2-2-1 椭圆及其标准方程

合集下载

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

完整word版,人教版高中数学选修2-1《椭圆及其标准方程》教案

人教版高中数学选修2-1《椭圆及其标准方程》教案一、课型新授课二、教学内容1、椭圆的定义;2、椭圆的两类标准方程;3、根据椭圆的定义及标准方程的知识解决一些简单的问题。

三、教学目标1、知识与技能:理解并掌握椭圆的定义;明确焦点、焦距的概念;掌握椭圆标准方程的两种形式及其推导过程;掌握a、b、c三个量的几何意义及它们之间的关系。

能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;2、过程与方法:通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力。

让学生感知数学知识与实际生活的普遍联系;3、情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。

培养学生的探索能力和进取精神,提高学生的数学思维的情趣,给学生以成功的体验,形成学习数学知识的积极态度。

通过椭圆的形成过程培养学生的数学美感,同时培养团队协作的能力。

四、教学重点、难点重点:椭圆的定义及椭圆的标准方程;难点:椭圆标准方程的推导过程。

五、教学方法教师引导为主、学生自主探究为辅。

六、教学媒体幻灯片、黑板。

七、教学过程(一)创设情境,导入新课用多媒体演示神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?可以看出,它的运行轨迹是椭圆。

此时老师指出:在实际生活中,椭圆随处可见,很多学科也涉及到椭圆的应用,所以学习椭圆的相关知识是十分必要的。

这就是我们这节课所要学习的内容——椭圆及其标准方程。

(二)问题探究老师提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆满足什么样的条件呢?它的定义又是如何?1、椭圆的形成下面请各小组拿出老师之前让大家准备的工具:一段固定长的细绳、两颗钉子、一块长3分米,宽3分米的硬纸板。

然后将钉子系在细绳的两头,将钉子固定在图板上,使得两个钉子之间的距离小于细绳的长度(请同学们考虑一下,为什么两顶子之间的距离要小于细绳的长度?),我们用笔尖将细绳拉紧,让笔尖在图板上慢慢移动,请同学们观察笔尖运动的轨迹是什么图形呢?如果我们将两个钉子之间的距离变大,使得两个钉子之间的距离恰好等于细绳的长度,同样用笔尖将细绳拉紧,让笔尖在图板上慢慢移动。

高中数学 3.1《椭圆及其标准方程》教学设计 北师大版选修2-1

高中数学 3.1《椭圆及其标准方程》教学设计 北师大版选修2-1

《椭圆及其标准方程》教学设计【教学目标】1.理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;2.理解椭圆标准方程的推导过程及化简无理方程的常用的方法;3.了解求椭圆的动点的伴随点的轨迹方程的一般方法。

【导入新课】实例引入1.当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、试举出现实生活中圆锥曲线的例子.2.探究P 41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长,两端各结一个套),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的),图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.启发性提问:在这一过程中,你能说出移动的笔尖(动点)满足的几何条件是什么?新授课阶段1. 椭圆的定义.把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆(ellipse ).其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.2.椭圆标准方程的推导过程设参量b 的意义:第一、便于写出椭圆的标准方程;第二、,,a b c 的关系有明显的几何意义.具体推导过程省略。

类比:写出焦点在y 轴上,中心在原点的椭圆的标准方程()222210y x a b a b+=>>. 例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程。

分析:由椭圆的标准方程的定义及给出的条件,容易求出,,a b c .引导学生用其他方法来解。

解:设椭圆的标准方程为()222210x y a b a b +=>>,因点53,22⎛⎫- ⎪⎝⎭在椭圆上, 则22222591104464a a b b a b ⎧⎧+==⎪⎪⇒⎨⎨=⎪⎪⎩-=⎩例 2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析:点P 在圆224x y +=上运动,由点P 移动引起点M 的运动,则称点M 是点P 的伴随点,因点M 为线段PD 的中点,则点M 的坐标可由点P 来表示,从而能求点M 的轨迹方程。

