三水平三因素正交试验的设计
正交实验的设计四因素三水平
正交试验设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。 正因为正交试验是用部分试验来代替全面试验的,它不可能像全面试验那样对各因素效应、交互作用一一分析;当交互作用存在时,有可能出现交互作用的混杂。虽然正交试验设计有上述不足,但它能通过部分试验找到最优水平组合 ,因 而 很 受实际工作者青睐。
一般情况下,试验因素的水平数应等于正交表中的水平数;因素个数(包括交互作用)应不大于正交表的列数;各因素及交互作用的自由度之和要小于所选正交表的总自由度,以便估计试验误差。若各因素及交互作用的自由度之和等于所选正交表总自由度,则可采用有重复正交试验来估计试验误差。
La(bc)
01
因素水平数
02
因素个数,列数
正交表及其基本性质 正交表 由于正交设计安排试验和分析试验结果都要用正交表,因此,我们先对正交表作一介绍。 表10-2是一张正交表,记号为L8(27),其中“L”代表正交表;L右下角的数字“8”表示有8行 ,用这张正交表安排试验包含8个处理(水平组合) ;括号内的底数“2” 表示因素的水平数,括号内2的指数“7”表示有7列 ,用这张正交表最多可以安排7个2水平因素。
第十章 正交试验设计
对于单因素或两因素试验,因其因素少 ,试验的设计 、实施与分析都比较简单 。但在实际工作中 ,常常需要同时考察 3个或3个以上的试验因素 ,若进行全面试验 ,则试验的规模将很大 ,往往因试验条件的限制而难于实施 。正交试验设计就是安排多因素试验 、寻求最优水平组合 的一种高效率试验设计方法。
单击此处添加大标题内容
(2)任两列之间各种不同水平的所有可能组合都出现,且对出现的次数相等
例如 L8(27)中(1, 1), (1, 2), (2, 1), (2, 2)各出现两次;L9(34) 中 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)各出现1次。即每个因素的一个水平与另一因素的各个水平所有可能组合次数相等,表明任意两列各个数字之间的搭配是均匀的。
正交实验的设计(四因素三水平)
表10-2 上一张 下一张 主 页 退 出
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215) 等 ; 3 水 平 正 交 表 有 L9(34) 、 L27(213)…… 等 (详见附表14及有关参考书)。 1.3.2 正交表的基本性质 1.3.2.1 正交性 (1)任一列中,各水平都出现,且出现的次数相等
正交设计就是从选优区全面试验点(水平 组合)中挑选出有代表性的部分试验点(水平 组合)来进行试验。图10-1中标有试验号的九 个“(·)”,就是利用正交表L9(34)从27个试验点 中挑选出来的9个试验点。即:
(1)A1B1C1 (4)A1B2C2 (7)A1B3C3
(2)A2B1C2 (5)A2B2C3 (8)A2B3C1
上一张 下一张 主 页 退 出
1.3.2.2 代表性
一方面: (1)任一列的各水平都出现,使得部 分试验中包括了所有因素的所有水平;
(2)任两列的所有水平组合都出现, 使任意两因素间的试验组合为全面试验。
另一方面:由于正交表的正交性,正交试验的试 验点必然均衡地分布在全面试验点中,具有很强 的代表性。因此,部分试验寻找的最优条件与全 面试验所找的最优条件,应有一致的趋势。
上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
1.1 正交试验设计的基本概念
正交试验设计是利用正交表来安排与分
析多因素试验的一种设计方法。它是由试
验因素的全部水平组合中,挑选部分有代
表性的水平组合进行试验的,通过对这部
分试验结果的分析了解全面试验的情况,
找出最优的水平组合。
上一张 下一张 主 页 退 出
三水平三因素正交试验设计
LOGO
Three Applications
正交试验设计法探究银镜 反应的反应条件
常用的三个水平三个因素与三水平四因素的正交表一样 都是L9(34)正交表。
LOGO
正交表
简 正介交:表的正代交号表是,一n为整试套验规的则次的数设,计t表为格水,平L数n(,tcc)为用列L数为, 也 表就示是需可作能9次安实排验最,多最的多因可素观个察数4。个例因如素正,交每表个L因9(素34均),为它3 水平。一个正交表中也可以各列的水平数不相等,我们 称 列它为为4水混平合,型4正列交为表2水,平如。L8(4× 24),此表的5列中,有1
Bent-Ca-OH 脱水率X (%)
1
1
1(10.5)
1(10)
1(1.5)
5.872
5.232
10.90
2
1
2(14)
2(12)
2(2.0)
7.747
