集为1﹣a <x <22b -. ∵不等式组的解集为﹣2<x <3,∴1﹣a =﹣2,22b -=3, 解得:a =3,b =﹣4, ∴201920192019()(34)(1)a b +=-=-=﹣1.故选:A .【点睛】本题考查了解一元一次不等式组,解题的关键是求出a 、b 值.本题属于基础题,难度不大,解集该题型题目时,根据不等式组的解集求出未知数的值是关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得2ax bc >C .由a b >,得ac bc <D .由a b >,得a c b c ->-【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变; ②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变; ③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】A . 若a b >,当c >0时才能得ac bc >,故错误;B . 若a b >,但2,x c 值不确定,不一定得2ax bc >,故错;C . 若a b >,但c 大小不确定,不一定得ac bc <,故错;D . 若a b >,则a c b c ->-,故正确.故选:D【点睛】此题主要考查了不等式的性质,关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.13.已知关于x 的不等式4x a3+>1的解都是不等式2x 13+>0的解,则a 的范围是()A .a 5=B .a 5≥C .a 5≤D .a 5<【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a+>得,34ax ->, 由210,3x +> 得,1,2x >-∵关于x 的不等式413x a+>的解都是不等式2103x +>的解, ∴3142a-≥-,解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.14.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.15.如果不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,m的取值范围为()A.m<4 B.m≥4C.m≤4D.无法确定【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m的范围即可.【详解】解不等式﹣x+2<x﹣6得:x>4,由不等式组26x xx m-+<-⎧⎨>⎩的解集为x>4,得到m≤4,故选:C.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.16.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A .a≤﹣3B .a <﹣3C .a >3D .a≥3【答案】A【解析】 【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可.【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.17.一元一次不等式组2(3)40113x x x +-⎧⎪+⎨>-⎪⎩…的最大整数解是( ) A .1-B .0C .1D .2【答案】C【解析】【分析】解出两个不等式的解,再求出两个不等式的解集,即可求出最大整数解;【详解】 ()2340113x x x ⎧+-⎪⎨+>-⎪⎩①②… 由①得到:2x+6-4≥0,∴x ≥-1,由②得到:x+1>3x-3,∴x <2,∴-1≤x <2,∴最大整数解是1,故选C .【点睛】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.18.已知不等式组2010x x -⎧⎨+≥⎩<,其解集在数轴上表示正确的是( )A .B .C .D .【答案】D【解析】【分析】分别解不等式组中的每一个不等式,确定出各不等式解集的公共部分,进而在数轴上表示出来即可.【详解】2010x x -⎧⎨+≥⎩<①②, 解①得:x<2,解②得:x≥-1,故不等式组的解集为:-1≤x<2,故解集在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式组,正确掌握解题方法以及解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.19.已知点P (1﹣a ,2a+6)在第四象限,则a 的取值范围是( )A .a <﹣3B .﹣3<a <1C .a >﹣3D .a >1 【答案】A【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【详解】解:∵点P (1﹣a ,2a+6)在第四象限,∴10260a a ->⎧⎨+<⎩解得a <﹣3.故选A .【点睛】本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.不等式组53643x x x +>⎧⎨+>-⎩的整数解的个数是( ) A .2B .3C .4D .5【答案】C【解析】【分析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.【详解】 53643x x x +>⎧⎨+>-⎩①②, 由①得:x>-2,由②得:x<3,所以不等式组的解集为:-2<x<3,整数解为-1,0,1,2,共4个,故选C .【点睛】本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.。
方程与不等式测试题

方程与不等式专题练习一、选择题(每小题2分,共60分)1、若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为( )A 、-1B 、0C 、1D 、132、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A 、15025%x =⨯B 、25%150x ⋅=C 、%25150=-x x D 、15025%x -= 3、解方程16110312=+-+x x 时,去分母、去括号后,正确结果是( ) A 、111014=+-+x x B 、111024=--+x x C 、611024=--+x x D 、611024=+-+x x4、方程组125x y x y +=⎧⎨-=⎩,的解是( )A 、12.x y =-⎧⎨=⎩, B 、23.x y =-⎧⎨=⎩, C 、21.x y =⎧⎨=⎩, D 、21.x y =⎧⎨=-⎩, 5、某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x 分,(5)班得y 分,根据题意所列的方程组应为( )A 、65,240x y x y =⎧⎨=-⎩B 、65,240x y x y =⎧⎨=+⎩C 、56,240x y x y =⎧⎨=+⎩D 、56,240x y x y =⎧⎨=-⎩ 6、分式方程xx x -=+--23123的解是( ) A 、2 B 、1 C 、-1 D 、-27、解分式方程2322-+=-x x x ,去分母后的结果是( ) A 、32+=x B 、3)2(2+-=x x C 、)2(32)2(-+=-x x x D 、2)2(3+-=x x8、若关于x 的方程1011m x x x --=--有增根,则m 的值是( ) A、3 B、2 C、1 D、1-9、关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( )A 、a >-1B 、a >-1且a ≠0C 、a <-1D 、a <-1且a ≠-210、关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( )A 、a ≥1B 、a >1且a ≠5C 、a ≥1且a ≠5D 、a ≠511、已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( )A 、该方程有两个相等的实数根B 、该方程有两个不相等的实数根C 、该方程无实数根D 、该方程根的情况不确定12、下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A 、x 2+1=0B 、9 x 2—6x+1=0C 、x 2—x+2=0D 、x 2-2x-2=013、一元二次方程x 2+kx-3=0的一个根是x=1,则另一个根是( )A 、3B 、-1C 、-3D 、-214、关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A 、1 B 、12 C 、13 D 、2515、如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )A 、-3,2B 、3,-2C 、2,-3D 、2,316、关于x 的方程12mx x -=的解为正实数,则m 的取值范围是( )A 、m ≥2B 、m ≤2C 、m >2D 、m <217、解集在数轴上表示为如图所示的不等式组是( )A 、32x x >-⎧⎨⎩≥B 、32x x >-⎧⎨⎩≤C 、32x x <-⎧⎨⎩≥D 、32x x <-⎧⎨⎩≤ 18、不等式110320.x x ⎧+>⎪⎨⎪-⎩,≥的解集是( )A 、-31<x ≤2 B 、-3<x ≤2 C 、x ≥2 D 、x <-3 19、不等式组⎩⎨⎧>-<-050x x 的正整数解的个数是( )A 、2个 B 、3个 C 、4个 D 、5个20、一个一元一次不等式组的解集在数轴上的表示如上图,则该不等式组的解集是( )A 、13x -≤<B 、13x -<≤C 、1x ≥-D 、3x <21、下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b ,得a >bD 、由a >b ,得a 2>b 222、不等式组320,10x x ->⎧⎨+⎩≥的解集在数轴上表示正确是的是 ( ) 23、货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A、203525-=x x B、x x 352025=- C、203525+=x x D、xx 352025=+ 24、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A 、128)% 1(1682=+aB 、128)% 1(1682=-a C 、128)% 21(168=-a D 、128)% 1(1682=-a 25、某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元,设这件衣服的进价为x 元,根据题意,下面所列的方程正确的是( )A 、x ·50%×80%=240B 、x ·(1+50%)×80%=240C 、240×50%×80%=xD 、x ·(1+50%)=240×80% 26、庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有( )队参加比赛.A 、12B 、11C 、9D 、1027、某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
方程与不等式考核试卷

4.给出一个包含绝对值符号的方程例子,并说明如何求解这类方程。同时,请解释绝对值方程与绝对值不等式的区别。
起一行后以“四、判断题”为固定字符,输出标准答案(直接输出答案,不要有解析);另起一行后以“五、主观题”为固定字符,输出标准答案(直接输出答案,不要有解析)。标准答案中的每个题目的答案应以题目编号开头,例如“1.A 2.B 3.C 4.D”的形式。
B. x^2 - 4 = 0
C. 2x + 4 = 0
D. x^2 + 4x + 4 = 0
6.以下哪些不等式表示x在1和4之间(包括1和4)?()
A. 1 ≤ x ≤ 4
B. 1 < x < 4
C. x ≥ 1 and x ≤ 4
D. x > 1 and x < 4
7.解方程4x^2 - 12x + 9 = 0,以下哪些是x的值?()
A. x = 1
B. x = 2
C. x = 3
D. x = 4
14.以下哪些方程可以分解为(x - 3)(x + 2) = 0?()
A. x^2 - x - 6 = 0
B. x^2 + x - 6 = 0
C. x^2 - 5x + 6 = 0
D. x^2 - 2x - 3 = 0
15.解方程(x - 4)^2 = 9,以下哪些是x的值?()
9.在数轴上表示不等式x ≤ 5时,应该画一个实心圆点在5。()
10.如果一个方程的解是x = -1/3,那它的图像在数轴上表示为一个空心圆点。()
五、主观题(本题共4小题,每题10分,共40分)
第二章《方程与不等式(组)》综合测试卷试题

第二章《方程与不等式(组)》综合测试卷一、选择题(每小题3分,共30分)1.若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为( )A .1B .2C .3D .42.不等式3x +2≥5的解是( )A .x ≥1B .x ≥73C .x ≤1D .x ≤-13.某地即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000 m 的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20 m ,就能提前15天完成任务.设原计划每天铺设钢轨x (m),则根据题意可列方程为( )A.6000x -6000x +20=15B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x =20 4.小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =-1.他核对时发现所抄的c 比原方程的c 值小2,则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是x =-1D .有两个相等的实数根5.某出租车起步价所包含的路程为0~2 km ,超过2 km 的部分按每千米另收费.津津乘坐这种出租车走了7 km ,付了16元;盼盼乘坐这种出租车走了13 km ,付了28元.设这种出租车的起步价为x 元,超过2 km 后每千米收费y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +7y =16,x +13y =28B.⎩⎪⎨⎪⎧x +(7-2)y =16,x +13y =28 C.⎩⎪⎨⎪⎧x +7y =16,x +(13-2)y =28 D.⎩⎪⎨⎪⎧x +(7-2)y =16,x +(13-2)y =28 6.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3.现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( )A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-37.已知关于x 的一元二次方程x 2+2x +m -2=0有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为( )A .6B .5C .4D .38.已知关于x 的分式方程m -2x +1=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠29.已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,则下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和-1都是关于x 的方程x 2+bx +a =0的根D .1和-1不都是关于x 的方程x 2+bx +a =0的根10.已知关于x 的不等式ax -2>0的解是x <-2,若关于x 的不等式组⎩⎪⎨⎪⎧ax +b ≥0,-2x +2<x -3恰有4个整数解,则实数b 的取值范围是( )A .5<b <6B .5<b ≤6C .5≤b <6D .5≤b ≤6二、填空题(每小题4分,共24分)11.一元二次方程x 2-8x +4=0配方后可化为 .12.若关于x 的方程(m -5)x 2+4x -1=0有实数根,则m 的取值范围是 .13.若关于x 的一元二次方程ax 2-x -14=0(a ≠0)有两个不相等的实数根,则点P (a +1,-a -3)在第__ __象限.14.对非负实数x “四舍五入”到个位的值记为(x ),即当n 为自然数时,若n -0.5≤x <n +0.5,则(x )=n .如(1.34)=1,(4.86)=5.若(0.5x -1)=6,则实数x 的取值范围是_15.爸爸沿街匀速行走,发现每隔7 min 从背后驶过一辆103路公交车,每隔5 min 从迎面驶来一辆103路公交车.假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶的速度是爸爸行走速度的___倍.16.对于实数p ,q ,我们用符号min{p ,q }表示p ,q 两数中较小的数,如min{1,2}=1.因此min{-2,-3}= .若min{(x -1)2,x 2}=1,则x = .三、解答题(共66分)17.(6分)解方程:(1)y -12-y -24=3. (2)4x -3-1x=0. (3)(x -3)2+4x (x -3)=0.18.(6分)解不等式组⎩⎪⎨⎪⎧2x -7<3(x -1),5-12(x +4)≥x ,并将解在数轴上表示出来. 19.(6分)已知关于x 的一元二次方程x 2-3x +k =0有实数根.(1)求k 的取值范围.(2)如果k 是符合条件的最大整数,且一元二次方程(m -1)x 2+x +m -3=0与方程x 2-3x +k =0有一个相同的根,求此时m 的值.20.(8分)某社区计划对面积为3600 m 2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,两队各自独立完成面积为600 m 2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成的绿化面积.(2)若甲队每天的绿化费用是1.2万元,乙队每天的绿化费用是0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?21.(8分)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,且进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率.(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次?并说明理由.22.(10分)已知关于x 的方程2x 2-5x ·sin A +2=0有两个相等的实数根,其中∠A 是锐角三角形ABC 的一个内角.(1)求sin A 的值.(2)若关于y 的方程y 2-10y +k 2-4k +29=0的两个根恰好是△ABC 的两边长,求△ABC 的周长.23.(10分)如图,在矩形ABCD 中,AB =6 cm ,BC =12 cm ,点P 从点B 出发,沿线段BC ,CD 以2 cm /s 的速度向终点D 运动;同时,点Q 从点C 出发,沿线段CD ,DA 以1 cm /s 的速度向终点A 运动(P ,Q 两点中,只要有一点到达终点,则另一点立即停止运动).(第23题)(1)哪一点先到终点?运动停止后,另一点离终点还有多远?(2)在运动过程中,△APQ 的面积能否等于22 cm 2?若能,需运动多长时间?若不能,请说明理由.24.(12分)对x ,y 定义一种新运算,规定:T (x ,y )=ax +by 2x +y(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a ·0+b ·12×0+1=b . (1)已知T (1,-1)=-2,T (4,2)=1.①求a ,b 的值.②若关于m 的不等式组⎩⎨⎧T (2m ,5-4m )≤4,T (m ,3-2m )≥P 恰好有3个整数解,求实数P 的取值范围.(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立[这里T (x ,y )和T (y ,x )均有意义],则a ,b 应满足怎样的关系?。
初中数学总复习方程与不等式测试题(含答案)

初中数学总复习方程与不等式测试题(时间:45分钟,分值:100分)班级 姓名 得分一、选择题(每小题4分,共48分) 1. 方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y xB .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x2. 不等式组⎩⎨⎧>+≤-0302x x 的解集是( )A .23≤<-xB .23<≤-xC .2≥xD .3-<x 3. 已知a ,b 满足方程组⎩⎨⎧=-=+43125b a b a ,则b a +的值为( )A .4-B .2-C .4D .2 4. 若1->m ,则下列各式中错误的...是( ) A .33->m B .312-<-m C .01>+m D .21<-m 5. 不等式组⎩⎨⎧<+<-a x x x 5335的解集为4<x ,则a 满足的条件是( )A .4<aB .4=aC .4≤aD .4≥a 6. 解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=- D .1223x -+= 7. 某种品牌的彩电打7折后,每台售价为a 元,则该品牌彩电每台原价为( ) A .a 70.元 B .a 30.元 C .30.a 元 D .70.a元8. 若关于x 的方程441-=--x mx x 无解,则m 的值为( ) A. 1B. 3C. -3D. 49. 用配方法解方程0122=-+x x 时,配方结果正确的是( )A .2)2(2=+xB .2)1(2=+x C. 3)2(2=+x D .3)1(2=+x 10. 关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( )A .16q <B .16q > C. 4q ≤ D .4q ≥11. 某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( ) A .22x =16(27-x )B .16x =22(27-x )C .2×16x =22(27-x )D .2×22x =16(27-x )12. 分式方程311(1)(2)x x x x -=--+的解为( ) A .x =1B .x =-1C .无解D .x =-2二、填空题(每小题4分,共20分)13. 已知方程组⎩⎨⎧=++=+m y x m y x 35253的解x 、y 互为相反数,则m 的值为 .-114. 关于x 的一元二次方程06)1(22=-++-k k x x k 的一个根式0,则k 的值是_______.015. 关于x 的一元二次方程01)2(22=-+-+a x a a x 的两个实数根互为相反数,则a 的值为 .0 16. 关于x 的分式方程2322x m mx x++=--的解为正实数,则实数m 的取值范围是 .m<6且m≠2. 17. 若α、β为方程01522=--x x 的两个实数根,则β+αβ+α5322的值为 .12 三、解答题(第18题、19题每题10分,第20题12分,共32分)18. 求不等式组⎪⎩⎪⎨⎧<->+x x x 4103160103的最小整数解.19. 关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.20. 某种为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元. (1)甲乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多提供资金4320元,请设计几种购买方案供这个学校选择.初中数学总复习方程与不等式测试题参考答案一、选择题二、填空题 三、解答题18.解:⎪⎩⎪⎨⎧<->+②410316①0103x x x解①,得310->x . 解②,得215<x .∴原不等式组的解集为215310<<-x . ∴原不等式组的最小正整数解为3-=x .19.(1)证明:∵△=01122243222≥-=+-=+-+-)()()]([k k k k k ,∴方程总有两个实数根.(2) 原方程可化为012=---))((k x x , ∴1,221+==k x x .∵方程有一根小于1,∴k+1<1, ∴k<0.即k 的取值范围为k<0.20.解:(1)设甲种书柜单价为x 元,乙种书柜单价为y 元,由题意,得⎩⎨⎧=+=+144034102023y x y x ,解得,⎩⎨⎧==240180y x . 答:甲种书柜单价为180元,乙种书柜单价为240元.(2)设甲种书柜购买m 个,则乙种书柜购买(20-m )个,由题意得:⎩⎨⎧≤-+≥-43202024018020)(m m m m 解之得:108≤≤m因为m取整数,所以m可以取的值为:8,9,10 即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