高中数学2-2-1椭圆及其标准方程

高中数学2-2-1椭圆及其标准方程
6 2 2 (3)经过点( , 3)和点( ,1). 3 3
4 直线y 2 x 4与x轴y轴的焦点分别是
椭圆的焦点和顶点 x2 y 2 5 过点 -3, 2 且与 1有相同焦点 9 4
题型二 椭圆定义应用
x2 y 2 1 椭圆 1的焦点是F1F2 , 点P在椭圆 9 2 上, PF1 4, PF2 x2 y 2 2 椭圆 1的焦点是F1F2,过F2的直线 25 9 如果该做求 PF1 交椭圆于A, B两点, AF1 BF1 12, 的最大值呢? 则 AB x2 y 2 3 椭圆 1的焦点是F1F2 , p在椭圆上 12 3 如果PF1的中点在y轴上,则PF1是PF2的----倍
PF2
题型三 与椭圆有关的轨迹问题与椭圆有关的轨迹问题
【例3】 (12分)已知B、C是两个定点,|BC|=8,且△ABC的 周长等于18.求这个三角形的顶点A的轨迹方程.
[规范解答] 以过B、C两点的直线为x轴,线段BC的垂直 平分线为y轴,建立直角坐标系xOy.如图所示. 2分
由|BC|=8,可知点B(-4,0),C(4,0). 由|AB|+|AC|+|BC|=18,得|AB|+|AC|=10, 点与两焦点的距离之和2a=10; 6分 8分 10分
椭圆的方程.特别注意点A不在x轴上,因此y≠0.
【变式】 已知动圆M过定点A(-3,0),并且内切于定圆B: (x-3)2+y2=64.求动圆圆心M的轨迹方程. 解 设动圆M的半径为r,则|MA|=r,|MB|=8-r, ∴|MA|+|MB|=8,且8>|AB|=6, ∴动点M的轨迹是椭圆,且焦点分别是A(-3,0),B(3, 0),且2a=8, ∴a=4,c=3,

选修2-1教案2.2.1椭圆及其标准方程、几何性质

选修2-1教案2.2.1椭圆及其标准方程、几何性质

2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。

高中数学 错误解题分析 2-2-1 椭圆及其标准方程

高中数学 错误解题分析 2-2-1 椭圆及其标准方程

2.2 椭 圆 2.2.1 椭圆及其标准方程双基达标 限时20分钟1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ).A .4B .5C .8D .10解析 由椭圆的标准方程得a 2=25,a =5.由椭圆的定义知|PF 1|+|PF 2|=2a =10. 答案 D2.已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是 ( ). A .椭圆 B .直线 C .圆 D .线段 解析 ∵|MF 1|+|MF 2|=8=|F 1F 2|, ∴点M 的轨迹是线段F 1F 2,故选D. 答案 D3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是 ( ).A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2解析 由于椭圆焦点在x 轴上,∴⎩⎪⎨⎪⎧a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0,a >-6. ⇔a >3或-6<a <-2.故选D. 答案 D4.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________. 解析 由已知2a =8,2c =215, ∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1, ∴椭圆标准方程为y 216+x 2=1.答案y 216+x 2=15.已知椭圆x 220+y 2k=1的焦距为6,则k 的值为________.解析 由已知2c =6, ∴c =3,而c 2=9, ∴20-k =9或k -20=9, ∴k =11或k =29. 答案 11或296.求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)焦距是10,且椭圆上一点到两焦点的距离的和为26.解 (1)由焦距是4可得c =2,且焦点坐标为(0,-2),(0,2). 由椭圆的定义知2a =32+(2+2)2+32+(2-2)2=8, 所以a =4,所以b 2=a 2-c 2=16-4=12.又焦点在y 轴上,所以椭圆的标准方程为y 216+x 212=1.(2)由题意知2c =10,2a =26,所以c =5,a =13,所以b 2=a 2-c 2=132-52=144,因为焦点所在的坐标轴不确定,所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.综合提高(限时25分钟)7.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是 ( ). A .圆 B .椭圆 C .双曲线的一支 D .抛物线解析 如图,依题意:|PF 1|+|PF 2|=2a (a >0是常数). 又∵|PQ |=|PF 2|,∴|PF 1|+|PQ |=2a ,即|QF 1|=2a .∴动点Q 的轨迹是以F 1为圆心,2a 为半径的圆,故选A. 答案 A8.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于 ( ). A .5 B .4 C .3 D .1 解析 由椭圆方程,得a =3,b =2,c =5, ∴|PF 1|+|PF 2|=2a =6, 又|PF 1|∶|PF 2|=2∶1, ∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4,故选B. 答案 B 9.若α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.解析 方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.∵椭圆的焦点在y 轴上, ∴1cos α>1sin α>0.又∵α∈(0,π2), ∴sin α>cos α>0, ∴π4<α<π2. 答案 (π4,π2)10.椭圆x 212+y 23=1的两个焦点为F 1和F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.解析 依题意,不妨设椭圆两个焦点的坐标分别为F 1(-3,0),F 2(3,0),设P 点的坐 标为(x 1,y 1),由线段PF 1的中点的横坐标为0,知x 1-32=0,∴x 1=3.把x 1=3代入椭圆方程x 212+y 23=1,得y 1=±32,即P 点的坐标为(3,±32), ∴|PF 2|=|y 1|=32由椭圆的定义知|PF 1|+|PF 2|=43, ∴|PF 1|=43-|PF 2|=43-32=732, 即|PF 1|=7|PF 2|. 答案 711.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.解 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0). ∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0, 而F 1A →=(-4+c ,3), F 2A →=(-4-c ,3),∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32 =10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.12.(创新拓展)如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解 由题意知点M 在线段CQ 上, 从而有|CQ |=|MQ |+|MC |.又点M 在AQ 的垂直平分线上,则|MA |=|MQ |, ∴|MA |+|MC |=|CQ |=5. ∵A (1,0),C (-1,0),∴点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a2-c 2=2541=214. 故点M 的轨迹方程为x 2254+y 2214=1.。

