初中数学竞赛重要定理公式(代数篇)

合集下载

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结

初中数学竞赛常用公式总结数学竞赛是考验学生逻辑思维、推理能力和数学知识应用的重要考试。

在竞赛中,掌握一些常用的数学公式是非常关键的。

下面将总结初中数学竞赛中常用的公式,帮助竞赛学习者更好地备战。

1. 代数公式(1)二次方程的解:对于一元二次方程ax^2 + bx + c = 0,有以下公式:\[ x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} \]其中,Δ = b^2 - 4ac,称为判别式。

(2)平方差公式:对于任意实数a和b,有以下公式:\[ (a+b)(a-b)=a^2-b^2 \](3)两点间距离公式:对于平面上任意两点A(x1, y1)和B(x2, y2),它们之间的距离d可以用以下公式表示:\[ d=\sqrt{(x2-x1)^2+(y2-y1)^2} \]2. 几何公式(1)周长和面积公式:- 矩形的周长C和面积S分别为:C = 2(l + w),S = lw,其中l和w分别表示矩形的长度和宽度。

- 正方形的周长C和面积S分别为:C = 4s,S = s^2,其中s表示正方形的边长。

- 圆的周长C和面积S分别为:C = 2πr,S = πr^2,其中r表示圆的半径。

- 三角形的周长C和面积S可以根据不同类型的三角形使用不同公式计算(如直角三角形的勾股定理)。

(2)三角函数公式:- 正弦定理:在任意三角形ABC中,有以下公式:\[ \frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)} \]其中,a、b、c分别为三角形BC、AC和AB的边长,A、B、C分别为三角形对应的角度。

- 余弦定理:在任意三角形ABC中,有以下公式:\[ c^2 = a^2 + b^2 - 2ab\cos(C) \]- 正弦、余弦和正切的关系:对于任意角θ,有以下公式:\[ \sin(\theta) = \frac{opposite}{hypotenuse},\cos(\theta) =\frac{adjacent}{hypotenuse},\tan(\theta) = \frac{opposite}{adjacent} \]其中,opposite表示对边的长度,adjacent表示邻边的长度,hypotenuse表示斜边的长度。

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

初中数学竞赛中常用重要定理

初中数学竞赛中常用重要定理

初中数学竞赛中常用重要定理1、 梅涅劳斯定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=12、 梅涅劳斯定理的逆定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上 有点D 、E 、F ,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线。

3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、 M ,则1=••PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。

5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。

推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:假如∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。

初中数学竞赛25个定理

初中数学竞赛25个定理

初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。

2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。

3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。

4. 相似三角形的性质:对应角相等,对应边成比例。

5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。

6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。

7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。

8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。

初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。

下面是初中数学必背的公式和定理。

一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。

2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。

3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。

4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。

5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。

三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。

2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。

初中数学竞赛重要定理及结论(完整版)

初中数学竞赛重要定理及结论(完整版)
两个有公共边的三角形 ABD 和 ABC , ABC 与 DC 交于点 M ,则三角形 ABC 的面积与 三角形 ABD 的面积之比等于 CM 与 DM 的比。(定理描述对下图所示四种图形都成立)
C
C
C
C
A
B
M
D B
D
M
A
D
D
A
B
M
A
M
B
【重心】定义:重心是三角形三边中线的交点,
重心的性质:
(1)设 G 为△ ABC 的重心,连结 AG 并延长交 BC 于 D,则 D 为 BC 的中点,则 AG: GD 2 :1;
2
2
2
(3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,
若 A 平分线交△ ABC 外接圆于点 K,I 为线段 AK 上的点且满足 KI=KB,则 I 为△ ABC 的
内心;
(4)设 I 为△ ABC 的内心,BC a, AC b, AB c, A 平分线交 BC 于 D,交△ ABC 外接
a H ( cos A
xA

b cosB
xB

c cosC
xC
,
a cos A
yA

b cosB
yB

c cosC
yC
)
abc
abc
cos A cosB cosC
cos A cosB cosC
垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的 2 倍; (2)垂心 H 关于△ ABC 的三边的对称点,均在△ ABC 的外接圆上; (3)△ ABC 的垂心为 H,则△ ABC,△ ABH,△ BCH,△ ACH 的外接圆是等圆; ( 4 ) 设 O , H 分 别 为 △ ABC 的 外 心 和 垂 心 , 则 BAO HAC,CBO ABH,BCO HCA. 【内 心 】三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理公式(代数篇)