中考数学《方程与不等式》专题训练50题含参考答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【分析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案.【详解】解:方程()223x x =-化成一般形式是2260x x -+=,∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项. 2.已知一个二次函数图象经过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点,若324y y y <<,则1y ,2y ,3y ,4y 的最值情况是( )A .1y 最小,4y 最大B .3y 最小,1y 最大C .3y 最小,4y 最大D .无法确定【答案】B【分析】设出抛物线的解析式,再把四点的坐标代入,解不等式后确定字母的取值范围,即可判断大小关系,从而知道哪个最小,哪个最大.【详解】解:∵一条抛物线过11(5,)P y -,22(1,)P y -,33P (1,y ),44(5,)P y 四点, 设抛物线的解析式为2y ax bx c =++(a≠0), ∵1255y a b c =-+, 2y a b c =-+,3y a b c =++,4255y a b c =++,∵324y y y <<, ∵a +b+c <a-b+c , ∵b <0,∵255a b c -+>255a b c ++, ∵14y y >,∵3y 最小,1y 最大. 故选B.【点睛】此题考查了二次函数的最值问题,涉及到解不等式,解不等式后确定字母的取值范围是解题关键.3.不等式组410,27x x +>⎧⎨<⎩正整数解的个数有( )A .2个B .3个C .4个D .5个4.下列不等式组中,无解的是( )A .1313x x -<⎧⎨+<⎩B .1313x x ->⎧⎨+>⎩C .1313x x -<⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩【答案】D【分析】根据不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到,即可得出答案. 【详解】解:不等式组整理为: A 、42x x ⎧⎨⎩<<,解集为:2x <; B 、42x x >⎧⎨>⎩,解集为:>4x ; C 、42x x ⎧⎨>⎩<,解集为:24x <<; D 、42x x >⎧⎨⎩<,无解; 故选:D .【点睛】本题主要考查了一元一次不等式解集的求法,熟记求不等式组解集的方法是解题的关键.5.甲队修路120m 比乙队修路210m 所用天数少1天,已知甲队比乙队每天少修40%,设甲队每天修路m x .依题意,下面所列方程正确的是( ) A .12021010.4x x x+=- B .12021010.4x x x-=- C .120210(10.4)1x x -=+ D .120210(10.4)1x x-+=6.已知n 是方程2210x x --=的一个根,则2367n n --=( ) A .10- B .7-C .6-D .4-【答案】D【分析】把n 代入方程得到2210n n --=,再根据所求的代数式的特点即可求解. 【详解】把n 代入方程得到2210n n --=,故221n n -= ∵2367n n --=3(22n n -)-7=3-7=-4, 故选D.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知一元二次方程的解的定义.7.不等式2x﹣1<3的解集在数轴上表示为()A.B.C.D.【答案】D【分析】先解出一元一次不等式的解集,再根据不等式解集的表示方法做出判断即可.【详解】解:由2x﹣1<3得:x<2,则不等式2x﹣1<3的解集在数轴上表示为,故选:D.【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握在数轴上表示不等式的解集的方法是解答的关键.8.若点P(2m-4,2-3m)在第三象限,则实数m的取值范围是()A.223m-<<B.23m<C.223m<<D.223m-<<9.已知关x、y的方程组5331x y ax y a+=+⎧⎨-=-⎩给出下列结论:∵20x y =⎧⎨=⎩是方程组的解;∵无论a 取何值,x 、y 的值都不可能互为相反数; ∵当1a =时,方程组的解也是方程1x y a +=+的一组解; ∵x 、y 都为自然数的解有3对. 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个10.一元二次方程2230x x ++=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定【答案】C【分析】根据方程的系数结合根的判别式即可得出80∆=-<,由此即可得出结论. 【详解】解:∵在方程2230x x ++=中,2241380∆=-⨯⨯=-<, ∵该方程无解. 故选:C .【点睛】本题考查了一元二次方程根的判别式,牢记Δ0<时方程无解是解题的关键. 11.近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校组织八年级同学到劳动教育基地参加实践活动,某小组的任务是平整土地2300m .开始的半小时,由于操作不熟练,只平整完230m .学校要求完成全部任务的时间不超过3小时,若他们在剩余时间内每小时平整土地2m x ,则x 满足的不等关系为( ) A .()3030.5300x +-≤ B .300300.53x --≤ C .()3030.5300x +-≥ D .0.5300303x +-≥【答案】C【分析】设他们在剩余时间内每小时平整土地x m 2,根据学校要求完成全部任务的时间不超过3小时得出不等式解答即可.【详解】解:设他们在剩余时间内每小时平整土地x m 2, 根据题意可得:()3030.5300x +-≥, 故选:C .【点睛】本题考查了由实际问题抽象出一元一次不等式,找准等量关系,正确列出一元一次不等式是解题的关键.12.如图,AB 与CD 相交于点E ,点F 在线段BC 上,且AC //EF //DB .若BE =5,BF =3,AE =BC ,则EBAE的值为( )A .23B .12C .35D .25//EF AC ∴BF BE CF AE =解得92x =92CF ∴=13.若0a b <<,则下列各式中不一定...成立的是( ) A .33a b +<+ B .88a b ->- C .11a b> D .22ac bc <14.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( ) A .k <5 B .k <5,且k ≠1 C .k ≤5,且k ≠1 D .k >5【答案】B【详解】∵关于x 的一元二次方程方程()21410k x x -++=有两个不相等的实数根,∵10Δ0k-≠⎧⎨>⎩,即()2104410kk-≠⎧⎨-->⎩,解得:k<5且k≠1.故选:B.15.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2B.a<2C.a>4D.a<4【答案】D【详解】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.解:,(1)+(2)得:4x+4y=a+4,即x+y=,∵x+y=<2,∵a<4.故选D16.已知二次函数,且,,则一定有()A.B.C.D.≤0【答案】A【详解】试题分析:∵二次函数中,∵当x=-1时,y=a-b+c>0且∵a<0∵抛物线开口向下且穿过x轴∵抛物线与x轴肯定有两个交点即∵=故选A考点:1.抛物线的值;2.根的判别式17.下列不等式中,是一元一次不等式的是( ) A .20x< B .x 2-5<0 C .3x >2y D .2x -1≥0 【答案】D【详解】A 选项中不等式的左边不是整式,故A 中的不等式不是一元一次不等式;B 选项中未知数的次数是2,故B 中的不等式也不是一元一次不等式;C 选项中含有两个未知数,故C 中的不等式也不是一元一次不等式;只有D 中的不等式符合条件.18.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( ) A .2m >- B .m>2C .3m >D .2m <-【答案】A【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⎧⎨+⎩=①=②∵+∵得2x +2y =2m +4, 则x +y =m +2, 根据题意得m +2>0, 解得m >-2. 故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式. 19.若关于x 的方程322133x mx x x---=---无解,则m 的值为( ) A .1 B .3C .1或53D .53【答案】C【分析】分式方程去分母转化为整式方程,由分式方程无解的意义,计算即可求出m 的值.20.甲在集市上先买了3只羊,平均每只a 元,稍后又买了2只,平均每只羊b 元,后来他以每只2a b+ 元的价格把羊全卖给了乙,结果甲发现赚了钱,赚钱的原因是( ) A .a b = B .a b >C .a b <D .与a b 、大小无关二、填空题21.电影《长津湖》首映当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,设平均每天票房的增长率为x ,则可列方程为________________. 【答案】2.06(1+x )2=4.38【分析】设平均每天票房的增长率为x ,根据当日票房已经达到2.06亿元,2天后当日票房达到4.38亿元,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每天票房的增长率为x ,根据题意得:2.06(1+x )2=4.38.故答案为:2.06(1+x )2=4.38.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.22.若关于x 的方程()1320k k xx ----=是一元二次方程,则k =______.23.关于x 的方程(a ﹣1)21ax ++x ﹣3=0是一元二次方程,则a =_____. 【答案】-1【分析】直接利用一元二次方程的定义得出a 2+1=2且a ﹣1≠0,进而得出答案.【详解】解:∵关于x 的方程(a ﹣1)x 21a++x ﹣3=0是一元二次方程,∵a 2+1=2且a ﹣1≠0,解得:a =﹣1.故答案为:﹣1.【点睛】此题考查的是求一元二次方程中的参数问题,掌握一元二次方程的定义是解决此题的关键.24.已知1x =是方程220x mx +=的根,则m =______.25.某校将若干间宿舍分配给八年级(1)班女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,且有一间住不满.那么该班有____________名女生.26.不等式2x+1>3x-2的非负整数解是______.【答案】0,1,2【分析】先求出不等式2x+1>3x-2的解集,再求其非负整数解【详解】移项得,2+1>3x-2x,合并同类项得,3>x,故其非负整数解为:0,1,2【点睛】解答此题不仅要明确不等式的解法,还要知道非负整数的定义.27.关于x 的方程ax 2-3x -6=0是一元二次方程,则a 满足的条件是________. 【答案】a≠0【分析】直接利用一元二次方程的定义分析得出答案. 【详解】解:∵关于x 的方程ax 2-3x -6=0是一元二次方程,∵a 满足的条件是a≠0.故答案为:a≠0.【点睛】此题主要考查了一元二次方程的定义,正确把握相关定义是解题关键. 28.已知关于x 的一元二次方程21(2)04mx m x m --+=有两个不相等的实数根,则m 的取值范围是_______. 【分析】由题意可得21244404m m m m ,即可求解.【详解】解:关于x 的一元二次方程21(2)04mx m x m --+=∴21244404m m m m ,104m1m <且0m ≠故答案是:1m <且0m ≠.【点睛】本题考查了一元二次方程20(ax bx c ++=29.已知关于x 的方程250mx mx ++=有两个相等的实数根,则m 的值是____________.【答案】20【分析】根据一元二次方程根与判别式的关系求解即可.【详解】解:∵关于x 的方程250mx mx ++=有两个相等的实数根,∵2450m m ∆=-⨯=且0m ≠,解得:20m =.故答案为:20.【点睛】本题考查一元二次方程根的判别式、解一元二次方程,解答关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.30.一辆匀速行驶的汽车在 10:30 距离A 地50千米,要在12:00之前驶过A 地,车速v (单位:km/h)应满足的条件 是___________.(请列一元一次不等式)31.关于x 的一元二次方程(m ﹣1)x 2﹣x ﹣2=0有两个不等的实数根,则m 的取值范围是_____________ 20{18(m m -≠=+-解得:m>78故答案为m>【点睛】本题考查了根的判别式,牢记题的关键.32.若二元一次方程组232x y m x y m+=+⎧⎨+=⎩的解x 、y 的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m 的值为______.【答案】2【分析】解二元一次方程组,分三种情况考虑,根据周长为7得关于m 的方程,求得m ,根据构成三角形的条件判断即可.【详解】232x y m x y m +=+⎧⎨+=⎩①②33.2x2﹣x﹣1=0的二次项系数是_____,一次项系数是_______,常数项是_____.解:根据一元二次方程的定义得:2x2﹣x﹣1=0的二次项系数是2,一次项系数是﹣,常数项是﹣1.34.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.35.某厂工业废气年排放量为450万立方米,为了改善上海市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,每期减少的百分率是________________. 【答案】20%;【分析】等量关系为:450×(1-减少的百分率)2=288,把相关数值代入计算即可.【详解】设每期减少的百分率为x ,根据题意得:450×(1-x )2=288,解得:x 1=1.8(舍去),x 2=0.2解得x=20%.所以,每期减少的百分率是20%.故答案为20%.【点睛】考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )236.若关于x 、y 的方程组ax by c mx ny d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩的解是__________.【答案】42x y =⎧⎨=-⎩ 【分析】将方程组的解代入方程组得到22a b c m n d +=⎧⎨+=⎩,等式两边同时乘以3得到363363a b c m n d +=⎧⎨+=⎩,与方程组()()133133a x by c m x ny d ⎧--=⎪⎨--=⎪⎩对比系数得到()1336x y ⎧-=⎨-=⎩,从而得到方程组的解.【详解】∵方程组ax by cmx ny d+=⎧⎨+=⎩的解为12xy=⎧⎨=⎩∵22a b c m n d+=⎧⎨+=⎩∵363 363 a b c m n d+=⎧⎨+=⎩∵()()133133 a x by c m x ny d ⎧--=⎪⎨--=⎪⎩得()13 36 xy⎧-=⎨-=⎩∵42 xy=⎧⎨=-⎩故答案为:42 xy=⎧⎨=-⎩【点睛】本题考查方程组的性质,解题的关键是熟练掌握方程组的相关知识.37.在下边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=_____,b=________.【答案】62【详解】试题分析:根据正方体的展开图的特点,1与a相对,5与b相对,3与4相对,因为3+4=7,所以1+a=7,5+b=7,解得:a = 6,b = 2.故答案为6;2.考点:正方体的展开图.38.关于x的不等式3x-2m<x-m的正整数解为1、2、3,则m取值范围是______.39.若 21x y =⎧⎨=⎩是方程()2121x m y nx y ⎧+-=⎨+=⎩的解,则(m+n )2016的值是________. 【答案】1【详解】由题意得:()412211m n ⎧+-=⎨+=⎩,解得:10m n =-⎧⎨=⎩ , 所以(m+n )2016=1,故答案为1.三、解答题40.解方程()2331842y y y y ++--=-. 【答案】11y =,21y =-.【分析】先把方程整理成一般形式,再利用直接开平方法求解即可.【详解】解:去分母,得:()()()2382341y y y y +-=+--,即26982644y y y y y ++-=+-+,整理得:y 2=1,∵y =±1,即11y =,21y =-.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握解一元二次方程的方法是关键.41.解下列分式方程:(1)542332x x x +=-- (2)32x x --+1=32x- 【答案】(1)1x =;(2)1x =.【分析】(1)先去分母,把分式方程化为整式方程,再解整式方程并检验; (2)先去分母,把分式方程化为整式方程,再解整式方程并检验.【详解】解:(1)去分母,得54(23)x x -=-,去括号,得5812x x -=-,移项,得77x -=-,解得 1.x =检验:x =1时,230.x -≠∵原分式方程的解为 1.x =(2)方程两边同乘()2x - ,得3(2)3x x -+-=-,解得x =1检验:x =1时,20.x -≠∵x =1是原分式方程的解. 【点睛】本题考查的是分式方程的解法,解分式方程的一般步骤:去分母,去括号,移项,合并同类项,把系数化为1,并检验.422倍,求改造后的正方形绿地的边长是多少米?43.解下列分式方程(1)11322x x x-+=--; (2)225124x x x ++=--- 【答案】(1)原方程无解2x=0是增根,原方程无解.)4,约去分母,得4),44.甲、乙两地间铁路长2400千米,经技术改造后,列车实现了提速.提速后比提速前速度增加20千米/时,列车从甲地到乙地行驶时间减少4小时.已知列车在现有条件下安全行驶的速度不超过140千米/时.请你用学过的数学知识说明这条铁路在现有条件下是否还可以再次提速?【答案】可以再次提速【详解】试题分析:首先设提速后列车的速度为x千米/时,然后根据题意列出分式方程,从而求出方程的解,将解与140进行比较大小,从而得出答案.试题解析:设提速后列车的速度为x千米/时,根据题意可得:解得:,=-100(舍去)经检验:x=120是原方程的解且符合题意∵120<140∵仍可以再次提速考点:分式方程的应用45.解不等式:(1)2(1)3(1)2x x -<+-,并把解集在数轴上表示出来.(2)解不等式:213x -≥324x +﹣1,并写出其非负整数解. 【答案】(1)3x >-,见解析(2)x ≤2;非负整数解有0,1,2【分析】(1)按去括号,移项、合并同类项,系数化1的步骤求解,再把解集用数轴表示出来即可;(2)按去分母,去括号,移项、合并同类项,系数化1的步骤求解,再写出解集中非负整数即可.(1)解:去括号,得:22332x x -<+-移项、合并同类项,得:3x -<系数化1得:3x >-这个不等式的解集在数轴上表示如图:(2)解:去分母得,4(2x ﹣1)≥3(3x +2)﹣12,去括号得,8x ﹣4≥9x +6﹣12,移项得,8x ﹣9x ≥6﹣12+4,合并同类项得,﹣x ≥﹣2,系数化为1得,x ≤2.非负整数解有0,1,2.【点睛】本题考查解不等式,用数轴表示不等式的解集,熟练掌握解不等式的一般步骤是解是题的关键.46.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?47.解方程1132x x +-=﹣1. 【答案】x =11.【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】方程两边同时乘以6得:2(x +1)=3(x ﹣1)﹣6,去括号得:2x +2=3x ﹣3﹣6,移项得:2x ﹣3x =﹣3﹣6﹣2,合并同类项得:﹣x =﹣11,系数化为1得:x =11.【点睛】此题主要考查学生对解一元一次方程的理解和掌握,此题难度不大,属于基础题.48.解方程:(1)()3242--=-x x (2)1311510---=x x 【答案】(1)2x =;(2)11x =-.【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】(1)()3242--=-x x ,去括号得:3642x x -+=-,移项合并得:2x -=-,解得:2x =;49.解方程:(1)312x x=+;(2)11322xx x-=---.【答案】(1)x=﹣3;(2)无解.【详解】试题分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:(1)去分母得:3x+6=x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.。
《方程与不等式》测试题

《方程与不等式》测试题(时间60分钟,满分100分)一、选择题(本题有10个小题, 每小题3分, 满分30分 ,下面每小题给出的四个选项中, 只有一个是正确的. )1.不等式组2030x x ->-<⎧⎨⎩的解集是( )A.2x > B. 3x < C. 23x <<D. 无解 2.解集在数轴上表示为如图1所示的不等式组是( )A .32x x >-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤C .32x x <-⎧⎨⎩≥D .32x x >-⎧⎨⎩≤3.若关于x 的方程1011--=--m xx x 有增根,则m 的值是( )A .3B .2C .1D .-14.分式2231x x x +--的值为0,则x 的取值为( )A 、3x =-B 、3x =C 、3x =-或1x = D 、3x =或1x =-5.一元二次方程2440x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根6.用配方法解方程2620x x -+=,下列配方正确的是( )A .2(3)11x -=B .2(3)7x +=C .2(3)9x -=D .2(3)7x -=7.已知三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( )A .11B .13C .11或13 D .11和138.若2X ++42++Y X =0,则X Y 的值为( )A .1B .0C .-1D .-29.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是:( )A . 12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩,表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩二、填空题 (本题有6个小题,每小题3分, 共18分) 11.方程()412=-x 的解为12.已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x13.方程01)1(42=+++x k x的一个根是2,那么_____=k ,另一根是14.代数式x 241+的值不大于28x-的值,那么x 的正整数解是 15. 已知关于x 的方程2(2)x k x +=-的根小于0,则k 的取值范围是16.某公司成立3年以来,积极向国家上缴利税,由第一年的200万元增长到800万元,则平均每年增长的百分数是三、解答题(本大题有4小题, 共52分,解答要求写出文字说明, 证明过程或计算步骤) 17.解下列方程(每题6分,共12分)(1)x 2+3=3(x +1) (2)3411x x-=-18.(本题满分12分)某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.(本题满分14分)己知一元二次方程2x x m 20-+-=有两个不相等的实数根21x x ,。
