高中数学-数列公式及解题技巧
高中数学数列的求和公式及相关题目解析
![高中数学数列的求和公式及相关题目解析](https://img.taocdn.com/s3/m/e50fb1045627a5e9856a561252d380eb6294232e.png)
高中数学数列的求和公式及相关题目解析在高中数学中,数列是一个非常重要的概念,它是数学中的一种序列,由一系列按照一定规律排列的数所组成。
数列的求和是数学中常见的问题之一,本文将介绍数列的求和公式及相关题目解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、等差数列的求和公式及相关题目解析1. 等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来快速计算其前n项的和。
设等差数列的首项为a1,公差为d,前n项和为Sn,则等差数列的求和公式为:Sn = (n/2)[2a1 + (n-1)d]其中,n为项数,a1为首项,d为公差。
2. 题目解析例题1:已知等差数列的首项为3,公差为4,求前10项的和。
解析:根据等差数列的求和公式,代入a1=3,d=4,n=10,可以得到:S10 = (10/2)[2*3 + (10-1)*4] = 5[6 + 9*4] = 5[6 + 36] = 5*42 = 210因此,前10项的和为210。
例题2:已知等差数列的首项为-2,公差为5,前n项和为100,求n的值。
解析:根据等差数列的求和公式,代入a1=-2,d=5,Sn=100,可以得到:100 = (n/2)[2*(-2) + (n-1)*5] = (n/2)[-4 + 5n - 5] = (n/2)(5n - 9)化简得到5n^2 - 9n - 200 = 0,解这个二次方程可以得到n≈13.2或n≈-3.8。
由于n必须是正整数,所以n≈13.2不符合题意。
因此,n≈-3.8也不符合题意。
综上所述,n的值为13。
二、等比数列的求和公式及相关题目解析1. 等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来快速计算其前n项的和。
设等比数列的首项为a1,公比为r,前n项和为Sn,则等比数列的求和公式为:Sn = a1(1 - r^n)/(1 - r)其中,n为项数,a1为首项,r为公比。
(推荐)高中数学笔记-4-数列
![(推荐)高中数学笔记-4-数列](https://img.taocdn.com/s3/m/eb214f9a700abb68a982fb8f.png)
高中数学笔记----------4-数列基本概念:1.等差数列{a n }中:(1)a n =a+(n -1)d=a m +(n -m)d; p+q=m+n a p +a q =a m +a n . (2)a 1+a 2+…+a m , a k +a k+1+…+a k+m -1,…仍成等差数列.(3)a p =q,a q =p (p ≠q) a p+q =0; S p =q,S q =p (p ≠q) S p+q =-(p+q); S m+n =S m +S n +mnd ⑷S 2n-1=a n (2n-1) (常用于数列的比较中和代换中); Snn为等差数列,公差为d ∕23.等比数列{a n }中;(1) m+n=r+s, a m ·a n =a r ·a s(2) a 1+a 2+…+a m , a k +a k+1+…+a k+m -1,…仍成等比数列(4) 111 (1)(1) (1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩注意:①a n-b n=(a -b)(an -1+a n -2b+a n -3b 2+…+ab n -2+b n -1)②S m+n =S m +q m S n =S n +q n S m .4.等差数列与等比数列的联系(1)如果数列{a n }成等差数列, 那么数列{n aA }(n aA 总有意义)必成等比数列. (2)如果数列{a n }成等比数列, 那么数列{log ||a n a }(a>0,a≠1)必成等差数列.(3)如果数列{ a n }既成等差数列也成等比数列,那么数列{ a n }是非零常数数列; 数列{a n }是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有其公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 5.数列求和的常用方法.