6.834
11.79
3
1
3(17.5)
3(14)
3(2.5)
7.861
7.022
10.67
4
2
1(10.5)
2(12)
3(2.5)
7.270
6.456
11.20
5
2
2(14)
3(14) 1(1.5)
7.880
7.011
11.03
6
2
3(17.5)
1(10)
常用三水平三因素正交试验设计
正交表
正交表是一整套规则的设计表格,Ln(tc)用 L为正 交表的代号,n为试验的次数,t为水平数,c为列数, 也就是可能安排最多的因素个数。
例如正交表L9(34),它表示需作9次实验,最多可 观察4个因素,每个因素均为3水平。一个正交表中 也可以各列的水平数不相等,我们称它为混合型正交 表,如L8(4×24),此表的5列中,有1列为4水平,4 列为2水平。
9
3 3(17.5) 2(12) 1(1.5) 6.668 5.909 11.38
脱水率X(%) 脱水率X(%)
12.5 12
11.5 11
10.5 10 9.5 9 8.5 8 1.5 2 2.5 3 3.5 4 4.5 5 水土比L/S(ml•g-1)
12.5
12
11.5
11
10.5
10 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 Cao用量(g)
正交试验设计 Orthogonal experimental design
例如作一个三因素三水平的实验,按全面实验要求,须 进行3 × 3 = 27种组合的实验,且尚未考虑每一组合的重 复数。若按L9(34)正交表安排实验,只需作9次,按L16(45) 正交表进行16次实验,显然大大减少了工作量。
水土比L/S对脱水材料脱水率影响
CaO与活性白土配比对脱水材料脱水率影响
正交表数据分析
K1 11.17 11.01 11.10
K2 11.15 11.46 11.57
K3 11.83 11.04 10.83
Rபைடு நூலகம்
0.68 0.45 0.74
三因素三水平正交表
三因素三水平正交表三因素三水平正交表1. 引言在实验设计中,正交表是一种重要的工具,用于帮助研究人员系统地设计和分析实验。
三因素三水平正交表是一种常用的正交设计,适用于同时研究三个因素对实验结果的影响。
本文将深入介绍三因素三水平正交表的概念、应用和分析方法,并分享本人对该设计方法的观点和理解。
2. 三因素三水平正交表的概念三因素三水平正交表是一种设计矩阵,用于确定三个因素的水平组合。
这种设计方法的特点是各个水平之间相互正交,即它们之间的相互作用效应被控制在最小程度上。
正交表能够帮助研究人员实现对实验因素的均衡和有效控制,提高实验结论的可靠性和稳定性。
3. 三因素三水平正交表的应用三因素三水平正交表广泛应用于各个领域的实验研究中。
在材料科学领域,研究人员可以使用这种设计方法来研究不同材料成分、工艺参数和环境条件对材料性质的影响。
在农学领域,研究人员可以利用三因素三水平正交表来探究不同施肥方案、种植密度和灌溉水量对作物产量的影响。
在医学研究中,正交表可以用于研究药物剂量、治疗时间和患者芳龄对治疗效果的影响。
4. 三因素三水平正交表的分析方法对于三因素三水平正交表的分析,通常采用方差分析方法。
研究人员首先计算不同因素之间的平方和,并进行方差分析,以确定各个因素的显著性水平。
通过计算F值和p值,可以确定每个因素的主效应和交互效应是否显著。
研究人员根据分析结果可以得出结论,并进一步对实验因素进行优化和调整。
5. 我的观点和理解在我看来,三因素三水平正交表是一种非常有用的设计工具,可以帮助研究人员系统地研究多个因素对实验结果的影响。
通过合理设计正交表,可以减少实验中因素相互影响的干扰,更加准确地评估因素对实验结果的贡献。
正交表还可以提供实验结果的响应曲面,帮助研究人员更好地理解因素之间的关系。
总结本文深入探讨了三因素三水平正交表的概念、应用和分析方法,并分享了本人对该设计方法的观点和理解。
三因素三水平正交表是一种重要的实验设计工具,可以帮助研究人员系统地研究多个因素对实验结果的影响。
三水平三因素正交试验设计
5.872 7.747 7.861 7.270 7.880 6.662 8.053 6.405 6.668
5.232 6.834 7.022 6.456 7.011 5.896 7.134 5.725 5.909
10.90 11.79 10.67 11.20 11.03 11.50 11.41 10.62 11.38 LOGO
K2
11.15
11.46
11.57
K3
11.83
11.04
10.83
R
0.68
0.45
0.74
LOGO
LOGO
Example2正交试验设计优化碱性钙基膨润土
的改性条件
设置三水平三因素正交试验
因素 水平 1 2 3