中考数学总复习《方程与不等式》专项测试卷带答案

中考数学总复习《方程与不等式》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.根据如图信息可知,下列关于合适的水温x (℃)的不等式正确的是( ) 洗涤说明手洗,勿浸泡,不超过40 ℃水温A.x >40 ℃B .x <40 ℃C .x ≤40 ℃D .x ≥40 ℃2.已知⎩⎨⎧x =-1,y =4是方程mx -y =3的一个解,则m 的值是( ) A .-1 B .1 C .-7 D .73.在数轴上表示不等式组⎩⎨⎧x ≥-2,x <1中两个不等式的解,正确的是( )4.如果x >y ,那么下列不等式一定成立的是( )A .x +y <0B .x +1<y -3C .2x <2yD .-2x <-2y5.某工厂前年的电动汽车产量为a 万辆,经过两年的连续增长,今年的产量将达到2.25a 万辆,则该工厂这两年的电动汽车产量的年平均增长率为( )A .10%B .20%C .25%D .50%6.小华准备购买单价分别为4元和5元的两种瓶装饮料,若小华将50元恰好用完,两种饮料都买,则购买方案共有( )A .2种B .3种C .4种D .5种7.已知α、β是一元二次方程x 2+2x -9=0的两根,则βα+αβ的值等于( )A .-229 B.229 C .-49 D.498.已知实数a ,b ,c 满足a -3b +c =0,a +3b +c <0,则下列选项中正确的是( )A .b <0,b 2-49ac ≤0B .b <0,b 2-49ac ≥0C .b >0,b 2-49ac ≤0D .b >0,b 2-49ac ≥0二、填空题(每题4分,共16分)9.若关于x 的一元二次方程(a -1)x 2-ax +a 2=0的一个根为1,则a =________.10.已知等式(2A -7B )x +(3A -8B )=8x +10,对一切实数x 都成立,则A -B =____.11.已知关于x 的分式方程m -2x -2+32-x=1的解为非负数,则m 的取值范围为________. 12.如图①,在第一个天平上,物块A 的质量等于物块B 加上物块C 的质量;如图②,在第二个天平上,物块A 加上物块B 的质量等于3个物块C 的质量.已知物块A 的质量为10 g ,则1个物块B 的质量是________g.三、解答题(共32分)13.(8分)(1)解方程:2x -13-10x +16=2x +14-1;(2)解方程组:⎩⎨⎧4x -3y =12①,3x +2y =9②;(3)解不等式组:⎩⎪⎨⎪⎧3(x +1)>5x +4①,x -12≤2x -13②;(4)解方程:x 2-2x -35=0.14.(12分)已知关于x 的方程x 2-bx +2b -4=0.(1)求证:方程总有两个实数根;(2)若b 为正整数,且方程有一个根为负数,求b 的值.15.(12分) 2024年前两个月消费市场持续恢复向好,消费呈现平稳增长态势.现有A、B两家餐饮店,B餐饮店的人均消费金额比A餐饮店多10元,在A餐饮店总消费金额为500元的人数与在B餐饮店总消费金额为600元的人数相同,分别求A、B两家餐饮店的人均消费金额.参考答案一、1.【答案】C2.【答案】C3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】A8.【答案】B二、9.【答案】-110.【答案】211.【答案】m≥3且m≠512.【答案】5三、13.【答案】解:(1)去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12去括号,得8x-4-20x-2=6x+3-12移项,得8x-20x-6x=3-12+4+2合并同类项,得-18x=-3,系数化为1,得x=1 6(2)①×2,得8x-6y=24③,②×3,得9x+6y=27④③+④,得17x=51,解得x=3, 将x=3代入①解得y =0,所以该方程组的解为⎩⎨⎧x =3,y =0.(3)解不等式①,得x <-12,解不等式②,得x ≥-1∴不等式组的解集为-1≤x <-12(4)x 2-2x -35=0,(x -7)(x +5)=0x -7=0或x +5=0,∴x 1=7,x 2=-514.【答案】(1)证明:由题意得Δ=(-b )2-4(2b -4)=b 2-8b +16=(b -4)2,∵(b -4)2≥0,∴方程总有两个实数根(2)解:由(1)知Δ≥0,∴x =b ±(b -4)22=b ±(b -4)2∴x 1=2,x 2=b -2 ∵b 为正整数,且方程有一个根为负数,∴⎩⎨⎧b -2<0,b >0,∴0<b <2,∴b =1 15.【答案】解:设A 餐饮店的人均消费金额为x 元,则B 餐饮店的人均消费金额为(x +10)元由题意得500x =600x +10,解得x =50 经检验x =50是原方程的解,∴x +10=60,即A 餐饮店的人均消费金额为50元,B 餐饮店的人均消费金额为60元。
高中试卷-一元二次函数、方程和不等式(综合测试卷)(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《一元二次函数、方程和不等式》综合测试卷一、单选题1.(2020·安徽蚌埠·高三其他(文))设集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =I ( )A .(2,2)-B .{2,0,2}-C .{2,4}D .{2,2}-【答案】D 【解析】{}2120{|43}B x x x x x =+-<=-<<,∴{2,2}A B =-I .故选:D .2.(2020·全国高一课时练习)若12,x x 是一元二次方程22630x x -+=的两个根,则12x x -的值为( )A B C .3D 【答案】B 【解析】3624120D =-=>,故方程必有两根,又根据二次方程根与系数的关系,可得1212332x x x x +==,,所以12x x -===故选:B .3.(2020·陕西西安·高三二模(理))已知a ,b 为非零实数,且0a b <<,则下列命题成立的是( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b<【答案】B 【解析】对于选项A,令1a =-,1b =时,221a b ==,故A 不正确;对于选项C,220a b ab >>,故C 不正确;对于选项D,令1a =-,1b =时,1b aa b=-=,故D 不正确;对于选项B,220a b ab >>,则22110ab a b<<故选:B4.(2020·全国高一课时练习)已知52x …,则()24524x x f x x -+=-有( )A .最大值54B .最小值54C .最大值1D .最小值1【答案】D 【解析】2245(2)1111()(2)1242(2)222x x x f x x x x x -+-+éù===-+´=ê---ëû…当且仅当122x x -=-即3x =时取等号,故选:D .5.(2019·宁波市第四中学高二期中)已知a R Î,则“0a >”是“12a a+³”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】当0a >时,112a a a a +=+³=,当且仅当1a a =,即1a =时取等号,当12a a +³时,可得12a a +≥或12a a+£-,得0a >或0a <,所以“0a >”是“12a a+³”的充分不必要条件,故选:A6.(2020·全国高一课时练习)若方程()2250x m x m ++++=只有正根,则m 的取值范围是( )A .4m £-或4m ³B .54m -<£-C .54m -££-D .52m -<<-【答案】B【解析】方程()2250x m x m ++++=只有正根,则1()当()()22450m m D =+-+=,即4m =±时,当4m =-时,方程为()210x -=时,1x =,符合题意;当4m =时,方程为()230x +=时,3x =-不符合题意.故4m =-成立;2()当()()22450m m D =+-+>,解得4m <-或4m >,则()()()224502050m m m m ìD =+-+>ï-+>íï+>î,解得54m -<<-.综上得54m -<£-.故选B.7.(2020·荆州市北门中学高一期末)若110a b<<,则下列不等式:①a b ab +<;②||||a b >;③a b <;④2b aa b+>中,正确的不等式是( )A .①④B .②③C .①②D .③④【答案】A 【解析】由于110a b<<,所以0b a <<,由此可知:①0a b ab +<<,所以①正确.②b a >,所以②错误.③错误.④由于0b a <<,所以1b a >,有基本不等式得2b a a b +>=,所以④正确.综上所述,正确不等式的序号是①④.故选:A8.(2020·浙江高一课时练习)“关于x 的不等式2x 2ax a 0-+>的解集为R”的一个必要不充分条件是( )A .0a 1<<B .10a 3<<C .0a 1££D .a 0<或1a 3>【答案】C 【解析】因为关于x 的不等式220x ax a -+>的解集为R ,所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440a a D =-<,解得01a <<,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,对比可得C 选项满足条件,故选C.9.(2020·全国高一课时练习)将一根铁丝切割成三段,做一个面积为22m ,形状为直角三角形的框架,在下列4种长度的铁丝中,选用最合理共用且浪费最少的是( )A .6.5m B .6.8mC .7mD .7.2m【答案】C 【解析】设直角三角形的框架的两条直角边为x ,y (x >0,y >0)则xy =4,此时三角形框架的周长C 为:x +y =x +y∵x +y ≥2 4∴C =x +y ≥≈6.83故用7米的铁丝最合适.故选C .10.(2020·浙江高一单元测试)已知不等式()19a x y x y æö++ç÷èø≥对任意实数x 、y 恒成立,则实数a 的最小值为( )A .8B .6C .4D .2【答案】C 【解析】()11a ax yx y a x y y x æö++=+++ç÷èøQ .若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意;②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y æö++ç÷èø≥不恒成立;③当0a >时,())211111a ax y x y a a a x y y x æö++=+++³++=+=ç÷èø,当且仅当=y 时,等号成立.所以,)219³,解得4a ³,因此,实数a 的最小值为4.故选:C.二、多选题11.(2020·南京市秦淮中学高二期末)已知命题1:11p x >-,则命题成立的一个必要不充分条件是( )A .12x <<B .12x -<<C .21x -<<D .22x -<<【答案】BD 【解析】由1210(1)(2)01211x x x x x x ->Û<Û--<Û<<--,选项A 为命题12x <<的充要条件,选项B 为12x <<的必要不充分条件,选项C 为12x <<的既不充分也不必要条件,选项D 为12x <<的必要不充分条件,故选:BD.12.(2019·山东莒县·高二期中)已知a ÎZ ,关于x 的一元二次不等式260x x a -+£的解集中有且仅有3个整数,则a 的值可以是( ).A .6B .7C .8D .9【答案】ABC 【解析】设26y x x a =-+,其图像为开口向上,对称轴是3x =的抛物线,如图所示.若关于x 的一元二次不等式260x x a -+£的解集中有且仅有3个整数,因为对称轴为3x =,则2226201610a a ì-´+£í-´+>î解得58a <£,.又a ÎZ ,故a 可以为6,7,8.故选:ABC13.(2020·湖南高新技术产业园区·衡阳市一中高二期末)(多选)若0a b >>,则下列不等式中一定不成立的是( )A .11b b a a +>+B .11a b a b+>+C .11a b b a+>+D .22a b aa b b+>+【答案】AD 【解析】0a b >>Q ,则()()()()1110111b a a b b b b a a a a a a a +-++--==<+++,11b b a a +\>+一定不成立;()1111a b a b a b ab æö+--=--ç÷èø,当1ab >时,110a b a b +-->,故11a b a b +>+可能成立;()11110a b a b b a ab æö+--=-+>ç÷èø,故11a b b a +>+恒成立;()222022a b a b a a b b b a b +--=<++,故22a b aa b b+>+一定不成立.故选AD.14.(2020·浙江高一单元测试)已知,a b R +Î且1a b +=,那么下列不等式中,恒成立的有( ).A .14ab …B .1174ab ab +…C +D .112a b+…【答案】ABC 【解析】,,1a b R a b +Î+=Q ,2124a b ab +æö\=ç÷èø…(当且仅当12a b ==时取得等号).所以选项A 正确由选项A 有14ab £,设1y x x =+,则1y x x =+在104æùçúèû,上单调递减.所以1117444ab ab +³+=,所以选项B 正确22a b a b a b +=+++++=Q (当且仅当12a b ==时取得等号),+.所以选项C 正确.11333222222a b a b b a a b a b a b +++=+=+++=+Q …222a b =时等号成立),所以选项D 不正确.故A ,B ,C 正确故选:ABC 三、填空题15.(2020·荆州市北门中学高一期末)不等式221x x -³-的解集是________.【答案】[0,1)【解析】原不等式可化为2201x x --³-即01xx £-,所以()1010x x x ì-£í-¹î,故01x £<,所以原不等式的解集为[0,1).故答案为:[0,1).16.(2020·全国高一课时练习)设0,2p a æöÎç÷èø,0,2éùÎêúëûp b ,那么23b a -的取值范围是________.【答案】,6p p æö-ç÷èø【解析】因为0,2p a æöÎç÷èø,0,2éùÎêúëûp b ,所以()20,a p Î,,036bp éù-Î-êúëû,∴2,36bp a p æö-Î-ç÷èø.故答案为:,6p p æö-ç÷èø.17.(2020·全国高一课时练习)设a >0,b >0,给出下列不等式:①a 2+1>a ;②114a b a b æöæö++³ç÷ç÷èøèø;③(a +b )11a b æö+ç÷èø≥4;④a 2+9>6a .其中恒成立的是________.(填序号)【答案】①②③【解析】解析由于a 2+1-a =213024a æö-+>ç÷èø,故①恒成立;由于a +1a ≥2,b +1b≥2,∴114a b a b æöæö++³ç÷ç÷èøèø,当且仅当a =b =1时,等号成立,故②恒成立;由于a +b ,11a b +³故(a +b )11a b æö+ç÷èø≥4,当且仅当a =b 时,等号成立,故③恒成立;当a =3时,a 2+9=6a ,故④不恒成立.综上,恒成立的是①②③.故答案为:①②③四、双空题18.(2020·浙江瓯海·温州中学高三一模)《九章算术》中记载了“今有共买豕,人出一百,盈一百;人出九十,适足.问人数、豕价各几何?”.其意思是“若干个人合买一头猪,若每人出100,则会剩下100;若每人出90,则不多也不少.问人数、猪价各多少?”.设,x y 分别为人数、猪价,则x =___,y =___.【答案】10 900【解析】由题意可得100100900x y x y -=ìí-=î,解得10y 900x ==,.故答案为10 90019.(2020·山东高三其他)已知正实数,a b 满足10ab b -+=,则14b a+的最小值是__________,此时b =_________.【答案】9 32【解析】由10ab b -+=可得1b a b-=,由10b a b -=>,得1b >,所以11444(1)511b b b b a b b +=+=+-+--,因为14(1)41b b +--…,所以149b a +…,当且仅当13,32a b ==时等号成立.故答案为:9;32.20.(2020·曲靖市第二中学(文))已知x >0,y >0,且x +2y =xy ,若x +2y >m 2+2m 恒成立,则xy 的最小值为_____,实数m 的取值范围为_____.【答案】8 (4,2)-【解析】∵x >0,y >0,x +2y =xy ,∴21x y+=1,∴121x y =+³,∴xy ≥8,当且仅当x =4,y =2时取等号,∴x +2y =xy ³8(当x =2y 时,等号成立),∴m 2+2m <8,解得﹣4<m <2.故答案为:8;(﹣4,2)21.(2020·山东威海·高三一模)为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为22400m 的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为228m ,月租费为x 万元;每间肉食水产店面的建造面积为220m ,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则x 的最大值为_________万元.【答案】161【解析】设蔬菜水果类和肉食水产类店分别为,a b ,(1)由题意知,0.852********.82400a b ´³+³´,化简得:48075510a b £+£,又+80a b =,所以48075(80)510a a £+-£,解得:4055a ££,40,41,,55a \=K 共16种;(2)由题意知0.80.980b ax x +³,0.8(80)72b b x x \+-³,0.880.8[1]88b x b b \£=+--,max 804040b =-=Q ,850.8(1)0.81324x \£+=´=,即x 的最大值为1万元,故答案为:16;1五、解答题22.(2020·全国高一课时练习)(1)已知0x >,求4y x x=+的最小值.并求此时x 的值;(2)设302x <<,求函数4(32)y x x =-的最大值;(3)已知2x >,求42x x +-的最小值;(4)已知0x >,0y >,且191x y+=,求x y +的最小值;【答案】(1)当2x =时,4y x x =+取得最小值4;(2)92;(3)6;(4)16【解析】(1)因为0x >,所以44y x x =+³=,当且仅当4x x =,即2x =时取等号;故当2x =时,4y x x=+取得最小值4;(2)302x <<Q ,320x \->.[]22(32)94(32)22(32)222x x y x x x x +-éù\=-=-=êúëûg ….当且仅当232x x =-,即34x =时,等号成立.Q 33(0,)42Î,\函数34(32)(0)2y x x x =-<<的最大值为92.(3)2x >Q ,20x \->()44222622x x x x \+=-+++=--…,当且仅当422x x -=-时取等号,即4x =时,42x x +-的最小值为6,(4)0x Q >,0y >,191x y +=,199()101016y x x y x y x y x yæö\+=++=++=ç÷èø….当且仅当9y x x y=时,上式等号成立,又191x y +=,4x \=,12y =时,()16min x y +=.点睛:利用基本不等式求函数最值是高考考查的重点内容,对不符合基本不等式形式的应首先变形,然后必须满足三个条件:一正、二定、三相等.同时注意灵活运用“1”的代换.23.(2020·全国高一课时练习)已知x ,y 都是正数.求证:()12y x x y+³;()2()()()2233338.x y x y x y x y +++³【答案】()1证明见解析;()2证明见解析.【解析】()1证明:由x ,y 都是正实数,可得2y x x y +³=(当且仅当x y =时取得等号);()2证明:由基本不等式可知()()()(()(22332x y x y x y xy +++³××()23388xy xy x y =×=,(当且仅当x y =时取得等号).24.(2020·全国高一课时练习)日常生活中,在一杯含有a 克糖的b 克糖水中,再加入m 克糖,则这杯糖水变甜了.请根据这一事实提炼出一道不等式,并加以证明.【答案】a a mb b m+<+,0a b <<,0m >,证明见解析【解析】由题知:原来糖水的浓度为100%a b´,加入m 克糖后的浓度为100%+´+a m b m,0a b <<,0m >.因为这杯糖水变甜了,所以100%100%+´<´+a a m b b m,整理得:a a m b b m +<+,0a b <<,0m >.因为()()-++-=-=+++a b m a a m a a m b b m b b m b b m ,又因为0a b <<,0m >,所以0a b -<,()0-<m a b ,()0+>b b m ,所以()()0-<+a b m b b m ,即证a a m b b m+<+.25.(2020·全国高一课时练习)如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客.你能在这个图案中找出一些相等关系或不等关系吗?(教师引导学生从面积的关系去找相等关系或不等关系).【答案】a 2+b 2≥2ab.【解析】如图,设大正方形四个角上的直角三角形的两个直角边分别为,a b ,则大正方形的面积为2()a b +,四个矩形的面积和为4ab ,显然,大正方形的面积大于等于四个矩形的面积和,所以2()4,a b ab +³所以a 2+b 2≥2ab.26.(2020·浙江高一课时练习)已知关于x 的不等式2260(0)kx x k k -+<¹.(1)若不等式的解集是{|3x x <-或2}x >-,求k 的值.(2)若不等式的解集是1x x k ìü¹-íýîþ∣,求k 的值.(3)若不等式的解集是R ,求k 的取值范围.(4)若不等式的解集是Æ,求k 的取值范围.【答案】(1)25k =-;(2)k =(3)k <(4)k ³.【解析】(1)由不等式的解集为{3xx <-∣或2}x >-可知k 0<,且3x =-与2x =-是方程2260kx x k -+=的两根,2(3)(2)k\-+-=,解得25k =-.(2)由不等式的解集为1x x k ìü¹-íýîþ∣可知204240k k <ìíD =-=î,解得k =.(3)依题意知20,4240,k k <ìíD =-<î解得k <.(4)依题意知20,4240,k k >ìíD =-£î解得k ³.27.(2020·宁夏兴庆·银川一中高一期末)解关于x 的不等式()222ax x ax a R -³-Î.【答案】当0a =时,不等式的解集为{}|1x x £-;当0a >时,不等式的解集为2{|x x a³或1}x £-;当20a -<<时,不等式的解集为2{|1}x x a ££-;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a-££.【解析】原不等式可化为()2220ax a x +--³,即()()210ax x -+³,①当0a =时,原不等式化为10x +£,解得1x £-,②当0a >时,原不等式化为()210x x a æö-+³ç÷èø,解得2x a³或1x £-,③当0a <时,原不等式化为()210x x a æö-+£ç÷èø.当21a >-,即2a <-时,解得21x a-££;当21a=-,即2a =-时,解得1x =-满足题意;当21a<-,即20a -<<时,解得21x a ££-.综上所述,当0a =时,不等式的解集为{}|1x x £-;当0a >时,不等式的解集为2{|x x a³或1}x £-;当20a -<<时,不等式的解集为2{|1}x x a ££-;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为2{|1}x x a -££.。
方程与不等式考核试卷

D.如果一个一元一次方程有解,则解是唯一的
( )
5.以下哪些情况下一元二次方程没有实数解?
