9.2一元一次不等式导学案
人教版七年级数学下册9.2.1一元一次不等式优秀教学案例
在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。
9.2 一元一次不等式(2) 人教版数学七年级下册导学案
集体备课导学案学段初中年级七年级学科数学单元第9单元课题9.2一元一次不等式(3)课型新授主备学校初审人终审人主备人合作团队课标依据能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
教学目标1、会根据实际向题中的数量关系列不等式解决问题,熟练掌握一元一次不等式的解法;2、初步感知实际问题对不等式解集的影响,培养学生的数学建模能力和分析问题、解决问题的能力;3、通过开放性问题的设计,增强学生的创新意识和挑战自我意识,激发学习兴趣.教学重点根据题意,分析各类问题中的数量关系,会熟练列不等式解应用问题。
教学难点把生活中的实际问题抽象为数学问题。
导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标用小黑板呈现本节课的学习目标,要求学生进一步熟练掌握一元一次不等式的解法;并且要知道利用一元一次不等式解决简单的实际问题的具体步骤(1′)自主学习温故知新4′1、列不等式:①(x+5)<3(x-5)-6②2(1一3x)> 3x+20③2(一3+x)< 3(x+2)先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.让学生在解题过程中有目的地思考,既可巩固已学内容,又为下面的新课做好铺一元一次不等式的解法2、利用一元一次不等式解决简单的实际问题有哪些步骤?垫。
互助释疑1′进一步对温故知新中不懂的问题,互相帮助解决。
探究出招15′问题:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
顾客怎样选择商店购物能获得更大优惠?分析:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?分三种情况考虑:①累计购物不超过50元;②累计购物超过50元但不超过100元;③累计购物超过100元。
人教七下第九章9.2 一元一次不等式导学案
9.2 一元一次不等式9.2 一元一次不等式(第1课时)学习目标1.经历一元一次不等式概念的形成过程,认识一元一次不等式.2.会解简单的一元一次不等式,并能在数轴上表示其解集.3.通过观察一元一次不等式的解法,对比解一元一次方程的步骤,自己归纳解一元一次不等式的基本步骤,从而体会知识之间的内在联系,学会类比的学习方法.学习过程一、创设情境,引入新课1.填空(1)若x-7>26,则x ,依据是.(2)若3x<2x+1,则x ,依据是.(3)若错误!未找到引用源。
x>50,则x ,依据是.(4)若-4x≤12,则x ,依据是.2.什么叫做一元一次方程?解一元一次方程的一般步骤是什么?3.解下列方程:(1)3(1-x)=2(x+9);(2)错误!未找到引用源。
=错误!未找到引用源。
<错误!未找到引用源。
.二、引导探究概念下面的不等式是一元一次不等式吗?(1)2x-3.5≥21;(2)6+4x>240;(3)x<4;(4)错误!未找到引用源。
+5>7.三、自主学习尝试解不等式3-x<2x+6.讨论归纳总结:解一元一次不等式的步骤是:四、典型例题解不等式,并把它的解集表示在数轴上.(1)2(1+x)<3;(2)错误!未找到引用源。
≥错误!未找到引用源。
.五、运用新知,形成能力1.解下列不等式,并把它们的解集分别表示在数轴上:(1)5x+15>4x-1;(2)2(x+5)>3(x-5);(3)错误!未找到引用源。
<错误!未找到引用源。
;(4)错误!未找到引用源。
≥错误!未找到引用源。
+1.2.合作交流下面是小明同学解不等式错误!未找到引用源。
-1<错误!未找到引用源。
的过程:解:去分母,得x+5-1<3x+2移项,合并同类项,得-2x<-2两边都除以-2,得x<1他的解法有错误吗?如果有错误,请你指出错在哪里.达标检测1.解不等式:(1)3x-1>2(2-5x);(2)错误!未找到引用源。
人教版初中数学七年级下册9.2.2《一元一次不等式的应用》教案设计
课题:9.2实际问题与一元一次不等式教材:人教版义务教育课程标准实验教科书七年级下册【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3.情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
让学生充分进行讨论交流,在活动中体会不等式的应用。
