(圆锥的体积教学设计)

合集下载

圆锥的体积教学设计一等奖【4篇】

圆锥的体积教学设计一等奖【4篇】

圆锥的体积教学设计一等奖【精选4篇】一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。

首先对每一个课题的教学内容要有一个整体的把握。

这次漂亮的我为亲带来了4篇《圆锥的体积教学设计一等奖》,希望朋友们参阅后能够文思泉涌。

《圆锥的体积》教学设计篇一一、教学内容:义务教育课程标准实验教科书(人教版版)六年级下册第33~34页。

二、教学目标:1、知识技能目标:通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。

使学生会应用公式计算圆锥的体积并解决一些实际问题。

2、思维能力目标:提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、情感态度目标:使学生在经历中获得成功的体验,体验数学与生活的联系。

三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积的计算方法和推导过程。

四、教具准备:1、多媒体课件。

2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。

五、教学过程:(一)创设情境,导入新课投影出示圆锥形小麦堆。

师:看,小麦堆得像小山一样,小麦丰收了。

张小虎和爷爷笑得合不拢嘴。

这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。

【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。

(二)互动新授1、提出问题。

教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?进一步观察、比较、猜测。

教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。

《圆锥的体积》教案设计

《圆锥的体积》教案设计

《圆锥的体积》教案设计•相关推荐《圆锥的体积》教案设计(通用13篇)作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。

那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《圆锥的体积》教案设计,希望能够帮助到大家。

《圆锥的体积》教案设计篇1教材分析:圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。

具体来说有这样几个变化:(1)加强了所学知识与现实生活的联系。

教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。

当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。

(2)加强了对图形特征,体积、方法的探索过程。

在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。

实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。

(3)加强了学生在操作中对空间与图形问题的思考。

学情分析:加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。

教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。

如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。

圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。

教学目标:1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。

2、提高学生实际应用的能力。

《圆锥的体积》教案精选6篇

《圆锥的体积》教案精选6篇

《圆锥的体积》教案精选6篇小学六年级数学《圆锥的体积》教案篇一教学内容:教材第20页例2、练一练。

教学要求:使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:教学重点:进-步掌握圆锥的体积计算方法。

教学难点:根据不同的条件计算圆锥的体积。

教学过程:一.铺垫孕伏:1.口算。

2.复习体积计算。

(1)提问:圆锥的体积怎样计算?(2)口答下列各圆锥的体积:①底面积3平方分米,高2分米。

②底面积4平方厘米,高4.5厘米。

3.引入新课。

今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

二、自主探究:l.教学例2.出示例题,让学生读题。

提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的数据怎样获得?指名板演,其他学生做在练习本上,集体订正。

2.组织练习。

(1)做练一练。

指名一人板演,其余学生做在练习本上,集体订正。

(2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后学生做在练习本上。

集体订正。

(3)讨论练习三第7题。

底面周长相等,底面积就相等吗?三、课堂小结这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。

如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。

应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。

四、布置作业1.练习三第5题及数训。

2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。

请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。

3.思考练习三第8、9题。

小学六年级数学《圆锥的体积》教案篇二教学目标1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

《圆锥的体积》教学设计、教学反思、教学评析、课堂纪实

《圆锥的体积》教学设计、教学反思、教学评析、课堂纪实

《圆锥的体积》教学设计、教学反思、教学评析、课堂纪实圆锥的体积(义务教育课程标准实验教科书六年级下册)贾玉萃【教材解读】《圆锥的体积》这部分知识是小学阶段学习几何知识的最后一部分内容,也是人们在生产生活中经常遇到的几何形体,教学这部分内容,有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础,我认为《圆锥的体积》这部分内容在本单元中占有十分重要的地位。

【学情分析】高年级学生分析问题,解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已掌握了一些几何知识,了解部分几何图形之间的转化方法。