A水土比 ( ml· g-1) 1.5:1 2:1 2.5:1
B 反应时 间(h) 10 12 14
C CaO/活性白土质量比 (g· g-1) 0.3:1 0.4:1 0.5:1
LOGO
LOGO
kI,k2,k3为其平均值, R为极差
LOGO
结果分析: 直接比较表2可知在这9个实验结果中,以实验5产生的银镜效果最好, 其水平组合为A2,B2,C3,分别是各因素中影响最大的水平。 由图可以看出本实验各因素组合中的最优组合为A2,B2,C3, 而通过R值的大小可以看出本实验因素存在显著性顺序,其主 次关系为C>A>B. 即影响银镜反应的因素最主要的是乙醛的浓度, 其次是温度、硝酸银的浓度。 结果与讨论 通过利用正交试验法得出的用乙醛作为还原剂做银镜反应时, 对实验影响最大的因素是乙醛的浓度。实验的最佳条件是 用水浴加热到80℃ ,2%的硝酸银溶液,使用40%的乙醛溶液。
三因子三水平正交设计
三因子三水平正交设计
三因子三水平正交设计是一种实验设计方法,用于研究三个因素对实验结果的
影响。
该设计方法可以有效地减少试验次数,同时保证各个因素之间的相互独立性。
在三因子三水平正交设计中,首先确定三个因素,每个因素有三个水平。
然后,根据正交表的原理,设计出一组实验方案,确保每个水平的因素在各个试验中均匀分布,并且每个因素的水平组合都出现了一次。
这样可以减小因素之间的交叉影响,使得分析结果更加可信。
正交设计的一个重要特点是可以通过较少的实验次数得到充分的信息。
因为正
交设计利用了正交表的性质,可以同时估计各个主效应、交互效应和误差的效应。
而且由于正交设计保证了因素间的独立性,可以更准确地估计因素的主效应和交互效应,从而更好地理解各个因素对实验结果的影响。
在实际应用中,三因子三水平正交设计可以用于各种科学研究和工程领域。
例如,在药物研发中,可以使用该设计方法来确定不同因素对药效的影响;在工业生产中,可以利用该设计方法优化生产过程,提高产品质量和产量。
总之,三因子三水平正交设计是一种实验设计方法,通过合理选取因素和水平,并利用正交表的原理,可以减少实验次数,降低误差,从而更准确地了解各个因素对实验结果的影响。
这种设计方法在科学研究和工程实践中具有广泛的应用前景。
三因素三水平正交表
三因素三水平正交表
三因素三水平正交表(Three-Factors Three-Levels Orthogonal Table)是实验设计中一种重要的工具,用于系统地研究多个因素对研究对象的影响。
这种设计方法基于对实验因素进行有效地设计和布局,以便从有限成本和时间内获得最大信息。
在三因素三水平正交表中,三个因素分别取三个不同的水平,每个因素的水平间都存在相等间隔。
因此,该实验设计方案中共有27个试验条件。
三因素三水平正交表是正交设计方法的一种,具有许多优点。
首先,它可以帮助研究人员确定各因素对研究对象的相对重要性,并识别任何交互作用等非线性关系。
其次,该方法可以更有效地检查因素之间的相互作用,尤其是在研究对象中存在较强的非线性作用时。
最后,三因素三水平正交表的设计允许研究人员对实验结果进行多因素统计分析,从而更全面地了解因素对结果的影响。
实际上,三因素三水平正交表在各种经济学、管理学、生物学和医学等领域中得到了广泛使用。
例如,在产业工程研究中,该方法被用于
研究决策和优化生产流程,以提高生产效率和降低成本。
在营销研究中,该方法可用于确定各种市场策略对顾客购买行为的影响。
在医学
研究中,该方法可用于研究疾病治疗方案的有效性。
总之,三因素三水平正交表是一种简便实用的多因素实验设计方法,
可以帮助研究人员更全面、系统地了解多种因素对研究对象的影响。
它已被应用于各种领域,成为现代实验设计方法中不可或缺的一部分。
三因素三水平正交试验结果分析
正交试验
正交试验设计是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。
例如作一个三因素三水平的实验,按全面实验要求,须进行3^3=27种组合的实验,且尚未考虑每一组合的重复数。
若按L9(3^4)正交表安排实验,只需作9次。
正交表简化了试验数据的计算分析。
在通过L9(3^4)的9次试验后可以得两类收获。
第一类收获是拿到手的结果。
第二类收获是认识和展望。
利用正交表的计算分折,分辨出主次因素,预测更好的水平组合,为进一步的试验提供有份量的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
蒸馏水用量 反应时间
(ml)
(h)
C CaO用量(g)
(60℃) Bent-Ca-OH 恒重质量
(g)
(200℃) Bent-Ca-OH 恒重质量(g)
Bent-Ca-OH 脱水率X (%)
1
1
1(10.5)
1(10)
1(1.5)
5.872
5.232
10.90
2
1