在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动问题2:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.启发提问:我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。
9.2 一元一次不等式[1][公开课学案]
东莞市宏远外国语学校2013-2014学年度第二学期◆七年级◆数学◆学案课题:9.2 一元一次不等式(1) 班级:_______ 姓名:________学习目标:掌握一元一次不等式的概念及解法;并能正确地将一元一次不等式的解集表示在数轴上。
学习过程:[一] 预习先学:(认真阅读教材122-123页,完成下列内容)1、下列各式是一元一次不等式的有 (只填序号)①3x+2<2x —5; ②x x 322-≤3; ③823≥x; ④43x -≥—2; ⑤-0.5x-1≤2; ⑥3x-4y ≥0. 2、一元一次不等式的概念:只含有_________未知数,且未知数的次数是__________的不等式(未知数的系数____________),这样的不等式叫做一元一次不等式。
3x+4<7,并把它的解集表示在数轴上。
解:[二] 合作探究:1、比较解方程与解不等式的步骤及格式:2、一题多变,学会转换:主备人:胡厚伟 审核:七年级数学组 印刷时间:2014年5月28日3、解一元一次不等式的步骤: (1)去______;(2)去_____;(3)移_____;(4)合并______;(5)系数______;[三] 课堂小结:本节课学了什么?有什么收获?[四] 快乐达标:1、下列不等式中,是一元一次不等式的是: ( )A.3x -y >-2B.x 2>-3C. x32-≤1 D.2x >3 2、一元一次不等式3-x >5的解集,在数轴上表示正确的是: ( )3、在解不等式32x +>512-x 的下列过程中,错误的一步是:( ) A .去分母得5(2+x )>3(2x-1) B .去括号得10+5x >6x-3C .移项得5x-6x >-3-10D .系数化为1得x >134、请写出一个一元一次不等式:_________________________.5、求一元一次不等式21-x ≤1352+-x 的解,并在数轴上表示解集.[五] 能力升级:6、①若13--k x +5>6是一元一次不等式,则k=________。
七年级数学下册 9.2.1 一元一次不等式教案 (新版)新人教版
(二)解一元一次不等式
问题1.看教材P122中间的文字,学习不 等式中的“移项”
问题2.解一元一次不等式的步骤与解一元一次方程的步 骤 有什么相同和不同?
学生自学课本,小组内交流,同桌间相互提问等
小组交流:解一元一次不等式的一般与解一元一次方程有何相同点和不同点.
重点
难点
重点:掌握解一元一次不等式的步骤。
难点:将不等式逐渐化简的过程。
教学
过程
教师活动
学生活动
复备标注
时间
情境
导入
1、知识要点归纳:
①.一元一次方程的概念。
②.解一元一次方程 ,写出步骤。
2、用不等式的性质解不等式:
⑴3x<2x+1⑵-4x>3
5分
探求
新知
(一)一元一次不等式的概念
看教材P122思考
我的困惑是: .
2.特别强调:应用不等式性质 3时不等号的方向要改变
3分
推荐
作业
必做题目:教材P124练习第1题;P126 习题9.2第1. 2. 3题
选做题目:练习册P107第一课时
教学
后记
一元一次不等式
感
知
目
标
教
学
目
标
知识与能力:掌握一元一次不等式的概念,并会解一元一次不等式.
过程与方法:通过类比一元一次方程的解法,体会一元一次不等的步骤与解一元一次方程的过程间的密切联系.
情感态度与价值观:通过对一元一次不等式概念与解法的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识。
(4)x2-2≠0 (5) (6)
七年级数学下册 9.2 一元一次不等式 9.2.1 一元一次不等式导学案 (新版)新人教版
我的收获 ____________________ _______________________ __________________ __________________________________________________________________ ___________
下面利用不等式的性质解不等式 x-7>26
提问:我们能不能像解方程一样进行移项来解呢? 由 x-7〉26 可得到 x>26+7
我们来回顾一下解一元一次方程的步骤:
解一元一次方程的依据是等式的性质。 一般步骤是: 接着提问:能不能用相同的步骤来解一元一次不等式呢?
例 1 解下列不等 式,并 在数轴上表示解集:
text by the user's care and support, thank you here! I hope
to make progress and grow with you in the future.