(1)公式法: ①等差数列求和公式, ②等比数列求和公式 ③常用公式:, 12+22+32+…+n 2=16n(n+1)(2n+1), 13+23+33+------+n 3=14 [n (n +1)]2(2)分组求和法: 在直接运用公式法求和有困难时,常将"和式"中"同类项"先合并在一起,再运用公式法求和.(3)倒序相加法: 在数列求和中,若和式中到首尾距离相等的两项和有其共性,则常考虑选用倒序相加法,发挥其共性的作用求和.(4)错位相减法: 如果数列的通项是由一个等差数列的通项与一个等比数列通项相乘构成,那么常选用错位相减法,将其和转化为"一个新的等比数列的和"求解".(5)裂项相消法: 如果数列的通项可"分裂成两项差"的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和,常用裂项形式有:①111(1)1n n n n =-++ ②1111()()n n k k n n k=-++ ③2211111()1211k k k k <=---+; 21111111(1)1k k k k k k k -<<=-+-- ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ⑤ 11(1)!!(1)!n n n n =-++⑥<< ⑦ 1n2<2(12n−1--12n+1);1n2<3(13n−2--13n+1)(注意:运用等比数列求和公式时,务必检查其公比与1的关系,必要时应分类讨论.裂项相消法更多的用于数列中不等式的证明) 6.数列的通项的求法:(11种类型) 类型1 )(1n f a a n n +=+ ;(累加法)解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
高中数学数列题型及解题方法
![高中数学数列题型及解题方法](https://img.taocdn.com/s3/m/088a33e4250c844769eae009581b6bd97e19bc76.png)
高中数学数列题型及解题方法高中数学中,数列是一个非常重要的概念。
对于数列题型的掌握和解题方法的运用,对于学生在数学学习中起到至关重要的作用。
常见的数列题型包括等差数列、等比数列和斐波那契数列等。
下面将介绍这几种数列的定义和解题方法。
1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公差d和首项a1,然后利用通项公式an=a1+(n-1)d来求解。
- 求和公式:通过已知条件求出公差d、首项a1和项数n,然后利用求和公式Sn=n/2(a1+an)来求解。
2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公比r和首项a1,然后利用通项公式an=a1*r^(n-1)来求解。
- 求和公式:通过已知条件求出公比r、首项a1和项数n,然后利用求和公式Sn=a1*(1-r^n)/(1-r)来求解。
3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。
常见的解题方法有:- 递推公式:利用递推关系an=an-1+an-2来计算斐波那契数列的每一项。
- 通项公式:通过特征方程x^2=x+1,求出两个根φ和1-φ,然后利用通项公式an=Aφ^n+B(1-φ)^n来求解,其中A和B为常数,通过已知条件求解得出。
在解题过程中,可以根据已知条件,选择合适的方法来求解数列问题。
同时,还需要注意理解数列的性质,例如等差数列的公差为常数,等比数列的公比为常数等。
通过对不同类型数列的学习和练习,可以提高对数列问题的理解和解题能力。
高中数学数列通项公式的求法技巧大全
![高中数学数列通项公式的求法技巧大全](https://img.taocdn.com/s3/m/8a11f0583169a4517723a3c7.png)
数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
高中数学数列经典题型及解析
![高中数学数列经典题型及解析](https://img.taocdn.com/s3/m/3a90992f59fafab069dc5022aaea998fcc22409e.png)
高中数学数列经典题型及解析1. 求数列的通项公式:题目描述:已知数列的前几项为1,4,9,16,...,求该数列的通项公式。
解析:观察该数列可以发现,每一项都是前一项的平方加1,所以可以得到通项公式为an =n^2 + 1。
2. 求数列的和:题目描述:已知数列的前几项为2,5,8,11,...,求前100项的和。