初中数学竞赛重要定理、公式及结论代数篇【乘法公式】完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2,立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)…………在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:f(x)=g(x)q(x)-r(x)其中r(x)的次数小于g(x)的次数,或者r(x)=0。

初中数学竞赛25个定理

初中数学竞赛25个定理

初中数学竞赛25个定理在初中数学竞赛中,各种数学定理都是竞赛的基础,熟练掌握各种数学定理可以在竞赛中脱颖而出。

下面将介绍初中数学竞赛中常见的25个定理,希望对竞赛备战有所帮助。

1. 二元一次方程的解法对于形如ax+by=c的二元一次方程,当a、b不为零时,可以利用消元法、代入法等方式求解。

2. 勾股定理直角三角形的两条直角边的平方和等于斜边的平方,即a2+b2=c2。

3. 同底数幂的乘法法则同底数幂相乘,底数不变,指数相加,即 $a^m \\cdot a^n=a^{m+n}$。

4. 相反数的性质两个数的和为0时,互为相反数,即a+(−a)=0。

5. 解三角形内角和三角形内角和等于180°,即 $\\angle A+\\angle B+\\angle C=180°$。

6. 二次根式性质非负实数组的二次根式恒大于等于0,即 $\\sqrt{a} \\geq 0$。

7. 顺序角对应性质顺序角对应,即 $\\angle A | \\angle B$ 且 $\\angle B=\\angle A+k \\cdot 180°$。

8. 同底数幂的除法法则同底数幂相除,底数不变,指数相减,即 $\\dfrac{a^m}{a^n}=a^{m-n}$。

9. 三角形中角平分线性质三角形中角平分线将一个角平分为两个角,且两个角相等。

10. 解一元二次方程一元二次方程一般形式为ax2+bx+c=0,可以利用求根公式求解。

11. 垂直平分线性质垂直平分线将一条线段垂直平分成两段相等的线段。

12. 多边形内角和n边形内角和等于 $(n-2) \\cdot 180°$,其中n表示多边形的边数。

13. 二次函数的顶点坐标二次函数y=ax2+bx+c的顶点坐标为 $\\left(-\\dfrac{b}{2a}, -\\dfrac{\\Delta}{4a} \\right)$。

14. 欧拉公式对于任何凸多面体,顶点数、棱数和面数之差为2。

初中数学竞赛知识点归纳(定理)

初中数学竞赛知识点归纳(定理)

1.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC初中竞赛需要,重要3.梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1初中竞赛需要,重要4.梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R 三点共线。

不用掌握6.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线不用掌握7.、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.初中竞赛需要,重要8.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M不用掌握9.塞瓦定理的逆定理:(略)初中竞赛需要,重要10.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。

不用掌握12.西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13.西摩松定理的逆定理:(略)初中竞赛的常用定理14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15.圆的外切四边形的两组对边的和相等16.弦切角定理弦切角等于它所夹的弧对的圆周角 第一角元形式的梅涅劳斯定理 且因为AF=BF 所以AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。

初中数学竞赛必备——42个定理与解题模型

初中数学竞赛必备——42个定理与解题模型

初中数学竞赛必备——42个定理与解题模型一、概述1. 数学竞赛在培养学生的逻辑思维能力、数学解决问题的能力以及快速计算的能力方面具有重要的作用。

2. 初中数学竞赛中,掌握一定的数学定理和解题模型对于取得好成绩至关重要。

3. 本文将介绍初中数学竞赛必备的42个定理与解题模型,希望能为参加数学竞赛的同学们提供帮助。

二、数学定理与解题模型1. 代数部分1.1. 一元二次方程的求解方法1.2. 因式分解1.3. 角平分线定理1.4. 勾股定理1.5. 平方差公式1.6. 公式a^2-b^2=(a+b)(a-b)1.7. a^3-b^3=(a-b)(a^2+ab+b^2)2. 几何部分2.1. 同位角性质2.2. 对顶角性质2.3. 三角形的内角和2.4. 三角形的外角和2.5. 圆的性质2.6. 相似三角形的性质2.7. 三角形的高到底边的距离是线段的中线3. 概率部分3.1. 随机事件的概率计算3.2. 排列组合问题的概率计算3.3. 互斥事件和对立事件4. 数论部分4.1. 奇数与偶数的性质4.2. 质数与合数4.3. 最大公约数与最小公倍数5. 解题模型5.1. 分析题目5.2. 构建数学模型5.3. 运用定理解题5.4. 推理思路与方法三、数学竞赛练习与应用1. 多做数学竞赛题目,提高解题速度和正确率。