(1)2(1+x)〈3 解:
(2)
根据解一元一次不等式,你能总结 出解一元一次不等式的步骤吗? 解一元一次不等式和解一元一次方程类似,有去分母,去括号,移项, 合并同类项,系数化为 1.
接着提问:在过程中,和解一元一次方程的区别在哪里?
在去分母和系数化为 1 的两步中,要特别注意不等式的两边都乘以( 或 除以)同一个负数时,不等号的方向必须改变。
that there will be some unsatisfactory points. If there are
omissions, please correct them. I hope this article can
9.2-一元一次不等式-导学案(共4课时)
人教版七年级数学第九章《不等式与不等式组》9.2一元一次不等式—— 第一课时 一元一次不等式及其解法一.学习目标:1、知识与技能 :会解简单的一元一次不等式,并能在数轴上表示出解集。
2、过程与方法:在类比中得到一元一次不等式的解法,充分应用数轴这个直观工具来理解一元一次不等式的解集。
3、情感、态度与价值观:培养学生利用类比方法学习的能力。
培养学生的数感,渗透数形结合的思想.二.学习重难点:一元一次不等式的解法是重点;不等式性质3在解不等式中的运用是难点。
三.学具准备和学法指导:活动——探究——交流——建够四.学习过程:1、自主学习:复习:(1)不等式的三条基本性质是什么?性质1:____________________________________性质2:____________________________________性质3:____________________________________(2)运用不等式基本性质把下列不等式化成x.<a 或x > a 的形式:① x – 4 < 6 ; ② 2x > x – 5; ③ 31x –4 < 6; ④ -54x ≥ 31 + 51x(3)什么叫一元一次方程?解一元一次方程的步骤是什么?【 温馨提示:解方程的的目的是使方程最后转换成x=a 的形式,同样解不等式的目的也要使不等式逐步化为x >a 或x < a 】2.合作探究:(1)、一元一次不等式的定义: ________________________________________________【 一元一次不等式的标准形式是:ax + b >0或ax + b <0 (a ≠ 0) .】(2)、_________________________________________________ 叫解一元一次不等式.(3)、解一元一次不等式就是把不等式化成 a > 0 或 a < 0 的形式。
9.2一元一次不等式(1)导学案
9.2一元一次不等式导学案(第一课时)一、教学目标:知识与能力:1.了解一元一次不等式的概念,掌握一元一次不等式的解法.2.在依据不等式的性质探究一元一次不等式解法过程中,加深对化归思想的体会.过程与方法:1.归纳一元一次不等式的定义.2.通过具体实例,归纳解一元一次不等式的基本步骤.情感态度价值观:通过观察一元一次不等式的解法,对比解一元一次方程的步骤,让学生自己归纳解一元一次不等式的基本步骤.加深对化归思想的体会.二、重点、难点:1.学习重点:一元一次不等式的概念.2.学习难点:掌握一元一次不等式的解法.三、复习巩固:1.一元一次方程:只含____个未知数(元),未知数的次数都是____,等号两边都是____,这样的方程叫做一元一次方程。
2.不等式的性质:1.引入概念问题1观察下面的不等式,它们有哪些共同特征?726x->,321x x<+,43x->,250 3x>一元一次不等式的概念:含有____未知数,未知数次数是____的不等式,叫做一元一次不等式.2. 研究解法练习 利用不等式的性质解不等式:267>-x解:根据不等式的性质____,不等式的两边____,不等号的方向____,所以 72677+>+-x________________问题2 回忆解一元一次方程的依据和一般步骤,对你解一元一次不等式有什么启发?解一元一次方程的依据是________, 解一元一次方程的一般步骤是: ____,____,____,____,_____。
例 解下列不等式,并在数轴上表示解集:1213x +<()() 问题(1)解一元一次不等式的目标是什么?___________________________________________________________________ 问题(2)你能类比一元一次方程的步骤,解这个不等式吗?___________________________________________________________________ 例 解下列不等式,并在数轴上表示解集:1213x +<()()解:________,得____________, ________,得____________, 合并同类项得,得____________,________,得____________。