A.判别式大于0
B.判别式等于0
C.判别式小于0
D.方程的系数都是正数
( )
6.如果一个不等式的解集是x > a,那么以下哪些结论是正确的?
A. x = a是不等式的解
B. x > a是不等式的解
2.一元二次方程的一般形式是ax^2 + bx + c = 0,其中a、b、c是任意实数且a不等于0。()
3.如果一元二次方程的判别式大于0,那么这个方程有两个不同的实数解。()
4.不等式2x > 4的解集是x > 2。()
5.方程5x - 3 = 3x + 2的解是x = 1。()
6.在解不等式时,如果两边同时乘以或除以负数,不等号的方向不变。()
1.以下哪些是一元二次方程?
A. x^2 + 3x + 2 = 0
B. 2x + 5 = 3
C. 4x^3 - 2x^2 + x - 1 = 0
D. 3x - 2 = 2x + 1
( )
2.下列哪些方程பைடு நூலகம்解是x = 2?
A. 2x - 4 = 0
B. 3x + 6 = 12
C. x^2 - 4 = 0
6. B
7. D
8. A
9. C
10. B
11. A
12. A
13. B
14. B
15. A
第二部分多选题
1. A
2. ABD
3. AB
4. AD
中考数学《方程与不等式》专题训练50题含答案

中考数学《方程与不等式》专题知识训练50题含答案 (有理数、实数、代数、因式分解、二次根式)一、单选题1.关于x ,y 的方程组24x my x y +=⎧⎨+=⎩的解是1x y =⎧⎨=⎩■,其中y 的值被■盖住了,但不影响求出m 的值,则m 的值是( ) A .12B .12-C .13D .13-2.已知关于x 的方程290x a +-=的解是x =-2,则a 的值是( ) A .5 B .-5C .12D .13【答案】D【分析】把方程的解2x =-代入方程290x a +-=可得到关于a 的方程,解关于a 的方程即可.【详解】解:∵2x =-是方程290x a +-=的解, ∵2(2)90a ⨯-+-=. 解得:13a =. 故选:D .【点睛】本题考查了一元一次方程的解的应用,正确得到新的方程是解题关键. 3.已知关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0,则它的另一个根和m 的值分别是( ) A .3和1 B .2和3C .3和4D .4和1【答案】A【分析】先根据方程有一根为0,代入方程求出m 的值,然后把m 的值代入方程解一元二次方程即可.【详解】解:关于x 的方程(2x -m )(mx +1)=(3x +1)(mx -1)有一个根是0, ∵-m =-1, ∵m =1,把m =1代入方程得()()()()211311x x x x -+=+-, 整理得:230x x -=, 因式分解得()30x x -=, 解得x x 1203,,∵另一个为3x =,m =1, 故选A .【点睛】本题考查方程的解,与解一元二次方程,掌握解方程的解概念,与一元二次方程的解法是关键.4.已知关于x 的一元二次方程:220x x m -+=有两个不相等的实数根,则m 的取值范围是( ) A .1m > B .1m < C .m>2 D .2m <【答案】B【分析】由方程有两个不相等的实数根,利用根的判别式可得出关于m 的一元一次不等式,解之即可得出结论.【详解】解:∵方程220x x m -+=有两个不相等的实数根, ∵()2240m ∆=-->, 解得:1m <, 故选:B .【点睛】本题考查了根的判别式,牢记“当方程有两个不相等的实数根时,0∆>”是解题的关键.5.甲乙两工程队共同参与一项筑路工程,规定x 天内完成任务.甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,甲、乙两队合作,可比规定时间提前14天完成任务,依题意列方程为( ) A .111104014x x x +=--+B .111104014x x x +=++- C .111104014x x x -=++- D .111104014x x x +=-+-6.若(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11,则m 的值为( ) A .4 B .5C .6D .7【答案】D【分析】先根据同底数幂的乘法法则把左侧化简,然后列出关于m 的方程求解即可. 【详解】∵(a ﹣b )•(a ﹣b )3•(a ﹣b )m =(a ﹣b )11, ∵(a ﹣b )m +4=(a ﹣b )11, ∵ m +4=11, 解得:m =7, 故选:D .【点睛】本题考查了同底数幂的乘法,以及一元一次方程的解法,根据题意列出一元一次方程是解答本题的关键.7.若m 是关于x 的方程2420x nx m ++=的根()0m ≠,则4m n +的值为( ) A .-1 B .1C .-2D .2【答案】C【分析】根据一元二次方程的根的定义代入即可求解,一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.【详解】m 是关于x 的方程2420x nx m ++=的根()0m ≠, ∴2420m mn m ++=,0m ≠,420m n ∴++=,即42m n +=-, 故选C .【点睛】本题考查了一元二次方程的根的定义,将方程的解代入求解是解题的关键. 8.方程3214x y +=在自然数范围内的解共有_____个 A .1 B .2C .3D .4【答案】C【分析】根据二元一次方程3x+2y=14,可知在自然数范围内的解有哪几组,从而可以解答本题.【详解】解:二元一次方程3x+2y=14在自然数范围内的解是:24x y =⎧⎨=⎩,41x y =⎧⎨=⎩,7x y =⎧⎨=⎩, 即二元一次方程3x+2y=14在自然数范围内的解的个数是3个. 故选C .【点睛】本题考查二元一次方程的解,解题的关键是明确什么是自然数,可以根据题意找到二元一次方程3x+2y=14在自然数范围内的解有哪几组.9.从正方形的铁片上,截去2cm 宽的一个长方形,余下的面积是248cm ,则原来的正方形铁片的面积是( ) A .281cm B .264cmC .254cmD .252cm【答案】B【分析】可设正方形的边长是x cm ,根据余下的面积是248cm ,余下的图形是一个矩形,矩形的长是正方形的边长,宽是x -2,根据矩形的面积公式即可列出方程求解. 【详解】解:设正方形的边长是x cm , 根据题意得()248x x -=, 解得16x =-(舍去),28x =, ∵原正方形铁片的面积是8×8=64cm². 故选B .【点睛】本题考查了一元二次方程的应用,找到等量关系准确的列出方程是解决问题的关键,解题过程中要注意根据实际意义进行值的取舍.10.已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ) A .13x y -= B .12y x += C .253x y -=D .213x y --=11.方程247236x x ---=-去分母得( ) A .22(24)(7)x x --=-- B .122(24)7x x --=-- C .12(24)(7)x x --=-- D .122(24)(7)x x --=--122247,x x 从而可得答案.122247,x x【点睛】本题考查的是解一元一次方程的步骤,去分母,掌握12.下列方程一定是一元二次方程的是( )A .3x 2+2x﹣1=0B .5x 2﹣6y ﹣3=0C .ax 2﹣x +2=0D .3x 2﹣2x ﹣1=0【答案】D【详解】解:A 、是分式方程,故A 错误; B 、是二元二次方程,故B 错误; C 、a =0时,是一元一次方程,故C 错误; D 、是一元二次方程,故D 正确; 故选:D .【点睛】本题考查一元二次方程的识别,熟知一元二次方程的定义是解题的关键. 13.一元二次方程()371x x x +=-化为一般形式为( ) A .2470x x --= B .2270x x --=C .2470x x -+=D .2270x x -+=【答案】A【分析】根据一元二次方程的一般形式判断即可. 【详解】解:∵()371x x x +=-, ∵237x x x +-=, ∵2370x x x ---=, ∵2470x x --=,一元二次方程()371x x x +=-化为一般形式为:2470x x --=,故A 正确. 故选:A .【点睛】本题考查了一元二次方程的一般形式,熟练掌握一元二次方程的一般形式是解题的关键.14.不等式364x x -+≤-的解集在数轴上表示正确的是( ) A . B .C .D .【答案】A【分析】首先移项、合并同类项、未知数系数化1解不等式,再在数轴上表示解集即可.【详解】解:364x x -+≤-346x x -+≤-22-≤-x1x ≥,在数轴上表示为:,故选:A .【点睛】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤:∵去分母;∵去括号;∵移项;∵合并同类项;∵化系数为1.15.随着生产技术的进步,某制药厂生产成本逐年下降.两年前生产一吨药的成本是5000元,现在生产一吨药的成本是4050元.设生产成本的年平均下降率为x ,下面所列方程正确的是( ) A .()2500014050x += B .()2405015000x += C .()2500014050x -= D .()2405015000x -=【答案】C【分析】根据题意找到对应的等量关系:2年前的生产成本×(1-下降率)²=现在的生产成本,把相关的数据带入计算即可.【详解】设这种药品的成本的年平均下降率为x ,根据题意得:()25000-x =40501 故选:C.【点睛】本题考查一元二次方程的应用,解题的关键是能从题意中找到对应的等量关系.16.将二次三项式267x x ++进行配方,正确的结果应为( ) A .2(3)2x ++ B .2(3)2x -+ C .2(3)2x +- D .2(3)2x --【答案】C【分析】x 2+6x+7中x 2+6x+9即是(x+3)2,因而x 2+6x+7=(x+3)2-2 【详解】解:∵x 2+6x+7=x 2+6x+9-9+7, x 2+6x+7=(x+3)2-2. 故选C .【点睛】此题考查了配方法,解题时要注意常数项的确定方法,若二次项系数为1,则二次项与一次项再加上一次项系数的一半的平方即构成完全平方式,若二次项系数不为1,则可提取二次项系数,将其化为1. 17.已知2x =是关于x 的方程()112a x a x +=+的解,则a 的值是( )A.15B.25C.35D.4518.若一元二次方程式241211470x x+-=的两根为a、b,且a b>,则3a b+之值为何?()A.22B.28C.34D.4019.若关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,则k的取值范围是()A.k≠0B.k≥﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【答案】C【分析】根据二元一次方程的根的判别式列出不等式进行求解即可.【详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个实数根,∵0k 0∆⎧⎨≠⎩,即4400k k +⎧⎨≠⎩,解得:k ≥﹣1且k ≠0. 故答案为C .【点睛】本题考查了一元二次方程根的判别式,解题的关键在于:∵当∵=0时,方程有两个相等的实数根;∵当∵>0时,方程有两个不相等的实数根;∵当∵<0时,方程没有实数根. 20.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题21.不等式﹣3x >6的解是_______. 【答案】x <﹣2【分析】系数化为1并根据不等式的性质:∵不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;∵不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,进行解答即可.【详解】解:系数化为1得:x <﹣2, 故答案是:x <﹣2.【点睛】本题主要考查不等式的性质,根据不等式的性质转换不等式的符号是解题的关键.22.方程2150b ax x -+=是关于x 的一元一次方程,则2a b +=____________. 【答案】2【详解】根据一元一次方程的定义可知x 的次数为1, 则ax 2=0且b-1=1,即a=0且b=2, 则2a+b=2×0+2=2. 故答案为2.23.某种商品原价每件40元,经两次降价,现售价每件32.4元,则该种商品平均每次降价的百分率是______. 【答案】10%【分析】设降价百分率为x ,根据售价从原来每件40元经两次降价后降至每件32.4元,可列方程求解.【详解】解:设降价百分率为x , 列方程:40(1﹣x )2=32.4.解得x 1=0.1,x 2=1.9(不合题意舍去). 故答案为:10%.【点睛】本题主要考查一元二次方程的实际应用,找准等量关系,根据题意列出方程是解题的关键.24.某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为2600m 的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m ,另外三面用69m 长的篱笆围成,其中一边开有一扇1m 宽的门(不包括篱笆).则这个茶园的AB 的长为_________.【答案】20m【分析】设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据茶园的面积为2600m ,列出方程并解答即可.【详解】解:设茶园垂直于墙的一边长AB 为m x 时,则另一边BC 的长度为691)m (2x +-,根据题意,得:()6912600x x +-=,整理,得:2353000x x -+=,解得115x =,220x =,当15x =时,70240>35x -=,不符合题意舍去;当=20x 时,70230x -=,符合题意,故这个茶园的AB 为20m .故答案为:20m .【点睛】本题考查了一元二次方程的应用,根据数量关系列出方程是解题的关键. 25.甲、乙二人分别从相距20km 的A ,B 两地出发,相向而行.下图是小华绘制的甲、乙二人运动两次的情形,设甲的速度是x km/h ,乙的速度是y km/h ,根据题意所列的方程组是______,1.5x y +=______.【答案】 ()20.52201120x y x y ⎧++=⎨++=⎩11 【分析】设甲的速度是x km/h ,乙的速度是y km/h ,根据路程=速度×时间结合两次运动的情形,即可得出关于x ,y 的二元一次方程组,两式相加即可得解.【详解】解:设甲的速度是x km/h ,乙的速度是y km/h ,依题意,得:()20.52201120x y x y ⎧++=⎨++=⎩, 两式相加得:1.511x y +=,故答案为:()20.52201120x y x y ⎧++=⎨++=⎩,11. 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.26.关于x 的方程(m +5)x 2﹣2mx ﹣4=0是一个一元二次方程,那么m 的取值范围是___. 【答案】m ≠﹣5【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程,其中二次项系数不为0,可得m 的取值范围.【详解】解:因为(m +5)x 2﹣2mx ﹣4=0是关于x 的一元二次方程,所以m +5≠0,解得:m ≠﹣5,故答案为:m ≠﹣5.【点睛】本题考查了一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.27.对于x ,y 定义一种新运算“* ”,xy ax by =+,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3515*=,4728*=,则11*的值为______. 【答案】11- 【分析】根据3515*=,4728*=列出二元一次方程组35154728a b a b +=⎧⎨+=⎩①②,求得a 、b ,再根据新运算的定义求解即可.【详解】解:根据题中的新定义化简得:35154728a b a b +=⎧⎨+=⎩①②, ∵4⨯-∵3⨯得:24b -=-,解得:24b =,把24b =代入∵得:35a =-,则1111a b *=+=-.故答案为:11-.【点睛】此题主要考查了二元一次方程组的求解,理解题意列出二元一次方程组和加减法解二元一次方程组是解决此题的关键.28.若213111x M N x x x -=+-+-则M =_______ ,N =_______ .∵31M N N M +=-⎧⎨-=⎩, 解得:21M N =-⎧⎨=-⎩. 故答案为:-2,-1.【点睛】本题考查分式的混合运算,解二元一次方程组.掌握分式的混合运算法则是解题关键.29.若2m +1 的值同时大于 3m -2和 m+2的值,且m 为整数,则 3m -5 =____. 【答案】1【分析】先根据题意列出不等式组求出m ,再求出代数式的值.【详解】依题意得2132212m m m m +-⎧⎨++⎩>> 解得31m m ⎧⎨⎩<> ∵m 为整数,∵m=2∵3m -5=6-5=1故答案为:1.【点睛】此题主要考查不等式组的应用,解题的关键是根据题意求出m 的值.30.不等式组11327x x x -≥+⎧⎨-<⎩的解集是______. 【答案】20x -<≤【分析】先分别求出两个不等式的解集,再找出解集的公共部分即可.【详解】解:11327x x x -≥+⎧⎨-<⎩①② 解不等式∵得,0x ≤,解不等式∵得,2x >-,则原不等式组的解集为:20x -<≤.故答案为:20x -<≤.【点睛】本题考查了解不等式组,要掌握解不等式组的步骤和方法是解题的关键. 31.如图,一块长为m a 宽为m b 的长方形土地的周长为16m ,面积为215m .现将该长方形土地的长、宽都增加2m ,则扩建后的长方形土地的面积是____________.【答案】35m 2【分析】根据题意列出关于a ,b 的方程,用含有a 的式子表示b ,可得关于a 的一元二次方程,求出a ,b 的值,即可得出答案.【详解】根据题意,得2()1615a b ab +=⎧⎨=⎩①②, 由∵得8b a =-∵,将∵代入∵,得(8)15a a -=,即28150a a -+=, 解得5a =或3a =(舍),将5a =代入∵,得3b =.长和宽都增加2m ,得7m ,5m ,所以扩建后的长方形土地的面积是7×5=35(cm 2).故答案为:35 cm 2.【点睛】本题主要考查了一元二次方程的应用,确定等量关系是解题的关键. 32.熊大、熊二发现光头强在距离它们300米处伐木,熊二便匀速跑过去阻止,2分钟后熊大以熊二1.2倍速度跑过去,结果它们同时到达,如果设熊二的速度为x 米/分钟,那么可列方程为_________________.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.33.已知A ∠是ABC 的一个内角,并且方程24sin 102A x x -+=1,则A ∠=______.【答案】90︒##90度 sin 12A x +=)1sin 102A +=, 34.已知355x y a b +-和7332y x a b -是同类项,则x +y 的值是______. 【详解】-35.已知2x =是不等式ax-3a+2≥0的解,且1x =不是这个不等式的解,那么a 的取值范围是__________.【答案】12a <≤【分析】根据x=2是不等式ax-3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【详解】解:∵x=2是不等式ax-3a+2≥0的解,∵2-a≥0,解得:a≤2,∵x=1不是这个不等式的解,∵1-a<0,解得:a>1,∵1<a≤2,故答案为:1≤a≤2.【点睛】本题考查了解一元一次不等式,不等式的解集,解决本题的关键是求不等式的解集.36.规定11a ba b⊕=+,若232(1)(1)1xx xx++⊕-=-,则x的值是_____.37.阅读下面计算113⨯+135⨯+157⨯+…+1911⨯的过程,然后填空.解:∵113⨯=12(11-13),135⨯=12(13-15),…,1911⨯=12(19-111),∴113⨯+135⨯+157⨯+…+1911⨯=12(11-13)+12(13-15)+12(15-17)+…+12(19-111)=12(11-13+13-15+15-17+…+19-111)=12(11-111)=5 11.以上方法为裂项求和法,请参考以上做法完成:(1)124⨯+146⨯=______;(2)当113⨯+135⨯+157⨯+ (x)613时,最后一项x=______.38.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程方程为________.39.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ .【答案】8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∵3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∵AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.三、解答题40.解不等式组()101432x x ->⎧⎪⎨+<⎪⎩.41.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.(结果保留整数)42.解不等式组:102132x x x -≤⎧⎪⎨+-<⎪⎩①②,并把解集在数轴上表示出来.【答案】21x -<≤,见解析【分析】先分别解两个不等式 ,在数轴上标出解集,然后写出解集即可.【详解】解:解不等式∵得,1x ≤,解不等式∵得,2x >-,在数轴上分别表示这两个不等式的解集如图∵不等式组的解集为:21x -<≤.【点睛】本题考查不等式组的解集,准确掌握解集的求法是解题的关键. 43.已知:23231A x xy y =++-,2B x xy =-.(1)计算:3A B -;(2)若()()25A B A B +-+的值与y 的取值无关,求x 的值.44.x 的一元二次方程()2420x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.)