解析:观察该数列可以发现,每一项都是前一项加3,所以可以得到通项公式为an = 3n - 1。
根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前100项的和为S100 = (100/2)(2 + a100),代入通项公式,得到S100 = (100/2)(2 + (3*100 - 1)) = 10100。
3. 求等差数列的前n项和:题目描述:已知数列的前几项为3,7,11,15,...,求前20项的和。
解析:观察该数列可以发现,每一项都是前一项加4,所以可以得到通项公式为an = 4n - 1。
根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前20项的和为S20 = (20/2)(3 + (4*20 - 1)) = 820。
4. 求数列的极限:题目描述:已知数列的前几项为1,1/2,1/3,1/4,...,求该数列的极限值。
解析:观察该数列可以发现,每一项都是前一项的倒数,即an = 1/n。
当n趋向于无穷大时,an趋向于0,所以该数列的极限值为0。
5. 求数列的递推关系:题目描述:已知数列的前几项为1,2,4,7,11,...,求该数列的递推关系。
解析:观察该数列可以发现,每一项都是前一项加一个递增的数,递增的数可以依次为1,2,3,4,...,所以可以得到递推关系为an = an-1 + (n-1)。
以上是高中数学中数列的经典题型及解析,希望对你有帮助!。
(完整word版)高中数学_数列求和及数列通项公式的基本方法和技巧
![(完整word版)高中数学_数列求和及数列通项公式的基本方法和技巧](https://img.taocdn.com/s3/m/2ae6c55e0029bd64793e2c35.png)
数列求和的基本方法和技巧关键词:数列求和 通项分式法错位相减法反序相加法分组法分组法合并法数列是高中代数的重要内容,又是学习高等数学的基础•在高考和各种数学竞赛中都占有重要的地位数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定 的技巧•下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法 1、等差数列求和公式: S nn(a1 an)na !n(n 1)d2 2[例]求和 1 + X 2 + X 4+ X 6+…x 2n+4(x 工 0)解: ••• X M0•••该数列是首项为1,公比为X 2的等比数列而且有n+3项 当x 2= 1即X =±1时和为n+3评注:(1)利用等比数列求和公式•当公比是用字母表示时,应对其是否为 1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对 X 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.2n 1对应高考考题:设数列 1,( 1+2 ),•••,( 1+2+2 2 ), ..... 的前顶和为 S n,则S n的值。
2、等比数列求和公式:S nn^ 印(1 q n )1 q3、S nnkk 1 1n(n 1) 25、S nnk3k 11 2[才(n 1)]22a 1 a n q 1 q(q 1)n214、S nk—n(n 1)(2 n 1)k 16当黑忖1即篡詳主1对?和為自然数方幕和公式:(q 1)二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n • b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列•求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法[例]求和:S n 1 3x 5x2 7x3(2n 1)x n 1(X 1)解:由题可知,{(2n 1)x n1}的通项是等差数列{2n —1}的通项与等比数列{x n1}的通项之积设xS n 1x 3x2 5x3 7x4(2n 1)x n.................... ②(设制错位)①一②得(1 x)S n 1 2x 2x22x32x42x n1(2n1)x n(错位相减)再利用等比数列的求和公式得:(1 x)Snn 11 x1 2x - (2n 1)x n1 xS (2n S n1)xn 11 ;2n 1)x n (1 x)2(1 x)注意、1要考虑当公比x为值1时为特殊情况2错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