2、2、1椭圆及其标准方程(2)

2、2、1椭圆及其标准方程(2)
MF1 MF2 2a (2a 2c 0)
(1) (2a 2c 0) 焦点在x轴上,中心在原点:
y
M(x,y) F1
(2) 焦点在y轴上,中心在原点:
y
F2
M(x,y)
o
2
F2 x
y
x y 2 1 a b 0 a2 b
2
o
M
x
F1

b a o c F2 x

椭圆的定义
MF1 MF2 2a(2a 2c 0)
y
y M M
F2 x F 2
M
图形 标准方程 焦点坐标 a,b,c的关系
焦点位置的 判断
2
a b F co 1
2
o
F 1
x
x y 2 1 a b 0 a2 b
y2 x2 2 1 a b 0 2 a b
11
例 1 已知动点 P 到点 F1 (0, 2) , F2 (0, 2) 的距离之 和为 12,求动点 P 的轨迹方程.
解:⑴由椭圆定义可知,动点 P 的轨迹是椭圆, 且焦点是 F1 (0, 2) , F2 (0, 2) ,∴ c 2 . ∵ PF1 PF2 12 ,∴ 2a 12 ,∴ a 6 , ∴ b2 a 2 c 2 36 4 32 x2 y2 1. ∴所求的轨迹方程为 32 36
13
例 3 已知 B、C 是两个定点, BC 6 ,且△ABC 的周长 等于 16,求顶点 A 的轨迹方程.
解:如图,以直线 BC 为 x 轴,线段 BC 的中点为原点,建立 平面直角坐标系,则 B(3,0), C (3,0) .
设顶点 A 的坐标为 ( x , y )

高中数学选修二《椭圆及其标准方程》课件

高中数学选修二《椭圆及其标准方程》课件

线段F1 F2 的中点重合,a、b、c 的意义同上,
椭圆的方程形式又如何呢?
o
x
[设计意图] 该问的设置,一方面是为了得出焦点在 y 轴上的 椭圆的标准方程;另一方面通过学生的猜想,充分发挥学生
的直觉思维和数学悟性. 调动了学生学习的主动性和积极性, 通过动手验证,培养了学生严谨的学习作风和类比的能力.
[设计意图]通过小结,使学生对所学的知识有一个完 整的体系,突出重点,抓住关键,培养概括能力.
四、教学过程 <布置作业,巩固提高(学有余力的学生全做, 其余学生不做探究题) >
[设计意图] 一方面为了巩固知识,形成技能,培养学生周 密的思维能力,发现教学中的遗漏和不足;另一方面,分 层要求,有利各种层次的学生获得最佳发展,充分培养了 学生的自主学习能力和探究性学习习惯.
3、教学手段:多媒体辅助教学.
通过动态演示,有利于引起学生的学习兴趣, 激发学生的学习热情,增大知识信息的容量,使 内容充实、形象、直观,提高教学效率和教学质 量.
四、教学流程
创 自 师初 自


设 主 生步 我


情 探 互运 评


景 究 动用 价


, , ,, ,


提 形 导强 反


出 成 出化 馈
一、教材分析
(五) 教学的重点难点
1. 教学重点:椭圆的定义及其标准方程 2. 教学难点:椭圆标准方程的推导
二、学情分析
在此之前,学生对坐标法解决几何问题掌握 不够,从研究圆到研究椭圆,跨度较大,学生 思维上存在障碍. 在求椭圆标准方程时,会遇到 比较复杂的根式化简问题,而这些在目前初中 代数中都没有详细介绍,初中代数不能完全满 足学习本节的需要,故本节采取缺什么补什么 的办法来补充这些知识.