2(14)
2(12)
2(2.0)
7.747
3
1(10.5)
3(14)
2(2.0)
8.053
7.134
11.41
8
3
2(14)
1(10)
3(2.5)
6.405
5.725
10.62
9
3
3(17.5)
2(12)
1(1.5)
6.668
5.909
11.38
脱水率X(%) 脱水率X(%)
12.5
12
11.5
11
10.5
10
9.5
9
8.5
8
1.5
2
2.5
正交试验设计及在丝饼成 形工艺过程中的应用
正交试验设计优化等离子 喷涂纳米Al2O3-13%TiO2
涂层工艺参数
Example1正交试验设计法探究银镜反应 的反应条件
设置三水平三因素正交试验
L9(34) 正交试验
kI,k2,k3为其平均值 ,R为极差
结果分析:
直接比较表2可知在这9个实验结果中,以实验5产生的银镜效果最好 ,其水平组合为A2,B2,C3,分别是各因素中影响最大的水平。
常用的三个水平三个因素与三水平四因素的正交表一样 都是L9(34)正交表。
正交表
简 正介交:表的正代交号表是,一n为整试套验规的则次的数设,计t表为格水,平L数n(,tcc)为用列L数为, 也 表就示是需可作能9次安实排验最,多最的多因可素观个察数4。个例因如素正,交每表个L因9(素34均),为它3 水平。一个正交表中也可以各列的水平数不相等,我们 称 列它为为4水混平合,型4正列交为表2水,平如。L8(4× 24),此表的5列中,有1
Example2正交试验设计优化碱性钙基膨润土 的改性条件
设置三水平三因素正交试验
因素 水平
1
2
3
A水土比 ( ml·g-1)
1.5:1
2:1
2.5:1
B 反应时 间(h) 10
12
14
C CaO/活性白土质量比 (g·g-1) 0.3:1
0.4:1
0.5:1
L9(34) 正交试验
因素
试验
A
B
号
6.834
11.79
3
1
3(17.5)
3(14)
3(2.5)
7.861
7.022
10.67
4
2
1(10.5)
2(12)
3(2.5)
7.270
6.456
11.20
52ຫໍສະໝຸດ 2(14)3(14) 1(1.5)
7.880
7.011
11.03
6
2
3(17.5)
1(10)
2(2.0)
6.662
5.896
11.50
7
由图可以看出本实验各因素组合中的最优组合为A2,B2,C3,
而通过R值的大小可以看出本实验因素存在显著性顺序,其主 次关系为C>A>B. 即影响银镜反应的因素最主要的是乙醛的浓度, 其次是温度、硝酸银的浓度。
结果与讨论 通过利用正交试验法得出的用乙醛作为还原剂做银镜反应时, 对实验影响最大的因素是乙醛的浓度。实验的最佳条件是 用水浴加热到80℃ ,2%的硝酸银溶液,使用40%的乙醛溶液。
正交表每一列中,不同的数字出现的次数相等。 例如在两水平正交表中,任何一列都有数字“1”与“2”, 且任何一列中它们出现的次数是相等的; 如在三水平正交表中,任何一列都有“1”、“2”、“3”,且 在任一列的出现次数均相等。
Three Applications
正交试验设计法探究银镜 反应的反应条件
9.5
9
8.5
8
4
6
8
10
12
14
16
18
20
Time(h)
反应时间对脱水材料脱水率影响
正交表数据分析
K1
11.17
11.01
11.10
K2
11.15
11.46
11.57
K3
11.83
11.04
10.83
R
0.68
0.45
0.74
从正交表数据处理中可以看出因素C的极 差R最大,其次是因素A,因素B的极差最 小。故可知CaO用量对脱水材料脱水率影 响最显著。
3
3.5
4
4.5
5
水土比L/S(ml•g-1)
水土比L/S对脱水材料脱水率影响
12.5
12
11.5
11
10.5
10 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 Cao用量(g)
CaO与活性白土配比对脱水材料脱水率影 响
脱水率X(%)
12.5
12
11.5
11
10.5
10
从因素A列中均值K3较大,因素B列中K2 较大,因素C列中K2较大,故可知 A3,B2,C2是各因素中影响最大的水平。 即水土比为2.5:1 ml•g-1;反应时间为12h; CaO/活性白土质量比为0.4:1g• g-1这三个 影响较显著。
正交试验设计 Orthogonal experimental design
简介:日本著名的统计学家田口玄一将正交试验选择的 水平组合列成表格,称为正交表。例如作一个三因素三 水平的实验,按全面实验要求,须进行3^3 = 27种组合 的 表 显实安然验排大实大,验减且,少尚只了未需工考作作虑9量每次一。,组按合L1的6(重45复)正数交。表若进按行L91(63次4)实正验交,