高中数学-数列求通项公式方法汇总及经典练习(含答案)
![高中数学-数列求通项公式方法汇总及经典练习(含答案)](https://img.taocdn.com/s3/m/15223a3965ce0508763213ec.png)
高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
高中数学数列方法及技巧
![高中数学数列方法及技巧](https://img.taocdn.com/s3/m/ff5b84212e60ddccda38376baf1ffc4ffe47e25c.png)
高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。
针对这两类,我认为应该积累以下的一些方法。
对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。
应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
高中数学数列求解方法 (完整版)
![高中数学数列求解方法 (完整版)](https://img.taocdn.com/s3/m/669bdd94b52acfc789ebc9f4.png)
高中数学数列解题方法总结类型一:)(1n f a a n n +=+()(n f 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。
解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: 211n a a n -=- 2n a n ∴=类型二:1()n n a f n a +=⋅ (()f n 可以求积)−−−−→解决方法累积法 例2、在数列{}n a 中,已知11,a =有()11n n na n a -=+,(2n ≥)求数列{}n a 的通项公式。
解析:1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅123211143n n n n n n --=⋅⋅⋅⋅+-21n =+ 又1a 也满足上式;21n a n ∴=+ *()n N ∈类型三:1(n n a Aa B +=+≠其中A,B 为常数A 0,1)−−−−→解决方法待定常数法 可将其转化为1()n n a t A a t ++=+,其中1Bt A =-,则数列{}n a t +为公比等于A 的等比数列,然后求n a 即可。
例3 在数列{}n a 中, 11a =,当2n ≥时,有132n n a a -=+,求数列{}n a 的通项公式。
解析:设()13n n a t a t -+=+,则132n n a a t -=+1t ∴=,于是()1131n n a a -+=+{}1n a ∴+是以112a +=为首项,以3为公比的等比数列。
1231n n a -∴=⋅-类型四:()110n n n Aa Ba Ca +-++=⋅⋅≠;其中A,B,C 为常数,且A B C 0可将其转化为()()()112n n n n A a a a a n αβα+-+=+≥-----(*)的形式,列出方程组A B C αββα⋅-=⎧⎨-⋅=⎩,解出,;αβ还原到(*)式,则数列{}1n na a α++是以21a a α+为首项, A β为公比的等比数列,然后再结合其它方法,就可以求出n a 。
高中数学数列的递推公式及推导过程
![高中数学数列的递推公式及推导过程](https://img.taocdn.com/s3/m/4a68617c32687e21af45b307e87101f69e31fb32.png)
高中数学数列的递推公式及推导过程数列是高中数学中的重要概念,它是由一系列按照一定规律排列的数所组成。
在数列中,递推公式是一种常见的描述数列规律的方式。
本文将详细介绍数列的递推公式及其推导过程,并通过具体题目的分析,帮助读者理解数列的考点和解题技巧。
一、等差数列的递推公式及推导过程等差数列是最常见的数列之一,它的每一项与前一项之差都相等。
对于等差数列,我们可以通过递推公式来描述其规律。
假设等差数列的首项为a₁,公差为d,第n项为aₙ,则等差数列的递推公式为:aₙ = a₁ + (n-1)d其中,a₁为首项,d为公差,n为项数。
例如,考虑等差数列1,4,7,10,13,...,其中首项a₁=1,公差d=3。
我们可以使用递推公式来求解该数列的任意一项。
例如,我们要求第10项a₁₀的值,根据递推公式可以得到:a₁₀ = a₁ + (10-1)×3 = 1 + 9×3 = 28通过递推公式,我们可以很方便地求解等差数列中任意一项的值。