人教版高中数学选修2-1椭圆及其标准方程教案

人教版高中数学选修2-1椭圆及其标准方程教案

椭圆及其标准方程(1)1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义;3.掌握椭圆的标准方程.3840,文P 32~ P 34找出疑惑之处)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >?当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程()222210x y a b a b+=>> 其中222b a c =-若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c =y 轴上;⑶10,a b c +==.变式:方程214x y m+=表示焦点在x 轴上的椭圆,则实数m 的范围 .新 课 标第 一网小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).A .B .6C .D .12练2 .方程219x y m-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升※ 学习小结1. 椭圆的定义:2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C.(1,)+∞D.(0,1)3.如果椭圆22110036x y+=上一点P到焦点1F的距离等于6,那么点P到另一个焦点2F的距离是().A.4 B.14 C.12 D.84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程是.5.如果点(,)M x y在运动过程中,10=,点M的轨迹是,它的方程是.1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x轴上,焦距等于4,并且经过点(3,P-;⑵焦点坐标分别为()()0,4,0,4-,5a=;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.。

2.2.1椭圆及其标准方程(二)2

2.2.1椭圆及其标准方程(二)2

2.2.1椭圆及其标准方程(二)【教学目标】1.理解椭圆的定义及标准方程;2.掌握用定义法和待定系数法求椭圆的标准方程;3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学科素养】数学抽象、逻辑推理,数学运算.【教学重点】椭圆的定义及标准方程的推导.【教学难点】理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学法指导】教师启发讲授,学生探究学习.复习回顾问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?新知探究例2:如图,在圆422=+y x 上任意取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么? 点评:相关点法(代入法)(设计意图:利用直线中点坐标公式,探求动点轨迹)变式训练2:教材第50页B 组第一题例3:如图所示,设A ,B 的坐标分别是()()0,5,0,5-,直线BM AM ,相交于点M ,且它们的斜率之积是94-,求M点得轨迹方程。

(设计意图:把直线相关知识与椭圆结合到一起,加强知识之间的联系,以此培养学生 的知识串联能力)点评:参数法变式训练3:(教材第42页练习第4题)小结:求解与椭圆相关的轨迹问题的方法1、写出适合下列条件的椭圆的标准方程:(1)1,4==b a ,焦点在x 轴上;(2)15,4==c a ,焦点在y 轴上;(3)52,10==+c b a2、椭圆2211625x y +=的焦点坐标为( )A (0, ±3)B (±3, 0)C (0, ±5)D (±4, 0)3、在方程22110064x y +=中,下列a, b, c 全部正确的一项是( ) A a=100, b=64, c=36 B a=10, b=6, c=8C a=10, b=8, c=6D a=100, c=64, b=36 教材第42页练习第1题、第3题.课堂小结1.椭圆的概念及标准方程;2.求椭圆方程的方法.作业布置 习题2.2A 组5 、7板书设计椭圆及其标准方程1、椭圆的定义 例2: 例32、椭圆的标准方程课后感悟。

高中数学选修2-1《椭圆及其标准方程》教案

高中数学选修2-1《椭圆及其标准方程》教案

课题:椭圆及其标准方程教材:普通高中课程标准试验教科书——《数学》选修2-1 一、教材分析:《椭圆及其标准方程》是高中数学新教材选修2—1第二章第二节的第一课时。

从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础;所以说,无论从教材内容,还是从教学方法上都是起着承上启下的作用,它是学好本章内容的关键。

因此搞好这一节的教学,具有非常重要的意义。

二、教学目标分析:(一)知识与技能目标: 准确理解椭圆的定义,掌握椭圆的标准方程及其推导.(二)过程与方法目标: 通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.(三)情感态度与价值观目标:(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、教学重点、难点:(一).重点:椭圆定义及其标准方程(二).难点:椭圆标准方程的推导四、教学方法与教学手段采用启发和探究式教学相结合的教学模式,即在教师的引导下,创设情境,学生利用课前准备的工具亲自动手画出椭圆,并讨论椭圆上的点满足的条件,以此来充分调动学生学习的主动性和积极性,发展学生数形结合,等价转换等思想,培养学生综合运用知识解决问题的能力。

教学手段:计算机课件辅助教学。

五、教学过程:(一)认识椭圆,探求规律:1.对椭圆的感性认识.通过演示课前老师准备的有关椭圆的图片,让学生从感性上认识椭圆.2.通过演示动画,展示椭圆的形成过程,使学生认识到椭圆是点按一定“规律”运动的轨迹.(二)动手实验,亲身体会用上面所总结的规律,指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备细绳),并以此了解椭圆上的点的特征.请两名同学上黑板画(三)归纳定义,完善定义我们通过动画演示,实践操作,对椭圆有了一定的认识,下面由同学们归纳椭圆的定义.椭圆定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F =2c )的点的轨迹叫做椭圆。