但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。

针对学生的实际,教学中我主要采用观察法,猜想、操作等方法,组织学生探索规律,归纳总结,体验知识的生成和形成。

【教学目标】1.通过学生动手操作实验发现等底等高的圆锥体积之间的关系,公式,并从而得出圆锥体积的计算能运用所学知识解决实际问题。

2.培养学生的动手操作能力和探究意识,发展学生的空间观念。

3.通过生活中的故事,培养学生良好的思想品德。

【重点难点】1.圆锥的体积公式的推导过程2.进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。

【教学策略】1.加强实践操作:《数学课程标准》中要求在教学中,应注重使学生探索现实世界中有关空间与图形的问题;应注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、大小、位置关系及变换”。

所以,在教学中,设计了多次实验环节,让学生自己动手,亲身经历圆锥体积公式的推导过程,让学生的多种感官参与学习活动,在理解知识的基础上,发展学生思维。

2.整合课程资源,创造性地使用教材;数学课程要关注学生的生活经验,在引入新知时,我创设了一个贴近生活的情境,使枯燥的数学问题变为活生生的生活现实,让学生的课堂气氛充满了乐趣和活力,在探究圆锥体积公式时,设计了两次试验,使学生更加明白了:只有等底等高”的圆锥和圆柱体积才能有 3倍的关系。

圆锥的体积计算公式 小学六年级数学《圆锥的体积计算》教案设计优秀5篇

圆锥的体积计算公式 小学六年级数学《圆锥的体积计算》教案设计优秀5篇

圆锥的体积计算公式小学六年级数学《圆锥的体积计算》教案设计优秀5篇作为一名默默奉献的教育工作者,时常会需要准备好教案,编写教案助于积累教学经验,不断提高教学质量。

那么教案应该怎么写才合适呢?为了让您对于圆锥的体积计算公式的写作了解的更为全面,下面作者给大家分享了5篇小学六年级数学《圆锥的体积计算》教案设计,希望可以给予您一定的参考与启发。

小学六年级数学《圆锥的体积》教案篇一【教学目标】1、使学生理解求圆锥体积的计算公式.2、会运用公式计算圆锥的体积.【教学重点】圆锥体体积计算公式的推导过程.【教学难点】正确理解圆锥体积计算公式.【教学步骤】一、铺垫孕伏1、提问:(1)圆柱的体积公式是什么?(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)二、探究新知(一)指导探究圆锥体积的计算公式.1、教师谈话:下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?2、学生分组实验3、学生汇报实验结果(课件演示:圆锥体的体积1、2、3、4、5)①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.4、引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.5、推导圆锥的体积公式:圆锥的体积是和它等底等高圆柱体积的1/3V=1/3Sh6、思考:要求圆锥的体积,须知道哪两个条件?7、反馈练习圆锥的底面积是5,高是3,体积是()圆锥的底面积是10,高是9,体积是()(二)教学例11、例1一个圆锥形的零件,底面积是19平方厘米,高是12厘米.这个零件的体积是多少?学生独立计算,集体订正.2、反馈练习:一个圆锥的底面积是25平方分米,高是9分米,她它的体积是多少?3、思考:求圆锥的体积,还可能出现哪些情况?(圆锥的底面积不直接告诉)(1)已知圆锥的底面半径和高,求体积.(2)已知圆锥的底面直径和高,求体积.(3)已知圆锥的底面周长和高,求体积.4、反馈练习:一个圆锥的底面直径是20厘米,高是8厘米,它的体积体积是多少?三、全课小结通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)四、随堂练习1、求下面各圆锥的体积.(1)底面面积是7.8平方米,高是1.8米.(2)底面半径是4厘米,高是21厘米.(3)底面直径是6分米,高是6分米.【板书设计】圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的1/3.《圆锥体积的计算》教学设计篇二目标:1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)

小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。

本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。

这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。

设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。

教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。

2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。

3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。

教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。

教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。

所以对于新的知识教学,他们一定能表现出极大的热情。

教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。

圆锥的体积教学设计【优秀7篇】

圆锥的体积教学设计【优秀7篇】

圆锥的体积教学设计【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!圆锥的体积教学设计【优秀7篇】作为一名无私奉献的老师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

《圆锥的体积》教学设计【优秀4篇】

《圆锥的体积》教学设计【优秀4篇】

《圆锥的体积》教学设计【优秀4篇】篇一:《圆锥的体积》教学设计篇一教学目标:1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点:通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