二、等比数列的递推公式及推导过程等比数列是另一种常见的数列,它的每一项与前一项之比都相等。
对于等比数列,我们同样可以使用递推公式来描述其规律。
假设等比数列的首项为a₁,公比为q,第n项为aₙ,则等比数列的递推公式为:aₙ = a₁ × q^(n-1)其中,a₁为首项,q为公比,n为项数。
例如,考虑等比数列2,6,18,54,162,...,其中首项a₁=2,公比q=3。
我们可以使用递推公式来求解该数列的任意一项。
例如,我们要求第6项a₆的值,根据递推公式可以得到:a₆ = a₁ × 3^(6-1) = 2 × 3^5 = 486通过递推公式,我们可以轻松地求解等比数列中任意一项的值。
三、斐波那契数列的递推公式及推导过程斐波那契数列是一种特殊的数列,它的每一项都是前两项之和。
斐波那契数列的递推公式可以通过观察数列的规律得到。
假设斐波那契数列的第n项为Fₙ,则斐波那契数列的递推公式为:Fₙ = Fₙ₋₁ + Fₙ₋₂其中,F₀=0,F₁=1。
高考数学数列解题技巧必备
![高考数学数列解题技巧必备](https://img.taocdn.com/s3/m/a09d5e9f64ce0508763231126edb6f1afe00715d.png)
高考数学数列解题技巧必备各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些高考数学数列解题技巧的学习资料,希望对大家有所帮助。
高考数学重点:数列公式及结论总结数学中有很多的概念和公式,只有理解这些概念,才能正确解题。
数列中有很多性质和公式,这些是我们做题的基础,很多同学觉得数列的性质公式太多太杂,记不住。
其实按照一定方法将数列性质公式进行归纳总结,记住它们就简单多了。
下面是小编为大家整理的高中数列基本公式,希望对大家有帮助。
一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=Sn=Sn=当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、、仍为等比数列。
高中数学数列的求和公式及证明
![高中数学数列的求和公式及证明](https://img.taocdn.com/s3/m/7eff4980fc0a79563c1ec5da50e2524de518d029.png)
高中数学数列的求和公式及证明在高中数学学习中,数列是一个重要的概念。
数列的求和公式是数学中的基础知识之一,它能够帮助我们快速计算数列的和,解决一些复杂的问题。
本文将介绍数列的求和公式及其证明,并通过具体的例题来说明这些公式的应用和解题技巧。
一、等差数列的求和公式等差数列是指数列中相邻两项之差都相等的数列。
对于等差数列,我们可以使用求和公式来计算其前n项的和。
求和公式如下:Sn = (a1 + an) * n / 2其中,Sn表示等差数列的前n项和,a1表示首项,an表示末项,n表示项数。
例如,对于等差数列1, 3, 5, 7, 9,我们可以使用求和公式来计算前5项的和:S5 = (1 + 9) * 5 / 2 = 25这个公式的证明可以通过数学归纳法来完成。
首先,我们可以证明当n=1时,公式成立;然后,假设当n=k时,公式也成立,即Sk = (a1 + ak) * k / 2;接下来,我们来证明当n=k+1时,公式也成立:Sk+1 = (a1 + a(k+1)) * (k+1) / 2= (a1 + ak + d) * (k+1) / 2 (其中d为等差)= (a1 + ak) * k / 2 + d * (k+1) / 2= Sk + d * (k+1) / 2由于等差数列中相邻两项之差都相等,所以d * (k+1) / 2可以表示为等差数列的公差乘以项数,即d * (k+1) / 2 = (k+1) * d / 2。
因此,Sk+1 = Sk + (k+1) * d / 2,公式成立。
二、等比数列的求和公式等比数列是指数列中相邻两项之比都相等的数列。
对于等比数列,我们可以使用求和公式来计算其前n项的和。
求和公式如下:Sn = a1 * (1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和,a1表示首项,r表示公比,n表示项数。
例如,对于等比数列2, 4, 8, 16, 32,我们可以使用求和公式来计算前5项的和:S5 = 2 * (1 - 2^5) / (1 - 2) = 62这个公式的证明可以通过等比数列的性质来完成。
高中数学数列公式大全(很齐全哟~!)