2. 运用所学的定理和解题模型解决实际问题,提高数学应用能力。

3. 对于涉及到竞赛的数学知识点,进行整体性的复习和整理。

四、结语1. 数学竞赛对于学生的数学能力提升有着一定的促进作用。

2. 要想在数学竞赛中取得好成绩,掌握基本数学定理和解题模型至关重要。

3. 希望本文介绍的42个定理与解题模型能为广大初中生在数学竞赛中取得优异成绩提供一定帮助。

五、举例演练1. 代数部分:一元二次方程的求解方法:解方程x^2+5x+6=0,可以使用因式分解或者配方法来进行求解。

因式分解:对于表达式x^2-4,可以因式分解为(x+2)(x-2)。

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结初中数学竞赛中常用的一些重要公式主要包括代数、几何和概率三个方面。

下面将对这些公式进行归纳总结。

一、代数公式:1.两数和、差与积的关系:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2(a+b)(a-b)=a^2-b^22.平方差:a^2-b^2=(a+b)(a-b)3.二次方程求根公式:对于ax^2 + bx + c = 0,其解为:x = (-b ± √(b^2 - 4ac)) / 2a4.四则运算:a^m*a^n=a^(m+n)a^m/a^n=a^(m-n)(a^m)^n=a^(m*n)(ab)^n = a^n * b^n(a/b)^n=a^n/b^n5.无理数:√a * √b = √(ab)√a/√b=√(a/b)√a+√b≠√(a+b)6.配方法:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^27.因式分解:a^2-b^2=(a+b)(a-b)a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)a^2 + 2ab + b^2 = (a+b)^2a^2 - 2ab + b^2 = (a-b)^28.绝对值:a*b,=,a,*二、几何公式:1.面积公式:矩形的面积:S=长×宽三角形的面积:S=(底边×高)/2圆的面积:S=πr^22.周长公式:矩形的周长:P=2(长+宽)圆的周长:P=2πr3.直角三角形勾股定理:对于直角三角形ABC,设边长分别为a、b、c,则有:a^2+b^2=c^24.圆内切四边形面积公式:设四边形的边长分别为a、b、c、d,其半周长为s,则其面积S可以用公式表示为:S=√((s-a)(s-b)(s-c)(s-d))5.圆内接四边形面积公式:设四边形的边长分别为a、b、c、d,其半周长为s,则其面积S可以用公式表示为:S = √((s-a)(s-b)(s-c)(s-d) - abcd cos^2((A+C)/2))6.等腰三角形的高公式:设等腰三角形的底边为a,高为h,则其面积S可以用公示表示为:S = (1/2)ah7.同位角与同旁内角对应关系:同位角相等,同旁内角和为180°三、概率公式:1.事件的概率:事件A发生的概率P(A)=A的可能性数/总的可能性数2.互斥事件概率:两个互斥事件A、B均发生的概率P(A∩B)=03.独立事件概率:两个独立事件A、B发生的概率P(A∩B)=P(A)*P(B)4.包含关系的事件概率:一个事件A包含另一个事件B的概率P(B)=P(A∩B)/P(A)以上就是初中数学竞赛常用的一些重要公式的归纳总结。

数学竞赛所有公式

数学竞赛所有公式

数学竞赛所有公式以下是一份数学竞赛中常用的公式汇总:1. 代数- 二次方程求根公式:对于二次方程 ax^2 + bx + c = 0,其根的公式为 x = (-b ± √(b^2 - 4ac)) / (2a)。