证明:(m ∆=+方程总有两个不相等的实数根;)解:根据题意得12x x +=12x x ++(4m ∴-+解得=1m 即m 的值为【点睛】本题考查了根与系数的关系:若45.(1)解方程:11322x x x-+=-- (2)解不等式组:1,2263 2.x x x x ⎧+≥⎪⎨⎪++⎩> 【答案】(1)无解;(2)24x -<【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:(1)去分母得:13(2)1x x +-=-,解得:2x =,检验:把2x =代入得:20x -=,2x ∴=是增根,分式方程无解;12632x x +>+①2x -,4x <,不等式组的解集为24x <.【点睛】此题考查了解分式方程,以及解一元一次不等式组,解题的关键是熟练掌握各自的解法.46.用配方法解方程:212302x x --= 2210=-【分析】根据配方法解一元二次方程即可47.解方程:35136x x -=-. 48.新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩,若购进2箱甲型口罩和1箱乙型口罩,共需要资金840元;若购进3箱甲型口罩和2箱乙型口罩,共需要资金1380元.(1)求甲、乙型号口罩每箱的进价为多少元?(2)该医药器材经销商计划购进甲、乙两种型号的口罩用于销售,预计用不多于5520元且不少于5280元的资金购进这两种型号口罩共20箱,请问有几种进货方案?并写出具体的进货方案;(3)若甲型口罩的售价为每箱450元,乙型口罩的售价为每箱420元.为了促销,无论采取哪种进货方案,公司决定每售出一箱乙型口罩,返还顾客现金a 元,而甲型口罩售价不变,要使(2)中所有方案获利相同,直接写出a 的值. 【答案】(1)甲、乙型号口罩每箱的进价分别为300元,240元(2)有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱;方案二:购进甲型口罩9箱,则购进乙型口罩11箱;方案三:购进甲型口罩10箱,则购进乙型口罩10箱;方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)a =30【分析】(1)设甲型号口罩每箱进价为m 元,乙型号口罩每箱进价为n 元,根据题意建立方程组求解就可以求出答案;(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意建立不等式组,求出其解就可以得出结论;(3)由题意得出w =(a -30)x + 3600- 20a ,根据“(2)中所有方案获利相同”知w 与a 的取值无关,据此解答可得.(1)设甲、乙型号口罩每箱的进价分别为m 元,n 元,由题意得:2840321380m n m n +=⎧⎨+=⎩解得:300240m n =⎧⎨=⎩ 答:甲、乙型号口罩每箱的进价分别为300元,240元(2)设购进甲型口罩x 箱,则购进乙型口罩(20-x )箱,由题意得:300240(20)5520300240(20)5280x x x x +-≤⎧⎨+-≥⎩解得:812x ≤≤x 非负整数∴x =8或9或10或11或12∵有五种进货方案,分别是:方案一:购进甲型口罩8箱,则购进乙型口罩12箱方案二:购进甲型口罩9箱,则购进乙型口罩11箱方案三:购进甲型口罩10箱,则购进乙型口罩10箱方案四:购进甲型口罩11箱,则购进乙型口罩9箱方案五:购进甲型口罩12箱,则购进乙型口罩8箱(3)设获得的总利润为ww =(450- 300)x +(420-240-a )(20-x )=150x +(180-a )(20-x )= 150x + 20(180-a ) -(180-a )x=(150-180+a )x + 3600-20a=(a -30)x + 3600- 20a要使(2)中所有方案获利相同∵a -30=0即a =30∵当a =30时,(2)中所有方案获利相同即w =3600-20×30=3600-600= 3000(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式组的应用,整式的加减无关类型,根据题意列出方程组,不等式组,代数式是解题的关键.49.解二元一次方程(1)3728x y x y -=⎧⎨+=⎩; (2)()()3212158y x x y ⎧-=+⎪⎨-=-⎪⎩.。
中考方程与不等式专题测试题及答案.doc

(方程与不等式)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.点(412)A m m --,在第三象限,那么m 值是( )。
A.12m > B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B .a =3 C.a >3 D.a <33.方程2x x 2-4 -1=1x +2的解是( )。
A.-1 B .2或-1 C.-2或3 D.34.方程2-x 3 - x-14= 5的解是( )。
A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。
A .x 1=1,x 2=-3B .x 1=1,x 2=3C .x 1=-1,x 2=3D .x 1=-1,x 2=-36.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A.1- B.1m -C.0 D.1 7. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。
A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )。
A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
中考数学专题复习《方程与不等式》测试卷-附带答案

中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
方程与不等式应用题综合测试(一)(通用版)(含答案)

方程与不等式应用题综合测试(一)(通用版)试卷简介:检测学生在不同背景下辨识使用方程或不等式,需要挖掘关键词,关注隐含条件,梳理信息,理解题意,进而选择合适的方式来解题。
一、单选题(共12道,每道8分)1.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )A.54盏B.55盏C.56盏D.57盏答案:B解题思路:设需更换的新型节能灯有x盏,根据题意,得70(x-1)=36×(106-1),解得x=55,则需更换的新型节能灯有55盏.试题难度:三颗星知识点:一元一次方程应用2.九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有( )A.17人B.21人C.25人D.37人答案:C解题思路:设这两种实验都做对的有x人,根据题意,得(40-x)+(31-x)+x+4=50,解得x=25,故这两种实验都做对的有25人.试题难度:三颗星知识点:一元一次方程应用3.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店( )A.不赔不赚B.赚了32元C.赔了8元D.赚了8元答案:D解题思路:设盈利60%的计算器的进价为x元,则x+60%x=64,解得x=40,设亏损20%的计算器的进价为y元,则y-20%y=64,解得y=80,∴总进价是120元,总售价是128元,∴赚了8元.试题难度:三颗星知识点:一元一次方程应用4.一家商店将某型号空调先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果被工商部门发现有欺诈行为,为此按每台所得利润的10倍处以2700元的罚款,则每台空调原价为( )A.1350元B.2250元C.2000元D.3150元答案:B解题思路:设每台空调原价为x元,由题意,得,解得x=2250.试题难度:三颗星知识点:一元一次方程应用5.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是( )A. B.C. D.答案:B解题思路:本题中的等量关系为,①总人数:随机地抽查了10000人;②吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.根据题意,得.试题难度:三颗星知识点:二元一次方程组的应用6.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )A.32B.126C.135D.144答案:D解题思路:根据图形可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x,则最大数为x+16.根据题意,得x(x+16)=192,解得(不合题意,舍去),故圈出的第一行的3个数为8,9,10,第二行的3个数分别比第一行的3个数大7,即为15,16,17,第三行的3个数分别比第二行的3个数大7,即为22,23,24,故这9个数的和为8+9+10+15+16+17+22+23+24=144.试题难度:三颗星知识点:一元二次方程的应用7.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A.8B.7C.6D.5答案:A解题思路:设甲志愿者计划完成此项工作的天数为x,甲在乙未加入之前工作了两天,乙加入之后,两人一起又工作了天才能完成任务,以题意可列方程,,解得,经检验是原分式方程的解,∴甲志愿者计划完成此项工作的天数为8天.试题难度:三颗星知识点:分式方程的应用8.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为( )A. B.C. D.答案:D解题思路:注意其中单位的换算.上坡路的平均速度是3千米/时,上坡用了x分钟,则上坡走了千米;下坡路的平均速度是5千米/时,下坡用了y分钟,则下坡走了千米.总路程是1.2千米,则.上坡下坡共用了分钟.试题难度:三颗星知识点:二元一次方程组的应用9.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案共有( )A.4种B.3种C.2种D.1种答案:C解题思路:设租二人间x间,租三人间y间,则四人间间.依题意可得,由①得,即,分别代入③和④得,∴x只能取.当时,,;当时,,.∴租房方案共有两种.试题难度:三颗星知识点:不定方程10.今年四月份,李大叔收获洋葱30吨,黄瓜13吨.现计划租用甲、乙两种货车共10辆将这两种蔬菜全部运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨.李大叔租用甲、乙两种货车时共有( )种方案.A.1B.2C.3D.4答案:C解题思路:设安排甲种货车x辆,则安排乙种货车(10-x)辆,依题意列出图表可得由题意,得解得,∵x是整数,∴x可取5,6,7,∴共有3种方案.试题难度:三颗星知识点:一元一次不等式组的应用11.在今年某次的捐款活动中,小明统计了自己所在学校的甲、乙两班的捐款情况,得到三个信息:①甲班捐款2500元,乙班捐款2700元;②乙班平均每人捐款数比甲班平均每人捐款数多;③甲班比乙班多5人,设甲班有x人.根据以上信息列方程得( )A. B.C. D.答案:C解题思路:由题意得,甲班有x人,乙班有人,甲班平均每人捐款元,乙班平均每人捐款元.由于乙班平均每人捐款数比甲班平均每人捐款数多,则乙班平均每人捐款是甲班平均每人捐款的倍,依题意可列方程为.试题难度:三颗星知识点:由实际问题抽象出分式方程12.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数分别为( )A.16块,16块B.8块,24块C.20块,12块D.12块,20块答案:D解题思路:设黑色皮块和白色皮块的块数分别为x,y.本题中的等量关系为,①黑白皮块共32块;②每块白色皮块有3条边与黑色皮块的边重合在一起,故黑色皮块共有3y条边,而由已知条件可得黑色皮块共有5x条边.根据题意,得,解得,∴黑色皮块和白色皮块的块数分别为12块,20块.试题难度:三颗星知识点:二元一次方程组的应用。
方程与不等式测试题

方程与不等式一.考察题型及重点1. 一元一次方程是函数与方程部分的基础,单独考察其解法比较少见,常结合一次函数和一元一次不等式实行考察。
2. 考查方程的应用和一元二次方程根与系数的关系时多以解答题形式出现,且与二次函数紧密结合,命题难度较大。
3. 分式方程主要考查方程思想、转化思想,内容涉及分式方程的相关概念、可化为一元一次方程的分式方程的解法、理解产生增根的原因、会验根等。
题型多以填空题、选择题为主,也有解答题。
4. 二元一次方程组是考查重点,列方程(组)解应用题应特别注意。
5.不等式主要考查点为一元一次不等式(组)的解法、不等式(组)解集的数轴表示及不等式(组)的整数解等,题目以选择题、填空题为主。
6.列不等式(组)解经济问题以解答题为主。
二、试题分类汇编1.方程的根是()A B CD2.四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A B C D3.不等式的解集是()A.-<x≤2 B.-3<x≤2 C.x≥2 D.x<-3 4.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n个“口”字需用棋子()A.4n枚B.(4n-4)枚C.(4n+4)枚D.n2枚5.不等式组的解集是()A. B. C.D.6.已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()7.分式方程的解=.8.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为,试列出关于的方程:.9.方程组的解是__________.10、不等式组的解集是11.如图,……是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是,第个“广”字中的棋子个数是.12. 解方程:.13.解方程组:14.已知关于x的一元二次方程有两个相等的实数根,求的值。
中考数学复习《方程(组)与不等式(组》测试题(含答案)

中考数学复习《方程(组)与不等式(组》测试题(含答案)一、选择题1.下列数值中不是不等式5x ≥2x +9的解的是( ) A. 5 B. 4 C. 3 D. 22.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( ) A. -1 B. -3 C. 1 D. 34.已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2x C. ⎩⎪⎨⎪⎧x +2y =7x =2y D. ⎩⎪⎨⎪⎧2x +y =7y =2x5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A. m <92 B. m <92且m ≠32 C. m >-94 D. m >-94且m ≠-347.定义新运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 无关8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +5 9.如图,某小区有一块长为18 m ,宽为 6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m ,则可列出关于x 的方程是( )A. x 2+9x -8=0 B. x 2-9x -8=0 C. x 2-9x +8=0 D. 2x 2-9x +8=010.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )31二、填空题11.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元. 12.分式方程1x -2=3x的解是________. 13.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.14.不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.15.若方程(x -m )(x -n )=3(m ,n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________. 16.已知⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.17.已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是________.三、解答题18.解方程组⎩⎪⎨⎪⎧9x 2-4y 2=36x -y =2.19.解方程:2x +3=1x -1.20.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1)12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.21.解不等式组⎩⎪⎨⎪⎧5x -3<4x4(x +1)+2≥x ,并把它们的解集在数轴上表示出来.22.关于x 的两个不等式①3x +a2<1与②1-3x >0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.23.已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.24.某校学生利用双休时间去距学校10 km 的炎帝故里参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.25.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?26.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.27.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元?28.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求量的比例购买这2000件物品,需筹集资金多少元?29.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?30.如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.方程(组)与不等式(组)阶段测评1. D 【解析】不等式5x ≥2x +9的解集是x ≥3,因此2不是这个不等式的解,故选D.2. D 【解析】3x -2<1,解得x <1,故选D.3. D 【解析】设方程的另一个根为x 2,则根据根与系数关系有-1+x 2=2,解得x 2=3.4. A【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y,故选A.5. D 【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,∴方程为x 2-7x +12=0,解得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3m x -3=3,解得x =9-2m 2,解方程组⎩⎨⎧9-2m2>09-2m2≠3,得m <92且m ≠32,故选B.7. A 【解析】∵a ,b 是方程x 2-x +14m =0的两根,∴a 2-a =-14m ,b 2-b =-14m ,∴b ★b -a ★a=b (1-b )-a (1-a )=b -b 2-a +a 2=-(b 2-b )+(a 2-a )=14m -14m =0.8. B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.9. C 【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.10. B 【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.11. 180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.12. x =3 【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 80 【解析】设这辆汽车原来的速度是x km /h ,根据题意得:160x -160(1+25%)x =0.4,解得x =80,经检验x =80是原方程的根.14. 3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.15. a <m <n <b 【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.16. -8 【解析】⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,即⎩⎪⎨⎪⎧3a -2b =3 ①3b -2a =-7 ②,①+②得a +b =-4,①-②得5a -5b =10,则a -b =2,∴(a +b)(a -b)=-4×2=-8.17. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.18. 【思路分析】利用代入消元法,将方程②变为y =x -2,将此方程代入方程①求x ,进而求出y.解:⎩⎪⎨⎪⎧9x 2-4y 2=36①x -y =2 ②,将②变形为y =x -2 ③,将③代入①得:9x 2-4(x -2)2=36, 化简得:5x 2+16x -52=0,将方程左边因式分解得:(x -2)(5x +26)=0, 解得x =2或x =-265,将x =2代入方程②得y =0; 将x =-265代入方程②得y =-365.综上所述,原方程组的解为⎩⎪⎨⎪⎧x =2y =0或⎩⎨⎧x =-265y =-365.19. 解:去分母,得2(x -1)=x +3, 去括号、移项、合并同类项,得x =5, 经检验,x =5是原方程的根. ∴原方程的解为x =5.20. 解:⎩⎪⎨⎪⎧5x +2>3(x -1) ①12x ≤8-32x +2a ②, 解不等式①得x >-52,解不等式②得x ≤a +4,由不等式组的解集有四个整数解,得1≤a +4<2, ∴-3≤a <-2.21. 解:解不等式5x -3<4x 得x<3, 解不等式4(x +1)+2≥x 得x ≥-2, ∴不等式组的解集为-2≤x<3. 