一元一次不等式教学设计
一元一次不等式教学设计教学设计课题:一元一次不等式教学内容:七年级下册第九章不等式与不等式组9.2一元一次不等式第一课时一、教材分析本节内容是本章知识的联系中起着承上启下的作用,从学生熟悉的列代数式入手,既复旧知又巧妙地引入了新知。
由代数式到单项式,这是一种下位研究,有利于学生把握概念的内涵和外延的内容。
二、教学目标1.知识与技能:理解一元一次不等式的定义,掌握一元一次不等式的解法,并能够在数轴上表示不等式的解集。
2.过程与方法:通过类比一元一次方程的解法,探究一元一次不等式的解法。
3.情感态度与价值观:培养学生对数学的兴趣,提高解决问题的能力。
4.教学重点、难点:重点是解一元一次不等式的步骤,并能在数轴上表示它的解集;难点是解一元一次不等式,不等式两边同乘(或除以)同一个负数,不等号的方向要改变。
三、学情分析学生已经研究过代数式和单项式的概念,具备一定的代数基础,但对不等式的概念和解法还不熟悉。
四、教法学法与教学用具教学:探究法讲解法学法:自主探究法合作研究教学用具:数轴、黑板、白板、笔。
五、教学过程复引入】复不等式的定义和性质。
探索新知】观察不等式的共同特征,引入一元一次不等式的概念。
练】通过例题,掌握一元一次不等式的解法步骤,并在数轴上表示解集。
归纳总结】总结一元一次不等式的解法和注意事项。
拓展应用】通过实际问题,巩固一元一次不等式的应用。
课堂小结】回顾本节课的重点内容,强化学生对一元一次不等式的理解和掌握。
课后作业】完成课后作业,巩固一元一次不等式的解法和应用。
判断下列各式是否为单项式。
如果不是,请说明理由。
如果是,请指出它的系数和次数。
1) 1000 是单项式,系数为 1000,次数为 0.2) a5 是单项式,系数为 1,次数为 5.3) r2 不是单项式,因为乘法中有两个不同的变量 r 和 2.4) x+1 不是单项式,因为它包含两个不同的项 x 和 1.5) a3b 是单项式,系数为1,次数为 4.6) ba2c 是单项式,系数为1,次数为 4.7) 1122xy2 不是单项式,因为它包含两个不同的项 1122 和 xy2.8) x 不是单项式,因为它包含一个未知数 x 和一个乘法符号。
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
人教版七年级数学下册:9.2一元一次不等式教案
一、教学内容
人教版七年级数学下册第9章第2节:一元一次不等式。本节课将围绕以下内容展开:
1.了解不等式的概念,掌握一元一次不等式的定义。
2.学习一元一次不等式的解法,包括移项、合并同类项等基本操作。
3.掌握不等式两边同时乘以或除以同一个正数、负数的规则。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启Байду номын сангаас他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次不等式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次不等式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
对于实际问题,如“小明比小华高7厘米,小华的身高是x厘米,小明比小华高”,教师需要指导学生如何将“小明比小华高”这个条件转化为不等式x + 7 > x,并解释这里的不等关系。
在不等式组的处理中,如解集{x | 2 < x < 5},需要明确指出这是两个不等式2 < x和x < 5的交集,并且强调解集是开区间,不包括2和5。教师需通过具体示例和图示来帮助学生理解这一概念。
人教版初一数学下册9.2一元一次不等式导学案
9.2.一元一次不等式(第一课时)一、单元导入明确目标1、单元导入形式:知识树、知识框架;目的:知识系统化,引入课题。
2、学习目标1、能说出什么叫一元一次不等式。
2、知道解方程得移项法则对解不等式同样适用;能归纳出一元一次不等式的解法(解法步骤)3、能正确运用不等式基本性质3,正确地解一元一次不等式,并把解集在数轴上表示出来。