- 因式分解公式:对于一个多项式,可以因式分解为两个乘积,如 a^2 - b^2 = (a + b)(a - b)。

- 奇偶性判定公式:如果一个多项式中所有的指数项系数同奇同偶,则该多项式为偶函数;否则,为奇函数。

2. 几何- 皮亚诺定理(勾股定理):直角三角形斜边的平方等于两直角边平方和,即 c^2 = a^2 + b^2。

- 正弦定理:在一个三角形中,三条边的比值与对应的正弦值成比例,即 a/sinA = b/sinB = c/sinC。

- 余弦定理:在一个三角形中,两条边和夹角的余弦值成正比,即 a^2 = b^2 + c^2 - 2bc cosA。

3. 概率与统计- 排列组合公式:排列的总数为 n! / (n-k)!,组合的总数为 n! / (k!(n-k)!)。

- 期望值公式:对于离散型随机变量 X,其期望值 E(X) =Σ(xP(x)),其中 x 为随机变量的取值,P(x)为该取值的概率。

- 标准差公式:对于一组数据,其标准差为σ = sqrt(Σ((x-μ)^2 / n)),其中 x 为每个数据点,n为总数据个数,μ为数据的平均值。

4. 微积分- 导数的四则运算:对于函数 f(x) 和 g(x),其和、差、积、商的导数分别为 (f+g)' = f' + g',(f-g)' = f' - g',(f*g)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。

- 不定积分法则:对于函数 f(x) 和 g(x),其和、差、积、商的不定积分分别为∫(f+g)dx = ∫fdx + ∫gdx,∫(f-g)dx = ∫fdx - ∫gdx,∫(f*g)dx = ∫fdx * ∫gdx,∫(f/g)dx = ∫(f*dx) / g。

初中数学代数公式总结

初中数学代数公式总结

初中数学代数公式总结代数是数学中的一个重要分支,通过符号和字母来表示未知数和运算关系,是数学推理和问题解决的基础。

在初中数学学习中,代数公式是不可或缺的工具。

下面将给出初中数学代数公式的总结。

一、基本公式1. 两个相反数相加等于零对于任意实数a,有a + (-a) = 0。

2. 加法、减法交换律对于任意实数a和b,有a + b = b + a;a - b = -b + a。

3. 加法、减法结合律对于任意实数a、b和c,有(a + b) + c = a + (b + c);(a - b) - c = a - (b + c)。

4. 乘法、除法交换律对于任意实数a和b,有ab = ba(乘法交换律);a/b = b/a,其中a和b均不为零(除法交换律)。

5. 乘法、除法结合律对于任意实数a、b和c,有(ab)c = a(bc)(乘法结合律);(a/b)/c = a/(bc),其中a、b和c均不为零(除法结合律)。