原创2:2.2.1 椭圆及其标准方程

原创2:2.2.1 椭圆及其标准方程
2
2.椭圆 +y2=1上一点P到一个焦点的距离为2,
25
则点P到另一个焦点的距离为( D )
A.5
B.6
C.7
D.8
定义
自主练习
椭圆类型
3.椭圆的焦点在y轴上,其上任意一点到两焦点的距
2a=8
离 和 为 8 , 焦 距 为 2 15 , 则 此 椭 圆 的 标 准 方 程 为

+x2=1

________.
2
2
∴所求椭圆的标准方程为 +
8
12
=1.
典例导航
题型二:椭圆定义的应用
2
2
如图所示,已知F1,F2是椭圆 +
100
36
=1的两个焦点.
(1)求椭圆的焦点坐标;
(2)过F1作直线与椭圆交于A,B两点,试求△ABF2的周长.
典例导航
【解析】
(1)由椭圆方程得a2=100,b2=36,
于是a=10,c=8,
15
5
=1.
典例导航
(3)焦点在坐标轴上,且经过A( 3,-2)和B(-2 3,1)
思考:在上述的解题过程中,将方程组看作是关于
1
1
2 、 2 的方程组,解题过程还可以做怎样的优化?


【另解】设所求椭圆的方程为mx2+ny2=1(m>0,n>0)
3m+4n=1
1
1
则由已知
解得:m= ,n=
15
5
|PF1|2+|PF2|2+2|PF1|·|PF2|=16
③-②,得3PF1|·|PF2|=12,
∴|PF1|·|PF2|=4,
1
∴S= |PF1|·|PF2|·sin

2012高中数学 第2章2.2.1椭圆及其标准方程课件 新人教A版选修2-1

2012高中数学 第2章2.2.1椭圆及其标准方程课件 新人教A版选修2-1

思路点拨】 解答本题可先利用a, , 三 【 思路点拨 】 解答本题可先利用 , b,c三 者关系求出|F 者关系求出 1F2|, 再利用定义及余弦定理求 , 出|PF1|、|PF2|,最后求出 △F1PF2. 、 ,最后求出S△
x y 【解】 在椭圆 + =1 中,a=4,b=3,所 = , = , 16 9 以 c= 7. = 在椭圆上,所以|PF1|+|PF2|=8,① + = , 因为点 P 在椭圆上,所以 ∵∠F 在△PF1F2 中,∵∠ 1PF2=60°,根据余弦定理 , 可得: 可得: |PF1|2+|PF2|2-2|PF1|·|PF2|·cos 60°=|F1F2|2 = =28,② ,
问题探究
平面内动点M满足 平面内动点 满足|MF1|+ |MF2|= 2a, 当 2a= 满足 + = , = |F1F2|时 , 点 M的轨迹是什么 ? 当 2a<|F1F2|时呢 ? |时 M的轨迹是什么 的轨迹是什么? |时呢 时呢? 的轨迹是线段F 提示: 时 的轨迹是线段 提示 : 当 2a=|F1F2|时, 点 M的轨迹是线段 1F2 ; = 当2a<|F1F2|时,不表示任何轨迹. 时 不表示任何轨迹.
利用椭圆的定义求轨迹方程 用定义法求椭圆方程的思路是: 先观察、 用定义法求椭圆方程的思路是 : 先观察 、 分 析已知条件, 析已知条件 , 看所求动点轨迹是否符合椭圆 的定义, 若符合椭圆的定义, 的定义 , 若符合椭圆的定义 , 则用待定系数 法求解即可. 法求解即可. 例2 已知动圆 过定点 - 3,0), 并且内切 已知动圆M过定点 过定点A(- , 于定圆B: - 于定圆 : (x- 3)2 + y2 = 64, 求动圆圆心 的 , 求动圆圆心M的 轨迹方程. 轨迹方程.