学习重点:熟练并准确地解一元一次不等式学习难点:熟练并准确地解一元一次不等式学习指导:二、自主合作展示点拨(一)探究新知活动1:复习引入【学习方式:独立完成学案,展示点拨】1、( )叫做一元一次不等式?一元一次不等式的最简形式是( )?一元一次不等式的标准形式是( ) ?2、解一元一次不等式与解( ) 相类以,但依据是( )3、解一元一次不等式时,两边都乘以或除以同一个负数时,最需要注意( )4、解下列不等式,并把解集在数轴上表示出来:(1)x+3>2 (2) -2x<10 (3) 3x+1<2x-5 (4) 2-5x≥8-2x活动2:探究如何把一元一次不等式为x>a 或x<a 的形式【学习方式:教师引导,学生自学】1、解下列不等式,并把它的解集在数轴上表示出来.(1))1(2)3(410-≤--x x (2) 2 x-1≥6110+x (3)16144<--+x x. 2、解一元一次不等式的步骤是:(二)自学与合作学习中产生的问题及记录三、总结反思 单元回归课堂小结,知识树、知识框架。
小结问题化,教师归纳提升。
四、当堂检测 达标反馈当堂检测题1.下列各式是一元一次不等式的是( )A .2x >1B .2x>1C .2x 2≠1D .2<1x2.判断正误:(1)12x+3>-5是一元一次不等式 ( ) (2)x+2y ≤0是一元一次不等式 ( )(3)1x>-8不是一元一次不等式 ( ) 3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.4.如果a 与12的差小于a 的9倍与8的和,则a 的取值范围是_______.5.解下列不等式:(1)(x-3)≥2(x-4) (2)485x≥0。
《一元一次不等式》精品导学案 人教版七年级数学下册导学案
9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。
9.2 一元一次不等式(1) 导学案
9.2一元一次不等式第1课时一、导学1.导入课题:我们已经知道了什么事不等式以及不等式的性质,本节课我们将学习一元一次不等式及其解法.2.学习目标:(1)知道一元一次不等式的概念.(2)类比一元一次方程的解法来掌握解一元一次不等式的方法和步骤.3.学习重、难点:解一元一次不等式的方法和步骤.4.自学指导:(1)自学内容:课本P122页—P123的内容.(2)自学时间:8分钟.(3)自学方法:认真看书,弄清什么是一元一次不等式?能归纳出解一元一次不等式的方法和步骤,并与解一元一次方程相比较.(4)自学参考提纲:①什么是一元一次不等式?一元一次不等式有什么特征?②仔细观察例1的解题要领,你能归纳出解一元一次不等式的方法和步骤吗? ③解一元一次不等式与解一元一次方程有何异同?二、自学:同学们可结合自学指导进行自学.三、助学:(1)明了学情:(2)差异指导:四、强化:(1)解一元一次不等式的一般步骤.(2)解不等式,并把解集在数轴上表示出来:1)312-x ≤643-x 2))4(410--y ≤)1(2-y五、评价:1〉学生学习的自我评价(围绕三维目标)2〉教师对学生的评价:(1)表现性评价:(2)纸笔评价:课堂评价检测3〉教师的自我评价(教学反思)9.2实际问题与一元一次不等式第1课时(一)必做题.(70分)1.若代数式732 x 的值是非负数,则x 的取值范围是( ) A 、x ≥23 B 、x ≥—23 C 、x >23 D 、x >—23 2.如图所示,图中阴影部分表示x 的取值范围,则下列表示中正确的是( )A 、—3>x >2B 、—3<x ≤2C 、—3≤x ≤2D 、—3<x <23.正方形的边长为xcm ,它的周长不超过160cm ,则用不等式表示为 .4..若a <0,则不等式ax+b >0的解集是 .5.解不等式,并把它们的解集在数轴上表示出来.(1)5x+15 >4x-1 (2)3(2x+5)>2(4x+3)(二)选做题.(20分)6..当k 为何值时,方程2(x+k)+x=2—x 的解(1)为非负数;(2)不大于—5.(三)思考题。
人教版七年级下册 9.2 一元一次不等式教案
9.2 一元一次不等式第1课时 解一元一次不等式教学目的知识与技能1.体会一元一次不等式的形成过程.2.会解简单的一元一次不等式,并能在数轴上表示出解集.教学重点在一元一次不等式建立模型的根底上,理解什么是一元一次不等式.教学的过程中,要让学生通过回忆、观察、考虑,归纳出一元一次不等式的概念,并与以前学过的一元一次方程等概念加以比拟,进一步加深对这些概念的理解.教学难点体会不等式的作用,训练解不等式的技能.教学过程一、情景导入前面我们已经学习了不等式及其相关概念,下面请同学们完成下面的题目.1.写出以下各不等式的解集.(1)x +3>6; (2)x +5≥9;(3)x +7<15; (4)x -1≤9.2.