教学过程:一、复习导入师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么?(指名学生回答)2、圆锥有什么特征?同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)二、探究新知课件出示等底等高的圆柱和圆锥1、引导学生观察:这个圆柱和圆锥有什么相同的地方?学生回答:它们是等底等高的。

猜想:(1)、你认为圆锥体积的大小与它的什么有关?(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?2、学生动手操作实验(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?(2)、通过实验,你发现了什么?小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。

也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。

3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。

看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?问:把圆柱装满一共倒了几次?生:3次。

师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。

(板书:圆锥的体积=1/3×圆柱体积)师:圆柱的体积等于什么?生:等于“底面积×高”。

《圆锥的体积》(教学设计)北师大版六年级下册数学

《圆锥的体积》(教学设计)北师大版六年级下册数学
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入圆锥体积学习状态。
回顾旧知:
简要回顾上节课学习的体积的概念,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为圆锥体积新课学习打下基础。
(三)新课呈现(预计用时:25分钟)
知识讲解:
4.题目:一个圆锥体的底面半径是3厘米,高是7厘米,求它的体积。
答案:V = (1/3)πr²h
V = (1/3)π × 3² × 7
V = (1/3)π × 9 × 7
V = 63π
V = 207.998(保留两位小数)立方厘米
5.题目:一个圆锥体的底面半径和高都是4厘米,求这个圆锥体的体积。
答案:V = (1/3)πr²h
(4)动手实践:让学生分组进行实验,制作圆锥体,并测量其体积,增强学生对圆锥体积的理解。
(5)总结与反思:让学生分享自己的学习心得和收获,总结圆锥体积的计算方法和实际应用。
3.教学媒体和资源
(1)PPT:制作精美的PPT,展示圆锥体积的计算公式、实例及实验过程,增强课堂教学的直观性。
(2)视频:播放一些与圆锥体积相关的实验或实际应用的视频,帮助学生更好地理解圆锥体积的概念。
课堂小结,当堂检测
课堂小结:
本节课我们学习了圆锥的体积,首先介绍了圆锥体积的概念,通过与圆柱体积的比较,使学生理解圆锥体积的计算公式是底面积乘以高再除以3。然后通过实例让学生掌握如何运用圆锥体积的计算公式解决实际问题。接着讲解了如何利用等底等高的圆柱和圆锥体积的关系来推导圆锥体积的计算公式。最后,通过实践操作让学生亲自动手制作圆锥体,并测量其体积,加深对圆锥体积的理解。

《圆锥的体积》教案6篇

《圆锥的体积》教案6篇

《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。

六年级数学下册圆锥的体积教案(优秀5篇)

六年级数学下册圆锥的体积教案(优秀5篇)

六年级数学下册圆锥的体积教案(优秀5篇)教学重点篇一圆锥体体积计算公式的推导过程.小学数学《圆锥的体积》教案篇二教学目标:1、渗透转化思想,培养学生的自主探索意识。

][2、初步学会用转化的数学思想和方法,解决实际问题的能力3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学准备:主题图、圆柱形物体教学过程:一、复习:1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课:1、圆柱体积计算公式的推导:(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。

(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

(课件演示将圆柱细分,拼成一个长方体)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)2、教学补充例题:(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。

它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)(3)出示下面几种解答方案,让学生判断哪个是正确的.①V=Sh50×2.1=105(立方厘米)答:它的体积是105立方厘米。

关于《圆锥的体积》教学设计范文(精选6篇)

关于《圆锥的体积》教学设计范文(精选6篇)

关于《圆锥的体积》教学设计范文(精选6篇)《圆锥的体积》教学设计1一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