![高中数学数列公式大全(很齐全哟~!)](https://img.taocdn.com/s3/m/3074670ab4daa58da0114a79.png)
一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n= S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式);当q≠1时,S n= S n=三、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)11、{a n}为等差数列,则 (c>0)是等比数列。
高中数学数列知识点归纳
![高中数学数列知识点归纳](https://img.taocdn.com/s3/m/97784c0ba9956bec0975f46527d3240c8447a19a.png)
高中数学数列知识点归纳一、数列的概念与性质1.数列的定义:数列是一组按照一定规律排列的实数,通常用{a1, a2,a3,...}表示。
2.数列的分类:根据项的性质,数列可分为整数数列、有理数数列、实数数列等;根据项之间的关系,数列可分为等差数列、等比数列、几何数列等。
3.数列的性质:数列具有交换性、结合律、分配律等基本运算性质。
二、等差数列1.等差数列的定义与性质:等差数列是相邻两项之差为一个常数的数列。
2.等差数列的通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
3.等差数列的前n项和公式:Sn = n/2 * (a1 + an) = n/2 * [2a1 + (n-1)d]。
4.等差数列的求和公式应用:求解等差数列前n项和的最值、求解等差数列中的未知量等问题。
三、等比数列1.等比数列的定义与性质:等比数列是相邻两项之比为一个常数的数列。
2.等比数列的通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3.等比数列的前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)。
4.等比数列的求和公式应用:求解等比数列前n项和的最值、求解等比数列中的未知量等问题。
四、其他数列1.几何数列:几何数列是相邻两项之比为一个常数的数列,通项公式为an = a1 * r^(n-1)。
2.调和数列:调和数列是相邻两项之比为根号下n的数列,通项公式为an = a1 * (n^(1/2))^(n-1)。
3.Fibonacci数列:Fibonacci数列是满足递推关系F(n) = F(n-1) + F(n-2)的数列,具有递归关系。
五、数列的递推关系与迭代1.递推关系的定义与性质:递推关系是利用数列的前几项求解后续项的关系。
2.迭代的方法与应用:迭代是求解递推关系的一种方法,可用于求解数列中的未知量、求解数列的极限等。
六、数列的极限与连续1.数列极限的定义与性质:数列极限是数列趋于某个值的过程,具有唯一性、无穷小性等性质。
高中数学解题方法系列:数列中求通项的10种方法
![高中数学解题方法系列:数列中求通项的10种方法](https://img.taocdn.com/s3/m/4545ba07dd88d0d232d46a47.png)
高中数学解题方法系列:数列中求通项的10种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
二、累加法 )(1n f a a n n =--例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例3已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+ 三、累乘法 )(1n f a a n n =- 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
高中数学数列公式及结论总结
![高中数学数列公式及结论总结](https://img.taocdn.com/s3/m/cee61e4fb307e87101f696d7.png)
高中数学数列公式及结论总结一、高中数列基本公式:1、一般数列的通项a n与前n项和S n的关系:a n=2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k 为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。
3、等差数列的前n项和公式:S n=S n=S n=当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。
4、等比数列的通项公式:a n= a1 q n-1a n= a k q n-k(其中a1为首项、a k为已知的第k项,a n≠0)5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式);当q≠1时,S n=S n=二、高中数学中有关等差、等比数列的结论1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{a n}中,若m+n=p+q,则3、等比数列{a n}中,若m+n=p+q,则4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。
6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列{a n b n}、、仍为等比数列。
7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)11、{a n}为等差数列,则(c>0)是等比数列。
高中数学-求数列通项公式的十种方法
![高中数学-求数列通项公式的十种方法](https://img.taocdn.com/s3/m/b777107c2cc58bd63186bdd2.png)
求数列通项公式的十一种方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的基本方法和技巧除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a an S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3评注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。
二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对应高考考题:设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。
三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。
[例]:求数列Λ1614,813,412,211的前n 项和;分析:数列的通项公式为n n n a 21+=,而数列{}⎭⎬⎫⎩⎨⎧n n 21,分别是等差数列、等比数列,求和时一般用分组结合法;[解] :因为n n n a 21+=,所以 )21()813()412()211(n n n s ++++++++=Λ)21814121()321(n n +++++++++=ΛΛ(分组)前一个括号内是一个等比数列的和,后一个括号内是一个等差数列的和,因此1212211)211(212)1(2+-+=--++=n n n n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n[例] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111 (裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。
只剩下有限的几项。
注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
[练习] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++=10数列的求和方法多种多样,它在高考中的重要性也显而易见。
我们的学生在学习中必须要掌握好几种最基本的方法,在解题中才能比较容易解决数列问题。
数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-L L L所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L ,即得数列{}n a 的通项公式。