化简:(1)3x ≤4________(不等式的性质________);(2)x -7≥-3________(不等式的性质________).二、新课教授师:观察以下不等式:x -7>26,3x <2x -1,23x>50,-4x>3.它们有哪些共同特征? 生:它们都只含有一个未知数,并且未知数的次数是1.师:答复得很好.类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.通过前面的学习,同学们知道不等式x -7>26的解集是多少吗? 生:x>33.师:是怎么解的呢?生:这个解集是通过“不等式两边都加7,不等号的方向不变〞得到的.这相当于由x -7>26得x>26+7,这就是说,解不等式时也可以“移项〞,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.师:一般地,利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.【例】 解以下不等式,并在数轴上表示解集:(1)2(1+x)<3; (2)2+x 2≥2x -13. 解:(1)去括号,得2+2x <3.移项,得2x <3-2.合并同类项,得2x <1.系数化为1,得x <12. 这个不等式的解集在数轴上的表示如下图.(2)去分母,得3(2+x)≥2(2x -1).去括号,得6+3x ≥4x -2.移项,得3x -4x ≥-2-6.合并同类项,得-x ≥-8.系数化为1,得x ≤8.这个不等式的解集在数轴上的表示如下图.三、稳固练习解以下不等式,并在数轴上表示它们的解集.1.2(1-x)<x -2.2.11-3x ≥2(x -2).3.x -4≥3(x +2).【答案】 数轴略 1.x >432.x ≤33.x ≤-5. 四、课堂小结在本节课的教学过程中,让学生通过与一元一次方程的解法进展类比,主动探求一元一次不等式的解法.结合等式与不等式根本性质的差异,找出方程与不等式解法中的不同之处,对于不等式的解有无数多个,学生不易理解,教学中给学生足够的时间进展交流和讨论,帮助学生理解,用数轴表示不等式的解集是数形结合的详细表达.教学反思本节课的教学重点是探求一元一次不等式的解法,并能准确地在数轴上表示不等式的解集.在技能形成初期,我让学生按照一般步骤,按照标准的格式做一些标准练习,养成良好的解题习惯,使他们认识到在数轴上表示不等式的解集时,要标准空心圈与实心点的使用,理解它们在表示不等式解集时的差异.第2课时 一元一次不等式的应用教学目的知识与技能1.会从实际问题中抽象出数学模型.2.会用一元一次不等式解决实际问题.教学重点寻找实际问题中的不等关系,建立数学模型.教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.教学过程一、情景导入我们知道,在消费和生活中存在大量的等量关 系,与此同时,我们也看到在消费和生活中存在着大 量的不等关系,解决这些问题,用不等式比拟方便. 某学校方案购置假设干台电脑,现从两家商店理解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.假如你是校长,你会怎么考虑? 如何选择?二、新课教授1.分组活动.先让学生独立考虑,理解题意.再在 组内交流,发表自己的观点.最后小组汇报,派代表论 述理由.2.在学生充分发表意见的根底上,师生共同归纳 出以下三种采购方案:(1)什么情况下,到甲商场购置更优惠?(2)什么情况下,到乙商场购置更优惠?(3)什么情况下,两个商场收费一样?3.我们先来考虑方案(1):设购置x 台电脑时,到甲商场购置更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的根底上,老师归纳并板书如 下:解:设购置x 台电脑时,到甲商场购置更优惠, 那么6000+6000(1-25%) (x -1)<6000(1-20%)x ,去括号,得6000+4500x -4500<4800x ,移项、合并同类项,得-300x<-1500,不等式两边同除以-300,得x>5.∴购置5台以上的电脑时,甲商场更优惠.4.让学生自己完成方案(2)与方案(3),并汇报完 成的情况,老师最后做适当点评.三、例题讲解【例1】 去年某市空气质量良好(二级以上)的天数与全年天数(365)之比到达60%,假如明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?分析:“明年这样的比值要超过70%〞指出了这个问题中蕴含的不等关系,转化为不等式,即明年空气质量良好的天数明年天数>70%. 