高中数学2-2-1椭圆及其标准方程

高中数学2-2-1椭圆及其标准方程
因为 2a= (5+3)2+02+ (5-3)2+02=10,2c=6,
所以 a=5,c=3, 所以 b2=a2-c2=52-32=16. 所以所求椭圆的标准方程为2x52+1y62 =1.
课前探究学习
课堂讲练互动
(2)因为椭圆的焦点在 y 轴上,所以设它的标准方程为 ay22+xb22=1(a>b>0). 因为 2a=26,2c=10, 所以 a=13,c=5. 所以 b2=a2-c2=144. 所以所求椭圆标准方程为1y629+1x424=1.
1.椭圆的定义的应用 (1)应用椭圆的定义和方程,把几何问题转化为代数问 题,再结合代数知识解题.而椭圆的定义与三角形的两边 之和联系紧密,因此,涉及线段的问题常利用三角形两边 之和大于第三边这一结论处理. (2)椭圆的定义式:|PF1|+|PF2|=2a(2a>|F1F2|),在解题中 经常将|PF1|·|PF2|看成一个整体或者配方等灵活运用.
课前探究学习
课堂讲练互动
题型三 与椭圆有关的轨迹问题与椭圆有关的轨迹问题
【例3】 (12分)已知B、C是两个定点,|BC|=8,且△ABC的 周长等于18.求这个三角形的顶点A的轨迹方程.
[规范解答] 以过B、C两点的直线为x轴,线段BC的垂直
平分线为y轴,建立直角坐标系xOy.如图所示.
2分
课前探究学习
课前探究学习
课堂讲练互动
3.求椭圆标准方程的方法 (1)定义法,即根据椭圆的定义,判断出轨迹是椭圆,然后 写出其方程. (2)待定系数法,即设出椭圆的标准方程,再依据条件确定 a2、b2的值,可归纳为“先定型,再定量”,其一般步骤是: ①定类型:根据条件判断焦点在x轴上还是在y轴上,还是两 种情况都有可能,并设椭圆方程为

19-20版 第2章 2.2 2.2.1 椭圆及其标准方程

19-20版 第2章 2.2 2.2.1 椭圆及其标准方程
由椭圆定义得|PF1|+|PF2|=2a=4. ② 由①②联立可得|PF1|=65.
所以
S△PF1F2=12|PF1||F1F2|sin∠PF1F2=12×65×2×
23=3
5
3 .]
栏目导航
1.椭圆的定义具有双向作用,即若|MF1|+|MF2|=2a(2a>|F1F2|), 则点 M 的轨迹是椭圆;反之,椭圆上任意一点 M 到两焦点的距离之和 必为 2a.
∴|PF2|=2a-|PF1|=2, ∴cos∠F1PF2=|PF1|22+|PF|P1F|·2|2|P-F|F2| 1F2|2=-12,
∴∠F1PF2=120°.
栏目导航
(2)由x42+y32=1,可知 a=2,b= 3,所以 c= a2-b2=1,从而 |F1F2|=2c=2.
在 △PF1F2 中 , 由 余 弦 定 理 得 |PF2|2 = |PF1|2 + |F1F2|2 - 2|PF1||F1F2|cos∠PF1F2,即|PF2|2=|PF1|2+4+2|PF1|. ①
栏目导航
(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的 方程,并把所得方程化简即可.
所求点 M 的轨迹方程为x42+y2=1.
栏目导航
【例 3】 (1)已知 P 是椭圆x42+y82=1 上一动点;O 为坐标原点, 则线段 OP 中点 Q 的轨迹方程为______________.
(2)一个动圆与圆 Q1:(x+3)2+y2=1 外切,与圆 Q2:(x-3)2+ y2=81 内切,试求这个动圆圆心的轨迹方程.
栏目导航
即 4=(|PF1|+|PF2|)2-2|PF1|·|PF2|-2|PF1|·|PF2|cos 30°, 即 4=20-(2+ 3)|PF1|·|PF2|, ∴|PF1|·|PF2|=16(2- 3). ∴S△F1PF2=12|PF1|·|PF2|sin∠F1PF2=12×16(2- 3)×12=8- 4 3.]

高中数学选修2-1第二章第一节《椭圆及其标准方程》说

高中数学选修2-1第二章第一节《椭圆及其标准方程》说

课题:椭圆及其标准方程(—)教材: 人教版高中数学选修2-1第二章第一节《椭圆及其标准方程》一、教材分析(一) 教材的地位和作用圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。

同时,圆锥曲线也是体现数形结合思想的重要素材。

在本章中,椭圆的学习为后面研究双曲线、抛物线提供基本模式和理论基础。

因此这节课有承前启后的作用,是本章和本节的重点内容之一。

(二) 教学目标1. 知识与技能目标:掌握椭圆的定义和标准方程,理解椭圆标准方程的推导。

2. 过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

3. 情感态度与价值观目标:通过实验、观察、推理、类比、归纳等教学活动,使学生体验到数学学习活动充满着探索和创造,提高了学生的学习热情并体会数学的简洁美、对称美。