6. 分配律对于任意实数a、b和c,有a(b + c) = ab + ac(左分配律);(b + c)a = ba + ca (右分配律)。

7. 幂运算对于任意实数a和正整数n,有a^n = a × a × ... × a(n个a的积),a称为底数,n称为指数。

二、一次方程一次方程是代数学中最简单的方程形式,即形如ax + b = 0的方程。

1. 解一次方程对于一次方程ax + b = 0,其中a和b是已知实数,a ≠ 0,它的解是x = -b/a。

在解一次方程时,可以通过移项和消元的方法求解。

2. 解一次方程组含有多个一次方程的方程组称为一次方程组。

求解一次方程组的方法主要有消元法、代入法和加减法。

三、二次方程二次方程是课程进度中较为复杂的代数公式形式,即形如ax^2 + bx + c = 0的方程,其中a、b和c是已知实数,且a ≠ 0。

1. 求二次方程的解对于二次方程ax^2 + bx + c = 0,其中a、b和c是已知实数,且a ≠ 0,可以通过求根公式来求解。

初中数学竞赛公式及定理精简版

初中数学竞赛公式及定理精简版

一般定理与公式1、多边形内角和定理 n边形的内角的和等于(n-2)×180°2、推论任意多边的外角和等于360°3、等腰梯形性质定理等腰梯形在同一底上的两个角相等4、等腰梯形的两条对角线相等5、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形6、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h7、比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d8、合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d9、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a10、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值11、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值12、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等13、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项14、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项15、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等16、如果两个圆相切,那么切点一定在连心线上17、①两圆外离 d>R+r ②两圆外切d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)18、相交两圆的连心线垂直平分两圆的公共弦19、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形20、正三角形面积√3a/4 ,a表示边长21、弧长计算公式:L=nπR/18022、扇形面积公式:S扇形=nπR2/360=LR/223、内公切线长= d-(R-r) 外公切线长= d-(R+r)三角函数定理与公式两角和公式sin(A+B)=sin A·cos B+cos A·sin Bsin(A-B)=sin A·cos B-sin B·cos Acos(A+B)=cos A·cos B-sin A·sin Bcos(A-B)=cos A·cos B+sin A·sin Btan(A+B)=(tan A+tanB)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A·tan B) cot(A+B)=(cotA·cotB-1)/(cot B+cot A) cot(A-B)=(cot A·cot B+1)/(cot B-cot A)倍角公式tan2A=2·tanA/(1-tan2A)cot 2A=(cot 2A-1)/2·cotAcos2a=cos2a-sin2a=2·cos2a-1=1-2·sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cos A)/2) cos(A/2)=-√((1+cos A)/2)tan(A/2)=√(((1-cosA)/(1+cos A)) tan(A/2)=-√((1-cosA)/(1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+co sA)/((1-cosA))和差化积2sinA·cosB=sin(A+B)+sin(A-B) 2cosA·sinB=sin(A+B)-sin(A-B)2cosA·cosB=cos(A+B)-sin(A-B) -2sinA·sinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)·sin((A-B)/2) tanA+tanB=sin(A+B)/cosA·cosB tanA-tanB=sin(A-B)/cosA·cosB cot A+cot B·sin(A+B)/sinA·sinB -cot A+cot B·sin(A+B)/sinA·sinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

必背初中数学定理公式总结

必背初中数学定理公式总结

必背初中数学定理公式总结初中数学定理公式总结数学作为一门学科,有着严谨而系统的逻辑性,其中的定理和公式是数学知识的核心。

在初中数学学习中,理解和掌握各种定理公式是学生成功学习数学的重要保障。

因此,在这篇文章中,我将对初中数学中常见的定理公式进行总结,以帮助大家更好地复习和掌握数学知识。

1. 代数运算定理与法则- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 减法法则:a - b = a + (-b)- 乘法交换律:a × b = b × a- 乘法结合律:(a × b) × c = a × (b × c)- 乘法分配律:a × (b + c) = a × b + a × c- 幂的乘法法则:(a^m) × (a^n) = a^(m+n)- 幂的除法法则:(a^m) ÷ (a^n) = a^(m-n)2. 几何定理与公式- 同位角定理:同位角互相等于- 垂直角定理:互为垂直角的两条直线相交时,所成的四个角互为垂直角- 对顶角定理:对顶角互相等于- 三角形内角和定理:三角形内角的和等于180°- 直角三角形定理:直角三角形两直角边的平方和等于斜边的平方- 平行线定理:若直线与一对平行线相交,则所得的内错角相等,所得的同旁内错角互补- 圆的面积公式:A = πr^2- 圆的周长公式:C = 2πr- 矩形的面积公式:A = lw- 正方形的周长公式:C = 4s- 三角形的面积公式:A = 1/2bh3. 同余定理- 同余定理:若两个整数对模m同余,则它们的差、和、积对模m也同余- 同余方程:满足同余关系的代数方程称为同余方程- 整除定理:如果整数a能被整数b整除,即a是b的倍数,则a与b模任意正整数m同余4. 数列与等差数列定理公式- 等差数列通项公式:第n项an = a1 + (n-1)d,其中a1为首项,d为公差- 等差数列前n项和公式:前n项和Sn = (a1 + an) × n/2 = (2a1 + (n-1)d) × n/25. 比例与比例定理- 速度比例定理:两辆车在同一时刻从相同地点出发,以不同的速度向相同方向行驶,此时它们所走的距离与时间的比等于它们的速度比- 相似三角形性质:对应角相等,对应边成比例- 分点式:设点D在线段AB上,AD:DB = m:n,则点D划分的线段AB上的比例为m:n以上是初中数学中常见的定理公式的总结。