难点:理解圆锥体积公式的推导过程。

三、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。

促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。

师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。

下面我们一起来研究圆锥的体积。

并板书课题:圆锥的体积。

(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。

)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。

生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

圆锥的体积教学设计优秀4篇

圆锥的体积教学设计优秀4篇

圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。

并能运用公式正确地计算圆锥的体积,发展学生的空间观念。

教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。

2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

同时渗透转化方法在数学学习中的应用。

二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。

板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。

师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。

师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。

教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。

汇报实验结果。

先在圆锥里装满水,然后倒入圆柱。

正好3次可以倒满。

多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。

请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。

师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。

多找几名同学说。

板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。

板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。

苏教版六年级数学下册第二单元《圆锥的体积》优秀教案

苏教版六年级数学下册第二单元《圆锥的体积》优秀教案

苏教版六年级数学下册第二单元《圆锥的体积》优秀教案一. 教材分析苏教版六年级数学下册第二单元《圆锥的体积》的优秀教案是根据教材内容进行设计的。

本节课主要让学生掌握圆锥的体积计算公式,并能够运用该公式解决实际问题。

教材通过生动的实例和图示,引导学生探究圆锥体积的计算方法,培养学生的空间想象能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了长方体和正方体的体积计算方法,对体积的概念有一定的了解。

同时,学生也具备了一定的观察、操作和实践能力。

然而,圆锥体积的计算较为抽象,需要学生能够理解和运用数学公式。

因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。

三. 教学目标1.让学生掌握圆锥的体积计算公式。

2.培养学生运用圆锥体积公式解决实际问题的能力。

3.培养学生的空间想象能力和团队合作精神。

四. 教学重难点1.圆锥体积公式的推导和理解。

2.运用圆锥体积公式解决实际问题。

五. 教学方法1.采用直观演示法,通过实物和图示,让学生直观地理解圆锥体积的计算方法。

2.采用探究式学习法,引导学生主动参与课堂讨论,提高学生的思维能力。

3.采用小组合作学习法,培养学生的团队合作精神和沟通能力。

六. 教学准备1.准备圆锥体积的实物模型和图示。

2.准备相关的练习题和实际问题。

3.准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用实物和图示,引导学生回顾长方体和正方体的体积计算方法。

然后,提出问题:“圆锥的体积如何计算呢?”激发学生的学习兴趣。

2.呈现(10分钟)呈现圆锥体积的计算公式,并进行解释。

引导学生理解圆锥体积公式的推导过程,通过图示和实例,让学生直观地感受圆锥体积的计算方法。

3.操练(10分钟)学生分组进行实践操作,运用圆锥体积公式计算给定的圆锥体积。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)学生独立完成相关的练习题,巩固圆锥体积的计算方法。

教师选取部分学生的作业进行讲解和分析,指出错误并进行纠正。

北师大版六年级下册数学《圆锥的体积》教学设计 设计 (1)

北师大版六年级下册数学《圆锥的体积》教学设计 设计 (1)