(三) 教学的重点与难点1. 教学重点:椭圆的定义及其标准方程。

2. 教学难点:椭圆标准方程的推导。

在学习本课《椭圆及其标准方程》前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。

但由于学生学习解析几何时间还不长、学习程度也较浅,学生对坐标法解决几何问题掌握还不够。

另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。

二、学情分析学生对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识,因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力,但由于学生学习解析几何时间还不长、学习程度也较浅,并且还受到高二这一年龄段学习心理和认知结构的影响,在学习过程中难免会有些困难.如:由于学生对运用坐标法解决几何问题掌握还不够,因此从研究圆到椭圆,学生思维上会存在障碍.三、教法和学法(一) 教法:在教法上,主要采用探究性教学法和启发式教学法。

§2.2.1 椭圆及其标准方程

§2.2.1  椭圆及其标准方程

b 2 a 2 c 2 10 4 6.
y2 x2 1. 所以所求椭圆的标准方程为 10 6
5、回顾小结 一种方法: 求椭圆标准方程的方法 二类方程:
x2 y2 y2 x2 2 1 2 2 1 a b 0 2 a b a b
三个意识: 求美意识, 求简意识,前瞻意识
M
立坐标系才能使 椭圆的方程简单?
y
M
y M
F1o
y
F2
x
F1 o
y
F2
x
F1 o
yF2xຫໍສະໝຸດ F2F2M
F2
M
o
M
x
F1
o
x
F1
o
x
F1
以 F1 , F2 的中点为坐标原点, F1 , F2 所在直线为 设M(x,y)是椭圆上任意一点 x轴建立直角坐标系,
F1F2 =2C,那么F1 ,F2的坐标分别是 -c,0 , c,0
圆的标准方程?哪些是椭圆的方程。
练习2比较椭圆的两种标准方程并填表
标准方程 不 同 点 图形
焦点坐标 定义 共 同 a、b、c 点 的关系
F1 c,0
F2 c,0
F1 0, c
F2 0, c
c 2 a 2 b2 (a b 0, c 0)
焦点位置 的判定
y A
F1 o F2
B
x
例1 已知△ABC的一边BC固定,长为6,周长为16, 求顶点A的轨迹方程。
解: AB BC AC 16, BC 6
.
y
A
AB AC 10, 且10 BC 根据椭圆的定义知所求轨迹是椭圆, B o C 且B、C为焦点 以BC的中点为原点,BC所在的直线为x轴建立直 角坐标系。 所以可设椭圆的标准方程为 : x2 y2 2 1(a b 0) 2 a b

2-2-1 椭圆及其标准方程

2-2-1 椭圆及其标准方程

基础巩固强化一、选择题1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段[答案] D[解析]∵|MF1|+|MF2|=6,|F1F2|=6,∴|MF1|+|MF2|=|F1F2|,∴点M的轨迹是线段F1F2.2.已知椭圆x225+y216=1上一点P到其一个焦点的距离为3,则点P到另一个焦点的距离为()A.2B.3C.5D.7[答案] D[解析]利用椭圆的定义可知|PF1|+|PF2|=10.∵|PF1|=3,∴|PF2|=7.3.椭圆ax2+by2+ab=0(a<b<0)的焦点坐标是()A.(±a-b,0) B.(±b-a,0)C.(0,±a-b) D.(0,±b-a)[答案] D[解析]ax2+by2+ab=0可化为x2-b +y2-a=1,∵a<b<0,∴-a>-b>0,∴焦点在y轴上,c=-a+b=b-a,∴焦点坐标为(0,±b -a ).4.椭圆x 2m +y 24=1的焦距是2,则m 的值是( ) A .5 B .3或8 C .3或5 D .20 [答案] C[解析] 2c =2,c =1,故有m -4=1或4-m =1, ∴m =5或m =3,故选C.5.已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977 D.94[答案] D[解析] a 2=16,b 2=9⇒c 2=7⇒c =7. ∵△PF 1F 2为直角三角形.且b =3>7=c . ∴F 1或F 2为直角三角形的直角顶点, ∴点P 的横坐标为±7,设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1⇒y 2=8116⇒|y |=94.6.(2012·上海文,16)对于常数m 、n ,“mn >0”是“方程mx 2+ny 2=1的曲线是椭圆”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] 由mn >0,若m =n >0,则方程 mx 2+ny 2=1表示圆,故mn >0⇒/ 方程mx 2+ny 2=1表示椭圆,若mx 2+ny 2=1表示椭圆,则必有mn >0,故选B.二、填空题7.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________.[答案] x 24+y 23=1[解析] 由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1.故b 2=a 2-c 2=3,所以椭圆方程为x 24+y23=1.8.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=______.[答案] 2 3[解析] 由题意S △POF 2=34c 2=3,∴c =2,∴a 2=b 2+4. ∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得,1b 2+4+3b 2=1,解得b 2=2 3.三、解答题9.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b 2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1.当焦点在y 轴上时,设其方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1.故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1.10.已知点A (-12,0),B 是圆F :(x -12) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,求动点P 的轨迹方程.[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,∴|P A |+|PF |=2,且|P A |+|PF |>|AF |, ∴动点P 的轨迹是以A 、F 为焦点的椭圆, ∴a =1,c =12,b 2=34.∴动点P 的轨迹方程为x 2+y 234=1,即x 2+43y 2=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能力拓展提升
一、选择题
11.已知方程x 2|m |-1+y 2
2-m =1表示焦点在y 轴上的椭圆,则m
的取值范围是( )
A .m <2
B .1<m <2
C .m <-1或1<m <2
D .m <-1或1<m <3
2
[答案] D
[解析]
由题意得⎩⎪⎨⎪