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结

初中竞赛重要数学公式归纳总结数学公式在解决问题、推导证明以及解释数学概念等过程中起着重要的作用。

对于初中生而言,在竞赛中掌握一些重要的数学公式将能极大地提升他们解题的效率和准确性。

本文将就初中竞赛中常见的数学公式进行归纳总结,以便同学们在备战竞赛时能够更好地应用。

1. 代数公式1.1 一次方程:ax + b = 0根据一次方程的一般形式可以得出:x = -b/a1.2 二次方程:ax^2 + bx + c = 0根据二次方程的求解公式可以得出:x = (-b ± √(b^2 - 4ac))/(2a)1.3 等差数列通项公式:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差。

1.4 等比数列通项公式:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比。

2. 几何公式2.1 长方形面积公式:S = 长 ×宽2.2 正方形面积公式:S = 边长 ×边长2.3 圆的面积公式:S = πr^2其中,S表示面积,r表示半径,π取近似值3.14。

2.4 三角形面积公式:S = 1/2 ×底边长 ×高其中,S表示三角形面积,底边长和高为已知条件。

3. 概率公式3.1 事件A发生的概率:P(A) = 事件A发生的次数 / 总的可能性次数3.2 互斥事件A、B的概率:P(A或B) = P(A) + P(B)其中,P(A或B)表示事件A或事件B发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。

3.3 独立事件A、B同时发生的概率:P(A且B) = P(A) × P(B)其中,P(A且B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。

4. 统计学公式4.1 平均数的计算公式:平均数 = 总和 / 数据个数4.2 中位数的计算公式:将数据按照大小排列,若数据个数为奇数,则中位数为中间的那个数;若数据个数为偶数,则中位数为中间两个数的平均数。

初中数学竞赛公式定理大全

初中数学竞赛公式定理大全

1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理三角形两边的和大于第三边16.推论三角形两边的差小于第三边17.三角形内角和定理三角形三个内角的和等于180°18.推论1 直角三角形的两个锐角互余19.推论2 三角形的一个外角等于和它不相邻的两个内角的和20.推论3 三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS) 有三边对应相等的两个三角形全等26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27.定理1 在角的平分线上的点到这个角的两边的距离相等28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3 等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1 三个角都相等的三角形是等边三角形36.推论2 有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1 关于某条直线对称的两个图形是全等形43.定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理n边形的内角的和等于(n-2)×180°51.推论任意多边的外角和等于360°52.平行四边形性质定理1 平行四边形的对角相等53.平行四边形性质定理2 平行四边形的对边相等54.推论夹在两条平行线间的平行线段相等55.平行四边形性质定理3 平行四边形的对角线互相平分56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60.矩形性质定理1 矩形的四个角都是直角61.矩形性质定理2 矩形的对角线相等62.矩形判定定理1 有三个角是直角的四边形是矩形63.矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1 四边都相等的四边形是菱形68.菱形判定定理2 对角线互相垂直的平行四边形是菱形69.正方形性质定理1 正方形的四个角都是直角,四条边都相等70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1 关于中心对称的两个图形是全等的72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83.(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3 三边对应成比例,两三角形相似(SSS)95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2 相似三角形周长的比等于相似比98.性质定理3 相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学竞赛重要定理、公式及结论
代数篇
【乘法公式】
完全平方公式:(a±b)2=a2±2ab+b2,
平方差公式:(a+b)(a-b)=a2-b2,
立方和(差)公式:(a±b)(a2 ∓ab+b2)=a3±b3
多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd
二项式定理:(a±b)3=a3±3a2b+3ab2±b3
(a±b)4=a4±4a3b+6a2b2±4ab3+b4)
(a±b)5=a5±5a4b+10a3b2±10a2b3+5ab4±b5)
…………
在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1- a2n-2b+a2n-3b2- …
+ab2n-2- b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2n-…-ab2n-1+b2n)=a2n+1+b2n+1
类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n
公式的变形及其逆运算
由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab
由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b)得a3+b3=(a+b)3-3ab(a+b)
由公式的推广③可知:当n为正整数时
a n-
b n能被a-b 整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b 及a-b整除。

重要公式(欧拉公式)
(a+b+c)(a2+b2+c2+ab+ac+bc)=a3+b3+c3-3abc
【综合除法】一个一元多项式除以另一个一元多项式,并不是总能整除。