北师大版六年级下册数学《圆锥的体积》教学设计设计(1)一. 教材分析《圆锥的体积》是北师大版六年级下册数学的一节内容。

本节课的主要内容是引导学生探索并理解圆锥的体积公式,即圆锥的体积等于底面积乘以高除以3。

通过学习本节课,学生将对圆锥的体积有一个清晰的认识,并能运用体积公式解决一些实际问题。

二. 学情分析六年级的学生已经掌握了平行四边形、梯形等图形的面积计算方法,对体积的概念和计算方法也有了一定的了解。

但是,对于圆锥的体积公式,他们可能还比较陌生。

因此,在教学过程中,教师需要引导学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

三. 教学目标1.让学生掌握圆锥的体积公式,并能运用体积公式解决一些实际问题。

2.培养学生观察、操作、思考的能力,提高学生的数学思维能力。

3.培养学生合作学习的精神,提高学生的团队协作能力。

四. 教学重难点1.圆锥的体积公式的理解和运用。

2.引导学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

五. 教学方法1.情境教学法:通过创设情境,引导学生观察、操作、思考,激发学生的学习兴趣。

2.合作学习法:学生进行小组合作学习,培养学生的团队协作能力。

3.探究学习法:引导学生自主探究,培养学生的独立思考能力。

六. 教学准备1.课件:制作圆锥体积的公式的课件,用于引导学生观察、操作、思考。

2.学具:准备一些圆锥形状的实物,用于学生观察和操作。

3.黑板:用于板书重要的知识点和公式。

七. 教学过程1.导入(5分钟)利用课件展示一些圆锥形状的实物,引导学生观察并思考:这些实物的体积如何计算?引出圆锥的体积公式。

2.呈现(10分钟)呈现圆锥的体积公式:圆锥的体积等于底面积乘以高除以3。

引导学生理解公式中的各个要素,如底面积、高等。

3.操练(10分钟)学生进行小组合作学习,让学生通过观察、操作、思考等活动,自主探索并理解圆锥的体积公式。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生运用圆锥的体积公式解决一些实际问题,如计算一些圆锥形状物体的体积。

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)

人教版数学六年级下册第13课圆锥的体积教学设计(推荐3篇)人教版数学六年级下册第13课圆锥的体积教学设计【第1篇】一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。

二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。

”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。

三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。

2、能运用公式解答有关的实际问题。

四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。

五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。

让学生观察一下,得出:这两个容器等底等高。

(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。

(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。

用字母表示:v=1/3sh三、练习填空1、圆锥的体积=(),用字母表示是()。

2、圆柱体积的与和它()的圆锥的体积相等。

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

学生练习,教师总结。

四、巩固练习:求下面各圆锥的体积,只列算式。

(单位:厘米)观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。

第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)

圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。

本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。

圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。

圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。

通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。

学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。

2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。

3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。

三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。

教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。

本课重点在于圆锥体积公式的推导。

鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。

从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。

四、学情分析:学生是九山小学,属农村的学生。

美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【设计理念】:
本着在教师引导下学生积极主动合作探究的理念,本课以学生认识发展规律为主线,以引导猜想问题、发现问题、提出问题、探究解决问题、得出结论为基点,通过实际应用训练使学生在“认识—实践—再认识、再实践”中理解运用知识。
在教学策略上,本节课利用多媒体创设教学情境,充分激发学生学习的兴趣和欲望,让学生在猜想释疑、合作学习和实验操作中,自觉探究圆锥体积公式的推导过程,并运用规律解决实际问题,激发学生探究的兴趣,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。
【三维目标】:
1、知识与技能。理解并掌握圆锥的体积公式,能够正确运用公式计算圆锥的体积,解决生活中的一些实际问题。
2、过程与方法。通过猜测、操作、验证结论的科学探究过程,在自主研究的基础上理解并掌握圆锥的体积公式。
3、情感态度与价值观。增强自主探究新知的意识,体验学习数学学习价值,发展数学思考能力;培养学生乐于学习、勇于探索的情趣。
【学情分析】:
在学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识圆锥的特征了,有了一些推导体积公式的方法,具备了一定的空间观念和学习的方法,能够把新知识与旧知识建立起联系,解决实际问题。锥体也是生活中常见的物体的形状,所以在教学时从学生的生活实际和已有的知识经验入手,通过自主、合作、动手操作探究知识,这样符合小学生认识事物的规律。
4.推导公式
(1)等底、等高的圆柱体和圆锥体的体积之间有什么样的倍数关系?
(2)播放课件:圆锥体的体积可以怎么表示?
了解了圆锥与它等底等高的圆柱的关系,现在,你能写一写圆锥体积的计算公式吗?在自备本上写一写,指明板演。
问:每个公式的依据是什么?为什么要乘1/3或除以3?指明说明推导过程。
板书:圆锥的体积 = 圆柱的体积 ×
圆锥的体积=底面积×高×
用字母表示V= sh
(设计意图:学生经历了猜想-实验-得出结论的过程,又有了圆柱的体积公式这个知识储备。把圆锥的体积公式推导放手给学生,是学生自主建构新知、刷新知识储备的过程。)
2、小不点儿向我们提出了一个问题:圆柱的体积是圆锥体积的3倍。这句话对吗?
3、播放课件(重点理解:等底等高)
(设计意图:课件内容是学生用圆锥体往圆柱体里倒水的过程,这个环节我是采取动画的形式来展现的,通过每一次的倒水过程从听觉到视觉使学生充分理解实验,而且用课件演示出来避免了学生在做实验中产生的误差现象。通过本课件的演示让同学们清晰明了的认识到等底等高的圆柱体体积与它等地等高圆锥体体积的三倍。)
2、揭示课题,明确本节课的学习任务:
(1)、先让学生想解决的办法:对于大家的猜测,我们怎么来判断哪种对呢?你有什么方法?(从实物中抽出图形)
(2)、这节课我们和小不点儿一起来研究圆锥体积的计算方法。
(二)探究新知
1、自主探索,获取知识
(1)、确定类比对象。“你认Байду номын сангаас圆锥的体积可能与哪种立体图形的体积有关?”
(2)、播放课件:演示一个圆柱体和圆锥体等底等高。
(设计意图:课件演示一个圆柱体和一个圆锥体高和底的比较,通过新旧知识思维的类比,为下面的探究做好思维的准备。)
(3)、学生分组,探究等第等高的圆柱体和圆锥体体积之间的关系。
(4)、学生实验。(分三组试验:圆锥和圆柱等底不等高、等高不等底、等底等高)
(设计意图:现有的实验器材,学生很容易找到圆柱与圆锥体积关系的联系,但这种联系是有前提的,是建立在特定条件下的。所以“等底等高”是结论的必要前提,也是本堂课的一个重点,必要的引导,加深学生的认识,也让结论更严密、更科学。)
《圆锥的体积》教学设计
【教材依据】:
人教版九年义务教育新课标第十二册第二单元《圆柱和圆锥》中《圆锥的体积》第一课时。
【指导思想】:
《小学数学课程标准》指出:教学的任务是引导和帮助学生主动去从事观察、 猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,通过学生猜想、观察、操作、实验、证明等数学活动过程,体验数学问题的探索性和挑战性,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程,解决问题。
【教材分析】:
从教材的编写可以看出,教材加强了与现实生活的联系。加强了在操作中对空间与图形问题的思考,使学生在经历观察、联想、猜测、操作实验、推理等过程中理解和掌握圆锥的体积的计算方法,进一步发展空间观念。
就本节课的设计而言,本课“圆锥的体积”是九年义务教育新课标第十二册第二单元的内容,是在学生学习了圆柱体积的基础上进行的。教学时首先悬疑激趣,再通过多媒体认识、理解圆锥体的特征。然后进行分组操作,为了实验的准确性,通过用空心圆锥向空心圆柱的容器里倒沙的实验得到圆锥的体积公式。进而培养学生的主动探究能力和合作精神。
【现代教学手段运用】
通过多媒体课件的运用,为学生提供更为丰富的学习资源,改变学生的学习方式,增强学生的学习兴趣。
【教学重点】
探索并掌握圆锥体积的计算公式,会正确地计算。
【教学难点】:
理解和掌握等底等高的圆锥和圆柱体积之间的关系,以及圆锥体积公式的推导过程。
【教学准备】:
多媒体课件、等底等高的圆柱体和圆锥体容器、圆锥形教具、沙子。
(5)、汇报实验结果。学生的实验结果如下:
用领取的底面积相等,高相等圆柱和圆锥,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
用底面积相等,高不相等的圆柱和圆锥,圆锥体容器装满沙土往圆柱体容器里倒,不是三次正好装满。
用底面积不相等,高相等的圆柱和圆锥,圆锥体容器装满沙土往圆柱体容器里倒,也不是三次正好装满。
【教学策略】:
(1)情景激趣策略:通过猜一猜的情境导入,初步感知,调动学生的积极性,激发学生探究的兴趣;
(2)示范模仿策略:通过教师课件示范,学生动手操作,自主探求圆锥的特征,圆锥体积公式的的含义。
【教学过程】:
(一)创设情境,悬疑激趣。
1、小不点儿在大拇指面包房买蛋糕,同样原料的蛋糕有圆锥形和圆柱形两种,圆锥形蛋糕的底面积是18平方厘米,高80厘米,圆柱形蛋糕底面积也是18平方厘米,但高是20厘米,价格都是80元一个。小不点儿到底选哪种蛋糕更划算呢?谁能帮助解决这一问题呢?
相关文档
最新文档