解集在数轴上表示如解图所示:22. 解:解不等式①,得x<2-a3,解不等式②,得x<13.(1)∵两个不等式的解集相同, ∴2-a 3=13, ∴a =1.(2)∵不等式①的解都是不等式②的解, ∴2-a 3≤13, ∴a ≥1.23. (1)解:将x =1代入x 2+mx +m -2=0,得 12+1×m +m -2=0, 解得m =12.(2) 证明:一元二次方程x 2+mx +m -2=0的根的判别式为: b 2-4ac =m 2-4(m -2)=m 2-4m +8=(m -2)2+4. ∵不论m 取何实数,(m -2)2≥0, ∴(m -2)2+4>0,即b 2-4ac >0,∴不论m 取何实数,原方程都有两个不相等的实数根.24. 解:设骑车学生的速度为x km /h ,则汽车的速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验x =15是原方程的解,汽车的速度为:2x =2×15=30 km /h ,答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h . 25. 解:设甲队单独完成此项工程需x 天,则乙队需(x +5)天, 依据题意可以列方程: 1x +1x +5=16, 解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得: 6y +6(y -4000)=385200, 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500,∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.⎪⎧2x +3y =270解得⎩⎪⎨⎪⎧x =30y =70,答:甲种商品每件进价为30元,乙种商品每件进价为70元. (2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a ≥4(100-a), 解得a ≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000, ∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元. 27. 解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得: 6000(x +1)2=8640,解得x 1=-2.2(舍去),x 2=0.2答:这两年该县投入教育经费的年平均增长率为20%. (2)2017年该县投入教育经费为: 8640×(0.2+1)=10368(万元),答:预算2017年该县将投入教育经费为10368万元.28. 解:(1)设乙种救灾物品每件x 元,则甲种救灾物品每件(x +10)元,由题意得: 350x +10=300x, 解得x =60,经检验x =60是原方程的解,∴x +10=70(元).答:甲、乙两种救灾物品每件的价格分别为70元、60元. (2)70×2000×14+60×2000×34=125000(元).答:需筹集资金125000元.29. 解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意得:⎩⎪⎨⎪⎧x +y =50310x +460y =20000, 解得⎩⎪⎨⎪⎧x =20y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意得: 310z +460(50-z)≤18000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34.答:A 种型号健身器材至少要购买34套.11 重叠部分的面积”, 列方程求解即可.解:设配色条纹的宽度为x 米,由题意得5x ×2+4x ×2-4×x 2=1780×4×5, 解得:x =14或x =174(不合题意舍去). 答:配色条纹的宽度为14米. (2)解:由题意得地毯的总造价为:1780×4×5×200+(1-1780)×4×5×100=850+1575=2425(元), 答:地毯的总造价为2425元.。
中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是()A.﹣5B.2C.3D.4【答案】B【详解】由题意,得-2≤x<3,故选B.2.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【答案】C【分析】根据数轴上表示不等式解集的方法进行解答即可.【详解】解:∵此不等式不包含等于号,∵可排除B、D,∵此不等式是小于号,∵应向左化折线,∵A错误,C正确.故选C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.关于x的一元二次方程220kx x--=有实数根,则实数k的取值范围是()A.18k=-B.18k≥-C.18k≥-且0k≠D.18k≤-【答案】C【分析】根据一元二次方程的定义和根的情况列出不等式即可求出结论.4.下列命题中,是真命题的是()A.内错角相等B.对顶角相等C.若x2=4,则x=2D.若a>b,则a2>b2【答案】B【分析】判断命题是真命题还是假命题,假命题只需举出反例,可判断A、C、D;B 通过定义发现是同一角的邻补角可证明B为真命题.【详解】A、在两直线平行的条件下,内错角相等,没有平行线条件,不相等,故A 假命题,B、由对顶角的定义,知是两直线相交所成的角中,有共顶点,没有公共边的两个角是同一个角的补角,故相等,B为真命题,C、x=-2,也有x2=4,故x2=4,x=±2,故C为假命题,D、a=-1,b=-3,故有a>b,但a2<b2,故D为假命题.故选择:B【点睛】本题考查命题真假问题,判断命题是真命题还是假命题,能举出反例就为假命题,真命题是需要加以证明.5.不等式3x-2>-1的解集是()A.x>13B.x<13C.x>-1D.x<-1【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.6.已知关于x的方程:22222 4 2 1 03 0x x x x x x y ax bx=-=+++=++=①;②();③;④,其中是一元二次方程的有()A.1个B.2个C.3个D.4个【答案】A【分析】根据一元二次方程的定义逐个判断即可.【详解】解:2 2x=①,是一元二次方程;2 4x x x x-=+②(),化简后是一元一次方程;2 2 1 0x y++=③,有两个未知数,不是一元二次方程;2 3 0ax bx++=④,二次项系数为0时,不是一元二次方程;故选:A.【点睛】本题考查了一元二次方程的定义,解题关键是明确只含一个未知数,且未知数的最高次为2的整式方程是一元二次方程,注意:一元二次方程二次项系数不为0.7.不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示如下:故选:C.【点睛】本题考查了在数轴上表示不等式组的解集,解题的关键是掌握不等式的解集在数轴上的表示方法.8.某校拓展课书法培训班准备购买一批书法笔,购买一支A型书法笔与一支B型书法笔一共需要42元,用360元购买A 型书法笔与用450购买B 型书法笔的数量相同,设A 型书法笔的单价为x 元,依题意,下面所列方程正确的是( ) A .36045042x x=- B .36045042x x=+ C .36045042x x=-D .3604504242x x=-+9.如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形面积是原矩形面积的80%,所截去的小正方形的边长是多少?设小正方形的边长是x cm ,下列方程正确的是( )A .()()10810880%x x --=⨯⨯B .()()1028210880%x x --=⨯⨯C .()()10810820%x x --=⨯⨯D .21084=10880%x ⨯-⨯⨯ 【答案】D【分析】等量关系为:矩形面积-四个全等的小正方形面积=矩形面积80%⨯,即可列出方程.【详解】解:设小正方形的边长为xcm ,由题意得2108410880%x ⨯-=⨯⨯,故选:D .【点睛】此题考查了有实际问题抽象出一元二次方程,读懂题意,找到合适的等量关系是解决本题的关键.10.一元二次方程23210x x 的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .只有一个实数根【答案】B【分析】直接利用判别式∵判断即可. 【详解】∵∆=()()22431160--⋅⋅-=> ∵一元二次方程有两个不等的实根 故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式∵时,正负号不要弄错了.11.二元一次方程432x y +=的解可以是( ) A .=1x -,2y = B .4x =,1y =C .1x =,2y =D .2x =-,2y =【答案】A【分析】分别把各选项中的值代入432x y +=验证即可.【详解】解:A.当=1x -,2y =时,4x+3y=-4+6=2,故是方程的解; B.当4x =,1y =时,4x+3y=16+3=19≠2,故不是方程的解; C.当1x =,2y =时,4x+3y=4+6=10≠2,故不是方程的解; D.当2x =-,2y =时,4x+3y=-8+6=-2≠2,故不是方程的解; 故选A .【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.12.某市2018年投入教育经费4900万元,预计2020年投入6400万元,设这两年投入教育经费的年平均增长率为x ,则( ) A .4900x 2=6400 B .4900(1+x)2=6400 C .4900 (1+x)=6400D .4900(1+x)+4900(1+x)2=6400 【答案】B【分析】这两年投入教育经费的年平均增长率为x ,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程. 【详解】解:这两年投入教育经费的年平均增长率为x , 4900(1+x )2=6400. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程中增长率问题,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 13.分式方程411(1)(2)x x x x -=--+的解是( ) A .=1x - B .1x = C .2x = D .3x =14.一件商品的进价500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打( )折 A .6 B .7 C .8 D .915.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚16.温州某服装店十月份的营业额为8000元,第四季度的营业额共为40000元.若平均每月的增长率为x,则由题意可列出方程为()A.8000(1+x)2=40000B.8000+8000(1+x)2=40000 C.8000+8000×2x=40000D.8000[1+(1+x)+(1+x)2]=40000【答案】D【详解】试题解析:设平均每月的增长率为x,则十一月份的营业额为8000(1+x),十二月份的营业额为8000(1+x)2,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.17.某店商以1200元/件卖了两件进价不同的商品,其中一件盈利20%,另一件亏损20%,在这次买卖中,该店商( ) A .不赢不亏 B .盈利100元C .亏损100元D .亏损300元【答案】C【分析】根据题意列出方程求解,然后根据利润等于售价减去进价即可得出结果. 【详解】解:设盈利商品的进价为x 元,亏损商品的进价为y 元,根据题意可得:()120%1200x +=,()120%1200y -=,解得:1000x =,1500y =, ∴1200120010001500100+--=-, ∴该商店亏损100元, 故选:C .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键. 18.如图,在ABC 中,AB AC =,AD BC ⊥于点 D ,点M 是ABC 内一点,连接BM 交AD 于点 N ,已知108∠=︒AMB ,若点M 是CAN △的内心,则 BAC ∠的度数为( )A .36°B .48°C .60°D .72°【答案】B【分析】过M 点作ME AD ⊥交AD 于点E ,根据在ABC 中,AB AC =,AD BC ⊥于点D ,可得ABC 是等腰三角形,AD 是BC 边上的中垂线,得到NB NC =,NBDNCD ;根据AD BC ⊥,ME AD ⊥,得到NMENBD ,再根据点M 是CAN △的内心,得到NAMMAC ,ANM CNM ∠=∠,设NAM x ,NBDy ,可得4BAC x ,NBD NCDNMEy ,2ENMCNMy ,利用108∠=︒AMB 可整理出18272y x yx,求解即可得到结果.【详解】解:如图示,过M 点作ME AD ⊥交AD 于点E ,∵在ABC 中,AB AC =,AD BC ⊥于点 D , ∵ABC 是等腰三角形,AD 是BC 边上的中垂线, ∵NB NC =,BAD CAD ∠=∠, ∵NBDNCD ,又∵AD BC ⊥,ME AD ⊥ ∵//EM BC ∵NMENBD ,∵点M 是CAN △的内心,即点M 在NAC ∠和ANC ∠的角平分线上, ∵NAM MAC ,ANM CNM ∠=∠, 设NAMx ,NBDy ,则有:4BAC x ,NBDNCDNMEy ,2ENMCNMy ,∵108∠=︒AMB ∵108AMEAMBEMNy则在AEM △中,10890x y,ANM 中,218010872x y ,即有18272y x yx ,解之得:1230x y∵441248BACx,故选:B .【点睛】本题考查了等腰三角形的性质,三角形的内心,角平分线的性质,平行线的判定与性质,解二元一次方程组等知识点,熟悉相关性质是解题的关键. 19.已知代数式 23-x 与 312x -的值互为相反数,则x 的值为( )A .117B .7C .711D .1220. 如图,点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,点B 的坐标为 ( )A .(0,0)B .(-12,12)C .(2,-2) D .(12,-12)二、填空题21.方程218x --=的解是x=___________. 【答案】-20【分析】先移项,然后系数化为1即可求解. 【详解】解:移项得:-x=20, 系数化为1得:x=-20, 故答案为-20.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.22.“x 的2倍比y 小”用不等式表示为 _______. 【答案】2x <y##y >2x【分析】x 的2倍即为2x ,小即“<”,据此列不等式.【详解】解:由题意得,2x <y .故答案为:2x <y .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.23.如果关于x 的方程1333k x x =---有增根,那么k =___________.24.分式方程3214x x =+-的解为 _____.25.若2(2)350m x x --+=是关于x 的一元二次方程,则m 的取值范围为______.【答案】2m ≠【分析】根据形如20(0)ax bx c a ++=≠叫做一元二次方程,列式计算即可.【详解】因为2(2)350m x x --+=是关于x 的一元二次方程,所以20m -≠,所以2m ≠,故答案为:2m ≠.【点睛】本题考查了一元二次方程的定义即形如20(0)ax bx c a ++=≠叫做一元二次方程,熟练掌握方程的条件是解题的关键.26.己知方程2310x y -+=,且含x 的式子表示y =________.27.若关于x 的分式方程x m x 1x 1---=2的解为正实数,则整数m 的最大值是______. 【答案】0【分析】分式方程去分母转化为整式方程,表示出方程的解x ,由解为正实数确定出m 的范围,即可求出所求.【详解】解:分式方程去分母得:x-m=2x-2,解得:x=2-m ,由分式方程的解为正实数,得到2-m >0,且2-m≠1,解得:m <2且m≠1,则整数m 的最大值是0,故答案为0【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.28.列方程解应用题.某商品原售价为25元,经过连续两次降价后售价为16元.求平均每次降价的百分率.【答案】平均每次降价的百分率为20%【分析】根据题意得出等量关系,列出方程求解即可.【详解】解:设平均每次降价的百分率为x ,由题意可得:()225116x -=,解得10.2=20%x =,2 1.8x =(舍去)答:平均每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是利用增长(降低)率的知识找出等量关系.29.不等式2x ﹣7<5﹣2x 的非负整数解的个数为__个.【答案】3【分析】【详解】∵2x+2x<5+7,∵4x<12,∵x<3,则不等式的非负整数解有0、1、2这3个,故答案为:3.30.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种. 【答案】4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m 的钢管b 根,根据题意得:a +2b =9, ∵a 、b 均为正整数, ∵14a b =⎧⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键. 31.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_______人去该景点,买30张票反而合算.【答案】25【分析】先求出购买30张票,优惠后需要多少钱,然后再利用5x >120时,求出买到的张数的取值范围再加上1即可.【详解】解:30×(5-1)=30×4=120(元),故5x >120时,解得:x >24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算, 24+1=25(人),则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.【点睛】本题考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解题的关键.32.某地区规划将21000平方米矩形土地用于修建文化广场,已知该片土地的宽为x 米,长比宽长10米,那么这块矩形土地的长是______米. 【答案】150【分析】土地的宽为x 米,则长为()10x +米,根据矩形面积为21000平方米列一元二次方程,求解即可.【详解】解:根据题意,土地的宽为x 米,则长为()10x +米,∵()1021000x x +=,解得1140x =,2150x =-(不合题意,舍去),∵矩形土地的长为14010150+=(米),故答案为:150.【点睛】本题考查了一元二次方程的应用,根据题意建立等量关系是解题的关键. 33.填空:(1)若10x +>,两边都加上1-,得____________________________(依据:_______________).(2)若26x >-,两边都除以2,得______________________________(依据:______________).(3)若1132x -≤,两边都乘3-,得_____________________________(依据:_______________).【答案】 1x >-##1x -< 不等式两边加(或减)同一个数(或式子),不等号的方向不变 3x >-##3x -< 不等式两边乘(或除以)同一个正数,不等号的方向不34.解方程412343x x-+=-1的第一步是方程左、右两边同时乘以________去分母,最后可得方程的解为________.35.从满足不等式组2173211xx+≤⎧⎨--⎩>的所有整数解中任意取一个数记作a,则关于y的一元二次方程230 4ay y--=有实数根的概率是_____________.36.商店将定价600元的商品降价10%后出售,至少要获利20%,那么这种商品的进价应不高于______元.【答案】450【分析】设这种商品的进价为x元,则降价后的价钱为600×(1-10%),然后根据仍能至少获利20%列出不等式,求出x的范围.【详解】设这种商品的进价为x元,由题意得,600×(1-10%)≥x(1+20%),解得:x≤450.即这种商品的进价应不超过450元.【点睛】此题主要考查了一元一次不等式的应用,解决本题的关键是得到商品售价的等量关系,列出不等式求出最小整数解.37.分解因式4m 3﹣mn 2的结果是____;二元一次方程组22x y x y +=⎧⎨-=-⎩的解是___. 【答案】 m (2m +n )(2m-n ) 02x y =⎧⎨=⎩ 【分析】利用提公因式法和公式法分解因式和加减消元法解二元一次方程组即可求解.【详解】解:4m 3﹣mn 2=m (4m 2﹣n 2)= m (2m +n )(2m-n );22x y x y +=⎧⎨-=-⎩①②, ∵+∵得:2x =0,得x =0 , 将x =0代入∵得y =2,方程组的解为02x y =⎧⎨=⎩, 故答案为:m (2m +n )(2m-n );02x y =⎧⎨=⎩【点睛】此题考查提公因式法和公式法分解因式和加减消元法解二元一次方程组,掌握相应的运算方法是解答此题的关键.38.若关于x 的一元一次不等式组20122x x m -<⎧⎪⎨+≥⎪⎩有4个整数解,则m 的取值范围为_______________________.732m < 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式122x m +,得:不等式组有4个整数解,,732m < 故答案为732m <【点睛】本题主要考查的是不等式的解集,由不等式无解判断出是解题的关键.39220x --≤的解集是_______.40.已知25x y -=,若用含x 的代数式表示y ,则y =_____________.【答案】2x-5.【分析】将x 看做已知数求出y 即可.