当被
除式f(x)除以除式g(x),(g(x)≠0) 得商式q(x)及余式r(x)时,就有下列等式:
f(x)=g(x)q(x)-r(x)
其中r(x)的次数小于g(x)的次数,或者r(x)=0。

当r(x)=0时,就是f(x)能被g(x)整除。

【余式定理】多项式f(x)除以x-a所得的余数等于f(a)。

【因式分解方法】拆项、添项、配方、待定系数法、求根法、对称式和轮换对称式等。

【部分分式】把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。

分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。

【素数和合数】2是最小的素数,也是唯一的一个既是偶数又是素数的数.
小于100的素数有如下25个:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.
性质 1 一个大于1的正整数n ,它的大于1的最小因数一定是质数.
性质 2 如果n 是合数,那么n 的最小质因数 一定满足a 2≤n .
性质 3 质数有无穷多个.
性质 4(算术基本定理)每一个大于 1 的自然数n ,必能写成以下形式: 这里的P 1,P 2,…,P r 是质数,a 1,a 2,…,a r 是自然数.如果不考虑P 1,P 2,…,P r 的次序,那么这种形式是唯一的.
性质 5 任何大于3的素数都可以表示为6k ±1
【不定方程】
定理 1.二元一次不定方程 a x +by =c ,,
(1)若其中(a ,b ) c ,则原方程无整数解;;
(2)若
(a ,b )=1,则
原方程有整; (3)若(a ,b )|c ,则可以在方程两边同时除以(a ,b )从而使原方程的一次项系数互质,从而转化为(2)的情形.
定理
2:利用分解法求不定方程ax+by=cxy(abc≠0)整数解的基本思路:将ax+by=cxy 转化为(x -a)(cy -b)=ab 可分解.
【高斯函数】设x ∈R ,用[x]或int(x)表示不超过x 的最大整数,并用{χ}表示x 的非负纯小数,则y=[x]称为高斯(Guass )函数,也叫取整函数。

任意一个实数都能写成整数与非负纯小数之和,即:x=[x]+{χ}(0≤{x}<1) 性质
1:[x]≤x<[x]+1, x-1<[x] ≤x [n+x]=n+[x],n 为整数 2:厄尔米特恒等式: 对任x 大于0,恒有[x]+[x+1/n]+[x+2/n]+… …+[x+(n -1)/n]=[nx]。

【同余】定义 1 给定正整数m ,若用m 去除两个正整数a 和 b 所得的余数相同,则称
a 与
b 对于模m 同余,或称a 与b 同余,模m ,记为 a ≡b (mod m ),
此时也称b 是a 对模m 的同余。

否则称a 与b 对于模m 不同余,或称a 与b 不同余,模m ,记为a ∓b (mod m )。

【完全平方数整除性】
(1)平方数的个位数字只可能是0,1,4,5,6,9;
(2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只有可能是0或1;
(3)奇数平方的十位数字是偶数;
(4)十位数字是奇数的平方数的个位数一定是6;
r
a r a a p p p n ⋅⋅=2121
(5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除。

因而,平方数被9也合乎的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能是0,1,4,7;
(6)平方数的约数的个数为奇数;
(7)任何四个连续整数的乘积加1,必定是一个平方数。

(8)设正整数a,b之积是一个正整数的k次方幂(k≥2),若(a,b)=1,则a,b
都是整数的k次方幂。

一般地,设正整数a,b,c……之积是一个正整数的k次方幂(k≥2),若a,b,c……两两互素,则a,b,c……都是正整数的k次方幂。

【数的整除性】
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6 或 8,则这个数能被2 整除。

(3)若一个整数的数字和能被3 整除,则这个整数能被3 整除。

(4)若一个整数的末尾两位数能被 4 整除,则这个数能被 4 整除。

(5)若一个整数的末位是0 或 5,则这个数能被5 整除。

(6)若一个整数能被2 和 3 整除,则这个数能被6 整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2 倍,如果差是7 的倍数,则原数能被7 整除。

如果差太大或心算不易看出是否7 的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133 是否 7 的倍数的过程如下:13-3×2=7 ,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8 整除,则这个数能被8 整除。

(9)若一个整数的数字和能被9 整除,则这个整数能被9 整除。

(10)若一个整数的末位是0,则这个数能被10 整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11 整除,则这个数能被 11 整除。

相关文档
最新文档