解:设明年比去年空气质量良好的天数增加了x ,去年有365×60%天空气质量良好,明年有(x +365×60%)天空气质量良好,并且x +365×60%365>70%. 去分母,得x +219>255.5.移项、合并同类项,得x >36.5.由x 应为正整数,得x ≥37.∴明年要比去年空气质量良好的天数至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【例2】甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的局部按90%收费;在乙商场累计购物超过50元后,超出50元的局部按95%收费.顾客到哪家商场购物花费少?分析:在甲商场购物超过100元后享受优惠,在乙商场购物超过50元后享受优惠.因此,我们需要分三种情况讨论:(1)累计购物不超过50元;(2)累计购物超过50元而不超过100元;(3)累计购物超过100元.解:(1)当累计购物不超过50元时,在甲、乙两商场购物都不享受优惠,且两商场以同样价格出售同样的商品,因此到两商场购物花费一样.(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少.(3)当累计购物超过100元时,设累计购物x(x>100)元.①假设到甲商场购物花费少,那么50+0.95(x-50)>100+0.9(x-100).解得x>150.这就是说,累计购物超过150元时,到甲商场购物花费少.②假设到乙商场购物花费少,那么50+0.95(x-50)<100+0.9(x-100).解得x<150.这就是说,累计购物超过100元而不到150元时,到乙商场购物花费少.③假设50+0.95(x-50)=100+0.9(x-100).解得x=150.这就是说,累计购物为150元时,到甲、乙两商场购物花费一样.四、课堂小结用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样,要将实际问题通过列一元一次不等式转化为数学问题,然后通过解决数学问题来解决实际问题.教学反思本节课通过丰富的实际情境,让学生体会到现实生活中存在着大量的不等关系,并理解到在解决某些问题时,用不等式较方便.教学中,利用例题让学生掌握了从实际问题中抽象出数学模型的方法,从而让学生认识到一元一次不等式在实际生活中的应用价值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2.一元一次不等式(第一课时)
一、单元导入明确目标
1、单元导入
形式:知识树、知识框架;目的:知识系统化,引入课题。
2、学习目标
1、能说出什么叫一元一次不等式。
2、知道解方程得移项法则对解不等式同样适用;能归纳出一元一次不等式的解法(解法步骤)
3、能正确运用不等式基本性质3,正确地解一元一次不等式,并把解集在数轴上表示出来。
学习重点:熟练并准确地解一元一次不等式
学习难点:熟练并准确地解一元一次不等式
学习指导:
二、自主合作展示点拨
(一)探究新知
活动1:复习引入【学习方式:独立完成学案,展示点拨】
1、( )叫做一元一次不等式?一元一次不等式的最简形式是( )?一元一次不等式的标准形式是( ) ?
2、解一元一次不等式与解( ) 相类以,但依据是( )
3、解一元一次不等式时,两边都乘以或除以同一个负数时,最需要注意( )
4、解下列不等式,并把解集在数轴上表示出来:
(1)x+3>2 (2) -2x<10 (3) 3x+1<2x-5 (4) 2-5x≥8-2x
活动2:探究如何把一元一次不等式为x>a 或x<a 的形式【学习方式:教师引导,学生自学】
1、解下列不等式,并把它的解集在数轴上表示出来.
(1))1(2)3(410-≤--x x (2) 2 x-1≥
6110+x (3)
16
144<--+x x
. 2、解一元一次不等式的步骤是:
(二)自学与合作学习中产生的问题及记录
三、总结反思 单元回归
课堂小结,知识树、知识框架。
小结问题化,教师归纳提升。
四、当堂检测 达标反馈
当堂检测题
1.下列各式是一元一次不等式的是( )
A .2x >1
B .2x>1
C .2x 2≠1
D .2<1x
2.判断正误:
(1)12
x+3>-5是一元一次不等式 ( ) (2)x+2y ≤0是一元一次不等式 ( )
(3)1x
>-8不是一元一次不等式 ( ) 3.方程26-8x=0的解是______,不等式26-8x>0的解集是______,不等式26-8x<•0的解集是________.
4.如果a 与12的差小于a 的9倍与8的和,则a 的取值范围是_______.
5.解下列不等式:
(1)(x-3)≥2(x-4) (2)48
5
x
≥0。