|m |-1>0,2-m >0,
2-m >|m |-1.
即⎩⎨

m >1或m <-1,
m <2,m <32.
∴1<m <3
2
或m <-1,故选D.
12.若△ABC 的两个焦点坐标为A (-4,0)、B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )
A.x 225+y 2
9
=1 B.y 225+x 2
9
=1(y ≠0) C.x 216+y 2
9=1(y ≠0) D.x 225+y 2
9
=1(y ≠0) [答案] D
[解析] |AB |=8,|AC |+|BC |=10>|AB |,故点C 轨迹为椭圆且两焦点为A 、B ,又因为C 点的纵坐标不能为零,所以选D.
13.椭圆x 212+y 2
3
=1的一个焦点为F 1,点P 在椭圆上,如果线段
PF 1的中点M 在y 轴上,那么点P 的纵坐标是( )
A .±34
B .±22
C .±32
D .±34
[答案] C
[解析] 设F 1(-3,0),∵PF 1的中点M 在y 轴上,且MO ⊥x 轴,∴P 点横坐标为3,代入x 212+y 2
3
=1中得,
y 2=34,∴y =±32
.
14.在平面直角坐标系xOy 中,已知△ABC 的顶点A (0,-2)和C (0,2),顶点B 在椭圆y 212+x 2
8=1上,则sin A +sin C sin B
的值是( )
A. 3 B .2 C .2 3 D .4 [答案] A
[解析] 由椭圆定义得|BA |+|BC |=43, 又∵sin A +sin C sin B =|BC |+|BA ||AC |=43
4=3,故选A.
二、填空题
15.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 是椭圆上的一点,若|F 1F 2|是|PF 1|和|PF 2|的等差中项,则该椭圆的方程是________.
[答案] x 24+y 2
3
=1
[解析] 由题意得2|F 1F 2|=|PF 1|+|PF 2|, ∴4c =2a ,∵c =1,∴a =2. ∴b 2=a 2-c 2=3,
故椭圆方程为x 24+y 2
3
=1.
16.如图,把椭圆x 225+y 2
16=1的长轴AB 分成8等份,过每个分
点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.
[答案] 35
[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,
∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+1
2(|P 4
F |+|P 4F ′|)=7a =35. 三、解答题
17.已知F 1、F 2是椭圆x 2100+y 2
64=1的两个焦点,P 是椭圆上任
一点,若∠F 1PF 2=π
3
,求△F 1PF 2的面积.
[解析] 设|PF 1|=m ,|PF 2|=n . 根据椭圆定义有m +n =20,
又c =100-64=6,∴在△F 1PF 2中, 由余弦定理得m 2+n 2-2mn cos π
3
=122,
∴m2+n2-mn=144,∴(m+n)2-3mn=144,
∴mn=256 3,
∴S△F1PF2=1
2|PF1||PF2|sin∠F1PF2
=1
2×256

3
2=
643
3.
18.已知椭圆y2
a2+x2
b2=1(a>b>0)的焦点分别为F1(0,-1),F2(0,1),
且3a2=4b2.
(1)求椭圆的方程;
(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.
[解析](1)由题意得椭圆焦点在y轴上,且c=1.
又∵3a2=4b2,∴a2-b2=1
4a
2=c2=1,
∴a2=4,b2=3,
∴椭圆标准方程为y2
4+
x2
3=1.
(2)如图所示,|PF1|-|PF2|=1.
又由椭圆定义知,|PF1|+|PF2|=4,
∴|PF1|=5
2,|PF2|=3
2,|F1F2|=2,
cos∠F1PF2=(
5
2)
2+(
3
2)
2-22

5

3
2

9
15=
3
5.。

相关文档
最新文档