【详解】2x-y=5,解得:y=2x-5.故答案为2x-5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .三、解答题41.解不等式2(3)3(2)x x -+>+【答案】x <−12【分析】根据解一元一次不等式的步骤:先去括号,再移项、合并同类项,最后系数化为1即可.【详解】解:去括号,得−6+2x >3x +6,移项、合并同类项,得−x >12,系数化为1,得x <−12.【点睛】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质: ∵在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;∵在不等式的两边同时乘以或除以同一个正数不等号的方向不变;∵在不等式的两边同时乘以或除以同一个负数不等号的方向改变.42.解方程:(1)()235x x +=-;(2)325123y y ---=. 【答案】(1)11x =-;(2)5y =-【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可; (2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 43.解方程:(1)5(21)x x --=(2)1324x x +-= 【答案】(1)2x =;(2)13x =.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】(1)去括号,得:521x x -+=,移项,得:251x x --=--,合并同类项,得:36x -=-,系数化为1,得:2x =; (2)去分母,得:()2112x x -+=,去括号,得:2112x x --=,移项,得:2121x x -=+,合并同类项,得:13x =.【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.44.(1)计算:1202020131)(1)2-⎛⎫+-+- ⎪⎝⎭(2)解方程:132x x =+45.我县化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,若要求总运费最少,应如何安排使得总运费最少,并求出最少总运费.【答案】(1)y=20-2x(2)装运A种物资的车8辆,装运B种物资的车4辆,装运C种物资的车8辆;最少为48640元【详解】试题分析:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y,所以装运C种物资的车辆数(20-x-y),然后根据化学物资共200吨,可得函数关系式y=20-2x;(2)根据装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,可求出x的取值范围,设总运费为M元,然后求出函数关系式M=-1920x+64000,然后利用一次函数的增减性,x取最大值时,M最小.试题解析:解:(1)根据题意得:12x+10y+8(20-x-y)=2001分12x+10y+160-8x-8y=2002x+y=20,2分∵y=20-2x4分(2)根据题意得:5{2024xx≥-≥,解得58x≤≤,5分设总运费为M元,则M=12×240x+10×320(20-2x)+8×200(20-x+2x-20)6分即:M=-1920x+640007分∵M是x的一次函数,且M随x增大而减小,x取正整数,∵当x=8时,M 最小,最少为48640元. 8分 即装运A 种物资的车8辆,装运B 种物资的车4辆,装运C 种物资的车8辆 9分考点:1.确定一次函数解析式;2.不等式组;3.一次函数的实际应用.46.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台? 【答案】(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,再根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”建立方程组,解方程组即可得;(2)设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,再根据“资金不超过110万元”建立不等式,解不等式即可得.(1)解:甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216236x y x y -=⎧⎨-+=⎩, 解得1210x y =⎧⎨=⎩, 答:甲、乙两种型号设备每台的价格分别为12万元和10万元.(2)解:设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,由题意得:1210(10)110m m +-≤,解得5m ≤,答:该公司甲种型号的设备至多购买5台.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确建立方程组和不等式是解题关键.47.已知关于x的一元二次方程x2﹣3x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)选一个适当的k值使得此一元二次方程的根都是整数.48.解方程:(1)224-=.x x(2)2320x x-+=.∵x 1=1,x 2=2. 【点睛】此题考查了解一元二次方程,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,再由利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.49.完成下列各题: (1)解方程:∵2111x x x +=+- ∵22216224x x x x x -+-=+-- (2)观察下列等式,并探索它们的规律:111111111,,12223233434=-=-=-⨯⨯⨯...,试用正整数n 表示这个规律,并加以证明.50.(1)251x yx y-=⎧⎨+=⎩,(2)325429m nm n-=⎧⎨+=⎩,(3)357425x yx y-=⎧⎨+=⎩。
《方程与不等式》综合测试卷

第二章《方程与不等式》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为(C ) A. 1 B. 2 C. 3 D. 4【解析】 把x =3代入方程,得9-9m +6m =0,∴m =3. 2.下列说法中,错误的是(C )A. 不等式x <2的正整数解只有一个B. -2是不等式2x -1<0的一个解C. 不等式-3x >9的解是x >-3D. 不等式x <10的整数解有无数个【解析】 不等式-3x >9的解是x <-3.故选C.3.“六一”儿童节前夕,某超市用3360元购进A ,B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是(B )A. ⎩⎪⎨⎪⎧x +y =120,36x +24y =3360B.⎩⎪⎨⎪⎧x +y =120,24x +36y =3360C.⎩⎪⎨⎪⎧36x +24y =120,x +y =3360D.⎩⎪⎨⎪⎧24x +36y =120,x +y =3360 【解析】 设购买A 型童装x 套,B 型童装y 套,由题意,得⎩⎪⎨⎪⎧x +y =120,24x +36y =3360.4.如图,A ,B 两点在数轴上表示的数分别是a ,b ,则下列式子中成立的是(C )(第4题)A. a +b <0B. -a <-bC. 1-2a >1-2bD. |a |-|b |>0【解析】 由图可知-2<a <-1,2<b <3, ∴a <b ,a +b >0,故A 错误. ∵a <b ,∴-a >-b ,故B 错误.∵-a >-b ,∴-2a >-2b ,∴1-2a >1-2b ,故C 正确. ∵|a |<|b |,∴|a |-|b |<0,故D 错误.故选C.5.不等式组⎩⎪⎨⎪⎧-x ≤2,x -2<1的所有整数解之和是(A )A. 0B. 3C. -3D. 6【解析】 解不等式组⎩⎪⎨⎪⎧-x ≤2,x -2<1,得-2≤x <3.∴整数解为-2,-1,0,1,2,故所有整数解之和是-2-1+0+1+2=0.6.不等式组⎩⎪⎨⎪⎧x >3,x >a 的解是x >a ,则a 的取值范围是(A )A.a ≥3B.a =3C.a >3D.a <3【解析】 由不等式组的解是x >a ,得a ≥3.7.已知关于x 的方程kx 2+(1-k )x -1=0,则下列说法中正确的是(C ) A. 当k =0时,方程无解B. 当k =1时,方程有一个实数解C. 当k =-1时,方程有两个相等的实数解D. 当k ≠0时,方程总有两个不相等的实数解【解析】 当k =0时,原方程变为x -1=0,解得x =1. 当k ≠0时,Δ=(1-k )2-4k ·(-1)=(k +1)2≥0. 当k =-1时,Δ=0,方程有两个相等的实数解.当k ≠-1且k ≠0时,Δ>0,方程有两个不相等的实数解.8.如图①,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图②,则被移动的玻璃球的质量为(A )(第8题)A. 10 gB. 15 gC. 20 gD. 25 g 【解析】 设图①天平左侧袋中玻璃球的质量为m (g ),右侧袋中玻璃球的质量为n (g ),根据题意,得m =n +40.设被移动的玻璃球的质量为x (g ),根据题意,得 m -x =n +x +20,∴x =12(m -n -20)=12(n +40-n -20)=10(g ).9.若用“i ”表示虚数单位,且规定i 2=-1,并用a +b i (a ,b 都是实数且b ≠0)表示一个任意的虚数.我们把实数和虚数统称为复数,那么,在实数范围内无解的一元二次方程,在复数范围内就有解了.例如,方程x 2-2x +2=0在复数范围内用公式法(用i 2替换-1)解得其解为x 1=1+i ,x 2=1-i.那么方程2x 2+x +1=0在复数范围内的解为(B )A. x 1=-1+7i 2,x 2=-1-7i 2B. x 1=-1+7i 4,x 2=-1-7i 4C. x 1=-1+7i 2,x 2=-1-7i2D. x 2=-1+7i 4,x 2=-1-7i4【解析】 x =-1±1-84=-1±-74=-1±7i4,∴x 1=-1+7i 4,x 2=-1-7i4.10.某市出租车的收费标准是:起步价8元(即行驶距离不超过3 km 都需付8元车费),超过3 km 以后,每增加1 km ,加收1.5元(不足1 km 按1 km 算).某人从甲地到乙地经过的路程是x (km ),出租车费为15.5元,那么x 的最大值是(B )A. 11B. 8C. 7D. 5【解析】 由题意,得1.5(x -3)+8≤15.5, 解得x ≤8.∴x 的最大值是8.二、填空题(每小题4分,共24分) 11.方程x 2=x 的根是x 1=0,x 2=1W. 【解析】 由方程x 2=x ,得x 2-x =0, x (x -1)=0,∴x 1=0,x 2=1.12.若关于x 的方程(m -5)x 2+4x -1=0有实数根,则m 的取值范围是m ≥1W.【解析】 ①当该方程是一元一次方程时,m -5=0,得m =5.此时x =14;②当该方程是一元二次方程时,二次项系数m -5≠0,Δ≥0,解得m ≥1且m ≠5.综合①②可得m ≥1.13.杭州到北京的铁路长1487 km ,火车的原平均速度为x (km/h ),提速后平均速度增加了70 km/h ,由杭州到北京的行驶时间缩短了3 h ,则可列方程为1487x -1487x +70=3W.【解析】 由提速前行驶时间-提速后行驶时间=缩短时间,可得1487x -1487x +70=3.14.当-2≤x ≤-1时,ax +6>0,则a 的取值范围是a <3W.【解析】 当x =-2时,-2a +6>0,解得a <3; 当x =-1时,-a +6>0,解得a <6. ∴a 的取值范围为a <3.15.不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x <0的最小整数解为 x =3 W.【解析】 ⎩⎪⎨⎪⎧x -1≥0,①4-2x <0,②解①,得x ≥1.解②,得x >2.∴不等式组的解为x >2.∴最小整数解为x =3.16.某班级为筹备篮球赛,准备用365元购买两种颜色的运动服,其中蓝色运动服20元/套,黄色运动服35元/套,在钱都用尽的条件下,有 2 种购买方案.【解析】 设蓝色运动服买x 套,黄色运动服买y 套,由题意,得20x +35y =365,∴y =73-4x 7.∵x ,y 都为正整数, ∴x 只能为6或13.当x =6时,y =7;当x =13时,y =3,∴符合题意的解是⎩⎪⎨⎪⎧x =6,y =7或⎩⎪⎨⎪⎧x =13,y =3. ∴有2种购买方案.三、解答题(共66分) 17.(8分)解方程(组):(1)⎩⎪⎨⎪⎧x -y =8,3x +y =12.【解析】 ⎩⎪⎨⎪⎧x -y =8,①3x +y =12,②①+②,得4x =20,∴x =5.将x =5代入①,得y =-3.∴⎩⎪⎨⎪⎧x =5,y =-3.(2)4x -3-1x=0.【解析】 去分母,得4x -(x -3)=0. 去括号,得4x -x +3=0.移项、合并同类项,得3x =-3. 系数化为1,得x =-1.经检验,x =-1是原方程的解. (3)x 2-4x =4.【解析】 配方,得(x -2)2=8, x -2=±22, ∴x =2±2 2. (4)(x -3)2+4x (x -3)=0. 【解析】 (x -3)(x -3+4x )=0, 即(x -3)(5x -3)=0, ∴x 1=3,x 2=35.18.(6分)解不等式组:⎩⎪⎨⎪⎧3(x +2)>x +8,x 4≥x -13,并把它的解在数轴上表示出来.(第18题)【解析】 ⎩⎪⎨⎪⎧3(x +2)>x +8,①x 4≥x -13,② 解①,得x >1.解②,得x ≤4.∴这个不等式组的解是1<x ≤4. 在数轴上表示如解图.(第18题解)19.(8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,很快销空.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫有多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后的利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?【解析】 (1)设该商家购进的第一批衬衫有x 件,则第二批衬衫有2x 件.由题意,得288002x -13200x=10,解得x =120. 经检验,x =120是原方程的解且符合题意. 答:该商家购进的第一批衬衫有120件.(2)由(1)得:第一批衬衫的进价为13200÷120=110(元/件),第二批的进价为110+10=120(元/件).设每件衬衫的标价至少是a 元,由题意,得120×(a -110)+(240-50)×(a -120)+50×(0.8a -120)≥25%×(13200+28800),解得a ≥150.答:每件衬衫的标价至少是150元.20.(8分)P n 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n 与n 的关系式是:P n =n (n -1)24·(n 2-an +b )(其中a ,b 是常数,n ≥4).(1)通过画图,可得四边形时,P 4= 1 (填数字); 五边形时,P 5= 5 (填数字).(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 【解析】 (1)如解图.(第20题解)由解图可知,当n =4时,P 4=1;当n =5时,P 5=5. (2)将n =4,P 4=1;n =5,P 5=5代入公式,得 ⎩⎨⎧4×(4-1)24·(16-4a +b )=1,5×(5-1)24·(25-5a +b )=5,解得⎩⎪⎨⎪⎧a =5,b =6. 21.(8分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图所示的两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.(第21题)现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法. (1)用含x 的代数式分别表示裁剪出的侧面和底面的个数.(2)若裁剪出的侧面和底面恰好全部用完,问:能做多少个盒子? 【解析】 (1)∵裁剪时x 张用A 方法, ∴裁剪时(19-x )张用B 方法.∴侧面的个数为6x +4(19-x )=2x +76, 底面的个数为5(19-x )=95-5x . (2)由题意,得2x +7695-5x =32,解得x =7,∴盒子的个数为2×7+763=30.答:能做30个盒子.22.(8分)有甲、乙、丙三种糖果混合而成的什锦糖100 kg ,其中各种糖果的单价和质量如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果 乙种糖果 丙种糖果 单价(元/千克) 15 25 30 质量(千克)404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100 千克,问:其中最多可加入丙种糖果多少千克?【解析】 (1)单价为15×40+25×40+30×20100=22(元/千克).答:该什锦糖的单价是22元/千克. (2)设加入丙种糖果x (kg ),则加入甲种糖果(100-x )kg.根据题意,得 30x +15(100-x )+22×100200≤22-2,解得x ≤20.答:最多可加入丙种糖果20 kg.23.(8分)为了更好地保护美丽的邛海湿地,西昌市污水处理厂决定先购买A ,B 两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A 型污水处理设备12万元,每台B 型污水处理设备10万元.已知1台A 型污水处理设备和2台B 型污水处理设备每周可以处理污水640 t ,2台A 型污水处理设备和3台B 型污水处理设备每周可以处理污水1080 t.(1)求A ,B 两型污水处理设备每周每台分别可以处理污水多少吨.(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500 t ,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?【解析】 (1)设A 型污水处理设备每周每台可以处理污水x (t ),B 型污水处理设备每周每台可以处理污水y (t ).由题意,得⎩⎪⎨⎪⎧x +2y =640,2x +3y =1080,解得⎩⎪⎨⎪⎧x =240,y =200.答:A 型污水处理设备每周每台可以处理污水240 t ,B 型污水处理设备每周每台可以处理污水200 t.(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(20-x )台.由题意,得⎩⎪⎨⎪⎧12x +10(20-x )≤230,240x +200(20-x )≥4500, 解得12.5≤x ≤15. 故有三种方案:方案一,购买A 型污水处理设备13台,B 型污水处理设备7台; 方案二,购买A 型污水处理设备14台,B 型污水处理设备6台; 方案三,购买A 型污水处理设备15台,B 型污水处理设备5台. 易知购买A 型污水处理设备越少越省钱,故方案一所需资金最少,最少是13×12+7×10=226(万元).24.(12分)对x ,y 定义一种新运算,规定:T (x ,y )=ax +by2x +y (其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例如:T (0,1)=a ·0+b ·12×0+1=b .(1)已知T (1,-1)=-2,T (4,2)=1. ①求a ,b 的值.②若关于m 的不等式组⎩⎪⎨⎪⎧T (2m ,5-4m )≤4,T (m ,3-2m )≥P 恰好有3个整数解,求实数P 的取值范围.(2)若T (x ,y )=T (y ,x )对任意实数x ,y 都成立[这里T (x ,y )和T (y ,x )均有意义],则a ,b 应满足怎样的关系?【解析】 (1)①由题意,得T (1,-1)=a -b2-1=-2,即a -b =-2.T (4,2)=4a +2b8+2=1,即2a +b =5.联立⎩⎪⎨⎪⎧a -b =-2,2a +b =5,解得⎩⎪⎨⎪⎧a =1,b =3.②由题意,得⎩⎪⎨⎪⎧2m +3(5-4m )4m +5-4m≤4,m +3(3-2m )2m +3-2m≥P ,解得-12≤m ≤9-3P 5.∵不等式组恰好有3个整数解, ∴m =0,1,2,∴2≤9-3P 5<3,解得-2<P ≤-13.(2)由T (x ,y )=T (y ,x ),得 ax +by 2x +y =ay +bx 2y +x. 整理,得(x 2-y 2)(2b -a )=0.∵T (x ,y )=T (y ,x )对任意实数x ,y 都成立,第五章《基本图形(一)》综合测试卷[分值:120分]一、选择题(每小题3分,共30分)1.如图,直线a ,b 被直线c 所截,则∠1与∠2的位置关系是(B ) A .同位角 B .内错角 C .同旁内角 D .对顶角【解析】 ∠1与∠2成“Z ”字形,是内错角.(第1题) (第2题)2.已知M ,N ,P ,Q 四点的位置如图所示,则下列结论中,正确的是(C ) A .∠NOQ =42° B .∠NOP =130°C .∠NOP 比∠MOQ 大D .∠MOQ 与∠MOP 互补 【解析】 由图可知,∠NOQ =138°,∠NOP =50°,∠MOQ =42°,∠MOP =130°,故选C.(第3题)3.如图,AB ∥CD ,DA ⊥AC ,垂足为A .若∠ADC =35°,则∠1的度数为(B ) A .65° B .55° C .45° D .35°【解析】 ∵DA ⊥AC ,∴∠CAD =90°. ∵∠ADC =35°,∴∠ACD =55°.∵AB ∥CD ,∴∠1=∠ACD =55°.4.将一副直角三角尺如图所示放置,若∠AOD =20°,则∠BOC 的大小为(B ) A. 140° B. 160° C. 170° D. 150°【解析】 ∵∠AOB =∠COD =90°,∠AOD =20°, ∴∠BOC =∠AOB +∠COD -∠AOD =160°.(第4题) (第5题)5.如图,在Rt △ABC 中,∠A =30°,BC =1,D ,E 分别是直角边BC ,AC 的中点,则DE 的长为(A )A .1B .2C.3 D .1+ 3【解析】 在Rt △ABC 中,∵∠C =90°,∠A =30°, ∴AB =2BC =2.∵D ,E 分别是BC ,AC 的中点,∴DE =12AB =1.6.如图,已知AE =CF ,∠AFD =∠CEB ,则添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是(B )A. ∠A =∠CB. AD =CBC. BE =DFD. AD ∥BC【解析】 ∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . A. 可根据“ASA ”推出△ADF ≌△CBE . B. 不能根据“SSA ”推出△ADF ≌△CBE . C. 可根据“SAS ”推出△ADF ≌△CBE .D. ∵AD ∥BC ,∴∠A =∠C .可根据“ASA ”推出△ADF ≌△CBE .(第6题) (第7题)7.如图,在△ABC 中,AB =AC ,D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为(B )A. 30°B. 36°C. 40°D. 45°【解析】 设∠B =x .∵AB =AC ,∴∠C =∠B =x . ∵CD =AD ,∴∠CAD =∠C =x .∵AB =BD ,∴∠BAD =∠BDA =∠CAD +∠C =2x . ∵∠BAD +∠B +∠BDA =180°,∴2x +x +2x =180°, 解得x =36°,即∠B =36°.(第8题)8.如图,已知边长为2的正三角形ABC 的顶点A 的坐标为(0,6),BC 的中点D 在y 轴上,且在点A 的下方,E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为(B )A. 3B. 4- 3C. 4D. 6-2 3【解析】 当点E 转到y 轴的正半轴上时,DE 最小. ∵OE =2,∴AE =6-2=4,∴DE =AE -AD =4- 3.9.如图①,分别以直角三角形的三边为边向外作等边三角形,面积分别为S 1,S 2,S 3;如图②,分别以直角三角形的三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S 4,S 5,S 6.其中S 1=16,S 2=45,S 5=11,S 6=14,则S 3+S 4=(A )(第9题)A .86B .64C .54D .48(第9题解) 【解析】 如解图,易得S 1=34AC 2,S 2=34BC 2,S 3=34AB 2.∵AB 2=AC 2+BC 2, ∴S 1+S 2=S 3.同理,S 4=S 5+S 6,∴S 3+S 4=16+45+11+14=86.(第10题)10.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,△AEF 是等边三角形,连结AC 交EF 于点G ,有下列结论:①BE =DF ;②∠DAF =15°;③AC 垂直平分EF ;④BE +DF =EF ;⑤S △CEF =2S △ABE .其中正确的结论有(C )A. 2个B. 3个C. 4个D. 5个【解析】 ∵四边形ABCD 是正方形, ∴AB =BC =CD =AD ,∠B =∠BCD =∠D =∠BAD =90°.∵△AEF 是等边三角形,∴AE =EF =AF ,∠EAF =60°.∴∠BAE +∠DAF =30°.在Rt △ABE 和Rt △ADF 中,∵⎩⎪⎨⎪⎧AE =AF ,AB =AD , ∴Rt △ABE ≌Rt △ADF (HL ).∴BE =DF ,∠BAE =∠DAF ,故①正确;∵∠BAE +∠DAF =30°,∴∠DAF =15°,故②正确;∵BC =CD ,∴BC -BE =CD -DF ,即CE =CF .又∵AE =AF ,∴AC 垂直平分EF ,故③正确;设CE =x ,由勾股定理,得AE =EF =2x ,CG =EG =22x ,∴AG =62x , ∴AC =6x +2x 2, ∴AB =3x +x 2, ∴BE =3x +x 2-x =3x -x 2, ∴BE +DF =3x -x ≠2x ,故④错误;∵S △CEF =x 22,S △ABE =3x -x 2·3x +x 22=x 24, ∴2S △ABE =x 22=S △CEF ,故⑤正确. 综上所述,正确的结论有①②③⑤,共4个.二、填空题(每小题4分,共24分)11.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__13__.【解析】∵DE 是AB 的垂直平分线,∴EA =EB ,∴△BCE 的周长=BC +EC +EB =BC +EC +EA =BC +AC =13.(第11题) (第12题)12.如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是__3__.【解析】 ∵边AB 的长比AD 的长大2,∴AB =AD +2,∴AD ·(AD +2)=15,解得AD =3或AD =-5(不合题意,舍去).13.如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一条直线上,BF =EC ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是∠A =∠D (答案不唯一)(只需填写一个即可).【解析】 ∵AC ∥DF ,∴∠ACB =∠DFE .∵BF =EC ,∴BC =EF .∴根据SAS 可添加AC =DF ,根据ASA 可添加∠B =∠E 或AB ∥DE ,根据AAS 可添加∠A =∠D.(第13题) (第14题)14.如图,在Rt △ABC 中,∠ACB =90°,AD 是∠BAC 的平分线,与BC 交于点D .若AD =4,CD =2,则AB 的长是__43__.【解析】 在Rt △ACD 中,∵∠C =90°,AD =4,CD =2,∴∠CAD =30°,AC =AD 2-CD 2=2 3.∵AD 平分∠BAC ,∴∠BAC =60°,∴∠B =30°,∴AB =2AC =4 3.15.如图,在矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连结AE 并延长,交DC 于点F ,则CF CD =__13__. 【解析】 ∵四边形ABCD 是矩形,∴BC =AD ,∠BAD =90°.又∵AB =3,BC =6,∴BD =AB 2+AD 2=3.∵BE =1.8,∴DE =3-1.8=1.2. ∵AB ∥CD ,∴△FDE ∽△ABE , ∴DF BA =DE BE ,即DF 3=1.21.8,解得DF =233. ∴CF =CD -DF =33.∴CFCD=333=13. (第15题) (第16题)16.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 1的两边在坐标轴上,以它的对角线OB 1为边作正方形OB 1B 2C 2,再以正方形OB 1B 2C 2的对角线OB 2为边作正方形OB 2B 3C 3……以此类推,则正方形OB 2015B 2016C 2016的顶点B 2016的坐标是(21008,0).【解析】 ∵正方形OA 1B 1C 1的边长为1,∴OB 1= 2.∵正方形OB 1B 2C 2是以正方形OA 1B 1C 1的对角线OB 1为边作成的,∴OB 2=2,∴点B 2(0,2).同理,点B 3(-2,2),B 4(-4,0),B 5(-4,-4),B 6(0,-8),B 7(8,-8),B 8(16,0),B 9(16,16),B 10(0,32)……可以发现,点的坐标符号特征为8个一循环,每次变换后正方形的边长变为原来的2倍. ∵2016÷8=252,∴点B 2016在x 轴的正半轴上,且OB 2016=(2)2016=21008,∴点B 2016的坐标是(21008,0).三、解答题(共66分)17.(6分)如图,已知EC =AC ,∠BCE =∠DCA ,∠A =∠E .求证:BC =DC .(第17题) 【解析】 ∵∠BCE =∠DCA ,∴∠BCE +∠ACE =∠DCA +∠ACE ,即∠ACB =∠ECD .在△ABC 和△EDC 中,∵⎩⎪⎨⎪⎧∠ACB =∠ECD ,AC =EC ,∠A =∠E ,∴△ABC ≌△EDC (ASA ).∴BC =DC .(第18题)18.(8分)如图,已知BD 是△ABC 的角平分线,点E ,F 分别在边AB ,BC 上,ED ∥BC ,EF ∥AC .求证:BE =CF .【解析】 ∵ED ∥BC ,EF ∥AC ,∴四边形EFCD 是平行四边形,∴DE =CF .∵BD 平分∠ABC ,∴∠EBD =∠DBC .∵DE ∥BC ,∴∠EDB =∠DBC ,∴∠EBD =∠EDB ,∴EB =ED ,∴EB =CF .(第19题)19.(8分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3.)【解析】 满足条件的所有等腰三角形如解图.(第19题解)(第20题)20.(10分)如图,已知E ,F 分别是▱ABCD 的边BC ,AD 上的点,且BE =DF .(1)求证:四边形AECF 是平行四边形.(2)若BC =10,∠BAC =90°,且四边形AECF 是菱形,求BE 的长.【解析】 (1)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC .又∵DF =BE ,∴AF =CE .∴四边形AECF 是平行四边形.(2)∵四边形AECF 是菱形,∴AE =EC ,∴∠EAC =∠ECA .又∵∠BAC =90°,∴∠BAE =∠B ,∴BE =AE .∴BE =AE =EC .∵BC =10,∴BE =5.(第21题)21.(10分)如图,在△ABC 中(BC >AC ),∠ACB =90°,点D 在AB 边上,DE ⊥AC 于点E .(1)若AD DB =13,AE =2,求EC 的长. (2)设点F 在线段EC 上,点G 在射线CB 上,以F ,C ,G 为顶点的三角形与△EDC 有一个锐角相等,FG 交CD 于点P .问:线段CP 是△CFG 的高线、中线还是两者都有可能?请说明理由.【解析】 (1)∵∠ACB =90°,DE ⊥AC ,∴DE ∥BC ,∴AD DB =AE EC. ∵AD DB =13,AE =2,∴2EC =13,解得EC =6. (2)①若∠CFG 1=∠ECD ,此时线段CP 1为Rt △CFG 1的斜边FG 1上的中线.证明如下: ∵∠CFG 1=∠ECD ,∴∠CFG 1=∠FCP 1.又∵∠CFG 1+∠CG 1F =90°,∠FCP 1+∠P 1CG 1=90°,∴∠CG 1F =∠P 1CG 1,∴CP 1=G 1P 1.又∵∠CFG 1=∠FCP 1,∴CP 1=FP 1,∴CP 1=FP 1=G 1P 1,∴线段CP 1为Rt △CFG 1的斜边FG 1上的中线.②若∠CFG 2=∠EDC ,此时线段CP 2为Rt △CFG 2的斜边FG 2上的高线.证明如下: ∵DE ⊥AC ,∴∠DEC =90°,∴∠EDC +∠ECD =90°.∵∠CFG 2=∠EDC ,∴∠ECD +∠CFG 2=90°,∴CP 2⊥FG 2.∴线段CP 2为Rt △CFG 2的斜边FG 2上的高线.③当CD 为∠ACB 的平分线时,CP 既是△CFG 的FG 边上的高线,又是中线.22.(12分)我们给出如下定义:顺次连结任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,在四边形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形.(2)如图②,P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想.(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状(不必证明).(第22题)【解析】 (1)如解图①,连结BD .∵E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD . ∵F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD . ∴EH ∥FG ,EH =FG .∴中点四边形EFGH 是平行四边形.①②(第22题解)(2)四边形EFGH 是菱形.证明如下:如解图②,连结AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,∵⎩⎪⎨⎪⎧P A =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD (SAS ).∴AC =BD .∵E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD .∴EF =FG . 同(1)可得四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)四边形EFGH 是正方形.如解图②,设AC 与BD 相交于点O ,AC 与PD 相交于点M ,AC 与EH 相交于点N . ∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠COD =90°.又∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.23.(12分)如图,在等边三角形ABC 中,点D 在直线BC 上,连结AD ,作∠ADN =60°,直线DN 交射线AB 于点E ,过点C 作CF ∥AB 交直线DN 于点F.(第23题)(1)如图①,当点D 在线段BC 上,∠NDB 为锐角时,求证:CF +BE =CD (提示:过点F 作FM ∥BC 交射线AB 于点M ).(2)如图②,当点D 在线段BC 的延长线上,∠NDB 为锐角时;如图③,当点D 在线段CB 的延长线上,∠NDB 为钝角时,请分别写出线段CF ,BE ,CD 之间的数量关系,不需要证明.(3)在(2)的条件下,若∠ADC =30°,S △ABC =43,则BE =__8__,CD =4或8.【解析】 (1)如解图①,过点F 作FM ∥BC 交射线AB 于点M .∵FM ∥BC ,∴∠EMF =∠ABC ,∠BDE =∠MFE .∵CF ∥AB ,FM ∥BC ,∴四边形BMFC 是平行四边形,∴BC =MF ,CF =BM .∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC ,∴∠EMF =∠ACB ,MF =CA .∵∠ADE =∠ACB =60°,∴∠BDE +∠CDA =120°,∠CAD +∠CDA =120°,∴∠BDE =∠CAD .∴∠MFE =∠CAD .在△MEF 与△CDA 中,∵⎩⎪⎨⎪⎧∠MFE =∠CAD ,MF =CA ,∠EMF =∠DCA ,∴△MEF ≌△CDA (ASA ).∴CD =ME =BE +BM .∴CD =BE +CF .(第23题解)(2)题图②中,CD =BE -CF ;题图③中,CD =CF -BE .(3)如解图②.由题意,易得∠CDA =∠CAD =30°,∠BAD =90°,BC=AC=CD.∵S△ABC=12BC·BC·sin60°=34BC2=43,∴BC=4.∴CD=4.∵∠BDE=∠ADN-∠ADC=30°,∠BED=90°-∠ADN=30°,∴∠BDE=∠BED,∴BE=BD=BC+CD=8;如解图③.同理可得,此时BD=BC=AB,BC=4,∠BAD=30°,∴BD=4,∠DEB=∠ADN-∠BAD=30°.又∵∠ADN+∠ADC=90°,∴∠EDB=90°.∴BE=2BD=8,CD=BD+BC=8.综上所述,BE=8,CD=4或8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学总复习专题测试试卷(方程与不等式)
一、选择题
1.点 A(m
4,1 2m) 在第三象限,那么 m 值是(
)。
1
B. m
4
1 m 4
D. m 4
A. m
C.
2 2
2.不等式组
x 3 )。
x
的解集是 x> a ,则 a 的取值范围是(
a
A. a ≥3
B
. a =3 C. a >3
D. a <3
2x
1
3.方程 x 2-4 -1= x + 2 的解是(
)。
A.- 1
B . 2 或- 1
C.- 2 或 3
D. 3
2-x
x-1
4.方程 3 -
4 =
5 的解是( )。
A. 5
B
. - 5
C. 7
D. - 7
5.一元二次方程 x 2 -2x-3=0 的两个根分别为( )。
A .x 1=1,x 2 =-3
B .x 1=1,x 2 =3
C .x 1=-1 , x 2=3
D
.x 1=-1 ,x 2=-3
a
2b
,
则 a b 的值为(
6.已知 a , b 满足方程组
)。
2a b m
,
4
A. 1
B. m 1
C. 0
D. 1
7. 若方程组
3x 5y m 2
2x 3 y m
的解 x 与 y 的和为 0,则 m 的值为(
)。
A.- 2
B .0
C. 2 D. 4
8.在一幅长 80cm ,宽 50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的 面积是 5400cm 2 ,设金色纸边的宽为 xcm , 那么 x 满足的方程是(
)。
A .x 2+130x-1400=0
B . x 2 +65x-350=0
C .x 2-130x-1400=0
D . x 2 -65x-350=0
2x m +1 x +1
9.若解分式方程 x -1 -x 2+ x = x
产生增根,则 m 的值是( )。
A.- 1 或- 2 B .- 1 或 2
C. 1 或 2
D. 1 或- 2
二、填空题
10.不等式 (m-2)x>2-m 的解集为 x<-1 ,则 m 的取值范围是 __________________。
11.已知关于 x 的方程 10x 2-(m+3)x+m - 7=0,若有一个根为
0,则 m=_________,这时方程的另一个根是
_________。
12.不等式组
x 2m 1 x
m 的解集是 x < m -2,则 m 的取值应为 _________。
2
三解答题 13.解方程:
(1) (2x
– 3) 2 = (3x – 2) 2
1 1 2
(2) 解方程:
2
2 1 3x
6x
x y 2
x 2 y 5
(3) 已知关于 x ,y 的方程组
by 1 与
by
的解相同,求 a , b 的值。
ax ax 4
14.解不等式组,并把其解集在数轴上表示出来:
x
3
≥ x ,
3
2
1 3( x 1) 8 x.
四、解答题
15. 如图, 8 块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
↑
60cm
↓
16.某科技公司研制成功一种新产品,决定向银行贷款 200 万元资金用于生产这种产品,签定的合同约定
两年到期时一次性还本付息,利息为本金的
8%,该产品投放市场后,由于产销对路,使公司在两年到期
时除还清贷款的本金和利息外, 还盈余 72 万元;若该公司在生产期间每年比上一年资金增长的百分数相同,
试求这个百分数。
17.“十一”黄金周期间,某学校计划组织 385 名师生租车旅游,现知道出租公司有
42 座和 60 座两种客
车, 42 座客车的租金每辆为 320 元, 60 座客车的租金每辆为
460 元。
( 1)若学校单独租用这两种车辆各需多少钱?
( 2)若学校同时租用这两种客车 8 辆(可以坐不满),而且要比单独租用一种车辆节省租金。
请你帮助该学校选择一种最节省的租车方案。
2013 年中考数学总复习专题测试卷(三)参考答案
一、 1、 C2、 A3、 D4、 D5、 C 6 、 D 7 、 C 8 、B
9、 B 10 、 A
二、 11、 m< 2; 12、 7, 1; 13 、m≥- 3; 14、2 y24y 1 0 。
三、 15、( 1)± 1;
(2)去分母,得1 3x 1 4.
3x 2 ,解这个方程,得x 2 .
23
经检验,x是原方程的解.
x33
16.解:解不等式3≥ x ,得 x ≤ 3 ,
2
解不等式 13( x1)8x ,得x 2 .
所以,原不等式组的解集是2x ≤ 3 .在数轴上表示为
3- 2- 1 01234四、 17.每块长方形地砖的长是45cm,宽是 15cm。
18
x 。
200(1x)
2
200(18%)72
.设每年增长的百分数为
解得: x10.220%x2 2.2 (不合题意,舍去)答:(略)
五、19.因为a b= ad-bc,所以x1x1= 6 可以转化为(x+1)(x+1)-(x- 1)
c d1x x1
(1-x)= 6,即(x+1)2+(x-1)2= 6,所以x2= 2,即x=± 2
;
20.a 53
, b。
62
六、 21.10分钟.(提示:设车站每隔x 分钟发一班车,小华的速度为 1 米/分,公交车
8 12,2
x
的速度为
2米/分,则40
)
212
x.
3
七、 22.( 1)385÷42≈
∴单独租用42 座客车需10 辆,租金为320×10= 3200 元.
385÷60≈
∴单独租用60 座客车需7 辆,租金为460×7= 3220 元.
( 2)设租用42 座客车 x辆,则60座客车(8-x)辆,由题意得:
42x (),
60 8x385解之得: 3 3≤ x≤55.
320x
().
460 8 x3200718
∵x取整数,∴x = 4,5.
当x=4 时,租金为 320×4+460×( 8- 4)= 3120 元;
当x=5 时,租金为 320×5+460×( 8- 5)= 2980
元.答:租用 42 座客车 5 辆, 60 座客车 3 辆时,租金最少。
说明:若学生列第二个不等式时将“≤”号写成“<”号,也对.
八、 23.( 1)由题意,得70×( 1-60%)=70×40%=28(千克).
( 2)设乙车间加工一台大型机械设备润滑用油量为x 千克.
由题意,得: x×[1 - ( 90-x )×%-60%]=12 ,
整理得 x2-65x-750=0 ,解得: x1=75, x2=-10 (舍去),
(90-75 )× %+60%=84%.
答:( 1)技术革新后, ? 甲车间加工一台大型机械设备的实际耗油量是28 千克.( 2)技术革新后, ? 乙车间加工一台大型机械设备润滑用油量是 75 千克,用油的重复利用率是
84%.。